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Abstract

Contemporary empirical applications frequently require flexible regression models for
complex response types and large tabular or non-tabular, including image or text, data.
Classical regression models either break down under the computational load of process-
ing such data or require additional manual feature extraction to make these problems
tractable. Here, we present deeptrafo, a package for fitting flexible regression models for
conditional distributions using a tensorflow back end with numerous additional processors,
such as neural networks, penalties, and smoothing splines. Package deeptrafo implements
deep conditional transformation models (DCTMs) for binary, ordinal, count, survival,
continuous, and time series responses, potentially with uninformative censoring. Unlike
other available methods, DCTMs do not assume a parametric family of distributions for
the response. Further, the data analyst may trade off interpretability and flexibility by
supplying custom neural network architectures and smoothers for each term in an intu-
itive formula interface. We demonstrate how to set up, fit, and work with DCTMs for
several response types. We further showcase how to construct ensembles of these models,
evaluate models using inbuilt cross-validation, and use other convenience functions for
DCTMs in several applications. Lastly, we discuss DCTMs in light of other approaches
to regression with non-tabular data.
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1. Introduction
Regression analysis aims to characterize the conditional distribution of a response Y given
a set of covariates X, thereby describing how changes in the covariates propagate to the
conditional distribution of Y givenX (Fahrmeir, Kneib, Lang, and Marx 2013). In this paper,
we present deeptrafo (Kook, Baumann, and Rügamer 2024), an R package for estimating a
broad class of distributional regression models for various types of responses (continuous,
survival, count, ordinal, binary) using tabular or non-tabular (e.g., image or text) data or
both. Package deeptrafo is available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=deeptrafo. Due to a flexible tensorflow (Allaire
and Tang 2024) back end and mini-batch optimization, deeptrafo does not only scale well
with non-tabular (imaging, text) data but also large tabular data sets. Many well-known
models fall into the class of transformation models (TMs), such as normal linear regression
(Lm), Cox proportional hazards models (CoxPH), and proportional odds logistic regression
(Polr, Hothorn, Möst, and Bühlmann 2018). In the following, we review existing software for
fitting these models.

Existing software packages. TMs for tabular data are implemented in tram (Hothorn,
Barbanti, and Siegfried 2024) using mlt (Hothorn 2020a) and fitted via maximum likelihood,
relying on alabama (Varadhan 2023) and BB (Varadhan and Gilbert 2009) for optimiza-
tion. Package tram provides an intuitive interface for fitting a multitude of distributional
regression models, ranging from shift and shift-scale (Siegfried, Kook, and Hothorn 2024)
to tensor-product (or “conditional”) transformation models (Hothorn, Kneib, and Bühlmann
2014). Several extensions of transformation models exist. For instance, cotram for count TMs
(Siegfried and Hothorn 2020), tramME for mixed effects TMs and TMs including smooth-
ing splines (Tamási and Hothorn 2021), and tramnet as well as tramvs for regularized TMs
(Kook and Hothorn 2021; Kook 2024). Transformation boosting machines (Hothorn 2020b)
and transformation trees and random forests (Hothorn 2023) offer extensions to classical ma-
chine learning models. Table 1 summarizes the commonalities and differences between the
packages implementing different (extensions of) transformation models in terms of model
classes, support for mgcv-based splines and tensorflow-based neural networks and scalable
optimization (via mini-batch training, see Appendix H). The deeptrafo package is currently
the only package implementing transformation models which supports neural network archi-
tectures enabling direct handling of text, image, and other deep learning-related data without
requiring feature engineering.

Neural network-based transformation models. With the advent of (deep) neural net-
works and the routine collection of non-tabular data, the idea to combine deep learning and
distributional regression approaches was adopted in several ways. For instance, Rügamer,
Kolb, and Klein (2024) parameterize distributional regression models via neural networks,
Sick, Hothorn, and Dürr (2021) describe flexible deep transformation models for continuous
responses. Kook, Herzog, Hothorn, Dürr, and Sick (2022) focus on semi-structured regres-
sion for ordinal responses, and Rügamer, Baumann, Kneib, and Hothorn (2023a) extend the
DCTM approach to distributional autoregressive models for time series responses. Alterna-
tive approaches to combining regression with neural networks including generalized additive
models for location, scale, and shape have been implemented in deepregression (Rügamer

https://CRAN.R-project.org/package=deeptrafo
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Package Model class Nonlinear Splines Neural networks Scalable optimization
tram Linear TMs ✗ ✗ ✗ ✗

cotram Count TMs ✗ ✗ ✗ ✗

tramnet L1/L2-penalized TMs ✗ ✗ ✗ ✗

tramvs L0-penalized TMs ✗ ✗ ✗ ✗

tbm Additive TMs ✓ ✗ ✗ ✗

trtf Transformation forests ✓ ✗ ✗ ✗

tramME Additive mixed TMs ✓ ✓ ✗ ✗

deeptrafo Additive TMs ✓ ✓ ✓ ✓

Table 1: Overview of packages for estimating different classes of transformation models. Pack-
ages tramME, tbm, trtf, and deeptrafo support estimation of nonlinear TMs. Specifically,
tramME supports splines from mgcv, tbm fits nonlinear model components via score-based
boosting, trtf fits nonlinear effects by aggregating trees with TMs in the leaves, and deeptrafo
supports both splines from mgcv and neural networks from tensorflow. Package deeptrafo
allows for scalable optimization via mini-batch training.

et al. 2023c). In this paper, we present deeptrafo, which unifies the above DCTM approaches
in a single R package.

Comparison to existing packages. Combining distributional regression with neural
network-based estimation has many advantages, such as modularity (data analysts can eas-
ily use well-established problem-specific neural network architectures), and easy handling of
big datasets (e.g., through mini-batch gradient descent with adaptive learning rates). Like
tram, deeptrafo relies on maximizing a likelihood function. However, stochastic first-order
optimization, such as stochastic gradient descent and the ability to deal with non-tabular
data distinguishes the two packages (Table 1). Further, deeptrafo covers and extends models
implemented in cotram. Like tramME, deeptrafo also allows the specification of smoothing
splines via mgcv (Wood 2023). However, the focus of our package does not lie on random
effects. Penalization as in tramnet is also available for deeptrafo. Lastly, unlike models in
deepregression, DCTMs do not require specification of a parametric family of distributions
for the response given covariates.
The rest of this paper is organized as follows. Section 1.1 introduces the statistical theory
behind TMs and DCTMs. The inner workings of deeptrafo are described in Section 2, where
several case studies on how to setup up, fit, validate, and interpret DCTMs are presented. We
present an application to binary classification with tabular and text modalities, and an appli-
cation to time series modeling via autoregressive TMs (Rügamer et al. 2023a). The appendix
contains information on advanced usage of the package, e.g., how censored responses are han-
dled (Appendix B) or how to warm-start or fix parameters of certain predictors (Appendix C).
In Appendix H, we demonstrate the package for large tabular datasets and factors with many
levels, which cannot be handled by standard implementations of classical regression models.

1.1. Deep conditional transformation models

Transformation models (Hothorn et al. 2014, 2018) estimate the conditional cumulative dis-
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tribution function (CDF) of a response Y ∈ Y ⊆ R given a realization x of covariates X ∈ X ,

FY |X=x(y) := P(Y ≤ y | X = x)

without committing to a particular parametric family of distributions for FY |X=x. Instead of
estimating the CDF directly, transformation models estimate how to transform the response
(conditional on covariates) to a latent variable Z := h(Y | x) with fixed and user-defined
CDF FZ : R → [0, 1], using the transformation function h : Y × X → R, which is constrained
to be monotonically non-decreasing in y ∈ Y for all x ∈ X . Then, the conditional CDF of the
outcome given covariates can be evaluated using the latent CDF FZ and the transformation
function h:

P(Y ≤ y | X = x) = P(h(Y | x) ≤ h(y | x) | X = x) = P(Z ≤ h(y | x)) = FZ(h(y | x)).

For continuous responses, h is continuous and for discrete responses, h is discrete (see Fig-
ure 1). Expressing the conditional CDF in terms of FZ and h yields simple expressions for
probability density and mass functions and thus also the log-likelihood.
Depending on the choice of FZ and restrictions on the functional form and parameterization
of h, TMs cover a wide range of well-known models with varying complexity.

Example 1 (Beyond normal linear regression) Choosing FZ = Φ and h(y | x) = σ−1(y−
α−x⊤β), with standard deviation σ > 0, and intercept α ∈ R, is equivalent to a normal linear
regression model, since P(Y ≤ y | X = x) = Φ(σ−1(y −α−x⊤β)). Fixing the transformation
function to be linear will always result in conditionally normal outcome distributions. How-
ever, this restriction can be lifted by using a nonlinear increasing transformation, hY : Y → R,
i.e., h(y | x) = hY (y) − x⊤β̃, which now assumes that the transformed response hY (Y ) (in-
stead of the original response) is normal with mean x⊤β̃.

