
JSS Journal of Statistical Software
November 2024, Volume 111, Issue 8. doi: 10.18637/jss.v111.i08

Interpreting Deep Neural Networks with the
Package innsight

Niklas Koenen
Leibniz Institute for Prevention

Research and Epidemiology – BIPS,
University of Bremen

Marvin N. Wright
Leibniz Institute for Prevention

Research and Epidemiology – BIPS,
University of Bremen

University of Copenhagen

Abstract

The R package innsight offers a general toolbox for revealing variable-wise interpre-
tations of deep neural networks’ predictions with so-called feature attribution methods.
Aside from the unified and user-friendly framework, the package stands out in three ways:
It is generally the first R package implementing feature attribution methods for neural
networks. Secondly, it operates independently of the deep learning library, allowing the
interpretation of neural networks from any R package, including keras, torch, neuralnet,
and even custom models. Despite its flexibility, innsight benefits internally from the torch
package’s fast and efficient array calculations, which builds on LibTorch – PyTorch’s C++
backend – without a Python dependency. Finally, it offers a variety of visualization tools
for tabular, signal, image data, or a combination of these. Additionally, the plots can be
rendered interactively using the plotly package.

Keywords: neural networks, feature attribution, interpretable machine learning, explainable
artificial intelligence, XAI, IML, torch, keras, R.

1. Introduction

Throughout the past decade, neural networks have unleashed a tremendous surge of attention
and infiltrated almost all conceivable domains of science, industry, and public life. Mainly,
their increasing popularity is due to their natural ability to extract patterns and knowledge
from vast amounts of structured raw data thanks to modern computing capacities and de-
liver outstanding performance (Krizhevsky, Sutskever, and Hinton 2017; LeCun, Bengio, and
Hinton 2015; Silver et al. 2016; Bengio, Lecun, and Hinton 2021). However, the intelligently

https://doi.org/10.18637/jss.v111.i08
https://orcid.org/0000-0002-4623-8271
https://orcid.org/0000-0002-8542-6291

2 innsight: Interpreting Deep Neural Networks in R

learned decision-making process of a neural network remains inscrutable and hidden from the
user due to its enormous complexity. Interpretations cannot be inferred as straightforward
from this so-called black box as, for example, the coefficients of a linear model. As a conse-
quence, the gain in predictive accuracy and model flexibility generally comes at the price of an
increasingly opaque and intricate machine learning model, as was already noted by Gunning
and Aha (2019). Nevertheless, it is precisely this question of interpretability – or, informally
speaking: Why did a network make a certain prediction? – that is becoming more and more
relevant for applications with high-stake decisions and possibly becoming a legal requirement,
e.g., in autonomous systems (O’Sullivan et al. 2019), healthcare (Schneeberger, Stöger, and
Holzinger 2020) or data processing in general (European Union 2016; Goodman and Flaxman
2017).
Arising from this question and need, several methods have been proposed to explain predic-
tions of machine learning models in a supervised learning setting. These methods are mainly
classified according to the criteria for which model class they are applicable and at which
level they provide explanations: Regarding the first criterion, model-agnostic approaches an-
alyze the association of input data and model predictions of arbitrary models. Contrary,
model-specific methods additionally exploit internal structures to reveal insights, but their
application is restricted to a specific group of models. Secondly, interpretability methods for
machine learning models can be categorized into local and global in terms of the explana-
tion level. Established local model-agnostic methods, such as Shapley additive explanations
(SHAP, Lundberg and Lee 2017), individual conditional expectations (ICE, Goldstein, Kapel-
ner, Bleich, and Pitkin 2015), and local interpretable model-agnostic explanations (LIME,
Ribeiro, Singh, and Guestrin 2016), explain only individual or groups of instances from the
dataset, e.g., a single picture for image classification or one patient in the context of medical
disease prediction. In contrast, global approaches describe the entire model behavior inde-
pendent of individual effects. Commonly applied methods from this category are permutation
feature importance (Fisher, Rudin, and Dominici 2019), accumulated local effect (ALE) plots
(Apley and Zhu 2020) and partial dependence plots (Friedman 2001; Greenwell, Boehmke,
and McCarthy 2018). One way to describe this distinction is to look at the classical linear
model with input variables x = (x1, . . . , xp)⊤ and prediction ŷ:

ŷ = β0 + x1 β1 + . . . + xp βp.

In this case, the coefficients β1, . . . , βp describe the global effect of the input variables x1, . . . , xp

taking their values independent of x, i.e., they indicate how much the variables affect the pre-
diction ŷ in general. On the other hand, the local explanations x1 β1, . . . , xp βp demonstrate
how much each input variable contributes to or impacts the prediction for a chosen input
instance x, commonly leading to a variable-wise decomposition of ŷ in additive effects.
Despite the quantity and universality of model-agnostic methods, they are barely applica-
ble to modern deep neural networks mainly because of two reasons: Firstly, many of these
model-agnostic approaches are based on repeated evaluation of perturbed or permuted input
instances, and secondly, they scale poorly for a higher number of input variables. Since the
forward pass of deep neural networks is computationally intensive and the inputs are often
high-dimensional RGB images, applying model-agnostic approaches is time-consuming and
challenging. Moreover, global variable-wise methods are generally not appropriate for image
data since the importance of pixels is rather independent of the exact localization and depends
more on the neighboring pixels varying in each individual image. Alternatively, global model-

Journal of Statistical Software 3

Forward pass Backward pass

Im
ag

e
Ta

bu
la

r

x ∈ Rpx1
...

xp

 f(x)
Neural network

Prediction

ŷ ∈ RC

ŷ1
...

ŷc
...

ŷC


Feature attribution

method

Im
ag

e
Ta

bu
la

r

Rc ∈ Rp
Rc

1
...

Rc
p



Figure 1: General procedure of feature attribution methods: First, an input instance x flows
through the model f to obtain a prediction ŷ. Then, the desired output node or class ŷc to
be explained is selected. Finally, the relevance Rc

i of the individual input variables i at the
selected output c is calculated in a backward pass.

specific approaches such as feature visualizations (Olah, Mordvintsev, and Schubert 2017) or
concept-based methods (Kim et al. 2018) can only be used with further optimization proce-
dures or concept-labeled datasets. This gap of interpretability methods for neural networks is
being filled by feature attribution methods, which leverage all model-internal components in
addition to the input and output relation, requiring only the model and the input instance to
be explained. Particularly, this group of local model-specific methods, which assign relevance
scores to each input variable for one of the output nodes or classes, prevailed and has suc-
cessfully been applied in many domains (Zuallaert, Godin, Kim, Soete, Saeys, and De Neve
2018; Anders, Montavon, Samek, and Müller 2019; Lauritsen et al. 2020). Furthermore, only
a single regular forward pass and then a modified backward pass need to be performed for an
explanation, i.e., they are generated without an optimization or estimation procedure. This
two-step technique is illustrated in Figure 1: First, a prediction is produced in the standard
forward pass, and the class to be explained is selected. In the subsequent method-specific
backward pass, each input variable is assigned a relevance score to the chosen output class
and can be visualized in a heat map or bar chart depending on the input type. An overview
of the most popular feature attribution methods can be found in Section 2.
Several software packages have been developed in the last few years to make feature attribu-
tion methods widely accessible to users and to provide them with a unified and easy-to-use
interface. The most popular packages are innvestigate (Alber et al. 2019) for the deep learning
library Keras (Chollet et al. 2015), and captum (Kokhlikyan et al. 2020) and zennit (Anders,
Neumann, Samek, Müller, and Lapuschkin 2021) for PyTorch (Paszke et al. 2019). In ad-
dition, the shap package (Lundberg and Lee 2017) implements many Shapley-value-based
methods and can handle both Keras and PyTorch models. However, all these packages are
exclusive for Python (Van Rossum et al. 2011) and mostly only support networks of specific
deep learning libraries. Despite the existing R packages for model-agnostic interpretability
methods, such as iml and dalex (Molnar, Casalicchio, and Bischl 2018; Biecek 2018), we
want to make feature attribution methods easily accessible to the R community and therefore
provide the software package innsight, which pursues the following goals:

• First feature attribution R package: innsight is the first R package that implements
the most popular feature attribution methods for neural networks unified in a single
user-friendly package.

• Computationally efficient: The powerful torch (Falbel and Luraschi 2024) package is

4 innsight: Interpreting Deep Neural Networks in R

utilized internally for all calculations, which builds on LibTorch, the C++ (Stroustrup
2013) variant of PyTorch (Paszke et al. 2019), and does not rely on a Python dependency.

• Deep-learning-library-agnostic: The passed trained models are not limited to a specific
deep learning library. The package supports models from the R packages keras (Allaire
and Chollet 2024), torch and neuralnet (Günther and Fritsch 2010). However, under
some constraints, an arbitrary model can be passed as a list to be fully flexible.

• Visualization tools: innsight offers several visualization methods for individual or sum-
marized results regardless of whether it is tabular, signal, image data, or a combination
of these. Additionally, interactive plots can be created based on the plotly package
(Sievert 2020).

The innsight package is available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=innsight or from our GitHub repository at https:
//github.com/bips-hb/innsight/.
The rest of the paper is structured as follows: First, we overview the most popular feature
attribution methods for neural networks in Section 2. Then, in Section 3, we elaborate on
the package’s design, functionality, and capabilities. Next, the package is applied to a basic
example on a penguin dataset and an advanced example for melanoma detection based on
image and tabular data as input types. In the concluding Section 5, the obtained package’s
outputs are compared and validated with the already mentioned Python equivalents.

2. Methodology of feature attribution
Feature attribution methods for neural networks describe a group of local interpretation
methods that assign to each input variable the contribution or impact to a chosen model
output. For example, suppose an input instance x ∈ Rp with p ∈ N variables is fed forward
through a neural network f : Rp → RC resulting in an output f(x) = ŷ ∈ RC with C ∈ N
classes or regression outputs. In this case, a feature attribution method assigns relevance
scores Rc

1, . . . , Rc
p to each of the input features x1, . . . , xp of x on a chosen output class or

node ŷc of the prediction ŷ to be explained, as already described in Figure 1.

2.1. Gradient-based methods

Gradient-based methods are the fastest and most straightforward interpretation methods
because they operate on the default techniques of the high-level deep learning libraries for
computing gradients during the training loop. However, these methods – in a sense – calculate
the derivatives of chosen output to the input variables instead of the derivatives of the loss
value to the model parameters during gradient descent. Although the terminology of gradient-
based methods can often be interpreted more broadly, we only consider techniques that use the
default gradient methods. For example, Ancona, Ceolini, Öztireli, and Gross (2018) showed
that variants of the layer-wise relevance propagation (LRP) and deep learning important
features (DeepLift), discussed later in Section 2.2 and 2.3, can approximately be considered
gradient-based. Regardless, they are not mentioned in this section, since not all LRP and
DeepLift variants can be considered gradient-based. Additionally, these variants require an
overwriting of the standard gradients, i.e., they do not use the mathematical definition of

https://CRAN.R-project.org/package=innsight
https://github.com/bips-hb/innsight/
https://github.com/bips-hb/innsight/

Journal of Statistical Software 5

Gradient
∂f(x)c

xi

SmoothGrad

Eε

[
∂f(x + ε)c

∂xi + εi

]

Grad×Input

∂f(x)c

xi
· xi

SmoothGrad×Input

Eε

[
∂f(x + ε)c

∂xi + εi
(xi + εi)

]

IntegratedGradient

(xi − x′i)
∫ 1

α=0

∂f(x̃ + α(x − x̃))c

∂xi
dα

ExpectedGradient

E
x̃∼D

α∼U(0,1)

[
(xi − x̃i)

∂f(x̃ + α(x − x̃))c

∂xi

]

Output sensitivity Decomposition of f(x)c Decomposition of f(x)c − f(x̃)c

Decomposition of f(x)c − Ex̃ [f(x̃)c]

Figure 2: A summary of gradient-based feature attribution methods, including their math-
ematical representation. They are divided into blocks based on their underlying objectives.
For example, in the case of feature-wise relevances Rc

i obtained from Gradient × Input, the
goal is to achieve a sum that equals f(x)c, i.e., ∑p

i=1 Rc
i = f(x)c.

the gradient anymore. In the following, the most common gradient-based feature attribution
methods are briefly explained, including their underlying objectives. For a more mathematical
overview, see Figure 2.
One of the first and most intuitive methods for interpreting neural networks is the Gradi-
ent method introduced by Simonyan, Vedaldi, and Zisserman (2014), also known as vanilla
gradients or saliency maps. This method computes the gradients of the selected output with
respect to the input variables. Therefore, the resulting relevance values indicate prediction-
sensitive variables that can be locally perturbed the least to change the outcome the most.
Assuming that the model f behaves linearly overall, increasing xi by one raises the output
by the calculated gradient. In general, neural networks are highly nonlinear, which forces
the gradients to have large fluctuations or abrupt changes. This phenomenon can introduce
noise and potential misinterpretations in the Gradient method. A simple extension of this
basic Gradient method to tackle this issue is the smoothed gradients (SmoothGrad) approach
introduced by Smilkov, Thorat, Kim, Viégas, and Wattenberg (2017). They proposed com-
puting the gradients of randomly Gaussian perturbed copies of xi and determining the average
gradient from that, instead of calculating only the gradient in xi. As a result, locally very
noisy gradients are smoothed out and the method provides the average behavior in a larger
neighborhood of xi. The estimation accuracy and size of the neighborhood can be adjusted
with the hyperparameters n for the number of perturbations and σ2 for the variance of the
Gaussian noise. With the value of n, the estimation accuracy for the average gradient can
be increased, but this goes hand in hand with a higher computational effort. The second
parameter σ2 is mostly specified indirectly via a noise level λ ≥ 0 determining the propor-
tion of the total range of the input domain that is covered by the standard deviation σ,
i.e., λ = σ

xmax−xmin
. Especially for images, this argument can be used to control the visual

smoothness of the explanation.
A simple modification can change both previously discussed methods to the methods Gradient
× Input and SmoothGrad × Input. The gradients are calculated as for the respective methods
and then multiplied by the corresponding feature values. The Gradient × Input method was
introduced by Shrikumar, Greenside, Shcherbina, and Kundaje (2017b) and relies on a well-

6 innsight: Interpreting Deep Neural Networks in R

grounded mathematical background despite its simple idea: The basic concept is decomposing
the output prediction ŷc according to its relevance to each input variable xi, i.e., into variable-
wise additive effects

ŷc = f(x)c =
p∑

i=1
Rc

i . (1)

Mathematically, this method is based on the first-order Taylor decomposition. Assuming
that a function g : Rp → R is continuously differentiable in x ∈ Rp, a remainder term
ε(g, z, x) : Rp → R with limz→x ε(g, z, x) = 0 exists such that

g(z) = g(x) + ∇xg(x) · (z − x)⊤ + ε(g, z, x)

= g(x) +
p∑

i=1

∂ g(x)
∂ xi

(zi − xi) + ε(g, z, x), z ∈ Rp.

