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Abstract

The parameters of a statistical model can sometimes be difficult to interpret sub-
stantively, especially when that model includes nonlinear components, interactions, or
transformations. Analysts who fit such complex models often seek to transform raw pa-
rameter estimates into quantities that are easier for domain experts and stakeholders to
understand. This article presents a simple conceptual framework to describe a vast array
of such quantities of interest, which are reported under imprecise and inconsistent ter-
minology across disciplines: predictions, marginal predictions, marginal means, marginal
effects, conditional effects, slopes, contrasts, risk ratios, etc. We introduce marginaleffects,
a package for R and Python which offers a simple and powerful interface to compute all of
those quantities, and to conduct (non-)linear hypothesis and equivalence tests on them.
marginaleffects is lightweight; extensible; it works well in combination with other R and
Python packages; and it supports over 100 classes of models, including linear, generalized
linear, generalized additive, mixed effects, Bayesian, and several machine learning models.

Keywords: marginal effect, marginal mean, slope, prediction, fitted value, contrast, compari-
son, R, Python.

1. Introduction

The parameters of a statistical model can sometimes be difficult to interpret substantively,
especially when that model includes nonlinear components, interactions, or transformations.
Analysts who fit such complex models often seek to transform raw parameter estimates into
quantities that are easier for domain experts and stakeholders to understand, such as predic-
tions, contrasts, risk differences, ratios, odds ratios, lift, slopes, and so on.
Unfortunately, computing these quantities – along with associated standard errors – can
be a tedious and error-prone task. This problem is compounded by the fact that modeling
packages in R (R Core Team 2024) and Python (Van Rossum et al. 2011) produce objects with
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varied structures, which hold different information. This means that end-users often have to
write customized code to interpret the estimates obtained by fitting linear, generalized linear
(GLM), generalized additive (GAM), Bayesian, mixed effects, and other model types. This
can lead to wasted effort, confusion, and mistakes, and it can hinder the implementation of
best practices.
In this article, we present a conceptual framework to describe many quantities of interest that
researchers can compute to improve the interpretability of their models. We also introduce
the marginaleffects package for R (Arel-Bundock 2024c) and Python (Arel-Bundock 2024b),
which offers a single point of entry to easily interpret the results of over 100 classes of models
with a simple, consistent, and powerful user interface.
The rest of this paper proceeds as follows. Section 2 frames our contribution by introducing
the statistical setting, surveying alternative software solutions, and giving an overview of
our package’s functionality. Section 3 introduces a conceptual framework to guide analyses,
focusing on five key decisions: quantity, grid, aggregation, uncertainty, and test. The case
study in Section 4 illustrates how we can use the marginaleffects package to apply these ideas
in practice. Section 5 discusses the Python implementation, and Section 6 describes the R
package internal design.
Users who want to learn more are encouraged to read the free “Marginal Effects Zoo” online
book, which includes over 25 chapters of detailed tutorials, technical material, and case studies
(Arel-Bundock 2024a).

2. Motivation
Consider a typical statistical setting, where the analyst chooses a model to meet domain-
specific requirements. Perhaps their goal is to capture a salient feature of the data generating
process, reach sufficient goodness-of-fit, or satisfy a selection on observables condition for
causal inference. The analyst uses an estimator to fit their model, and obtains parameter
estimates and standard errors. Even if the model is relatively simple, those parameter esti-
mates may not be straightforward to interpret directly. For instance, after fitting a probit
model, analysts are often interested in the change in predicted probability associated with a
change in treatment, but this statistical quantity is not given directly by the coefficients of
the model. In many cases, the analyst will thus need to transform parameter estimates into
quantities that stakeholders, colleagues, and domain experts will readily understand.
Post-estimation procedures are a key step in any data analysis, and software developers have
already given us tools to help at this crucial stage. The marginaleffects package is newer than
some alternatives, and it has the potential to make an important and original contribution
to the ecosystem. The package website presents detailed side-by-side comparisons with most
of the major post-estimation software packages (Arel-Bundock 2024a), but a few of them are
worth mentioning here.
effects is a well-established package, first published on the Comprehensive R Archive Network
(CRAN) by Fox (2003) over 20 years ago. effects can draw prediction and partial resid-
ual plots using lattice (Sarkar 2008), with many visual customization options. In contrast,
marginaleffects draws and customizes its plots using ggplot2 and related packages (Wickham
2016). marginaleffects also supports more than twice the number of models supported by
effects, and it can compute more quantities of interest and conduct a much broader array of
hypothesis tests.
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Goal Function
Predictions predictions()

avg_predictions()
plot_predictions()

Comparisons comparisons()
avg_comparisons()
plot_comparisons()

Slopes slopes()
avg_slopes()
plot_slopes()

Grids datagrid()
Hypothesis and Equivalence hypotheses()
Bayes, Bootstrap, Simulation posterior_draws()

inferences()

Table 1: Main functions of the marginaleffects package.

The margins and prediction packages were designed to compute slopes and predictions, re-
spectively. When creating those packages, Leeper (2024a,b) brought the R ecosystem much
closer to what could be achieved at the time using the margins function in Stata (StataCorp
2023). The initial development of marginaleffects was largely inspired by margins and pre-
diction, and the user interface still bears some resemblance. However, marginaleffects covers
a superset of functionality, is actively maintained, supports more model types, and is more
computationally efficient.
modelbased (Makowski, Ben-Shachar, Patil, and Lüdecke 2024) and ggeffects (Lüdecke 2018)
are maintained by affiliates of the easystats development team (Lüdecke, Ben-Shachar, Patil,
Wiernik, and Makowski 2024). They offer elegant convenience functions to compute and
display predictions and contrasts in plots and tables. Many of the calculations that underlie
these displays are delegated to emmeans or marginaleffects; the key contribution of these
packages is thus in simplified syntaxes and reporting.
Finally, emmeans is arguably the most powerful alternative (Lenth 2024, 2016), and it is
the package that we recommend to users who are not satisfied with marginaleffects. As
the author notes, “much of what the emmeans package offers relate[s] more to experimental
data than to observational data”.1 Although emmeans can accommodate designs with unbal-
anced treatment groups, the syntax may feel limiting in observational settings. In contrast,
marginaleffects was designed from the ground up to assist researchers in the analysis of both
observational and experimental data (with balanced or unbalanced groups).
Like all the packages mentioned above, the marginaleffects package intervenes at the post-
estimation stage. If the model, estimator, or data chosen by the analyst are not fit for purpose,
none of the quantities described below will be of much interest. However, when the analyst
fits an adequate model to good data, marginaleffects can be an invaluable tool to make results
more interpretable.
Table 1 shows a list of the main functions in the marginaleffects package. Using these func-