Example 2 (Beyond Weibull regression) Choosing FZ(z) = 1−exp(− exp(z)) with h(y |
x) = a + b log y +x⊤β, with intercept a and slope b > 0, is equivalent to a Weibull regression
model, since P(Y ≤ y | X = x) = 1−exp(− exp(a+b log y+x⊤β)) = 1−exp(−ãyb exp(x⊤β)),
where ã := exp(a). Also in this example, log-linearity of the transformation function fixes the
conditional outcome to be Weibull distributed. Allowing an arbitrary increasing function,
hY : Y → R, instead, i.e., h(y | x) = hY (y) + x⊤β̃, results in the Cox proportional hazards
model, since the survivor function equals P(Y ≥ y | X = x) = exp(− exp(hY (y)) exp(x⊤β̃))
and exp(hY (y)) is the cumulative baseline hazards.

Thus, TMs contain both normal linear and Weibull regression but also extend both to a
more flexible counterpart that does not assume a parametric family of conditional outcome
distributions.

Parameterizing the transformation function. In semi-structured regression, we have
access to J input modalities X1, . . . ,XJ , such as tabular data, images, or text, from which
we construct structured (e.g., linear, sparse, or smooth) or unstructured (e.g., neural network)
predictors. These inputs may be non-tabular, i.e., there may be a j for which Xj ∈ Xj ̸⊆ Rd.
By X := X1 × · · · × XJ we denote the entire input space. In DCTMs, restrictions on the
functional form of h, i.e., the way predictors are constructed based on the input data, lead
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Figure 1: Example of a DCTM with transformation function h(y | x1,x2) depending on a
tabular modalityX1 and a text modalityX2, which both enter as an additive shift term. The
tabular modality enters as a simple linear predictor x⊤

1 β1 and the text data via the output of
a neural network β2, which is specified by the user. Together with a baseline transformation
hY , whose parameterization is discussed later, and the latent distribution FZ , the DCTM is
fully specified. On the bottom, the transformation function h and cumulative distribution
function FY |X1=x1,X2=x2 = FZ ◦ h are depicted for a binary, ordered, count, and continuous
response for two realizations of the tabular (X1, X2) and text modalities (text1, text2). For
binary and ordered responses with K levels, the transformation function contains one and
K − 1 parameters, respectively, because the CDF is constrained to one for the largest class.

to varying degrees of interpretability and flexibility of the model. We begin with an example
before introducing h in its most flexible form. Consider a problem with a single tabular
(X1 ∈ X1 ⊆ Rp) and a single text modality (X2 ∈ X2). Data analysts commonly assume
additivity in the effects the separate modalities, which can be realized by modeling the effect
of both modalities as shift terms,

h(y | x1,x2;ω) = hY (y;ϑ) + x⊤
1 β1 + β2(x2;ψ), y ∈ Y, (1)
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where hY : Y → R denotes the baseline transformation (i.e., the transformation function
obtained when x⊤

1 β1 + β2(x2) = 0, which is parameterized in terms of ϑ ∈ RM ). Further,
β1 denotes the coefficients of the linear predictor and β2 : X2 → R denotes the unstructured
predictor for the text data, which are typically controlled by a neural network with weights ψ.
By ω := (ϑ,β,ψ), we denote the collection of all parameters, including the neural network
weights. A DCTM with (1) is distribution-free because for any constellation of covariates
for which the shifting predictor is zero, i.e., for all (x0

1,x0
2) ∈ S0 := {(x1,x2) ∈ X1 × X2 |

x⊤
1 β1 + β2(x2) = 0}, and all conditional distributions Y | X1 = x0

1,X2 = x0
2, there exists a

unique baseline transformation given by hY = F −1
Z ◦ FY |X1=x0

1,X2=x0
2
. In (1), covariate effects

are assumed to enter additively on the scale of the transformation function, thus restricting
distributions that can be modeled for (x1,x2) ∈ X \S0. This argument can be extended to
more complex DCTMs (for shift-scale see, e.g., Siegfried et al. 2024). The example in (1) is
depicted in Figure 1 for typical types of responses and standard logistic latent distribution.
In deeptrafo, the most general transformation function h is parameterized in terms of ω :=
(ϑ,β,ϕ,ψ) ∈ RMd × Rp × Rq × Rs which serves as the collection of parameters for basis
expansions (potentially including neural networks) of the response and input modalities,

h(y | x;ω) = (a(y) ⊗ b(x;ϕ))⊤ ϑ+ s(x;ψ)⊤β, y ∈ Y, x ∈ X , (2)

where ⊗ denotes the Kronecker product and a : Y → RM , b : X → Rd, s : X → Rp denote the
bases for the response, and the J predictors, which either interact (b(·;ϕ)) with the response
or simply shift (s(·;ψ)) the transformation function. The dimensions of the neural network
weights ϕ and ψ depend on the complexity of the neural network architectures which the
user has full control over. In deeptrafo, the basis for the response is not data-dependent and
thus contains no parameters. The interacting and shifting basis, however, depend on the
covariates and may include splines or neural networks, whose parameters are collected in ϕ
and ψ, respectively.
The transformation function is required to be monotonically non-decreasing for all x ∈ X .
Hence, depending on the choice of basis, the parameters ϑ in (2) need to fulfill positivity or
monotonicity constraints (Hothorn et al. 2014), which can be enforced by appropriate repa-
rameterizations. Without interacting predictors, Bernstein polynomials and discrete bases
require ϑ1 ≤ ϑ2 ≤ · · · ≤ ϑM and linear and log-linear bases require positive slopes. For more
complex interacting predictors, the positivity of b(·;ϕ) has to be enforced together with more
complex constraints on ϑ to ensure a monotonically non-decreasing transformation function
(for details, see Baumann, Hothorn, and Rügamer 2021).
Shift effects are constant across all values of the response, i.e., the transformation h can only
shift up- or downwards (see Figure 1). The effect of interacting predictors may vary with
the response and thus the shape of h may change for different predictor values. For instance,
an interacting binary predictor leads to two separate transformations for each level, much
like stratum variables in survival analysis allow for separate hazard functions (Collett 2015).
However, in its general form, interacting predictors may also include neural networks and
thus unstructured predictors, making them extremely versatile. Scale effects as introduced
in Siegfried et al. (2024) are a special case of interacting predictors, which are included in
deeptrafo by using b : X → R+ with x 7→

√
exp(γ(x)) and, e.g., a neural network γ : X → R.

With a linear basis a in y, a(y) = (1, y)⊤, this is equivalent to location-scale regression with
error distribution FZ .
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Supported response types. Several types of univariate, potentially censored, responses
can be handled. This includes continuous (Y ⊆ R), survival (Y ⊆ R+), count (Y = N),
and ordered (Y = {y1, . . . , yK}) responses. For continuous responses, the basis for Y is a
smooth function parameterized via polynomials in Bernstein form of order M −1, denoted by
aBs,M−1(y). For count responses (M = K), the polynomials in Bernstein form are evaluated
only at the integers, i.e., aBs,M−1(⌊y⌋) (Siegfried and Hothorn 2020). For ordered responses,
a dummy-encoding is used, i.e., for k = 1, . . . , K, b(yk) = ek, where ek denotes the k-th unit
vector. Linear and log-linear bases are supported as well. In Appendix D, we describe how
the user can supply custom basis functions.

Fitting transformation models. Finally, transformation models can be fitted by minimiz-
ing the negative average log-likelihood over the class of transformation functions h(y | x;ω)
with parameters ω,

NLL(ω; yi,xi) := − 1
n

n∑
i=1

ℓ(ω; yi,xi),

where the observations {(yi,xi)}n
i=1 are assumed to be independent. In deeptrafo, the default

optimizer is (stochastic) gradient descent using Adam (Kingma and Ba 2015). However, any
keras (Allaire and Chollet 2024) or tensorflow optimizer or a custom optimization routine
can be used instead. For a single observation (y,x), the log-likelihood contribution ℓ(h; y,x)
depends on the type of censoring of the observed response. Exact responses y contribute
log fZ(h(y | x))h′(y | x) to the log-likelihood. Interval-censored responses (

¯
y, ȳ] contribute

log(FZ(h(ȳ | x)) − FZ(h(
¯
y | x))). Left- and right-censored observations follow from the

interval-censored contribution as a special case, by letting
¯
y → −∞ and ȳ → +∞, respectively

(Hothorn et al. 2014). In deeptrafo, the log-likelihood contributions are implemented in terms
of mathematical operations implemented in tensorflow, which call their Python (Van Rossum
et al. 2011) counterpart via reticulate and allow efficient computation of the log-likelihood,
its gradients and weight updates during optimization.