The first-order Taylor formula thus describes a linear approximation of the function g at the
point x since only the first derivatives are considered. Consequently, a highly nonlinear and
continuous function g is well approximated only in a small neighborhood around x. For larger
distances from x, sufficient small values of the residual term are not guaranteed anymore. The
Gradient × Input method considers the data point x and sets z = 0. In addition, the residual
term ε(fc, 0, x) and the summand f(0)c are ignored. Analogously, this multiplication can be
applied to all gradients in the summation of the SmoothGrad method in order to compensate
for local fluctuations.
Even though the multiplication of gradients by the inputs provides an approximate decom-
position of f(x)c −f(0)c, this approach only captures the feature-wise effects of x concerning
a baseline of 0. However, this value does not necessarily reflect a prediction-neutral reference
value and can be challenging to interpret or even lie outside the data distribution. Sun-
dararajan, Taly, and Yan (2017) proposed a method called IntegratedGradient as a way to
find a decomposition of f(x)c −f(x̃)c into feature-wise effects for an arbitrary reference value
x̃, using integration over the Gradient × Input values along an integration path. In prac-
tice, the integral is approximated by the sum of gradients multiplied by the inputs along an
interpolated path from x to x̃. Nevertheless, choosing the reference value x̃ remains a chal-
lenging task and ideally requires domain-specific knowledge. The ExpectedGradient method
(Lundberg and Lee 2017; Erion, Janizek, Sturmfels, Lundberg, and Lee 2021) addresses this
issue by estimating the mean value of the IntegratedGradient method through Monte Carlo
integration, considering the whole distribution of reference values instead of a single baseline.
In this sense, the method finds a feature-wise decomposition of f(x)c − Ex̃[f(x̃)c] and, thus,
calculates approximately Shapley values.

2.2. Layer-wise relevance propagation (LRP)

The layer-wise relevance propagation (LRP) method was introduced by Bach, Binder, Mon-
tavon, Klauschen, Müller, and Samek (2015) and has a similar goal as the Gradient × Input
approach explained in the previous section: decomposing the output into variable-wise rel-
evances conforming to Equation 1. The distinguishing aspect is that the prediction ŷc is
redistributed layer by layer from the output node back to the inputs according to the layer’s
weights and intermediate values. The entire procedure is accomplished by rule-based rele-
vance messages defining how to redistribute the upper-layer relevance to the lower layer. A

Journal of Statistical Software 7

Rl
1

Rl
i

Rl+1
1

Rl+1
j

... ...
...

r1←1

r1←
jr i←

1

ri←j

Hidden layer

Backward
Input

R1
1

R1
2

R1
3

R1
d

...

Output

ŷc

· · ·

· · ·

· · ·

· · ·
· · ·

· · ·· ·
·

· · ·

· · ·

· · ·

(a) Backward pass of the LRP method.

x1
Rl

1 = x1w11
z1

Rl+1
1︸ ︷︷ ︸

r
(l,l+1)
1←1

+ x1w12
z2

Rl+1
2︸ ︷︷ ︸

r
(l,l+1)
1←2

x2
Rl

2 = x2w21
z1

Rl+1
1︸ ︷︷ ︸

r
(l,l+1)
2←1

+ x2w22
z2

Rl+1
2︸ ︷︷ ︸

r
(l,l+1)
2←2

x3
Rl

3 = x3w31
z1

Rl+1
1︸ ︷︷ ︸

r
(l,l+1)
3←1

+ x3w32
z2

Rl+1
2︸ ︷︷ ︸

r
(l,l+1)
3←2

z1

z2

y1

y2

Rl+1
1

Rl+1
2

zj = ∑4
i=1 wijxi + bj

w
12

w
22

w32

w
11

w21

w
31

(b) Calculation of the relevance of layer l based on
the relevances of the upper layer l + 1.

Figure 3: (a) illustrates the layer-by-layer backpropagation of relevances Rl
i from the predic-

tion score to the input variables through the use of relevance messages ri←j . For a hidden
layer, (b) demonstrates how the relevance of the lower layer l results from summing all in-
coming relevance messages.

high-level overview of this method applied to a neural network with L layers can be seen in
Figure 3a. The method mainly consists of the following iterative steps: As the starting point,
the relevance for the considered output node RL

1 is set to the respective prediction score ŷc.
Subsequently, the relevance of the lower layer’s node RL−1

i is calculated using the sum of all
incoming relevance messages. A relevance message describes the proportion of the upper-layer
relevance RL

1 that is sent to a node i in the lower layer. This process is repeated layer by layer
backwards, as shown in Figure 3a, until the input layer is reached and relevances are obtained
for each input feature. More precisely, for a hidden layer l, the relevance message r

(l,l+1)
i←j from

node j in the upper layer l + 1 to node i in the preceding layer defines the proportion of the
relevance from Rl+1

j attributed to the node i in the lower layer. Since the relevance messages
are based solely on the contribution from a single upper-layer node, the overall relevance of
the node i is obtained by summing up all incoming relevance messages (see Figure 3b), i.e.,

Rl
i =

∑
j

r
(l,l+1)
i←j .

Since the publication of the LRP method, various variations of relevance messages flowing
from the upper layer to the lower-layer node have emerged. However, the fundamental rule
on which all other variations of relevance messages are more or less based is the simple rule
(also known as LRP-0). The relevances are redistributed to the lower layers according to
the ratio between local and global pre-activation. Despite being a rule-based approach, if the
neural network only includes ReLU activations, this rule makes the method LRP equivalent
to Gradient × Input presented in Section 2.1 (Ancona et al. 2018). Let x be the input, w
the weight matrix and b the bias vector of layer l, and Rl+1

j the upper-layer relevance; then
xi wij is the local and zj = bj +∑

k xk wkj the global pre-activation defining the simple rule
as (also used in Figure 3b)

r
(l, l+1)
i←j = xi wij

zj
Rl+1

j .

8 innsight: Interpreting Deep Neural Networks in R

Many other rules for relevance messages are built upon this principle. The well-known vari-
ations ε-rule and α-β-rule of the simple rule and their advantages and disadvantages are
explained in the Appendix A.1. Additionally, a brief summary of other rules discussed in the
literature is provided there.