1Quote from the “Basics of estimated marginal means” vignette, version 1.9.0.
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tions, analysts can compute a vast array of quantities of interest, which we can group in three
categories, associated with three functions: predictions(), comparisons(), and slopes().
First, the predictions family of functions can compute and plot predictions on different
scales (aka “fitted values”). It can also aggregate or marginalize predicted values, over a
whole dataset or by subgroups (i.e., “marginal means”).
Second, the comparisons family of functions can compute and plot relationships between
two or more predictions. This allows users to report many of the most common quantities
of interest in statistical analyses: contrasts, differences, risk ratios, odds ratios, lift, or even
arbitrary user-defined functions of two predictions. Many of these quantities are difficult or
impossible to compute with the main alternative software packages cited above.
Third, the slopes family of functions can compute and plot partial derivatives of the outcome
equation. In the econometrics tradition, researchers typically call these slopes “marginal
effects,” where the term “marginal” refers to a “small change.” Analysts can easily evaluate
these derivatives at different points in the predictor space, they can aggregate unit-level
estimates to produce global summaries, and they conduct hypothesis tests to compare different
slopes.2

Because computing average predictions, comparisons, and slopes is such common practice, the
marginaleffects package exports three shortcut functions with prefixes: avg_predictions(),
avg_comparisons(), and avg_slopes(). These are simple wrappers around the package’s
workhorse functions. Instead of returning unit-level estimates by default, they return averages
taken over the whole dataset or by subgroup. The avg_*() functions do not expose new
functionality; their purpose is solely to save keystrokes and improve code readability.3

marginaleffects includes a powerful toolkit to conduct linear and nonlinear hypothesis tests
on parameter estimates or on functions of those parameters. This includes raw coefficient
estimates, user-supplied functions of those estimates, and any of the quantities reported
by the marginaleffects package: predictions, comparisons, or slopes. This functionality –
accessed through the hypothesis argument or via the standalone hypotheses() function
– can be thought of as a more flexible, convenient, and lower dependency alternative to the
deltaMethod function from the car package (Fox and Weisberg 2019). As we show below, this
is an extremely powerful feature, as it opens many opportunities for cross-group comparisons
and for testing complex hypotheses.
Finally, marginaleffects includes a number of utility functions. datagrid() is a function to
easily create grids of predictor values; inferences() can bootstrap estimates and apply other
inference methods; and posterior_draws() allows a user to extract draws from the posterior
distribution of quantities of interest in Bayesian analyses.
marginaleffects has several additional features that we cannot explore in this article, but which
are documented on the package website and in help files. These include: equivalence tests,
joint hypothesis tests; elasticities; multiple testing correction; alternative uncertainty quantifi-
cation methods with robust standard errors, bootstrapping, simulation-based inference, and

2For example, the slopes() function can compute both “average marginal effects” and “marginal effects at
the mean.” The former is an average of unit-level partial derivatives evaluated at each point in the empirical
distribution of the data. The latter is the partial derivative of the outcome equation evaluated with all
predictors are held at their means.

3Identical results are obtained by calling avg_predictions(fit) and predictions(fit, by = TRUE). The
latter is more verbose and arguably less clear, as the name of the by argument communicates to users its ability
to take averages by subset.
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conformal prediction; and helpful tools to interpret some non-parametric or machine learn-
ing models (ex: the plot_predictions() function can be used to draw partial dependence
plots).
These functions can greatly simplify the analysis of randomized experiments, but they also al-
low marginaleffects to play a central role in the analysis of observational data with matching,
inverse probability weighting, G-computation, multi-level regression with post-stratification
(MRP), conjoint experiments, multiple imputation for missing data, and more. These empir-
ical strategies are illustrated by detailed case studies in a free book-length website, published
in support of the marginaleffects package (Arel-Bundock 2024a).
All of these features are made available in a single software package, in two different languages,
and for over 100 classes of models. This is more types of models than is currently supported
by any comparable package, and it includes linear, generalized linear (GLM), generalized
additive (GAM), mixed-effects, fixed-effects, Bayesian models, and more.
In the next section, we introduce a conceptual framework to describe a vast array of quantities
of interest which can be computed at the post-estimation stage of data analysis.

3. Quantity, grid, aggregation, uncertainty, and test
Different statistical models present unique interpretation challenges. This article introduces
simple tools which can help overcome these challenges, and allow us to interpret estimates
for a wide variety of models in a consistent and transparent manner. At the heart of our
conceptual framework are five critical questions that analysts must answer when interpreting
statistical results:

1. Quantity: What is the quantity of interest? Do we want to report a prediction or a
function of predictions (average, difference, ratio, derivative, etc.)?

2. Grid: What predictor values are we interested in? Do we want to report estimates for
the units in our dataset, or for hypothetical or representative individuals?

3. Aggregation: Do we report estimates for every observation in the grid or a global
summary?

4. Uncertainty: How do we quantify uncertainty about our estimates?

5. Test: Which (non-)linear hypothesis or equivalence tests do we conduct?

These five elements offer a structured way to make critical decisions for the computation
of quantities of interest, thereby streamlining the process of interpreting complex statistical
models.

3.1. Quantity

The marginaleffects package allows R and Python users to compute and plot three principal
quantities of interest: predictions, comparisons, and slopes. Predictions are the foundation
on which all other quantities are built: comparisons and slopes are functions of predictions.
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Predictions

Predictions are the outcomes predicted by a fitted model on a specified scale for
a given combination of values of the predictor variables, such as their observed
values, their means, or factor levels.

Depending on the field and context, predictions can also be referred to as “fitted values” or
“adjusted predictions.”
A model’s predictions depend on the values of the predictors. The prediction for an individual
with a particular combination of predictor values – or “profile” – is simply the fitted value for
the corresponding row in the dataset. We can also make predictions for “synthetic” individ-
uals, by creating and feeding different profiles to our model. For example, we could compute
a prediction for a hypothetical person with a given age and education, or the predicted out-
come for an individual whose personal characteristics are exactly average on all dimensions.
Alternatively, we could compute a model’s prediction for a partially synthetic unit where all
predictors are held at their observed values, but the treatment is set to 1 instead of its true
value. The resulting quantity would be a “counterfactual” prediction in the sense that the
treatment indicator would be “counter-to-fact,” or different from its actually observed value.
Predictions can be expressed on various scales. For example, in a logistic regression model
with a binary outcome, predictions can be computed on the response scale (probabilities) or
on the link scale (log-odds). In a zero-inflated count regression model, we can consider the
predicted mean of the count component or the predicted probability of the zero component.
For an ordinal model, predictions can be probabilities of a given category or expectations over
all categories.

Comparisons

Comparisons are functions of two or more predictions. Examples of comparisons
include contrasts, differences, risk ratios, odds, lift, etc.