1.2. Autoregressive transformation models

Time series data pose one particular case where the independence assumption between ob-
servations is not tenable and needs to be taken into account. Formally, the joint distribution
of a time series (Yt)t∈T with T ⊆ N0 can always be factorized in its conditional distributions,
i.e., by conditioning Yt on its full history Ft,1 := (Yt−1, . . . , Y1). A simplification is to impose
a Markov property of order p ≥ 1 which implies that the conditional distribution of Yt only
depends on the history up to and including t − p, that is Ft,t−p := (Yt−1, . . . , Yt−p) rather
than the entire history Ft,1.
Package deeptrafo offers three ways on how to model time series data assuming the Markov
property. The naive way is given by classical transformation models where Ft,t−p is regarded
in the basis expansion of the transformation function shown in (2) where elements of Ft,t−p

may interact with the response Yt and simultaneously shift the transformation function. Fur-
thermore, Rügamer et al. (2023a) proposed the class of autoregressive transformation models
(ATMs) which differ from the naive approach (i.e., classical transformation models) in two
perspectives. First, the transformation function ht in ATMs can be time-varying which may
result in different transformations for different sub-periods. Second, the same ht is applied to
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Figure 2: Left: The pre-processed movie review of a picked instance of the movies dataset,
in which stop words and punctuation have already been removed. Right: The empirical CDF
of vote_count over all movies in the training, where the picked instance has a vote_count
of 1400 as indicated by the dashed line (placing it above the top quartile). The used tabular
input data comprise popularity (4.08 for the picked instance) and revenue (400 million US
dollars for the picked instance).

Yt and each element of Ft,t−p simultaneously, resulting in a shared transformation between
Yt and its lags.
A special subclass of ATMs are AT(p) models which do not allow for interacting elements
of Ft,t−p with Yt through b but restrict to a linear shift impact of the transformed values
of Ft,t−p on the scale of h. The class of AT(p) models is closely related to a well-known
class of time series models, i.e., autoregressive models of order p (AR(p), Hamilton 2020).
In fact, AT(p) models are equivalent to AR(p) models for a(y) = (1, y)⊤, s(x) ≡ x and the
independent white noise follows the distribution FZ (for details, see Rügamer et al. 2023a).
Learning the transformation simultaneously for the response and its lags as it is done in ATMs
is particularly important for ordinal time series, for which the dimensionality of the model can
thereby be reduced. Instead of modeling each level of the lagged response, the one-dimensional
transformed lagged response is included. It also allows for a more consistent interpretation in
the sense of autoregression because we model h(Yt) at the current step (auto)regress the next
time point h(Yt+1) on the likewise transformed response h(Yt), not on the untransformed Yt.
We showcase the practical differences between linear transformation models, AT(p) and ATM
models in Section 4.

1.3. Application datasets

Movies data. In Section 2, we will illustrate the features of deeptrafo using the movies
dataset (Kaggle 2017). The dataset contains information on 45,000 movies released prior to
July 2017, including number of ratings, budget, revenue, popularity, run time, and genre.
In addition, non-tabular reviews of the movies are available as text data. In Section 2, we
will focus on estimating the conditional distribution of vote_count given whether a movie is
an action movie, its budget, its popularity score, and the text review. In Section 3, we will
switch to the binary classification task of deciding whether a movie falls into the action genre
or not. This way, we can showcase how to apply DCTMs for a wider range of outcome types.
We pre-process budget, revenue, and popularity using log(1 + x), due to their skewed nature.
In Figure 2, we show the empirical CDF of the variable vote_count of the movies dataset



Journal of Statistical Software 9

and provide more information on the used variables for one specific movie. For the text data,
we use a text_tokenizer with a 1,000 word vocabulary, convert text to sequence and pad
sequences to a maximum length of 100 and truncate the end of a review. We use such a simple
embedding to illustrate the key steps of the analysis and make the computations feasible on a
standard laptop with 8 gigabytes of RAM. We additionally present results with a pre-trained
embedding that performs comparably in terms of test NLL in Appendix E.

Temperature data. An application of autoregressive transformation models to a time
series of monthly mean maximum temperature in Melbourne (Australia) in degrees Celsius
between January 1971 and December 1990 (240 records) is presented in Section 1.2. The
temperature time series was recorded by the Australian Bureau of Meteorology and later
provided in Hyndman and Yang (2022).

2. The package
Package deeptrafo builds upon tensorflow as a fitting engine and deepregression for setting up
structured model terms such as linear effects or splines within a neural network. In contrast
to deepregression, which implements models with parametric families and individual additive
predictors, deeptrafo supports more complicated computations such as in (2). This is exposed
to the user via deeptrafo’s formula interface. In deeptrafo, response, interacting, and shifting
terms are represented as ‘formula’ objects and correspond to the bases in (2). Internally, a
processor is defined for each model term, which evaluates its basis functions and optional
penalties via deeptrafo internal, mgcv, or keras/tensorflow functions. For instance, for a
continuous response, a polynomial basis in Bernstein form and its derivatives are set up
by default (cf. Table 2). The corresponding basis functions are implemented in deeptrafo.
Package deeptrafo can include terms modeled by user-specified neural network architectures
for the interacting and shifting terms (see Figure 1 and Figure 3). When initializing the model
using such a formula-based call, the model is internally translated to tensorflow computations
using a computational graph. In the end, a single end-to-end trainable neural network is
set up, which may contain different neural network components for different terms in the
interacting or shifting predictor. Together with the supplied latent_distr FZ , the DCTM
is fully specified and its parameters can be estimated by minimizing the NLL via stochastic
gradient descent (SGD). Since the DCTM has internally been translated to a model from
tensorflow, the optimization can be done using the keras API, which implements the SGD
routine with many choices for adaptive learning rates while providing training metrics without
requiring users to define training loops for parameter updates. An appropriate last-layer
transformation ensures monotonicity constraints of the interacting model term in the response.

Workflow. Typical workflows around deeptrafo, including the illustration in Section 2 and
both applications on binary classification (Section 3) and distributional time series (Section 4),
are structured as follows: First, a model formula is set up. The ‘formula’ object encodes
in which way each feature enters the model. If neural network components are used, the
corresponding architectures have to be defined beforehand. Next, the latent distribution
FZ is chosen and decides which scale the partial effects of components in the formula are
interpreted. Although the formula together with the latent distribution formally specify the
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Figure 3: Schematic depiction of setting up and fitting DCTMs. Bases for input predic-
tors x and response y (circles) are evaluated and enter the two neural network components
interacting and shifting according to (3). The components’ outputs make up the transfor-
mation function h which is parameterized in terms of ω. Together with the latent distribution
FZ , the loss, e.g., NLL, and its gradients can be evaluated and used to update parameters
ω. Since FZ is parameter-free, all trainable parameters are in the transformation function,
as indicated by the dotted box.

Model function Model name Default basis Default latent distribution
BoxCoxNN Transformed normal Bernstein Standard normal
ColrNN Continuous outcome logistic Bernstein Standard logistic
cotramNN Count transformation Bernstein Standard logistic
CoxphNN Cox proportional hazards Bernstein Standard minimum extreme value
LehmannNN Lehmann-type Bernstein Standard maximum extreme value
LmNN Normal linear Linear Standard normal
PolrNN Proportional odds logistic Discrete Standard logistic
SurvregNN Weibull Log-linear Standard minimum extreme value

Table 2: Supported models together with the default choice of basis function and latent
distribution. Model functions summarized here are implemented with a specific choice of
basis and latent distribution that define commonly applied regression models.

TM completely (Figure 3), the data and optimizer have to be supplied at this stage. For deep
learning models (as opposed to statistical models), it is common to separate model building
from model fitting, in order to supply more arguments (such as callbacks) to the optimization
routine. Now, hyperparameters can be tuned based on cross-validation. Finally, with the
chosen hyperparameters, either a single instance of the DCTM or an ensemble is fitted and
can be used for downstream prediction tasks. In Section 2.1, we describe each step of the
workflow in more detail using the movies data.

Each step in the deeptrafo workflow is highly customizable, e.g., custom functions for basis
evaluation (Appendix D), custom last-layer transformations, and general-purpose optimiza-
tion routines (Section 3), such as SGD with adaptive learning rates (Appendix F), can be
supplied.
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Effect / Processor Example formula
Linear y ∼ x
Smooth y ∼ s(x, ...)
Tensor product splines y ∼ [te|ti|t2](x, ...)
Lasso y ∼ lasso(x)
Group lasso y ∼ grlasso(x)
Row-wise tensor product y ∼ rwt(x)

Neural network y ∼ nn(x)

Processor *_processor
e.g., fac_processor

Table 3: Implemented choices of interacting and shift processors. All splines
from mgcv are supported. Custom neural networks can be supplied as functions via
list_of_deep_models. Additional processors, for example, for faster processing of large
factors or interactions from safareg, can be included via additional_processors (Rügamer
et al. 2023b; Rügamer 2024). All terms can also be included as interacting effects on the
left-hand side of the formula, e.g., y | term(x, ...) ∼ 1.

2.1. Main components

We describe the main components of deeptrafo below by showing how to use the formula
interface, set up a DCTM, and fit the model. In this section, all steps are illustrated with
the movies dataset. In the following examples, we assign non-default values to some of the
arguments that can be supplied to functions and methods for building and fitting keras-based
neural networks. This is not because the models have been tuned extensively, but rather
to illustrate the most important hyperparameters that are involved in building and fitting
DCTMs.