2.3. Deep learning important features (DeepLift)

One method that, to some extent, echoes the idea of LRP is the so-called deep learning
important features (DeepLift) method introduced by Shrikumar, Greenside, and Kundaje
(2017a). It behaves similarly to LRP in a layer-by-layer backpropagation fashion from a
selected output node back to the input variables, considering the simple rule. However, it
incorporates a reference value x̃ to compare the relevances with each other, analogously to
the IntegratedGradient method discussed in Section 2.1. Hence, the relevances of DeepLift
represent the relative effect of the outputs of the instance to be explained f(x)c and the
output of the reference value f(x̃)c. By taking the difference, the bias term is eliminated in
the relevance messages, preventing the relevance absorption and leading to an exact variable-
wise decomposition of the difference-from-reference output ∆ŷc = f(x)c − f(x̃)c, i.e.,

∆ŷc = f(x)c − f(x̃)c =
p∑

i=1
Rc

i .

Similar to the relevance messages for LRP, DeepLift defines so-called multipliers for each
layer or part of a layer. Based on these multipliers, the contribution of an arbitrary input (or
intermediate) variable to the difference-from-reference output can be obtained by multiplying
it by the corresponding difference-from-reference value. For an arbitrary layer with the layer’s
input x, reference input x̃, and multiplier m∆x∆ŷc , this means:∑

i

m∆xi∆ŷc (xi − x̃i) = m∆x∆ŷc · (∆x)⊤ = ∆ŷc. (2)

The multipliers fulfill a chain rule allowing the computation of the multiplier for the preceding
layer given the already calculated one m∆t,∆ŷc , i.e.,

m∆xi∆ŷc =
∑

j

m∆xi∆tj
m∆tj∆ŷc . (3)

In other words, the chain rule justifies defining the multipliers for each layer or part of a layer
separately before combining them with the upper-layer multipliers. For linear components,
such as the matrix multiplication in dense or convolutional layers, the weights are used as
the multipliers, i.e., m∆xi∆zj

= wij . For nonlinear components, like, e.g., all point-wise
activations such as ReLU, tanh, or sigmoid, Shrikumar et al. (2017a) propose the Rescale and
RevealCancel rule. While the Rescale rule uses the ratio of the layer’s difference-from-reference
output and difference-from-reference pre-activation as the multiplier, the RevealCancel rule is
designed to propagate meaningful relevances even for saturated activations and discontinuous
gradients through the layers’ activation part. For a more detailed explanation, we refer
to the Appendix A.2. These rules, along with the chain rule (Equations 2 and 3), enable
the successive computation of the input variables’ contributions Rc

i to the difference-from-
reference output ∆ŷc in a single backward pass.

Journal of Statistical Software 9

The reference value is the only crucial hyperparameter for the DeepLift method, apart from
the rule for non-linearities. This choice depends significantly on the application and usually
requires proficient domain-specific knowledge. Nevertheless, the authors suggest asking one-
self the question of what one wants to measure an effect against. For example, taking the
background color or blurred versions of the original picture as the reference values for images
are reasonable choices. In many cases, zeros as a baseline are also used. Ancona et al. (2018)
showed that using the Rescale rule with activations crossing the origin (i.e., σ(0) = 0) and
a zero baseline as reference value x̃ coincides with the Gradient × Input method discussed
in Section 2.1 and with LRP with the simple rule. Similar to how the ExpectedGradient
method generalizes IntegratedGradient considering the distribution of baseline values instead
of a single reference value, the DeepSHAP (Lundberg and Lee 2017) method extends the
DeepLift technique. It calculates the average DeepLift value across various baseline values,
thereby achieving a decomposition of f(x)−Ex̃[f(x̃)] into feature-wise effects and, thus, gives
approximately Shapley values.

2.4. Connection weights
One of the earliest methods specifically designed for neural networks is the connection weights
(CW) method invented by Olden, Joy, and Death (2004), resulting in a global relevance score
for each input variable. The basic idea of this approach is to multiply all path weights for
each possible connection between an input variable xi and the output node or class ŷc and
then calculate the sum of all of them. However, this method ignores all bias vectors and all
activation functions during calculation. Analogously to the previous methods, CW can also
be defined layer by layer, deriving the relevance for layer l from the upper layer as follows:

Rl
i =

∑
j

wijRl+1
j .

Since only the model weights are used, this method is independent of input data and, thus,
a global interpretation method. Inspired by the method Gradient × Input, it can also be
extended into a local method by taking the point-wise product of the global CW method and
the input data.

2.5. Choice of the method
Overall, the choice of methods for a user remains an open research question, but there are
several recommendations that can be derived from the complexity or stated goals of the meth-
ods. Firstly, consider the computational efficiency of the method. Standard gradient methods
such as Gradient and Gradient × Input, as well as LRP, are very fast but can be very noisy
as they only examine a very local behavior. On the other hand, methods like SmoothGrad,
IntegratedGradient, and ExpectedGradient often require a high number of forward passes to
deliver accurate results, but also consider the local neighborhood or baseline values. Fur-
thermore, it has been demonstrated that many methods (such as Gradient × Input, LRP,
IntegratedGradient, DeepLift) are not invariant to constant shifts of the inputs (Kindermans
et al. 2019; Haug, Zürn, El-Jiz, and Kasneci 2022; Nielsen, Dera, Rasool, Ramachandran, and
Bouaynaya 2022). This is because the Taylor approximation is only accurate around zero (or
the reference value), and the choice of the reference value has a crucial impact. One solution
to this is provided by Shapley-based methods like ExpectedGradient and DeepSHAP. How-
ever, these methods require a highly informative reference dataset in addition to the instance

10 innsight: Interpreting Deep Neural Networks in R

to be explained, and they are noticeably slower. These considerations highlight the trade-offs
involved in selecting a feature attribution method for a given task, and it is crucial for users to
weigh the speed, accuracy, and invariance characteristics based on the specific requirements
of their application.

3. Functionality and usage
The R package innsight combines all the methods discussed in the previous section in a
user-friendly structure and a unified step-based workflow from the trained model to the vi-
sualization of the relevances of a feature attribution method. For efficient high-dimensional
array calculations, the package utilizes the R package torch (Falbel and Luraschi 2024), which
builds on LibTorch (the C++ variant of PyTorch (Paszke et al. 2019)), and consequently runs
without a Python dependency (see Figure 4). The following three steps yield the requested
results, regardless of the class of the passed model or the chosen feature attribution method:

• Step 1: Convert the model.

• Step 2: Apply selected method.

• Step 3: Get or visualize results.

Internally, a class structure is being built using R6 classes based on the equally named package
R6 (Chang 2021). This type of object-oriented programming class is used because torch also
relies on it, and it simplifies inheritance and argument passing compared to conventional S3
and S4 classes. Apart from the utilized packages for the internal workflows, calculations, and
visualizations discussed in the following sections, the packages checkmate (Lang 2017) and cli
(Csárdi 2024) are generally used for all argument verifications, internal checks, and terminal
outputs of messages, warnings, and errors.
For illustration and better comprehension, the three steps will be exemplified from a user’s
perspective using the bike sharing dataset (Fanaee-T 2013). The internal mechanisms and
more detailed descriptions are provided in the subsequent sections. This regression dataset
contains information about the number of bicycles rented on a given day, along with various
features such as weather conditions, holidays, and temperature. When using the innsight
package, object-oriented R6 objects are internally created at each step, but their initialization
is simplified through function calls providing a conventional R usage without prior knowledge
about R6 classes. This facilitates easy application for R users of the package.

innsight

torch
C++

LibTorch

Figure 4: innsight utilizes package torch, which builds directly on the C++ library LibTorch
without a Python dependency.