A comparison is often the key quantity of interest in scientific inquiry. When certain assump-
tions are met (Hernán and Robins 2020; Imbens and Rubin 2015), a comparison can help
answer counterfactual queries like: What happens to Y when X increases by one unit?
A useful way to think about such a counterfactual query is that it involves a comparison
between two predictions made on different grids. Imagine that we are interested in the “effect”
of a change of 1 unit in predictor X on outcome Y . First, we compute a prediction for unit
of observation i, when all predictors are held at their observed values. Then, we compute
a different prediction for the same individual, when all predictors are held at their observed
values, but X is incremented by one unit. In other words, we compute predictions for two
profiles (or one-row grids) which differ only in terms of X. Finally, we choose a function to
compare our two predictions: difference, ratio, odds, etc.
Many interesting quantities can be expressed as functions of counterfactual predictions. For
example, in an education study we may want to compare the predicted probability of an
outcome for university P(Y = 1 | U) and high school graduates P(Y = 1 | H). We could do
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this by taking a simple difference P(Y = 1 | U) − P(Y = 1 | H), a risk ratio P(Y =1|U)
P(Y =1|H) , a log

odds ratio ln
[

P(Y =1|U)/P(Y =0|U)
P(Y =1|H)/P(Y =0|H)

]
, or any other function of two predictions.

In the marginaleffects framework, comparisons necessarily involve partially (or fully) syn-
thetic units, because the analyst must fix a predictor to take on different values. They may
want to look at how the predictions for a specific individual change along with a change in a
predictor, or could repeat the operation for all units in a dataset to observe the distribution
of counterfactual comparisons. The analyst may also consider a comparison between hypo-
thetical individuals with representative or interesting characteristics along other dimensions
than the focal variable.

Slopes

A slope is the partial derivative of the regression equation with respect to a predictor
of interest.

If a predictor were to change from its observed or set value by a small amount, the slope
is the rate at which the prediction would change. It can be considered as the comparison
(described above) between two profiles that differ on a single predictor by a small amount
divided by the difference in the predictor values as that difference shrinks to an infinitesimal
size. In this way, slopes are linked to comparisons. Slopes are only defined for predictors
for which it makes sense to consider a small change in the predictor of interest (i.e., not for
categorical predictors). In some disciplines like economics and political science, slopes are
known as “marginal effects,” where “marginal” refers to the small change in the predictor
value.
Slopes can be obtained analytically using the rules of calculus, but this process can be difficult
and tedious. marginaleffects computes derivatives numerically, which allows it to support
complex models with arbitrary transformations.

3.2. Grid

Predictions, comparisons, and slopes are conditional quantities. Except in the simplest linear
models, these quantities will vary based on the values of all the predictors in a model. Thus,
once an analyst chooses which quantity of interest they are targeting, they must decide where
in the predictor space to evaluate that quantity. In other words, they must choose a “grid”
of predictor values.
A grid is a collection of one or more profiles, each of which is a vector of predictor values.
Those profiles can be observed, partially synthetic, or purely synthetic. For example, we
might consider the predicted earnings for a single actual person in our dataset (observed).
Alternatively, we could target the same quantity for two individuals in our dataset, with
all characteristics held at their observed values, except for education which we artificially
increment by 1 year (partially synthetic). Finally, we could make predictions for a hypothetical
individual with all predictors held at the sample median or at other representative values
(purely synthetic).
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3.3. Aggregation

When the grid has many rows, marginaleffects will generate many point estimates. These
can be unwieldy, making it more difficult to extract clear and meaningful insights from our
models. To simplify things, analysts might want to aggregate (marginalize or average) these
estimates, either by groups of observations or over the entire dataset.
Average estimates are typically easier to interpret, and they are estimated with greater pre-
cision than individual-level quantities. The downside of reporting aggregated estimates is
that they can mask interesting variation across the sample. For example, if the effect of a
treatment is heterogeneous, the average slope computed across a grid might be close to 0 even
if all unit-level slopes are large, because the positive and negative estimates cancel out.
Predictions, comparisons, and slopes can all be aggregated to provide meaningful and intuitive
summary quantities.

Average predictions

We can compute an “average prediction” by simply taking the mean of predictions made for
various combinations of predictor values. A common use-case is to report the mean of fitted
values in the observed sample, or the mean for some subset of the sample (e.g., the average
predicted income for high school graduates).
Another approach is to compute average predictions over grids of partially synthetic units.
For example, the analyst could compute average “counterfactual” predictions by taking the
observed dataset, modifying the treatment variable T to 1 for each observation, computing
predictions, and taking their average.
It can also be useful to average predictions over grids of purely synthetic units. For example,
the analyst could build a grid of all potential combinations of categorical predictors, make
predictions for each of the resulting profiles, and take averages of those predictions across
some dimension.

Average comparisons

Recall that in the context of this paper, a “comparison” is a function of two (sets of) pre-
dictions. From that perspective, an “average comparison” could refer to two related ideas,
depending on the order of operations. We could take two average predictions and compare
them (e.g., compute their difference or ratio). Instead, the analyst could take two vectors of
predictions, compare them by taking element-wise differences or ratios, and then average the
results. Both approaches are supported by marginaleffects.
When the comparison between average predictions (the “marginal” comparison) and averages
of (“conditional”) comparisons are not equal to each other, the contrast used in the comparison
is said to be “noncollapsible.” Contrasts specified as differences between (average) predictions
are collapsible; most other contrasts, including ratios and ratios of odds, are noncollapsible.
Averages of noncollapsible comparisons rarely have useful interpretations.

Average slopes

An average slope – or average marginal effect in the econometrics tradition – is simply the
average of individual-level estimates of the slope. These are most often computed across a
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grid of observed units to measure the average strength of the relationship between a predictor
and the outcome.

3.4. Uncertainty

Uncertainty estimates for the quantities described above can be obtained via a number of
strategies. By default, marginaleffects uses the delta method to compute standard errors,
t statistics, p values, s values, and confidence intervals. The delta method is a fast and
flexible approach to uncertainty estimation. It often performs well in large samples.4

When computing standard errors via the delta method, marginaleffects can use classical
variance estimates, or robust, clustered, and heteroskedasticity-consistent standard errors
supplied by the sandwich package (Zeileis, Köll, and Graham 2020). To use these types
of standard errors, users can simply specify the vcov argument, which accepts variance-
covariance matrices or convenient string shortcuts for many common use-cases. This makes it
easy for users to report robust standard errors for all the quantities computed by the package.
Users who need an alternative to the delta method can call the inferences() function to de-
ploy various forms of bootstrapping, powered by the boot (Canty and Ripley 2024), rsample
(Frick, Chow, Kuhn, Mahoney, Silge, and Wickham 2024), and fwb (Greifer 2023) packages.
Function inferences() can also conduct simulation-based inference using the normal ap-
proximation method described in Krinsky and Robb (1986) and popularized by King, Tomz,
and Wittenberg (2000).