Formula interface

Models can be specified via a formula interface akin to the one used in tram (Hothorn et al.
2024), where covariates interacting with the response are supplied on the left-hand side, and
shift effects are supplied on the right-hand side of the formula, as illustrated below.

response | interacting ~ shifting

Thus, the formula interface mimics the transformation function as introduced in (2):

(
a(y)︸ ︷︷ ︸

response

⊗
interacting︷ ︸︸ ︷
b(x;ϕ)

)⊤
ϑ+ s(x;ψ)︸ ︷︷ ︸

shifting

⊤β. (3)

Case study: Formula interface. We begin by modeling the conditional distribution of
vote_count given a binary indicator of whether the movie is categorized as an action movie
or not (genreAction), the movie’s budget and its popularity. The below formula allows
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for separate baseline transformations of the response for action movies vs. all other genres, a
smooth effect for budget and a linear effect for popularity. Here, we use the standard spline
basis representation implemented in mgcv. A non-exhaustive list of smoothers and other
processors is given in Table 3. Processors are specialized functions for handling predictors
which can speed up computation. For instance, fac_processor() from safareg evaluates
factors online and thus facilitates computation for large factor models (Rügamer et al. 2023b,
also see the illustration in Appendix H).

R> fm <- vote_count | genreAction ~ 0 + s(budget, df = 3) + popularity

In the above formula we exclude an additional intercept in the shift term by specifying
0 + ..., because the interacting basis already contains an intercept.

Setting up DCTMs

DCTMs can be generically set up using the deeptrafo() function.

deeptrafo(formula = response | interacting ~ shifting, data = ...)

The data can be supplied as a data.frame or list. The function returns a ‘deeptrafo’
object, whose methods are described in Section 2.2.
Special cases of DCTMs coincide with well-known models and are given their own function in
deeptrafo. The naming conventions in deeptrafo follow the tram package (Hothorn et al. 2024)
and add the suffix NN. For instance, the proportional odds logistic regression model (ordinal
response and FZ = expit) is implemented as Polr() in tram and PolrNN() in deeptrafo (see
Table 2 for an overview).

Case study: Setting up DCTMs. For the movies data, we set up a count transformation
model with standard logistic latent distribution. The logistic distribution is chosen, so that
the partial effects of the features are interpretable as log-odds ratios. Example interpretations
are given in Section 3. We supply the Adam optimizer (the default, see Appendix F) for SGD
with learning rate of 0.1 decaying with a rate of 4 · 10−4 (Kingma and Ba 2015). The training
data train is the result of the pre-processing steps described in Section 1.3. The code for
reproducing all output and figures can be found in the online supplement.

R> opt <- optimizer_adam(learning_rate = 0.1, decay = 4e-4)
R> (m_fm <- cotramNN(formula = fm, data = train, optimizer = opt))

Untrained count outcome deep conditional transformation model

Call:
cotramNN(formula = fm, data = train, optimizer = opt)

Interacting: vote_count | genreAction

Shifting: ~0 + s(budget, df = 6) + popularity
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Shift coefficients:
s(budget, df = 6)1 s(budget, df = 6)2 s(budget, df = 6)3 s(budget, df = 6)4

0.557 -0.702 0.760 -0.181
s(budget, df = 6)5 s(budget, df = 6)6 s(budget, df = 6)7 s(budget, df = 6)8

-0.201 -0.687 0.670 0.671
s(budget, df = 6)9 popularity

-0.377 -0.888

Printing the model to the console shows the model specification and shift coefficients. Note
that the model has only been randomly initialized and not yet fitted, as indicated by “Un-
trained count outcome deep conditional transformation model” in the print() call. Upon
calling fit(), ensemble(), or cv(), the model’s history will be non-empty and it will be
considered “trained” when printed again.

Fitting DCTMs
For fitting DCTMs the user calls fit(), which calls the model internal mod$fit_fun(), per
default a wrapper around fit.keras.engine.training.Model(), with the supplied argu-
ments (for instance epochs, batch_size). All functionalities of fitting keras models carry
over to fitting DCTMs, including callbacks (i.e., custom operations applied after every itera-
tion or mini-batch update).

Case study: Fitting DCTMs. The ‘deeptrafo’ object returned by cotramNN is fitted
for 1,000 epochs, with a batch size of 64, and a 10% validation split. The validation split is
used during training to judge whether overfitting occurs (Goodfellow, Bengio, and Courville
2016). Below, we print the (now trained) model.

R> m_fm_hist <- fit(m_fm, epochs = 1e3, validation_split = 0.1,
+ batch_size = 64, verbose = FALSE)
R> unlist(coef(m_fm, which = "shifting"))

s(budget, df = 6)1 s(budget, df = 6)2 s(budget, df = 6)3 s(budget, df = 6)4
0.38339 -0.28824 -0.04608 -0.03992

s(budget, df = 6)5 s(budget, df = 6)6 s(budget, df = 6)7 s(budget, df = 6)8
0.00616 -0.02692 -0.00511 0.01355

s(budget, df = 6)9 popularity
-0.36587 -0.82771

Figure 4A depicts the training and validation loss trajectory for inspecting convergence and
overfitting, which can be generated with plot(m_fm_hist). The learning curves indicate
that the model is not fully trained after 1000 epochs and there is no evidence for overfitting.
Figure 4B shows the estimated transformation function. In Section 2.2, we describe how to
produce plots of the transformation function and density. Since genreAction is included as
a response-varying effect, the two transformation functions are allowed to cross.

Working with neural networks
The deeptrafo package allows to directly model effects of, for instance, text or image data via
neural networks. In DCTMs, neural networks map from a complex input space, such as text
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Figure 4: A: Training and validation loss trajectory for m_fm. B: Estimated transformation
functions for both levels of genreAction with popularity and budget fixed at their mean
in the training data.

or images, to Euclidean space. When the neural network enters as a shift term, the output
of the network is a real number which is interpretable on the latent scale F −1

Z , i.e., the scale
of the transformation function. Custom neural networks can be supplied to deeptrafo as
functions or ‘keras_model’s via the list_of_deep_models argument.

Case study: Working with neural networks. In our running example, we use the
following architecture to model the contribution of the movie reviews provided as textual
descriptions. In Section 3, we present an application with further downstream analysis of the
text embedding and how this simple embedding compares against using larger pre-trained
embeddings.

R> embd_mod <- function(x) x |>
+ layer_embedding(input_dim = nr_words, output_dim = embedding_size) |>
+ layer_lstm(units = 50, return_sequences = TRUE) |>
+ layer_lstm(units = 50, return_sequences = FALSE) |>
+ layer_dropout(rate = 0.1) |> layer_dense(25) |>
+ layer_dropout(rate = 0.2) |> layer_dense(5) |>
+ layer_dropout(rate = 0.3) |> layer_dense(1)

The neural network embd_mod maps movie ratings to a real value (for more details see the
case study in Section 3). The interpretational scale of output depends on the choice of latent
distribution. Here, the logistic distribution (FZ = expit) renders the output of embd_mod
interpretable on the log-odds scale. In turn, differences in the output of embd_mod can be
interpreted as log odds-ratios when changing, for instance, a single word in a sentence and
leaving everything else constant. In our deeptrafo model, we can now supply a named list
list(deep = embd_mod) and use deep(texts) in the formula.

R> fm_deep <- update(fm, . ~ . + deep(texts))
R> m_deep <- cotramNN(fm_deep, data = train,
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+ list_of_deep_models = list(deep = embd_mod))
R> fit(m_deep, epochs = 50, validation_split = 0.1, batch_size = 32,
+ callbacks = list(callback_early_stopping(patience = 5)),
+ verbose = FALSE)

The default optimization routine may not produce optimization paths as smooth as when
omitting the neural network component. However, adaptively scheduled learning rates for
SGD often work well out-of-the-box, e.g., using optimizer = optimizer_adam() as an ar-
gument when initializing the ‘deeptrafo’ model. Sometimes also different learning schedules
are needed for the different modalities (see Section 3).

Ensembling DCTMs
A simple and popular method to improve prediction performance and to quantify training
stability (i.e., uncertainty from random initialization and stochastic optimization) are deep
ensembles (Lakshminarayanan, Pritzel, and Blundell 2017). In a deep ensemble, a neural
network model is trained B times using the same training and validation data, but different
initial weights. Training via SGD may then converge to different (local) minima and the
members may yield different predictions. However, averaging the predicted densities of the B
ensemble members is guaranteed to improve upon the average individual performance (e.g., in
terms of NLL). In deeptrafo, an ensemble of a model can be fitted via ensemble(). Besides
classical deep ensembling, deeptrafo implements transformation ensembles (Kook, Götschi,
Baumann, Hothorn, and Sick 2022). Transformation ensembles are specifically tailored to-
wards DCTMs and preserve their additive structure and thus (partial) interpretability by
averaging the predicted transformation functions instead of the predicted densities.

Case study: Ensembling DCTMs. Below, we fit five instances of m_deep. Then, we com-
bine their predictions on the scale of the transformation function and can investigate uncer-
tainty in the effects of the shifting predictors and prediction performance on the test set.