Journal of Statistical Software 11

In the following code snippet, the dataset is loaded and restricted to a few variables. The
outcome in this regression dataset is "cnt", indicating the total number of bicycles rented on
the given day. The model is trained on this dataset using the neuralnet package (Günther
and Fritsch 2010) containing one hidden layer with 64 neurons. In addition, the outcome
variable "cnt" is scaled to bikes per 10 000.

R> library("neuralnet")
R> set.seed(42)
R> bike <- read.csv("additional_files/bike_sharing/day.csv")
R> bike <- bike[, c("cnt", "holiday", "workingday", "temp", "hum",
+ "windspeed")]
R> bike$cnt <- bike$cnt / 10000
R> bike <- as.matrix(bike)
R> model <- neuralnet(cnt ~ ., data = bike, hidden = c(64),
+ linear.output = TRUE)

To enable a deep-learning-library-agnostic implementation, the given model model is analyzed
in the first step, and internally, a replica based on the torch package is reconstructed. How-
ever, for the user, this process is abstracted through the convert() function, allowing the
adjustment of the used variable and outcome names, e.g., with the argument output_names:

R> library("innsight")
R> conv <- convert(model, output_names = c("Number of rented bikes/10,000"))

In the second step, the user’s method of choice can be applied to the provided data (argument
data). Internally, an R6 class for the respective method is initialized but hidden from the
user again. In this case, the DeepSHAP method (run_deepshap()) is run on the first 20
instances with the entire dataset as reference values. For computational reasons, the internal
calculation uses 100 samples from this dataset, as this is the default value of limit_ref.
In addition, the data must always be passed as input data only, which is why the outcome
variable "cnt" is removed in the following code:

R> res_deepshap <- run_deepshap(conv, bike[1:20, -1], data_ref = bike[, -1])

In the final step, results can be extracted, for instance, using the get_result() function,
or visualized using plot() or plot_global()/boxplot(). The boxplot() method is an
alias for plot_global() in case of tabular and signal data, as boxplots are created for these
data types. It is noted that the variable "hum" for humidity is scaled between 0 and 1, and
"tmp" and "windspeed" are divided by the respective maximal value, i.e., 100 and 67. The
visualization relies on the ggplot2 package and can be customized accordingly (the plots are
shown in Figure 5a):

R> library("ggplot2")
R> head(get_result(res_deepshap))
R> plot(res_deepshap)
R> boxplot(res_deepshap, ref_data_idx = 1) +
+ theme(text = element_text(face = "bold"))

12 innsight: Interpreting Deep Neural Networks in R

, , Number of rented bikes/10,000

holiday workingday temp hum windspeed
[1,] 0.004659358 0.050143935 -0.1218946 -0.08540524 0.0109126559
[2,] 0.007893519 0.064216673 -0.1305959 -0.01469872 -0.0320372544
[3,] -0.009826845 0.007002956 -0.2871930 0.09675989 -0.0359177366
[4,] -0.011643781 0.028260766 -0.2517902 0.04398110 0.0213681515
[5,] -0.009875727 0.015752951 -0.2339799 0.09297864 -0.0008396581
[6,] 0.002854239 -0.004088928 -0.2964459 0.05857125 0.0088869939

For example, in the box plots (see Figure 5a bottom), bold font is used for the labels, which
is achieved through the theme(text = element_text(face = "bold")) feature of ggplot2.
By default, the orientation of relevances is concealed by absolute values, as global attention
is usually focused on the strength of the effects. Consequently, it can be observed that the
model considers temperature as the most crucial feature for its predictions. Furthermore,
the argument ref_data_idx is employed to highlight the relevances of the first instance of
the dataset as a reference value with red lines. This instance and its local effects are more
precisely visualized in the upper illustration of Figure 5a. It also shows that temperature is
an influential factor for the model since it predicts a relatively low count of 2 994 bicycles
(compared to the average of 4 504 bicycles). This aligns with the data, as on that particu-
lar day, the temperature is 8.18°C (normalized value 0.344167), while the dataset’s average
temperature is 15.28°C (normalized value 0.49538). Additionally, the plot includes a small
box displaying the model’s prediction of the instance (0.2994), the sum of calculated rele-
vances (−0.1416), and the decomposition target of the method (−0.1416). For example, the
DeepSHAP method is based on the decomposition of the difference between the prediction
and the average prediction in the baseline dataset (i.e., f(x)c − Ex̃[f(x̃)c]), which is for the
first instance −0.1416, i.e., 1 416 bikes below the average.

3.1. Step 1 – Convert the model

The key step that turns the innsight package into a deep-learning-library-agnostic approach
and unlocks the provided torch toolbox to all methods is this first step, which essentially
analyzes a passed model and creates a torch-based replication. For the user, however, the
internal processes remain hidden, and the entire conversion step is accomplished by creating
a new instance of the class ‘Converter’:

Converter$new(model,
input_dim = NULL, input_names = NULL, output_names = NULL,
dtype = "float", save_model_as_list = FALSE)

As previously mentioned, this object is implemented using the object-oriented R6 class from
the R6 package. To overcome prior knowledge of R6 classes, the shortcut function convert()
is implemented, which simply forwards all arguments to the ‘Converter’ object’s initialization
function from above.
The only necessary argument is the passed model, which can be either a ‘nn_sequential’
object from torch, a ‘keras_model’ or ‘keras_model_sequential’ object from keras (Chollet
et al. 2015), a ‘neuralnet’ object from neuralnet (Günther and Fritsch 2010), or a named

Journal of Statistical Software 13

Pred.: 0.2994

Sum: −0.1416

Goal: −0.1416

Number of rented bikes/10,000

data_1

holiday windspeedtempworkingday hum

 −0.100

 −0.050

 0

 0.050

Feature

C
on

tr
ib

ut
io

n

Number of rented bikes/10,000

holiday windspeedtempworkingday hum

 0

 0.100

 0.200

 0.300

 0.400

Feature

C
on

tr
ib

ut
io

n

(a) Visual results of plot() and boxplot() from
the bike sharing example.

Converter conversion
method

nn_sequential

keras_model

neuralnet

model

named list

ConvertedModel
model as

named list
including checks

Fields

$model

$model_as_list

if
save_model_as_list

=
TRUE

if
save_model_as_list

=
TRUE

(b) Internal conversion process of a
‘Converter’ object.