3.5. Test

marginaleffects can use the delta method to conduct linear or nonlinear hypothesis tests on
the coefficients estimated by over 100 classes of models. It can also conduct such tests on
arbitrary functions of coefficients, and on any of the quantities estimated by the package:
predictions, comparisons, slopes, marginal means, etc. Users can test joint hypotheses for
multiple coefficients or quantities simultaneously.
The marginaleffects package also provides user-friendly support for conducting equivalence
tests on the coefficients of a model, or on any of the quantities computed by the package. The
equivalence argument implements the Two One-Sided Tests (TOST) procedure, a method
designed to establish statistical equivalence or to show that a meaningful difference does not
exist (Lakens, Scheel, and Isager 2018). TOST involves conducting two one-sided hypothesis
tests: one that tests if the effect is significantly below a lower equivalence bound, and another
that tests if the effect is significantly above an upper equivalence bound.

4. Case study
We now present a case study to illustrate a typical workflow with some of the core marginal-
effects functions listed in Table 1. For simplicity of exposition, the code in this section uses
the R version of marginaleffects. In Section 5, we show that the Python syntax is extremely

4The delta method is a statistical technique used for approximating the variance and standard error of
a function of a random variable based on the random variable’s own variance and standard error. It is
particularly useful when dealing with complex functions of estimators for which the distribution is difficult to
derive directly.
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similar, so most of the insights from this case study apply to both versions of the package.
Moreover, the replication script which accompanies this article holds the code to reproduce
all the results and figures in this section using Python.
Our example is inspired by Rothstein and Teorell (2008), who argue that a critical compo-
nent of good governance in a country is the impartiality of its government institutions, or
the degree to which state power is exercised according to written laws rather than personal
connections or biases. Many factors can influence the impartiality of governance, including
the level of economic inequality in a country (Suzuki and Demircioglu 2021) and the presence
of democratic political institutions (Rothstein and Teorell 2008).
To study these relationships, we consider four variables drawn from the Varieties of Democracy
project (Coppedge et al. 2023; Maerz, Edgell, Hellemeier, and Illchenko 2022):5

• impartial: A binary indicator equal to 1 if a country’s public officials are impartial in
the performance of their duties.

• equal: A continuous scale from 0 to 100 where higher values indicate that resources
like public goods and welfare policies are distributed more equally across society.

• democracy: A binary indicator equal to 1 when a country is a democracy.

• continent: The continent on which a country is located.

Our dataset includes information on 166 countries. We can read it and display the first few
rows as follows:

R> library("marginaleffects")
R> library("modelsummary")
R> dat <- read.csv("https://marginaleffects.com/data/impartiality.csv")
R> head(dat)

X country continent impartial equal democracy
1 0 Mexico Americas 1 31.2 Democracy
2 1 Suriname Americas 1 68.1 Democracy
3 2 Sweden Europe 1 93.7 Democracy
4 3 Switzerland Europe 1 96.6 Democracy
5 4 Ghana Africa 0 53.3 Democracy
6 5 South Africa Africa 1 38.6 Democracy

To start, we estimate a logistic regression model to predict whether a country’s public officials
are impartial based on resource equality, regime type, and continent.

5We simplified many of these variables for the sake of illustration. For impartial, we collapse the five
levels of V-Dem’s v2clrspct_ord into a binary indicator, where levels 2–4 represent impartial governance and
levels 0–1 represent not impartial governance; for equal we multiply V-Dem’s v2xeg_eqdr variable by 100; for
democracy, we collapse the four levels of V-Dem’s “Regimes of the world” measure (v2x_regime) into a binary
indicator, where “Autocracy” includes closed autocracies and electoral autocracies and “Democracy” includes
electoral democracies and liberal democracies.
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(1)
Equal 0.046

(0.013)
Democracy 1.570

(1.541)
Equal × Democracy 0.038

(0.039)
Americas 0.866

(0.874)
Asia −0.293

(0.596)
Europe −0.263

(1.071)
(Intercept) −2.692

(0.664)
Num.Obs. 166
AIC 118.3
BIC 140.1
Log.Lik. −52.158
F 5.468
RMSE 0.32

Table 2: Logistic regression model with impartiality as the outcome.

R> m <- glm(impartial ~ equal * democracy + continent, data = dat,
+ family = binomial)
R> modelsummary(m,
+ title = "Logistic regression model with impartiality as the outcome.")

The coefficient estimates from this logistic regression are shown in Table 2. Since this model
is not purely linear, and given that it includes a multiplicative interaction, it is not straight-
forward to interpret the reported coefficients on a scale that will make intuitive sense to most
readers. In the rest of this case study, we show how marginaleffects functions can extract
insights from those estimates by computing predictions, comparisons, and slopes.

4.1. Predictions

Quantity of interest
The first quantity of interest that we consider is the predicted probability of having an im-
partial public sector, which we compute using the predictions() function. predictions()
mimics and extends the behavior of stats::predict(), which is the workhorse function
for generating predictions used by many modeling packages in R. Both functions include a
newdata argument to define the grid of values over which we want to make predictions, and
a type argument to set the scale of predictions (e.g., "response" or "link").

Grid
Predictions are a “conditional” quantity: they depend on the values of the predictors in the
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model, which means that each unit of observation will typically have its own predicted value.
To generate predictions, we thus need to specify a “grid” of predictors, that is, we need to
specify the combinations of predictor values for which we need estimates. For example, we
could compute predictions for:

• Every individual in the original dataset.

• One specific individual.

• A hypothetical individual with each predictor held at the sample mean or mode.

• User-specified combinations of predictor values.

By default, predictions() returns predictions for each row in the dataset used to fit the
model. Our case study data includes 166 observations, so calling predictions() with no other
argument generates a dataset with 166 rows, with predictions on the probability (response)
scale:

R> p <- predictions(m)
R> p

Estimate Pr(>|z|) S 2.5 % 97.5 %
0.914 0.00444 7.8 0.676 0.982
0.996 0.00108 9.9 0.899 1.000
0.998 0.00677 7.2 0.857 1.000
0.999 0.00699 7.2 0.862 1.000
0.966 < 0.001 10.6 0.807 0.995

--- 156 rows omitted. See ?avg_predictions and ?print.marginaleffects ---
0.794 0.02311 5.4 0.546 0.925
0.996 0.00611 7.4 0.830 1.000
0.999 0.00684 7.2 0.858 1.000
0.746 0.04504 4.5 0.506 0.894
0.991 0.00603 7.4 0.792 1.000

Columns: rowid, estimate, p.value, s.value, conf.low, conf.high, impartial,
equal, democracy, continent

The default printout for every marginaleffects object includes all the usual test statistics,
such as p values and confidence intervals. Note that the default null hypothesis is always
zero, which may not be appropriate in this case. Users can posit a different null using the
hypothesis argument.
marginaleffects objects are “tidy” data frames (Wickham 2014). They can be manipulated
with standard functions and accessors like [,], $, head(), subset(), or add-on functions like
dplyr::filter() (Wickham, François, Henry, Müller, and Vaughan 2023):

R> p$estimate[1:4]

[1] 0.9136850 0.9957328 0.9984526 0.9987861
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R> p[2, "p.value"]

[1] 0.001078207

R> p |> subset(estimate == min(estimate))