R> ens_deep <- ensemble(m_deep, n_ensemble = 3, epochs = 50, batch_size = 64,
+ verbose = FALSE)

Figure 5 shows the estimated smooth effect of budget with training stability indicated by
the shaded area. Investigating the out-of-sample prediction performance, we see that the
transformation ensemble performs better than the members do on average (see Proposition 3
in Kook et al. 2022).

R> unlist(logLik(ens_deep, convert_fun = \(x) - mean(x)))

members1 members2 members3 mean ensemble
-8.28 -8.50 -8.32 -8.37 -8.35

Cross-validating DCTMs for hyperparameter tuning
With cv(), deeptrafo provides a cross-validation function for ‘deeptrafo’ objects. When
supplying an integer to cv_folds, the data is split into cv_folds number of folds. Alter-
natively, the user can specify a list with two elements indicating data indices for training
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Figure 6: Default plot generated by cv.deeptrafo(). The vertical lines indicate the epoch
with minimal average train/validation loss.

and validation. The output of cv() can be used for tuning smoothing hyperparameters,
choosing between including a predictor as interacting or shifting, or different neural network
architectures.

Case study: Cross-validating DCTMs. The following call to cv() performs 5-fold cross
validation while fitting each instance of m_deep for 50 epochs. Train and validation loss
trajectories are shown in Figure 6. The vertical bars indicate the epoch with the best average
train/validation loss.

R> cv_deep <- cv(m_deep, epochs = 50, cv_folds = 5, batch_size = 64)
R> plot_cv(cv_deep)

2.2. Methods overview

In the following, we briefly describe S3 methods for ‘deeptrafo’ and ‘dtEnsemble’ objects.
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Methods for ‘deeptrafo’ objects

• coef() returns coefficients for the interacting or shifting terms (controllable via
which_param = c("shifting", "interacting", "autoregressive")).

• predict() returns in-sample predictions when newdata is not supplied. The supported
types are "trafo", "pdf", "cdf", "interaction", "shift", "terms". When newdata
is supplied, predictions are evaluated at the response, if it is contained in newdata. The
response can be omitted from newdata to predict the whole conditional distribution.
Then, predictions are evaluated on a grid of length K, which is automatically generated
based on the response’s support in the training data set. A custom grid of response
values can be supplied via q, which overwrites K.

• logLik() evaluates in- or out-of-sample log-likelihoods. This can be useful for model
criticism and evaluating predictive performance, respectively. The argument convert_fun
controls how the individual NLL contributions are summarized. The default is
function(x) = -sum(x) to compute the log-likelihood. Other common choices include
identity to obtain the individual NLL contributions, or mean to get the average NLL.

• plot() by default plots smooth components in the shifting formula part. Data for
plotting can be obtained by setting only_data = TRUE. Smooth terms in interacting
can be plotted by setting which_param = "interacting". In the same manner as in
predict, densities evaluated in-sample (type = "pdf"), CDFs (or probability integral
transforms, with type = "cdf"), and transformation functions (type = "trafo") can
be obtained. When omitting the response from newdata, the whole density, cumulative
distribution, or transformation function can be plotted.

• print() prints a brief summary of the DCTM including coefficients of additive lin-
ear and smooth terms in shifting. Setting with_baseline = TRUE also prints coeffi-
cients of linear and smooth terms in interacting. The print_model argument toggles
whether the keras summary of the DCTM should be printed in addition.

Methods for ‘dtEnsemble’ objects

Methods coef() and predict() of ‘deeptrafo’ objects take the same arguments as their
‘deeptrafo’ counterparts. The output is returned for all ensemble members. Likewise,
logLik() returns the processed NLL contributions for individual ensemble members, their
average, and the transformation ensemble.

3. Application: Binary classification
In this application, we use the movies dataset and fit four different models with the goal to
predict the binary response action (0: non-action movie, 1: action movie, defined in the next
code chunk), which encodes whether a movie is an action movie or not. The model m_0 is
unconditional; m_tab uses only one tabular predictor, popularity, as linear shift predictor;
m_text uses only texts as an unstructured shift predictor; m_semi is a semi-structured model
which uses both modalities as shift predictors. The purpose of the analysis is to show the
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potential gains in prediction performance that can be achieved when including the text data
and learning an embedding, for which conventional statistical models would require extensive
feature engineering. The models that do not include the text data could, in principle, also be
fitted using glm() from the MASS (Ripley 2024) package and yield virtually the same results
as deeptrafo.
First, we encode the binary response as an ordered factor allowing us to use the framework
of ordinal neural network transformation models (Kook et al. 2022). This step is necessary
because unordered factors are not supported by deeptrafo.

R> train$action <- ordered(train$genreAction)
R> test$action <- ordered(test$genreAction, levels = levels(train$action))

We then set up the formulas for the four models. The unconditional model is specified without
any predictors and 1 on the right-hand side. Later, we will restrict this additional intercept
to zero for identification (see warmstart_weights in the definition of m_0). For all other
models, we remove the intercept directly by specifying 0 + ... on the right-hand side.

R> fm_0 <- action ~ 1
R> fm_tab <- action ~ 0 + popularity
R> fm_text <- action ~ 0 + deep(texts)
R> fm_semi <- action ~ 0 + popularity + deep(texts)

Here, deep is the same neural network architecture with text embedding as in Section 2.1.
We use a custom ‘keras_model’ to which we can refer to by the name "embd" and wrap it
in a function, which allows us to create multiple instances of the same model. This may be
necessary in applications to make the resulting Python objects point to different copies in
memory and avoid unintended re-use of already trained or modified models.

R> make_keras_model <- function() {
+ return(keras_model_sequential(name = "embd") |>
+ layer_embedding(input_dim = nr_words, output_dim = embedding_size) |>
+ layer_lstm(units = 50, return_sequences = TRUE) |>
+ layer_lstm(units = 50, return_sequences = FALSE) |>
+ layer_dropout(rate = 0.1) |> layer_dense(25) |>
+ layer_dropout(rate = 0.2) |> layer_dense(5, name = "penultimate") |>
+ layer_dropout(rate = 0.3) |> layer_dense(1))
+ }

Next, we use PolrNN() to set up the different models with a standard logistic latent dis-
tribution. Models including text data are trained for ten epochs with early stopping and a
patience of two, and the weights from the epoch with the best validation loss are restored.
The unconditional and tabular-only models are trained full-batch and without validation split
until converging to the minimum since convexity of the problem implies a unique solution.
Besides the simple text embedding that is trained from scratch, we also present how to use a
pre-trained word2vec embedding in Appendix E.
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3.1. Unconditional model

For the unconditional model, the intercept is fixed to zero via warmstart_weights to ensure
identification. The details explaining the next code chunk can be found in Appendix C.

R> m_0 <- PolrNN(fm_0, data = train, optimizer = optimizer_adam(
+ learning_rate = 1e-2, decay = 1e-4), weight_options = weight_control(
+ general_weight_options = list(trainable = FALSE, use_bias = FALSE),
+ warmstart_weights = list(list(), list(), list("1" = 0))))
R> fit(m_0, epochs = 3e3, validation_split = 0, batch_size = length(
+ train$action), verbose = FALSE)

The unconditional model m_0 has one parameter which estimates the log-odds of a movie
belonging to a non-action genre without any predictors. The estimated intercept parameter,
given by coef(m_0, which = "interacting"), corresponds to the single (fix) value of the
transformation function h for a binary response (see Figure 1). The code chunk below shows
that the estimated intercept agrees with the observed log-odds of a movie belonging to a
non-action genre up to numerical inaccuracies.

R> all.equal(unlist(unname(coef(m_0, which = "interacting"))),
+ qlogis(mean(train$action == 0)), tol = 1e-6)

[1] TRUE

We can obtain the unconditional log-odds also using predict() with type = "trafo". From
the estimated log-odds we can determine the probability for a movie to belong to a non-action
genre which matches the prevalence of non-action movies in the train set. The prevalence of
non-action movies can also be computed directly by using the predict function and setting
the argument type = "pdf" and supplying action = 0 in newdata.

3.2. Tabular-only model

Next, we set up and fit m_tab including popularity as a linear shift predictor.

R> m_tab <- PolrNN(fm_tab, data = train, optimizer = optimizer_adam(
+ learning_rate = 0.1, decay = 1e-4))
R> fit(m_tab, epochs = 1e3, batch_size = length(train$action),
+ validation_split = 0, verbose = FALSE)

We obtain the estimated linear shift parameter β̂ of m_tab by coef(m_tab, which_param
= "shifting"). Here, the odds for a movie to belong to genre action change by the factor
exp(−β̂)

R> exp(-unlist(coef(m_tab, which = "shifting")))

popularity
1.54
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when the predictor popularity increases by one unit. Without flipping the sign, the coeffi-
cient β̂ represents a log-odds ratio for a movie belonging to a non-action genre compared to
genre action upon a one-unit change in popularity. Thus, the interpretation of β̂ depends
on the parameterization of the model, in particular, the sign of the shifting predictor. In
deeptrafo, the shifting predictor is consistently parameterized with a plus sign for all models,
which may differ from other implementations of the same model type (e.g., generalized linear
models in MASS, or TMs in tram).

3.3. Text-only model

We now define and fit m_text including only the tokenized movie reviews.