Figure 5: (a) displays the visualizations of the plot() and boxplot() functions applied to
the DeepSHAP method on the bike sharing dataset. In (b), the internal conversion process of
creating a new ‘Converter’ object is shown, which is identical to calling the shortcut function
convert().

list in a specific style. The other arguments input_dim, input_names and output_names are
optional – except input_dim in combination with torch models – and are used for internal
validation of the copied model or to assign labels to the input and output nodes used for the vi-
sualizations in Step 3 (see Section 3.3). This is already demonstrated in the previous example
with the bike sharing dataset, where the output name "Numbers of rented bikes/10,000"
is passed. In addition, the arguments dtype and save_model_as_list specify the calcula-
tions’ numerical precision and save the entire model as a named list in the instance’s field
model_as_list, which is created as an intermediate step during the conversion process and
are explained in more detail in the next paragraph and Figure 5b.
To be as flexible as possible and to interpret neural networks from almost any R package, a
conversion method is implemented for each of the model classes mentioned above of the pack-
ages torch, keras and neuralnet, summarizing all decisive components and layers of the passed
model in an ordered and unified way into a list. Then, a torch-based model ‘ConvertedModel’
(i.e., a subclass of ‘nn_module’) is created internally from this list. In addition, the rule-based
interpretation methods described in Section 2 are pre-implemented for each valid layer type,
which can be called layer by layer in the following Step 3. Since the creation of the converted
model is consequently independent of the class of the given model, the conversion call can be
bypassed by directly passing the desired model as a list. Hence, custom wrappers for other
packages’ models can be written, allowing an interpretation of models not being created by
the packages torch, keras, or neuralnet. An overview of the individual steps that are per-
formed internally when initializing a new instance of the ‘Converter’ class is summarized in
Figure 5b. In addition to the fields shown in Figure 5b, there are also fields containing the
labels ($input_names, $output_names) and shapes ($input_dim, $output_dim) of the input

14 innsight: Interpreting Deep Neural Networks in R

and output layers in a unified list structure. What kind of list structure is required for a model
passed as a list, which layers are generally accepted and even more is explained in detail in
Appendix B or in the vignette “In-depth explanation” (see vignette("detailed_overview",
package = "innsight") and is only referred to at this point.

3.2. Step 2 – Apply selected method

As previously mentioned, the innsight package provides the most popular feature attribution
techniques in a unified framework. For package users, simple functions are provided to apply
the respective method to the data, as demonstrated at the beginning of this section with the
bike sharing dataset using the run_deepshap() function. However, before delving into the
individual user-facing functions, their internal class-related origin is explained, since the fun-
damental structure of the methods remains consistent. Internally, the unification is achieved
by the R6 super class ‘InterpretingMethod’, from which all methods intended for users in-
herit and only add method-specific arguments to those of the super class. The rudimentary
call of initializing a new method object looks like this:

InterpretingMethod$new(converter, data,
channels_first = TRUE, output_idx = NULL, output_label = NULL,
ignore_last_act = TRUE, verbose = interactive(), dtype = "float")

The key arguments for every method are the ‘Converter’ object from the first step (see
Section 3.1), containing the torch-converted model, and the data to be interpreted. The data
can be passed in any format as long as the R base method as.array() can convert it into an
array, and it matches the expected input dimension of the model. In addition, it is common
for image or signal data to place either the channel axis directly after the batch axis or at the
last position. However, this placement can generally not be extracted unambiguously from the
data, which is why the channels_first argument specifies where the channel axis is located,
allowing the use of both formats. The remaining arguments output_idx/output_label,
ignore_last_act, verbose and dtype set which output nodes or labels are to be explained,
whether the last activation function is ignored, whether a progress bar is displayed, or change
the numerical precision for the calculations.
The feature attribution techniques designed for the package user’s regular use cases and ap-
plications are inheritors of the super class ‘InterpretingMethod’ and extend it by method-
specific arguments. Since each method is implemented as an R6 class, its application involves
initializing a new class object through the $new() call. Therefore, helper functions are im-
plemented, such as run_deepshap(...) in the example from the section’s beginning, serving
as a more user-friendly alternative to DeepSHAP$new(...). For clarity, the subsequent pre-
sentation of the methods from Section 2 focuses solely on these shortcut functions, although
it is noted which R6 class they initialize:

• The methods Gradient and Gradient × Input are implemented as the R6 class
‘Gradient’, which has times_input as the only additional argument apart from the
inherited ones. This argument switches between the usual gradients (times_input
= FALSE) and the gradients multiplied by the corresponding inputs (times_input =
TRUE):

run_grad(converter, data, times_input = FALSE, ...)

Journal of Statistical Software 15

• Similarly, the methods SmoothGrad and SmoothGrad × Input are realized in the R6
class ‘SmoothGrad’ containing the arguments n for the number of perturbations and
noise_level for the noise scale in addition to the times_input argument:

run_smoothgrad(converter, data, times_input = FALSE, n = 50,
noise_level = 0.1, ...)

• The method IntegratedGradient is implemented in the R6 class ‘IntegratedGradient’.
The method’s baseline value can be specified using the argument x_ref defaulting to
a zero baseline, and the number of discretization points for the integral approximation
can be set with n:

run_intgrad(converter, data, x_ref = NULL, n = 50, ...)

• Similarly, the ExpectedGradient method can be applied by initializing an object of the
class ‘ExpectedGradient’. The reference dataset can be passed with the data_ref
argument defaulting to a zero baseline, and the number of samples with n:

run_expgrad(convert, data, data_ref = NULL, n = 50, ...)

• The LRP method, including the simple rule ("simple"), ε-rule ("epsilon"), α-β-rule
("alpha_beta"), and a composition of these rules, is implemented in the R6 class ‘LRP’.
The rule and its corresponding parameter (if available) are set with the arguments
rule_name and rule_param. The default value and meaning of rule_param depends
on the selected rule, more precisely, for "epsilon" the rule’s ε value is set to 0.01
and for "alpha_beta" a value of α = 0.5 (i.e., β = 1 − α) is used. For both argu-
ments, named lists can also be passed to assign a rule or parameter to each layer type
separately. Since many zeros are produced in a maximum pooling layer during the
backward pass due to the selection of the maximum value in the pooling kernel, the
argument winner_takes_all can be used to treat a maximum as an average pooling
layer in the backward pass instead.

run_lrp(converter, data, rule_name = "simple", rule_param = NULL,
winner_takes_all = TRUE, ...)

• Analogously, the method DeepLift is realized in the R6 class ‘DeepLift’ includ-
ing the argument rule_name for selecting the Rescale ("rescale") or RevealCancel
("reveal_cancel") rule for non-linearities. The reference value is set with x_ref de-
faulting to a baseline of zeros. DeepLift can also run into problems in maximum pooling
layers since the maximum values in the pooling kernel from the normal and reference
input generally do not coincide. Hence, with the winner_takes_all argument, this
layer type can be treated as an average pooling layer in a backward pass.

run_deeplift(converter, data, rule_name = "rescale", x_ref = NULL,
winner_takes_all = TRUE, ...)

• In the same way, the DeepSHAP method is implemented as an R6 class named
‘DeepSHAP’. Instead of a single reference value, the entire reference dataset is passed
with the data_ref argument. For computational reasons, by default, a maximum of 100
baseline values is considered for calculation, which can be adjusted using the limit_ref
argument:

16 innsight: Interpreting Deep Neural Networks in R

run_deepshap(converter, data, data_ref = NULL, limit_ref = 100, ...)