Estimate Pr(>|z|) S CI low CI high
0.0677 <0.001 14.2 0.0199 0.206

Columns: rowid, estimate, p.value, s.value, conf.low, conf.high, impartial,
equal, democracy, continent

Although marginaleffects objects are standard data frames, they are printed by a custom
method which displays the most important columns and rows, and hides the rest. Print-
ing options are controlled by arguments of the print method which are documented in
?print.marginaleffects. As can be seen above, the default output includes a printout
of the available column names below the estimates. This can be disabled with:

R> options(marginaleffects_print_column_names = FALSE)

We can use the newdata argument to make predictions for a subset of observations, and the
type argument to change the scale of predictions. Here, we make predictions on the logit
(link) scale for the first two observations in the dataset:

R> predictions(m, newdata = head(dat, 2), type = "link")

Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 %
2.36 0.829 2.84 0.00444 7.8 0.734 3.99
5.45 1.668 3.27 0.00108 9.9 2.184 8.72

The newdata argument also supports various shortcuts. For instance, we can calculate a
prediction at the mean – or a prediction for an “average country” – by holding every predictor
at its mean (numeric) or mode (categorical or binary), thus creating a one-row grid:

R> predictions(m, newdata = "mean") |> data.frame()

rowid estimate p.value s.value conf.low conf.high equal democracy
1 1 0.9792756 0.0009489451 10.04139 0.8276753 0.9978535 59.3741 Democracy

continent impartial
1 Africa 1

In a hypothetical African democracy with an equal distribution of resources index of 59.4,
the predicted probability of having impartial public officials is 0.979. This combination of
predictors does not necessarily reflect the characteristics of any actual country – it is simply
a combination of the means and modes of all covariates.
Note that in the code above, we used a pipe to wrap the output in data.frame(). This
disabled pretty-print and printed all columns.
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The datagrid() function offers a more powerful way to create prediction grids based on
user-specified values. datagrid() accepts both vectors and functions that return vectors.
For instance, we can create a grid with all unique values of democracy and two specific levels
of inequality, while holding all other variables at their means or modes:

R> datagrid(model = m, democracy = unique, equal = c(30, 90))

continent democracy equal rowid
1 Africa Democracy 30 1
2 Africa Democracy 90 2
3 Africa Autocracy 30 3
4 Africa Autocracy 90 4

We can generate adjusted predictions at these representative values using predictions():

R> predictions(m,
+ newdata = datagrid(democracy = unique, equal = c(30, 90)))

democracy equal Estimate Pr(>|z|) S 2.5 % 97.5 %
Democracy 30 0.801 0.03400 4.9 0.526 0.936
Democracy 90 0.998 0.00438 7.8 0.881 1.000
Autocracy 30 0.213 0.00240 8.7 0.104 0.386
Autocracy 90 0.812 0.05428 4.2 0.493 0.950

Aggregation

When using predictions() without an explicit grid in the newdata argument, we get es-
timates for each of the 166 rows in the dataset. To make these results more intelligible, it
can be useful to collapse unit-level estimates into aggregates. For example, we can calculate
the overall average prediction with avg_predictions(), which takes the average of all the
predicted values in the full dataset.

R> avg_predictions(m, type = "response")

Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 %
0.693 0.0247 28 <0.001 572.2 0.644 0.741

This is equivalent to computing predictions for every row of the original dataset, and then
taking the mean of these predictions:6

R> mean(predict(m, newdata = dat, type = "response"))

[1] 0.6927711
6When the model is a GLM and the type argument is left unspecified, the predictions() function makes

predictions on the link scale, and then backtransforms the results using the inverse link function. Calling
avg_predictions(m) is thus equivalent to plogis(mean(predict(m, type = "link"))).
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Figure 1: Average predicted probability of impartiality by regime type and continent.

This result tells us that the average predicted probability of having an impartial public sector
is 0.693.
We can also calculate the average predictions across subgroups in the data with the by argu-
ment. This command tells us the average predicted probability of having an impartial public
sector among actually-observed democracies and autocracies:

R> avg_predictions(m, by = "democracy", type = "response")

democracy Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 %
Democracy 0.956 0.0200 47.78 <0.001 Inf 0.916 0.995
Autocracy 0.382 0.0485 7.87 <0.001 48.0 0.287 0.477

Note that the by argument allows much more complicated aggregation schemes and functions.
See the marginaleffects documentation for details.

Visualization
It is very easy to plot average predictions using the parallel syntax of the plot_predictions()
function:

R> plot_predictions(m, by = c("democracy", "continent"), type = "response")

The output of plot_predictions() in Figure 1 is a standard ggplot2 object, which means
that we can customize its appearance using ggplot2 functions and related theming packages.
We can also use the condition argument to draw estimates over a grid of values which cover
the range of a numeric variable. condition creates a grid with equally spaced values of the
first named variable, and unique values of subsequent elements (see ?plot_predictions for
details). The result of this code is shown in Figure 2.

R> library("ggplot2")
R> theme_set(theme_bw(base_family = "serif"))
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Figure 2: Predicted probability of impartiality by levels of equality and democracy.

R> okabeito <- c("#E69F00", "#56B4E9")
R> plot_predictions(m, condition = c("equal", "democracy")) +
+ labs(color = NULL, fill = NULL, x = "Equality",
+ y = "Predicted probability of impartiality") +
+ scale_colour_manual(values = okabeito) +
+ scale_fill_manual(values = okabeito) +
+ theme(legend.position = "bottom")

Uncertainty
The procedure used to quantify uncertainty about our estimates can often be crucial. By
default, all uncertainty estimates are computed using the delta method, and derivatives are
computed numerically using simple finite differences. The package also supports the Richard-
son method and allows users to set the step size and other parameters used to obtain the
numerical derivative.
All marginaleffects functions have a vcov argument which can be used to report alternative
standard errors. vcov accepts variance-covariance matrices, functions that return variance-
covariance matrices, and shortcuts to select commonly used standard errors (e.g., Hubert-
White or cluster-robust). Behind the scenes, marginaleffects delegates parts of the computa-
tion to the sandwich package (Zeileis et al. 2020).
To illustrate, we use the vcov, conf_level, hypothesis arguments to test the null hypoth-
esis that average predicted probabilities are equal to 0.4, using heteroskedasticity-consistent
(type 3) standard errors and 99% confidence intervals:

R> avg_predictions(m, vcov = "HC3", conf_level = 0.99, hypothesis = 0.4,
+ by = "democracy", type = "response")
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democracy Estimate Std. Error z Pr(>|z|) S 0.5 % 99.5 %
Democracy 0.956 0.0212 26.150 <0.001 498.3 0.901 1.010
Autocracy 0.382 0.0523 -0.352 0.725 0.5 0.247 0.516

Or we can cluster standard errors by continent by using a one-sided formula:

R> avg_predictions(m, by = "continent", vcov = ~continent)

continent Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 %
Americas 0.852 6.66e-09 1.28e+08 <0.001 Inf 0.852 0.852
Europe 0.949 4.42e-08 2.15e+07 <0.001 Inf 0.949 0.949
Africa 0.528 2.25e-08 2.35e+07 <0.001 Inf 0.528 0.528
Asia 0.574 1.07e-08 5.35e+07 <0.001 Inf 0.574 0.574

Instead of the delta method, analysts can also use the bootstrap and simulation-based infer-
ence using the boot (Canty and Ripley 2024), rsample (Frick et al. 2024), or fwb (Greifer
2023) packages. For this, we pipe our initial call into the inferences() function:

R> set.seed(1024)
R> avg_predictions(m, by = "democracy", type = "response") |>
+ inferences(method = "simulation")

democracy Estimate 2.5 % 97.5 %
Democracy 0.956 0.859 0.981
Autocracy 0.382 0.300 0.482

Test
We can use the hypotheses() function to conduct linear or nonlinear hypothesis test on a
model’s coefficients or on arbitrary functions of coefficients. For instance, we can test the null
hypothesis that the coefficient for Asia is equal to the coefficient for the Americas:

R> coef(m)[c("continentAsia", "continentAmericas")]

continentAsia continentAmericas
-0.2926119 0.8655884

R> hypotheses(m, hypothesis = "continentAsia = continentAmericas")

Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 %
-1.16 0.94 -1.23 0.218 2.2 -3 0.685

Term: continentAsia = continentAmericas

All the core marginaleffects functions also have a hypothesis argument which allows us
to conduct linear and nonlinear hypothesis tests on any of the estimates produced by the
package. To illustrate, start by estimating the predicted probabilities of having impartial
institutions in autocracies and democracies:7

7We use the type argument to avoid the automatic back-transformation which is normally applied to GLM
models. See the “Standard Errors” chapter of the online book for details (Arel-Bundock 2024a).
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R> avg_predictions(m, by = "democracy", type = "response")

democracy Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 %
Democracy 0.956 0.0200 47.78 <0.001 Inf 0.916 0.995
Autocracy 0.382 0.0485 7.87 <0.001 48.0 0.287 0.477

Now, we add the hypothesis argument to compute pairwise differences between the estimates
in each row:

R> avg_predictions(m, by = "democracy", type = "response",
+ hypothesis = "revpairwise")

Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 %
-0.574 0.0525 -10.9 <0.001 90.1 -0.677 -0.471

Term: Autocracy - Democracy

We can also formulate null hypotheses in terms of specific rows of a function’s output: b1,
b2, b3, etc. Consider this statement:

On average, the predicted outcome is two times larger for democracies (row 1)
than for autocracies (row 2).

We can test it by modifying the hypothesis argument:

R> avg_predictions(m, by = "democracy", type = "response",
+ hypothesis = "b1 = b2 * 2")

Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 %
-1.53 0.0629 -24.3 <0.001 432.0 -1.65 -1.41

Term: b2=b1*2

This estimate is equivalent to 0.9556 − 2 · 0.3816 = 0.1924, with a test statistic that is very
close to conventional thresholds of statistical significance. Using this string-equation syntax,
we can test a wide variety of null hypotheses, using nonlinear functions and including more
than two estimates.
Now, let’s say that for scientific reasons, we consider that estimates between −0.2 and 0.2 are
functionally equivalent to zero. We can use the TOST equivalence test to see if the quantity
of interest is likely to fall outside that equivalence band:

R> avg_predictions(m, by = "democracy", type = "response",
+ hypothesis = "b1 = b2 * 2", equivalence = c(-0.2, 0.2))

Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 % p (NonSup) p (NonInf)
-1.53 0.0629 -24.3 <0.001 432.0 -1.65 -1.41 <0.001 1

p (Equiv)
1

Term: b2=b1*2
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The output above shows the p value associated with the non-inferiority, non-superiority, and
equivalence tests. We can reject the null hypothesis that the estimate is inferior to −0.2, but
we cannot reject the null hypothesis that it lies outside the [−0.2, 0.2] interval.

4.2. Comparisons

The comparisons() function allows us to compare two sets of predictions made with different
predictor values. For example, we can ask the following research question:

How does the predicted probability of having impartial government institutions
change if a country is an autocracy or a democracy?

Our quantity of interest for this question is the difference between predictions when the
democracy variable takes on different values. We estimate this quantity using function
comparisons() and by specifying the variables argument. Again, it is important to em-
phasize that risk differences are conditional quantities, which can vary with the values of all
predictors in the model. By default, we thus obtain one estimate of the comparison (risk
difference) for each unit of observation:

R> comparisons(m, variables = "democracy")

Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 %
0.509 0.1635 3.12 0.00184 9.1 0.18883 0.830
0.207 0.1519 1.37 0.17225 2.5 -0.09038 0.505
0.201 0.1426 1.41 0.15759 2.7 -0.07796 0.481
0.181 0.1327 1.36 0.17263 2.5 -0.07914 0.441
0.524 0.1056 4.96 < 0.001 20.5 0.31703 0.731

--- 156 rows omitted. See ?avg_comparisons and ?print.marginaleffects ---
0.205 0.0968 2.11 0.03445 4.9 0.01499 0.395
0.293 0.1786 1.64 0.10149 3.3 -0.05757 0.643
0.195 0.1395 1.40 0.16226 2.6 -0.07847 0.468
0.251 0.1015 2.47 0.01342 6.2 0.05204 0.450
0.398 0.2043 1.95 0.05152 4.3 -0.00262 0.798

Term: democracy
Comparison: Democracy - Autocracy

We can aggregate these results to compute average risk differences:

R> avg_comparisons(m)

Term Contrast Estimate Std. Error z
continent mean(Americas) - mean(Africa) 0.08627 0.08608 1.002
continent mean(Asia) - mean(Africa) -0.02998 0.06012 -0.499
continent mean(Europe) - mean(Africa) -0.02695 0.10870 -0.248
democracy mean(Democracy) - mean(Autocracy) 0.38299 0.07443 5.146
equal mean(+1) 0.00538 0.00114 4.709
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Pr(>|z|) S 2.5 % 97.5 %
0.316 1.7 -0.08245 0.25500
0.618 0.7 -0.14782 0.08786
0.804 0.3 -0.24000 0.18609

<0.001 21.8 0.23711 0.52887
<0.001 18.6 0.00314 0.00762

On average, autocracies have a 38.3 percentage point lower predicted probability of having
an impartial public sector than democracies. This result can be replicated using these base
R commands:

R> dat_lo <- transform(dat, democracy = "Autocracy")
R> dat_hi <- transform(dat, democracy = "Democracy")
R> pred_lo <- predict(m, newdata = dat_lo, type = "response")
R> pred_hi <- predict(m, newdata = dat_hi, type = "response")
R> mean(pred_hi - pred_lo)