R> embd <- make_keras_model()
R> m_text <- PolrNN(fm_text, data = train, list_of_deep_models = list(
+ deep = embd), optimizer = optimizer_adam(learning_rate = 1e-4))
R> fit(m_text, epochs = 10, callbacks = list(callback_early_stopping(
+ patience = 2, restore_best_weights = TRUE)), verbose = FALSE)

Analogously to smooth partial effects, the differences between two shift estimates resulting
from two different text inputs can still be interpreted as log odds-ratios.
We now have a closer look at what the embd_mod has learned. The network takes as input the
words (encoded as indices). Here, we use a vocabulary (all words in the data set) of 10000
words and limit each review text to a size of 100 words. Review texts which are shorter are
prepended with zeros, longer movie descriptions are cut after 100 words. All punctuation is
removed. The layer_embedding learns to embed the word indices into an embedding_size-
dimensional representation. The resulting word embeddings of the text are the input sequence
to an LSTM layer with a 50-dimensional memory state. The second LSTM layer outputs the
50-dimensional state after the last word in the text, which is then further processed by a fully
connected neural network including dropout to prevent overfitting.
We can now use the trained embd to extract and analyze the derived latent features of the
embedding of single words or whole texts. We can obtain the embedding of a single word as
the output of layer_embedding(). If we use a whole review as input, the latent features in the
layer "penultimate" correspond to a five-dimensional representation of the text embedding
processed by subsequent layers.
Figure 7 shows the first two components of a principle component analysis (PCA) applied to
the word embedding (left) and to the features learned in the penultimate layer for whole
reviews (right). The left plot reveals, that words hinting at an action movie, have a similar
embedding, and are separated from words that are rather representative of a romance movie.
The plot on the right of Figure 7 confirms that the features derived from the embedding are
tailored to discriminate action movies from other genres since latent features of action movies
cluster together and are fairly well separated from romantic movies.

3.4. Semi-structured model

Finally, we set up the most complex model m_semi which takes both data modalities as
input. To achieve efficient training of the tabular part and avoid overfitting of the embedding
network emdb_semi we use two different learning rates for the structured and unstructured
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Figure 7: The first two principal components of the "embedding" layer for single words (left)
and the lower-dimensional representation learned in "penultimate" (right) for whole movie
reviews in the test data. On the left, the PCA is computed on the word embedding of the
1,000 most frequent words (we display only the 100 most frequent, black dots), and on the
right based on the low-dimensional representation of the embedding of the 888 full movie
reviews contained in the test data.

part of the model. Specifically, we optimize the intercept (with name "ia_1__2") and tabular
shift predictor (with name "popularity_3") with a higher learning rate, than the embedding
model ("embd"). In the embedding model, some layers are named explicitly, the names for
the other components can be obtained from the ‘keras_model’ summary by initializing and
calling print(m_semi, print_model = TRUE).

R> embd_semi <- make_keras_model()
R> optimizer <- function(model) {
+ optimizers_and_layers <- list(
+ tuple(optimizer_adam(learning_rate = 1e-2),
+ get_layer(model, "ia_1__2")),
+ tuple(optimizer_adam(learning_rate = 1e-2),
+ get_layer(model, "popularity_3")),
+ tuple(optimizer_adam(learning_rate = 1e-4),
+ get_layer(model, "embd")))
+ multioptimizer(optimizers_and_layers)
+ }
R> m_semi <- PolrNN(fm_semi, data = train, list_of_deep_models = list(
+ deep = embd_semi), optimizer = optimizer)
R> fit(m_semi, epochs = 10, callbacks = list(callback_early_stopping(
+ patience = 2, restore_best_weights = TRUE)), verbose = FALSE)
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3.5. Model comparison

Comparing the prediction performance of the models (measured in terms of NLL) indicates
that mainly the text modality contains information for separating action movies from other
genres. However, for a more reliable assessment of this statement, the training schedule should
be optimized further. We compute 95% bootstrap confidence intervals as a simple uncertainty
measure for the test NLL. In Appendix E, we illustrate how to use pre-trained embeddings
with a shallow and deeper neural network architecture and obtain comparable results in terms
of out-of-sample NLL. Using pre-trained embeddings may reduce computation times and yield
comparable predictions, especially when the training sample size is small (Goodfellow et al.
2016).

R> bci <- function(mod) {
+ lli <- logLik(mod, newdata = test, convert_fun = identity)
+ bt <- boot(lli, statistic = \(x, d) mean(x[d]), R = 1e4)
+ btci <- boot.ci(bt, conf = 0.95, type = "perc")$percent[1, 4:5]
+ c("nll" = mean(lli), "lwr" = btci[1], "upr" = btci[2])
+ }
R> mods <- list("unconditional" = m_0, "tabular only" = m_tab,
+ "text only" = m_text, "semi-structured" = m_semi)
R> do.call("cbind", lapply(mods, bci))

unconditional tabular only text only semi-structured
nll 0.531 0.516 0.437 0.423
lwr 0.501 0.486 0.390 0.372
upr 0.562 0.549 0.486 0.478

Like m_tab the model m_semi estimates a linear shift parameter for popularity which can
also be interpreted as a (conditional) log odds-ratio. The parameter goes in the same direction
as in m_tab but has a reduced absolute value and is now interpretable as a conditional log-odds
ratio because the text information that is now additionally accounted for.

R> c("tabular only" = unlist(unname(coef(m_tab))),
+ "semi-structured" = unlist(unname(coef(m_semi))))

tabular only semi-structured
-0.43 -0.32

The presented case study is meant to showcase some functionality of the package deeptrafo for
binary responses. A PolrNN model for an ordinal response that has K levels and yields K − 1
values for a discrete transformation function (see Figure 1) can be interpreted analogously,
e.g., linear shift terms are still interpreted as log odds-ratios (for details and more examples,
see Kook et al. 2022).
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4. Application: Autoregressive transformation models
We now return to ATMs, first discussed in Section 1.2. One special form of ATMs are AT(p)
models. AT(p) models assume a linear impact of the transformed values of Ft,t−p on the
scale of h. Because the transformation is the same as for the response, AT(p) models thus
learn a joint transformation of the response and its lags. For an illustration of transformation
models applied to time series data, the temperature dataset is used. We aim to estimate the
conditional distribution of the monthly mean maximum temperature in degrees Celsius (°C)
in Melbourne (Australia) between January 1971 and December 1990. A descriptive analysis
of the time series shows a strong seasonal pattern. This motivates the application of a flexible
approach that allows modeling the quickly changing moments of the conditional distribution
over time.
In the following, we compare three different forms of autoregressive transformation models.
The most flexible model (ATM) includes the lags as interacting predictors and transformed
lags in the shift term. The AT(3) model only includes the transformed lags in the shift term.
Lastly, the naive ColrNN model (Colr) includes the lags as an additive linear term. In addition,
every model contains a shift effect for month. The ATM and AT(3) model can currently only
be fitted using deeptrafo, whereas the other two models could be fitted using conventional TMs
implemented in tram. We compare the three models based on their estimated transformation
functions and conditional densities. We start by creating a factor variable month for the
calendar month as well as the lags Yt−p, p = 1, 2, 3 denoted by y_lag_<p> for including raw
additive lags. AT(p) lags are included using the internal atplag() processor.

R> lags <- c(paste0("y_lag_", 1:p, collapse = "+"))

The formula for the ATM model is given as follows. We include all three lags as interacting
predictors on the left-hand side of the formula and specify the atplags on the right-hand
side.

R> (fm_atm <- as.formula(paste0("y |", lags, "~ 0 + month + atplag(1:p)")))

y | y_lag_1 + y_lag_2 + y_lag_3 ~ 0 + month + atplag(1:p)

ATP lags can be conveniently included in the formula by specifying the lags inside atplag().
For the AT(3) model, we include the transformed lags in the shift but not in the interacting
term.

R> (fm_atp <- y ~ 0 + month + atplag(1:p))

y ~ 0 + month + atplag(1:p)

The third model (Colr) we compare is a ColrNN model which includes the raw lags in an
additive shift term.

R> (fm_colr <- as.formula(paste0("y ~ 0 + month + ", lags)))

y ~ 0 + month + y_lag_1 + y_lag_2 + y_lag_3
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Figure 8: Estimated conditional densities (top row) of monthly temperature records between
June 1983 and May 1984, based on the ATM model (left), the AT(3) model (center) and the
Colr model (right). The observed values across this time span are depicted in red. The plots
in the bottom row show the corresponding estimated conditional transformation functions.

After pre-processing, the temperature dataset is saved in d_ts. We fix the support of the
response to min_supp = 10 and max_supp = 30 and specify Bernstein polynomials of order
P = 6. We use ColrNN() to specify all models. ATM and AT(3) include atplags and the
third model, Colr, does not.

R> mod_fun <- function(fm, d) ColrNN(fm, data = d,
+ trafo_options = trafo_control(order_bsp = P,
+ support = c(min_supp, max_supp)), tf_seed = 1,
+ optimizer = optimizer_adam(learning_rate = 0.01))
R> mods <- lapply(list(fm_atm, fm_atp, fm_colr), mod_fun)

After defining the models, we proceed with training all three models. In addition, we include
callbacks to reduce the learning rate upon encountering a plateau in the training loss, to
ensure convergence of the optimization procedure.