• The last method provided by innsight is the connection weights (CW) method realized
in the R6 class ‘ConnectionWeights’. The argument times_input specifies whether the
global result of the CW method is calculated or whether it is additionally multiplied by
the inputs to obtain local instance-wise explanations. A notable aspect, in this case, is
that the data argument is not needed for the global variant, but it is required for the
local one.

run_cw(converter, times_input = FALSE, ...) # global
run_cw(converter, data, times_input = TRUE, ...) # local

Although innsight primarily focuses on feature attribution methods specifically designed for
neural networks, it also includes two well-known model-agnostic approaches, local interpretable
model-agnostic explanation (LIME) (Ribeiro et al. 2016) and Shapley values (Lundberg and
Lee 2017). LIME locally fits an intrinsic surrogate model (e.g., a generalized linear model)
on the original model prediction to explain individual instances, while the game-theoretical
Shapley values attribute the contributions of each feature by considering all possible feature
combinations and their impact on the model output. Internally, they utilize the suggested
packages lime (Hvitfeldt, Pedersen, and Benesty 2022) and fastshap (Greenwell 2024), and
are incorporated into the class structure based on the R6 class ‘InterpretingMethod’. They
are realized in the R6 classes ‘LIME’ and ‘SHAP’ and can be applied as follows:

run_lime(converter, data, data_ref, pred_fun = NULL, ...)
run_shap(converter, data, data_ref, pred_fun = NULL, ...)

Since these methods are model-agnostic, any other predictive model can be passed instead
of a ‘Converter’ object in the argument converter. However, for this, the prediction func-
tion pred_fun must be specified so that innsight knows how to make predictions. This
function is already pre-implemented for ‘Converter’ objects and for models from the pack-
ages neuralnet, keras and torch. Additionally, both methods require a reference dataset,
which is passed with data_ref. Inheriting from ‘InterpretingMethod’ are only the argu-
ments channels_first, output_idx, and output_label. Similarly to the ‘Converter’ class,
input_dim, input_names, and output_names can be passed. All other arguments are for-
warded to the corresponding methods lime::explain() or fastshap::explain(), which are
called internally.

3.3. Step 3 – Get and visualize the results

After creating an object of a selected method, in the third step the results can be extracted
or, if required, presented in a descriptive and visual way. For this purpose, the innsight pack-
age provides three generic methods get_result(), plot() and plot_global() that either
return the results as an R object (such as array, torch_tensor or data.frame) or create
visualizations for individual instances or aggregated results over the whole passed dataset. All
three generic functions call the respective class methods in the ‘InterpretingMethod’ super
class, which are inherited by all the interpreting methods from the second step by design.
For instance, in the bike sharing example from the section’s beginning, the plot is generated
using plot(res_deepshap) instead of res_deepshap$plot().

Journal of Statistical Software 17

Generic function get_result()

The function get_result() can be used to obtain the results in various forms, whatever is
favored according to the user’s subsequent workflow or application. This method has only
the argument type (besides the method object), which determines the representation of the
returned results. By default (type = "array"), the result is returned as an R base array,
including the input and output names in the corresponding dimensions specified in the first
step in the ‘Converter’ object (see Section 3.1). The shape of the array is composed of the
input shape including the batch size and the number of computed output nodes, i.e., for
a tabular input with ten instances and four input variables, the shape is 10 × 4 × 3 if the
method was applied to three output nodes in Step 2. In the example with the bike sharing
dataset, an array of size 20×5×1 was returned using get_result(res_deepshap) which also
includes the class label "Number of rented bikes/10,000". This is because 20 instances
were explained, and the model has 5 features and one output node. In the same way, type
= "torch_tensor" returns a ‘torch_tensor’ object having the same shape as the array, but
without dimension labels. However, both variants can also return a list or list of lists with
the related results as an array or ‘torch_tensor’ for models with multiple input or output
layers. The third and last format of the results is an R base data.frame obtained with type =
"data.frame". Included are columns for the input instance ("data"), the input and output
layer of the model ("model_input" and "model_output"), the input variable ("feature") –
possibly also a second one for images ("feature_2") and the channel for signal and image data
("channel") – the output node or class ("output_node"), and the relevance ("value") for the
corresponding values. Moreover, the generated data.frame contains variables that show the
prediction of the instance or already aggregated relevances for the respective output node and
instance. The column decomp_goal indicates the decomposition goal of the method aimed by
the aggregated relevances explained in Section 2, e.g., f(x)c − Ex̃[f(x̃)c] for the DeepSHAP
method.

Generic function plot()

The generic function plot() visualizes individual instances of the result of the method applied
before based on the graphic package ggplot2 (Wickham 2016) or the package plotly (Sievert
2020) for interactive graphics if the corresponding argument as_plotly is set. The call for a
method’s object method is executed as follows:

plot(method, data_idx = 1, output_idx = NULL, output_label = NULL,
aggr_channels = "sum", as_plotly = FALSE, same_scale = FALSE,
show_preds = TRUE)

The key arguments are data_idx and output_idx/output_label, which specify the indices
for the dataset instances and the indices/labels for the desired output nodes or classes whose
result is to be visualized. By default, the first data instance and the first computed output
node are used. In the argument output_idx, no arbitrary indices can be passed, but only
those for which the results were calculated previously in the second step. The same applies
to output_label, which must additionally be a subset of the output names output_names in
the ‘Converter’ object. The further argument aggr_channels can be used to define how the
channels are aggregated for image and signal data. There are various options for choosing this
aggregation function, which may significantly influence the quality of the explanation (Arras,

18 innsight: Interpreting Deep Neural Networks in R

Osman, and Samek 2022). Nevertheless, for innsight, the default is to compute the sum over
the channels, which aligns with the additivity axiom for Shapley values to accurately reflect
the collective group effect (Strumbelj and Kononenko 2010). Since visualization depends on
the data type, it is internally distinguished between tabular/signal data and image data;
accordingly, a bar chart or a raster chart is created, as shown in Figure 6 on the left. The
relevances in the bars or the pixels are also scaled by color, facilitating a visual comparison;
red means positive, blue negative, and white the absence of relevance. Since, in general, the
scales vary significantly for the selected output class or data instance, the plots are scaled
separately for each value in output_idx/output_label and data_idx. When several input
layers are to be visualized, the remaining argument same_scale can be used to select whether
the individual input layers are also scaled separately in terms of color. This decision depends
on the use case, as illustrated in the melanoma example in Section 4.2. Additionally, in
each plot, a small box displaying information for the respective instance and output node is
presented. This includes the prediction, the sum of relevances, and, if available, the method’s
decomposition target of the sum of relevance. The appearance of the box can be toggled with
the show_preds argument. For the bike rental example, Figure 5a top shows the visualized
relevances of the first instance and the box with the additional predictive and decomposition
information. Furthermore, instead of returning objects from the ggplot2 or plotly packages,
instances of the S4 classes ‘innsight_ggplot2’ and ‘innsight_plotly’ are produced, which
are explained in the Appendix C for advanced visualizations.