[1] 0.3829926

For numeric variables, comparisons() reports the risk difference associated with a one unit
increase in the variable. We can use the variables argument to specify a different incre-
ment, a on e standard deviation change, movement across the interquartile range, or the risk
difference between two specific values of the predictors:

R> avg_comparisons(m, variables = list("equal" = 4))
R> avg_comparisons(m, variables = list("equal" = "sd"))
R> avg_comparisons(m, variables = list("equal" = "iqr"))
R> avg_comparisons(m, variables = list("equal" = c(30, 90)))

We can move beyond differences in predictions by specifying the comparison or transform
arguments. For instance, we can compute average risk ratios as follows:

R> avg_comparisons(m, variables = "democracy", comparison = "ratio")

Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 %
1.74 0.221 7.91 <0.001 48.5 1.31 2.18

Term: democracy
Comparison: mean(Democracy) / mean(Autocracy)

We can compute the log-odds ratio and then exponentiate the result:

R> avg_comparisons(m, comparison = "lnor", transform = exp)

Term Contrast Estimate Pr(>|z|) S 2.5 %
continent ln(odds(Americas) / odds(Africa)) 1.571 0.354 1.5 0.604
continent ln(odds(Asia) / odds(Africa)) 0.871 0.618 0.7 0.505
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continent ln(odds(Europe) / odds(Africa)) 0.883 0.802 0.3 0.334
democracy ln(odds(Democracy) / odds(Autocracy)) 8.239 <0.001 14.1 2.945
equal +1 1.026 <0.001 18.4 1.015
97.5 %

4.08
1.50
2.33

23.04
1.04

The comparison argument also accepts user-defined functions, so we can create fully cus-
tomized comparisons. For example, we could compute the ratio between average predictions
as:

R> avg_comparisons(m, variables = "equal",
+ comparison = \(hi, lo) mean(hi) / mean(lo))

Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 %
1.01 0.0017 593 <0.001 Inf 1 1.01

Term: equal
Comparison: +1

Like the other functions of the package, comparisons() supports the hypothesis argument,
which allows much flexibility in testing questions like:

Does moving from low to high resource equality have a larger effect on the proba-
bility of having an impartial public sector for democracies than for autocracies?

First, we see that a change from 30 to 90 in equal is associated with an increase of 0.196 in
democracies and 0.592 for autocracies:

R> cmp <- avg_comparisons(m, by = "democracy",
+ variables = list(equal = c(30, 90)))
R> cmp

democracy Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 %
Autocracy 0.592 0.119 4.96 <0.001 20.4 0.3577 0.825
Democracy 0.196 0.114 1.73 0.084 3.6 -0.0264 0.419

Term: equal
Comparison: mean(90) - mean(30)

We can visualize those risk differences with the plot_comparisons() function, adding the
labs() function from ggplot2 to control the axis labels (Figure 3).

R> plot_comparisons(m, by = "democracy",
+ variables = list(equal = c(30, 90))) +
+ labs(x = NULL, y = "Risk Difference (Impartiality)")
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Figure 3: Effect of a change from 30 to 90 in resource equality on the predicted probability
of having impartial public institutions.

Then, we use the hypothesis argument to compare the two estimates:

R> cmp <- avg_comparisons(m, by = "democracy",
+ variables = list(equal = c(30, 90)), hypothesis = "pairwise")
R> cmp

Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 %
0.395 0.142 2.79 0.00523 7.6 0.118 0.673

Term: Autocracy - Democracy

The p value is small, so we can reject the null hypothesis that a change in equal is associated
with the same change in predicted outcome for democracies and autocracies.

4.3. Slopes and elasticities

Thus far, we have looked at the relationship between impartial public administration and
resource equality by focusing on discrete changes in the predictors (e.g., from 30 to 90 on
the equal variable). In some contexts, researchers are more interested in the slope of a
relationship, that is, in the partial derivative of the outcome equation. Alternatively, ana-
lysts may want to estimate an elasticity or semi-elasticity. The slopes(), avg_slopes(), and
plot_slopes() functions behave in the same way as their predictions() and comparisons()
counterparts; they allow analysts to answer questions like:

How does the probability of impartial governance change as resource equality in-
creases by a very small amount?

More concretely, one may wish to estimate the slope of the prediction function at the two
points where the tangents touch the curve in Figure 4. To achieve this, we call the slopes()
function and specify the points we are interested in using the newdata argument:



Journal of Statistical Software 23

0.4

0.6

0.8

1.0

0 25 50 75 100
equal

im
pa

rt
ia

l

Figure 4: Tangents to the prediction function at 25 and 50.

R> slopes(m, newdata = datagrid(equal = c(25, 50)), variables = "equal")

Term equal Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 %
equal 25 0.01668 0.01142 1.46 0.1443 2.8 -0.005713 0.03907
equal 50 0.00355 0.00209 1.70 0.0896 3.5 -0.000549 0.00766

As with the other functions, we can also compute other quantities such as the “mean slope”
(aka “average marginal effect”), “slope at the mean” (aka “marginal effects at the mean”),
“slope at the median by group”, etc.
Average marginal effect:

R> avg_slopes(m, variables = "equal")

Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 %
0.00541 0.00116 4.66 <0.001 18.3 0.00314 0.00769

Term: equal
Comparison: mean(dY/dX)

Marginal effect at the mean:

R> slopes(m, variables = "equal", newdata = "mean")

Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 %
0.0017 0.00132 1.29 0.196 2.3 -0.000879 0.00428

Term: equal

Marginal effects at the median by group:
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R> avg_slopes(m, variables = "equal", newdata = "median", by = "democracy")

democracy Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 %
Autocracy 0.011080 0.002516 4.404 <0.001 16.5 0.006149 0.0160
Democracy 0.000912 0.000913 0.998 0.318 1.7 -0.000878 0.0027

Term: equal
Comparison: mean(dY/dX)

To compute elasticities or semi-elasticities, we use the slope argument:

R> avg_slopes(m, variables = "equal", slope = "eyex")

Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 %
0.546 0.134 4.08 <0.001 14.4 0.284 0.809

Term: equal
Comparison: mean(eY/eX)

Of course, most of the arguments introduced above are also available in slopes() (ex:
hypothesis, by, vcov), and we can plot key quantities of interest using the dedicated func-
tion plot_slopes(), which uses a very similar API to the other plotting functions of this
package.