R> fit_fun <- function(m) m |> fit(epochs = ep, callbacks = list(
+ callback_early_stopping(patience = 20, monitor = "val_loss"),
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+ callback_reduce_lr_on_plateau(patience = 5)), batch_size = nrow(d_ts_lag),
+ verbose = FALSE)
R> lapply(mods, fit_fun)

We compare the in-sample log-likelihood for the three models for the subset of data between
June 1977 and May 1978 in t_idx.

R> t_span_one <- seq(as.Date("1977-03-01"), as.Date("1978-05-01"),
+ by = "month")
R> ndl <- d_ts[d_ts$time %in% t_span_one]
R> t_span_two <- seq(as.Date("1977-06-01"), as.Date("1978-05-01"),
+ by = "month")
R> ndl_lag <- d_ts_lag[d_ts_lag$time %in% t_span_two]
R> structure(unlist(c(lapply(mods[1:2], logLik, newdata = ndl),
+ lapply(mods[3], logLik, newdata = ndl_lag))), names =
+ c("ATM", paste0("AT(", p, ")"), "Colr"))

ATM AT(3) Colr
-19.5 -22.5 -20.1

The comparison shows that the Colr and the ATM model fit similarly well compared to the
slightly less favorable fit of the AT(3) model. A visual inspection of the estimated conditional
densities depicted in Figure 8 shows similar results for all three estimation methods. In
summary, the ATM class may be favored over naive TMs (Colr) in the time series domain for
its autoregressive structural assumption, i.e., lags entering in a transformed way, identical to
the transformation of yt (see Rügamer et al. 2023a).

5. Conclusion
With deeptrafo, we introduce the first R package for fitting a broad class of distributional re-
gression models with a neural network back-end. Package deeptrafo combines the advantages
of transformation models, i.e., flexible distribution-free, yet interpretable models for condi-
tional distributions, with the advantages of neural network-based machine learning, which
scales well for large or non-tabular datasets. The intuitive formula interface allows users
familiar with packages such as stats (R Core Team 2024), MASS, tram, survival (Therneau
2024), mgcv, and others to easily adapt their workflow to neural networks and more complex
datasets out-of-the-box.
Users can supply custom basis functions, loss functions, optimization routines and neural net-
work architectures to adapt and extend functionalities from deeptrafo to problems in which
the goal is learning a conditional cumulative distribution function. We illustrate deeptrafo
with tabular and text, as well as time series data with count, discrete, and continuous out-
comes, which are all handled in a unified way. We demonstrate how custom neural network
architectures and optimizers can be used, and how to tune, evaluate, and interpret DCTMs.
Applying neural network-based models to analyze text or image data typically comes with
higher flexibility but also larger computational costs compared to more conventional sta-
tistical models. We demonstrate how pre-trained text embeddings can be used to obtain
competitive results to training an embedding from scratch and reduce the computational and
the environmental burden.
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A. Additional details
In the appendix, we describe how deeptrafo handles censored responses (Appendix B), how
the user can warmstart and fix weights of interacting and shifting terms (Appendix C), and
how to include custom basis functions (Appendix D). We demonstrate how to use pre-trained
embeddings (Appendix E) and give details on the most commonly used options for optimiza-
tion (Appendix F). In addition, we describe an alternative formula interface (Appendix G)
and show how to use deeptrafo for large tabular datasets (Appendix H).

B. Handling censored responses
Package deeptrafo detects the type of response automatically. However, the user may spec-
ify the type explicitly via response_type in deeptrafo() and all alias/wrapper functions.
Allowed types of responses are continuous, count, survival, ordered (including binary). Cen-
sored responses can be supplied as ‘Surv’ objects. Internally, ordered and count responses
are treated as censored. For instance, the two observations c(0L, 1L) with response_type
= "count" are internally represented as left- and interval-censored, respectively.

R> deeptrafo:::response(y = c(0L, 1L))

cleft exact cright cinterval
[1,] 1 0 0 0
[2,] 0 0 0 1
attr(,"type")
[1] "count"

C. Warmstarting and fixing weights
Warmstarting and fixing weights may be important in numerical experiments, for fine-tuning
parts of the models, or transfer learning (Goodfellow et al. 2016). In deeptrafo, the user can
supply a ‘keras_model’, as returned, for instance, by
keras_model_sequential(). When defining the model, keras specific arguments for con-
trolling weight initialization can be used, as shown below.

R> nn <- keras_model_sequential() |>
+ layer_dense(input_shape = 1L, units = 3L, activation = "relu",
+ use_bias = FALSE, kernel_initializer = initializer_constant(
+ value = 1))
R> unlist(get_weights(nn))

[1] 1 1 1

To warmstart or fix coefficients of the interacting or shifting part of a DCTM, the weight_options
argument in deeptrafo() can supplied with the output of weight_control(), which, in ad-
dition to others, takes the same arguments as the keras layers above.
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R> args(weight_control)

function (specific_weight_options = NULL, general_weight_options = list(
activation = NULL, use_bias = FALSE, trainable = TRUE,
kernel_initializer = "glorot_uniform", bias_initializer = "zeros",
kernel_regularizer = NULL, bias_regularizer = NULL,
activity_regularizer = NULL, kernel_constraint = NULL,
bias_constraint = NULL), warmstart_weights = NULL,
shared_layers = NULL)

NULL

Below, we warmstart the shift coefficient for a PolrNN model. Here, warmstart_weights
takes a list with three components, of which the first two control the weights of the interacting
predictor and the last the weights of the shift predictor. The weights can be referred to by
the name of the covariate, i.e., "temp" = 0.

R> data("wine", package = "ordinal")
R> mw <- deeptrafo(
+ response ~ 0 + temp,
+ data = wine, weight_options = weight_control(warmstart_weights = list(
+ list(), list(), list("temp" = 0))))
R> unlist(coef(mw))

$temp
[,1]

tempwarm 0

The three lists correspond to the three formula components response, interacting, and
shifting. The list corresponding to the response is always empty, since it does not contain
any parameters. In case there is no interacting predictor, the second list corresponds to the
parameters of the basis function of the response, i.e., the intercept function. In case there is
no shift term, an intercept is set up which can be referred to as "1" and frozen as illustrated
in the main text (Section 3). In the example above, we warmstart weights of a component in
the shift term and supply two empty lists for the other components.

D. Including custom basis functions
Linear, log-linear, and Bernstein bases, as used by deeptrafo, require (linear) inequality con-
straints on their parameters. Internally, these constraints are handled in trafo_control(),
by supplying an keras layer, which transforms the weights for the interacting predictor appro-
priately. In deeptrafo, the implemented bases are "bernstein", "ordered", and "shiftscale".
The former two require ϑjP +1) ≤ ϑjP +2 ≤ · · · ≤ ϑjP +P , l = 0, . . . , L − 1 for b(x) ∈ RL and
degree P − 1 Bernstein basis or ordered response with P + 1 levels. The shift-scale basis
requires only ϑ1 > 0 in y 7→ ϑ0 + ϑ1y.
The user can now supply custom basis functions as shown below. First, the basis (linear_basis)
and its derivative (linear_basis_prime) are defined. Afterwards, the constraints on the pa-
rameters are defined using Python- and tensorflow-specified constructs (tf$...).
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R> linear_basis <- function(y) {
+ ret <- cbind(1, y)
+ if (NROW(ret) == 1)
+ return(as.vector(ret))
+ ret
+ }
R> linear_basis_prime <- function(y) {
+ ret <- cbind(0, rep(1, length(y)))
+ if (NROW(ret) == 1)
+ return(as.vector(ret))
+ ret
+ }
R> constraint <- function(w, bsp_dim) {
+ w_res <- tf$reshape(w, shape = list(bsp_dim, as.integer(nrow(w) /
+ bsp_dim)))
+ w1 <- tf$slice(w_res, c(0L, 0L), size = c(1L, ncol(w_res)))
+ wrest <- tf$math$softplus(tf$slice(w_res, c(1L, 0L), size = c(
+ as.integer(nrow(w_res) - 1), ncol(w_res))))
+ w_w_cons <- k_concatenate(list(w1, wrest), axis = 1L)
+ tf$reshape(w_w_cons, shape = list(nrow(w), 1L))
+ }
R> tfc <- trafo_control(
+ order_bsp = 1L,
+ y_basis_fun = linear_basis,
+ y_basis_fun_prime = linear_basis_prime,
+ basis = constraint
+ )

We can now compare our re-implementation of a transformation model with linear basis
against Lm() from tram. To efficiently fit DCTMs for small tabular datasets, we recommend
full-batch (i.e., batch size n) training with a large learning rate (0.01) and either decay or
callbacks for reducing the learning on validation loss plateaus.

R> library("tram")
R> set.seed(1)
R> n <- 1e3
R> d <- data.frame(y = 1 + rnorm(n), x = rnorm(n))
R> m <- deeptrafo(y ~ 0 + x, data = d, trafo_options = tfc,
+ optimizer = optimizer_adam(learning_rate = 1e-2),
+ latent_distr = "normal")
R> fit(m, batch_size = n, epochs = 5e3, validation_split = NULL,
+ callbacks = list(callback_reduce_lr_on_plateau(monitor = "loss")),
+ verbose = FALSE)
R> abs(unlist(coef(m)) - coef(Lm(y ~ x, data = d)))

x
0.00017



32 deeptrafo: Estimating Conditional Distributions with Neural Networks in R

E. Binary classification with pre-trained embeddings
As large pre-trained language models become more and more practice in natural language
processing, we show an alternative way to fit a DCTM using a pre-trained embedding called
word2vec (Mikolov, Chen, Corrado, and Dean 2013). The embedding is provided by Google
and can be downloaded from their servers. Due to its corpus size, the embedding file is
multiple Gigabytes large. After storing the embedding in the ./Data/ folder, we can load the
embedding using the gensim Python library (Rehurek and Sojka 2011) and transform every
word in the training dataset into a vector in the embedding space.

R> embedding_dim <- 300
R> if (file.exists("word2vec_embd_matrix.RDS")) {
R> embedding_matrix <- readRDS("word2vec_embd_matrix.RDS")
R> vocab_size <- nrow(embedding_matrix)
R> } else {
R> gensim <- import("gensim")
R> model <- gensim$models$KeyedVectors$load_word2vec_format(
+ "../Data/GoogleNews-vectors-negative300.bin", binary = TRUE)
R> vocab_size <- length(words$word)
R> embedding_matrix <- matrix(0, nrow = vocab_size, ncol = embedding_dim)
R> names_model <- names(model$key_to_index)
R> for (i in 1:vocab_size) {
R> word <- words$word[i]
R> if (word %in% names_model) {
R> embedding_matrix[i, ] <- model[[word]]
R> }
R> }
R> saveRDS(embedding_matrix, file = "word2vec_embd_matrix.RDS")
R> }

Having transformed the text data into vectors in the embedding space, we can use these in
an embedding layer to define our model. We start with a shallow neural network that flattens
the vectors for each word and learns a linear model for the resulting data matrix.

R> w2v_mod <- function(x) x |>
+ layer_embedding(input_dim = vocab_size, output_dim = embedding_dim,
+ weights = list(embedding_matrix), trainable = FALSE) |>
+ layer_flatten() |>
+ layer_dense(units = 1)
R> fm_w2v <- action ~ 0 + shallow(texts)
R> m_w2v <- deeptrafo(fm_w2v, data = train,
+ list_of_deep_models = list(shallow = w2v_mod),
+ optimizer = optimizer_adam(learning_rate = 1e-5))
R> dhist <- fit(m_w2v, epochs = 200, validation_split = 0.1,
+ batch_size = 32, callbacks = list(
+ callback_early_stopping(patience = 5)), verbose = FALSE)
R> bci(m_w2v)
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nll lwr upr
0.523 0.494 0.553

While stopping the training later may result in further model improvement, the negative log-
likelihood values already indicate similar performance to the tabular-only model in Section 3.5,
which yielded a test NLL of 0.52. We can improve this model by learning a deep neural
network on top of the pre-trained embedding using 1D convolutions as follows.

R> w2v2_mod <- function(x) x |>
+ layer_embedding(input_dim = vocab_size, output_dim = embedding_dim,
+ weights = list(embedding_matrix), trainable = FALSE) |>
+ layer_conv_1d(filters = 128, kernel_size = 5, activation = 'relu') |>
+ layer_max_pooling_1d(pool_size = 5) |>
+ layer_conv_1d(filters = 128, kernel_size = 5, activation = 'relu') |>
+ layer_global_max_pooling_1d() |>
+ layer_dense(units = 128, activation = 'relu') |>
+ layer_dropout(rate = 0.5) |>
+ layer_dense(units = 1)
R> fm_w2v2 <- action ~ 0 + deep(texts)
R> m_w2v2 <- deeptrafo(fm_w2v2, data = train,
+ list_of_deep_models = list(deep = w2v2_mod),
+ optimizer = optimizer_adam(learning_rate = 1e-5))
R> dhist <- fit(m_w2v2, epochs = 200, validation_split = 0.1,
+ batch_size = 32, callbacks = list(
+ callback_early_stopping(patience = 5)), verbose = FALSE)
R> bci(m_w2v2)

nll lwr upr
0.510 0.486 0.534

The test NLL resulting from the deeper architecture is lower than the one obtained from the
shallow architecture above, but not as low as the one obtained using the text-only model in
Section 3.5 of 0.44 (95% bootstrap confidence interval from 0.390 to 0.486).

F. Options for optimization
In deep learning, selecting an appropriate optimizer is crucial for model performance. If
deeptrafo specifies a model with a deep predictor, exact optimization is not possible anymore
and routines that require second- or higher-order derivatives of the objective are too expensive.
Optimization is therefore done using first-order methods, in particular variations of stochastic
gradient descent (SGD).

• Adam (Kingma and Ba 2015) is widely used due to its effectiveness across various
applications, offering adaptive learning rates that handle sparse gradients efficiently. It
is by far the most common choice and hence our default option. While Adam’s default
learning rate and momentum parameters can be changed, this must be done with care.
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• Another option is SGD with momentum, preferred for optimizing large CNNs, with its
momentum term accelerating gradients for faster convergence. In contrast to Adam,
SGD with momentum does not come with a well-working default and hence often re-
quires hyperparameter tuning for the momentum.

• Other notable options include RMSprop (Tieleman and Hinton 2012), designed for non-
stationary objectives and noisy gradients, and Nadam (Dozat 2016), which combines
elements of Adam and Nesterov accelerated gradient. These optimizers are, however,
typically chosen for specific applications and should be used only after careful hyperpa-
rameter tuning.

Irrespective of the choice of the optimizer, semi-structured models such as DCTM typically
have an imbalance in their optimization dynamic when including deep neural networks due
to the large difference in the number of parameters for structured and unstructured model
components. This can, in particular, lead to slow convergence of the structured model part.
To mitigate this problem, users can use warm-starts as described in Appendix C, or use
optimizers with different learning rates for the different model components as described in
Section 3.4.

G. Alternative formula interface
Following ontrams (ordinal neural network transformation models), introduced in Kook
& Herzog et al. (2022), deeptrafo offers an alternative formula interface. Here, the user
supplies a separate formula for the intercepts (before: interacting) and for the shift (before:
shifting) and avoids using the pipe | on the left-hand-side of the formula. Internally, the
formula is translated back into the form in (2). All other functionalities in the article carry
over to ontrams as well. The same interface for other than ordinal responses is implemented
in dctm().

R> dord <- data.frame(Y = ordered(sample.int(6, 100, TRUE)),
+ X = rnorm(100), Z = rnorm(100))
R> ontram(response = ~ Y, intercept = ~ X, shift = ~ 0 + s(Z, df = 3),
+ data = dord)

Untrained ordinal outcome deep conditional transformation model

Interacting: Y | X

Shifting: ~0 + s(Z, df = 3)

Shift coefficients:
s(Z, df = 3)1 s(Z, df = 3)2 s(Z, df = 3)3 s(Z, df = 3)4 s(Z, df = 3)5

-0.4760 -0.7326 -0.6233 -0.4061 -0.4309
s(Z, df = 3)6 s(Z, df = 3)7 s(Z, df = 3)8 s(Z, df = 3)9

-0.5447 0.6729 0.7376 0.0947
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H. Large factor models
We consider a large factor model with 106 observations and a factor variable with 103 levels.
The standard implementation of lm() and LmNN() fail to process the data, due to evaluating
the large model matrix. However, we can use fac_processor() from safareg to circumvent
this issue and use mini-batch stochastic gradient descent to fit the model on a standard
machine. Now, deeptrafo can fit large factor models for arbitrary types of responses and
censoring.

R> set.seed(0)
R> library("safareg")
R> n <- 1e6
R> nlevs <- 1e3
R> X <- factor(sample.int(nlevs, n, TRUE))
R> Y <- (X == 2) - (X == 3) + rnorm(n)
R> d <- data.frame(Y = Y, X = X)
R> m <- LmNN(Y ~ 0 + fac(X), data = d, additional_processor = list(
+ fac = fac_processor))
R> fit(m, batch_size = 1e4, epochs = 20, validation_split = 0,
+ callbacks = list(callback_early_stopping("loss", patience = 3),
+ callback_reduce_lr_on_plateau("loss", 0.9, 2)))
R> bl <- unlist(coef(m, which = "interacting"))
R> - (unlist(coef(m))[1:5] + bl[1]) / bl[2]

fac(X)1 fac(X)2 fac(X)3 fac(X)4 fac(X)5
-0.0204 0.9986 -1.0156 -0.0249 0.0477

To compute the log-likelihood in models with vast amounts of data, specifying batch-wise
computation avoids memory issues.

R> logLik(m, batch_size = 1e4)

[1] -1.42
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