5. Python
The marginaleffects package for Python is more recent than the R version and it is still
maturing. Nevertheless, most of the functionality is already implemented, and the Python
and R syntaxes mirror each other almost exactly. The package currently supports models
estimated using the formula API of the statsmodels package (Seabold and Perktold 2010).
This means that we can cover models like probit, logit, OLS, and quantile regression among
others.
To begin, we use polars (Vink 2024) to read a CSV file into a data frame (pandas, The
pandas Development Team 2024, is also supported). Then we estimate a probit model using
statsmodels:

>>> import pandas as pd
>>> import statsmodels.formula.api as smf
>>> from marginaleffects import avg_predictions, slopes
>>> dat = pd.read_csv("https://marginaleffects.com/data/impartiality.csv")
>>> mod = smf.logit("impartial ~ equal * democracy + continent",
... data = dat).fit()

Finally, we use standard marginaleffects commands to compute average predictions by vari-
able continent, and the slope at the mean with respect to equal:
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>>> p = avg_predictions(mod, by = "continent")
>>> p

shape: (4, 8)

continent Estimate Std.Error z P(>|z|) S 2.5% 97.5%
--- --- --- --- --- --- --- ---
str str str str str str str str

Africa 0.528 0.0492 10.7 0 inf 0.432 0.625
Americas 0.852 0.0493 17.3 0 inf 0.755 0.948
Asia 0.574 0.0559 10.3 0 inf 0.465 0.684
Europe 0.949 0.0301 31.5 0 inf 0.89 1.01

Columns: continent, estimate, std_error, statistic, p_value, s_value,
conf_low, conf_high

>>> s = slopes(mod, variables = "equal", newdata = "mean")
>>> s

shape: (1, 9)

Term Contrast Estimate Std.Error ··· P(>|z|) S 2.5% 97.5%
--- --- --- --- --- --- --- ---
str str str str str str str str

equal dY/dX 0.0017 0.00128 ··· 0.183 2.45 -0.000803 0.00421

Columns: term, contrast, estimate, std_error, statistic, p_value, s_value,
conf_low, conf_high

6. Package internals and extensions
marginaleffects is a standards-compliant package in the sense that it produces results that
conform to modern norms and best practices for R development. Its functions return data
frames in “tidy” long format, which facilitates interoperability with packages like ggplot2 to
draw plots, or modelsummary to build tables (Arel-Bundock 2022). The data frames produced
by marginaleffects use the simple naming convention spelled out by the broom package, with
standard column names such as estimate, std.error, and conf.low (Robinson, Hayes, and
Couch 2024).
marginaleffects depends on a few R packages for core operations. data.table is used for
efficient data frame manipulation (Barrett, Dowle, Srinivasan, Gorecki, Chirico, Hocking, and
Schwendinger 2024). checkmate is used to inspect arguments and return informative error
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messages when user input does not conform to expectations (Lang 2017). insight is used
to extract a variety of information from model objects (Lüdecke, Waggoner, and Makowski
2019). generics is imported to enable tidy() and glance() methods (Wickham, Kuhn, and
Vaughan 2022), and rlang is used for more robust handling of some scoping issues (Henry
and Wickham 2024).
All of these packages are themselves dependency-free, which helps keep the total number of
recursive dependencies for marginaleffects relatively low. In turn, this makes it less costly
for other developers to import marginaleffects to handle some computations, such as in the
etwfe and clarify packages (McDermott 2024; Greifer, Worthington, Iacus, and King 2024).
In addition to its core dependencies, marginaleffects’s functionality can be enhanced by sev-
eral optional packages that users can, but do not have to install: ggplot2, collapse (Krantz
2024), numDeriv (Gilbert and Varadhan 2019). The test suite – which includes thousands of
expectations and numerical checks against alternative software like emmeans or Stata – can
be run using the tinytest package by Van der Loo (2021). sandwich can be used to compute
robust standard errors (Zeileis et al. 2020). ggplot2 is used by the plot_predictions(),
plot_comparisons(), and plot_slopes() functions to plot quantities of interest.
To compute predictions, comparisons, slopes, and marginal means, marginaleffects defines
four S3 methods for each of the supported model classes. First, get_coef() accepts a model
object and returns a named numeric vector of coefficients.
Second, set_coef() accepts a model object and a named vector of coefficients, and returns
a new model object in which the original coefficients have been replaced by the user-supplied
values. For example, for a model object produced by the lm() function, set_coef() will
modify the values hosted internally in model[["coefficients"]]. This method is used in
the process of computing standard errors with the delta method when we need to compute
numerical derivatives with respect to the coefficients e.g., estimating the effect of a small
change in one of the coefficients on the predicted outcome.
Third, get_vcov() accepts a model object and returns a square variance-covariance ma-
trix. If the sandwich package is installed and supports the model class, then get_vcov()
also accepts a vcov argument which controls the type of uncertainty estimates to compute
(heteroskedasticity-consistent, cluster-robust, etc.).
Finally, get_predict() accepts a model object and a data frame, and returns a data frame
with a column of unique sequential row identifiers (rowid) and a column of predicted out-
comes (estimate). For models with a categorical or multivariate outcome, the output of
get_predict() also includes a group column.
In many cases, the default versions of the methods described above will already be able to
handle a new class of models. But in the worst of cases, a developer can define four simple S3
methods. Thus, it is normally very easy to add support for new model types, a process that
often requires less than 10 lines of code. Thanks to this extensibility, the package developers
have already added support for over 100 model classes. The marginaleffects website includes
detailed examples on how to add support for new models, and even illustrates how one
can post-process the results of statistical models estimated in Python using reticulate and
NumPyro (Ushey, Allaire, and Tang 2024; Bingham et al. 2019), see Arel-Bundock (2024a).
The Python package is structured in roughly the same way as the R package, and those who
have read the description above should be able to navigate the code base with relative ease.
The package requires a version of Python greater or equal to 3.9 and depends on the following
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packages: statsmodels (Seabold and Perktold 2010), numpy (Harris et al. 2020), pyarrow
(Apache Arrow Developers 2024), polars, and scipy (Virtanen et al. 2020).

7. Conclusion
Imbuing parameter estimates with substantive meaning is one of the most important and
difficult tasks of the applied statistician. Post-estimation processing is made even more ardu-
ous by the facts that the terminology used to describe different quantities of interest varies
widely across fields and disciplines and that different software packages produce objects with
different structures and information.
In this article, we presented a conceptual framework that can be used to think about and
describe various quantities of interest in a consistent and transparent way. The five key
characteristics of those quantities of interest are: (1) quantity, (2) grid, (3) aggregation,
(4) uncertainty, and (5) test.
To operationalize this framework in practice, we introduced the marginaleffects package for R
and Python. This new addition to these ecosystems has the potential to facilitate and improve
statistical practice in many fields. Indeed, our case study showed that marginaleffects is a
powerful tool: it can compute predictions, comparisons (contrasts, risk ratios, etc.), and slopes
and conduct hypothesis tests for over 100 different classes of models. All the functions in the
package share a simple, unified, and well-documented interface, which makes them easy to
use. marginaleffects relies on relatively few dependencies, is easy to extend, and produces
“tidy” results. These qualities facilitate interoperability with other R and Python packages
and should ensure long-term maintainability. Finally, the package is accompanied by an
extensive test suite, with many checks of numerical accuracy against alternative software.
Readers who want to learn more about marginaleffects are encouraged to read the free online
book, which includes over 25 chapters of detailed tutorials, technical material, and case studies
(Arel-Bundock 2024a).
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