Generic function plot_global()

Global behavioral patterns and insights into the model’s decision-making process can be
derived from the results of multiple instances by appropriately summarizing and aggregating
them. The generic function plot_global() visualizes these global interpretations over the
whole or parts of the given dataset based on the graphics package ggplot2 or the package plotly
for interactive charts analogous to the previously discussed function plot(). Box plots are
created for the features of tabular and signal data, and the median pixels’ relevance is shown
for image data due to the high dimensionality. For the former, the alias function boxplot()
can also be used analogously. The call for a method’s object method is the following:

plot_global(method, output_idx = NULL, output_label = NULL, data_idx = "all",
ref_data_idx = NULL, aggr_channels = "sum", preprocess_FUN = abs,
as_plotly = FALSE, same_scale = FALSE, ...)

and for tabular and signal data:

boxplot(method, ...)

In addition to the identical arguments output_idx/output_label, aggr_channels,
as_plotly, and same_scale for the plot() function, options for selecting the data points
to be aggregated (data_idx), for drawing a reference data point (ref_data_idx) and a pre-
process function of the results (preprocess_FUN) are added. By default, the absolute values of
the relevances are calculated, as in global contexts, the focus is usually more on the intensity of
effects rather than their orientation. However, this can be adjusted with the preprocess_FUN
argument, e.g., showing the orientation with identity. Analogous to plot(), the visualiza-
tion style depends on the type of input data; tabular and signal data are displayed as box

Journal of Statistical Software 19

plot() plot_global() (boxplot())
Tabular/signal Image

as
_p

lo
tl

y
=

FA
LS

E
as

_p
lo

tl
y

=
TR

UE

Tabular/signal Image

as
_p

lo
tl

y
=

FA
LS

E
as

_p
lo

tl
y

=
TR

UE
Figure 6: Overview of the visualization tools plot() and plot_global() provided by the
innsight package depending on the type of input and the argument as_plotly. The function
boxplot() is an alias for plot_global() in case of tabular or signal data.

plots, whereas only a raster plot with the pixel-wise median is rendered for image data due
to the high dimensionality. For example, a box plot is created in the bike sharing example
since it contains tabular data (see Figure 5a bottom). In this visualization, the red reference
lines are drawn for the first dataset instance using the argument ref_data_ix. However, if
the chart is plotly-based, there is a slider to select which quantile to display. Basic examples
and an overview of the plot_global() function are given in Figure 6 on the right. Despite
the creation of ggplot2 or plotly graphs, instances of the S4 class ‘innsight_ggplot2’ or
‘innsight_plotly’ are returned, which are explained in the Appendix C.

4. Illustrations
To exemplify the methods and step-by-step execution of the innsight package, a standard
dataset with only numerical tabular inputs on a simple model and a more complex dataset with
image and tabular data on an extensive non-sequential network are analyzed in the following.
The penguin dataset from the palmerpenguins package (Horst, Hill, and Gorman 2022) is
used as the simple dataset, taking only the numerical variables of bill length and depth,
flipper length, and body weight as inputs. The melanoma dataset (Rotemberg et al. 2020)
of the Kaggle competition1 is taken as the second dataset, which classifies the malignancy
or benignity of the skin cell based on images of skin lesions and moles, and patient-level
contextual information. Both datasets are classification tasks. Even though the bike sharing
dataset has already exemplified a regression problem, feature attribution methods typically
treat classification problems similarly to regression problems: The activation of the last layer
– usually sigmoid or softmax functions – is ignored, and the pre-activation score is explained
instead of the actual probability ŷc (Shrikumar et al. 2017a; Montavon, Binder, Lapuschkin,
Samek, and Müller 2019).

1See the following link for the official dataset description https://www.kaggle.com/competitions/
siim-isic-melanoma-classification/overview/description.

https://www.kaggle.com/competitions/siim-isic-melanoma-classification/overview/description
https://www.kaggle.com/competitions/siim-isic-melanoma-classification/overview/description

20 innsight: Interpreting Deep Neural Networks in R

4.1. Example 1: Penguin dataset

In the first example, the penguin dataset provided by the palmerpenguins package (Horst
et al. 2022) is used, and a neural network consisting of a dense layer is trained using the
neuralnet package (Günther and Fritsch 2010). Before the innsight package can be applied,
the dataset must be processed, and the neural network must be trained on the modified
dataset. As a first pre-processing step, only the variables with the species, bill length and
depth, flipper length, and body weight are selected, cleaned of missing values, and numerical
variables are normalized:

R> library("palmerpenguins")
R> set.seed(42)
R> data <- na.omit(penguins[, c(1, 3, 4, 5, 6)])
R> data[, 2:5] <- scale(data[, 2:5])

Next, the dataset is divided into training data and test data at a ratio of 75% to 25%:

R> train_idx <- sample.int(nrow(data), as.integer(nrow(data) * 0.75))
R> train_data <- data[train_idx,]
R> test_data <- data[-train_idx, -1]

In the second pre-processing step, a network with 128 units in a single hidden layer and the
logistic function as activation is fitted on the training data train_data:

R> library("neuralnet")
R> model <- neuralnet(species ~ ., data = train_data, hidden = 128,
+ act.fct = "logistic", err.fct = "ce", linear.output = FALSE)

Now, we follow the three steps that provide and visualize an explanation of the model model
on the test data test_data, which were described in detail in Section 3. As a reminder, the
first step uses the convert() – a shortcut function for initializing an object of the R6 class
‘Converter’ – to convert the given model to a torch-based model:

R> library("innsight")
R> conv <- convert(model)

Then, in the second step, the desired method is selected and applied to the test data
test_data via the corresponding function run_* which is identical to initializing the respec-
tive R6 class. In this example, the IntegratedGradient method is applied with the average
feature value as a baseline:

R> intgrad <- run_intgrad(conv, test_data,
+ x_ref = matrix(colMeans(test_data), 1))

In the last step, the results are visualized in two ways: Using the plot() function, the
relevances of one instance of the species Adelie (data index 1) and one of the species Gentoo
(data index 50) are displayed for both corresponding classes. Secondly, the results for the
two classes, Adelie and Gentoo, are aggregated over the entire test data, and box plots
are generated using the boxplot() function, showing the first penguin as a reference. As

Journal of Statistical Software 21

Pred.: 1.00

Sum: 35.34

Goal: 36.44

Pred.: 0.00

Sum: −69.71

Goal: −70.56

Pred.: 0.00

Sum: −54.47

Goal: −55.48

Pred.: 1.00

Sum: 90.29

Goal: 92.25

Adelie Gentoo

data_1
data_50

bil
l_l

en
gt

h_
m

m

bo
dy

_m
as

s_
g

bil
l_d

ep
th

_m
m

flip
pe

r_
len

gt
h_

m
m

bil
l_l

en
gt

h_
m

m

bo
dy

_m
as

s_
g

bil
l_d

ep
th

_m
m

flip
pe

r_
len

gt
h_

m
m

 −25.00

 0

 25.00

 −60.00

 −30.00

 0

 30.00

 60.00

Feature

R
el

ev
an

ce

(a) Visualization created with plot()

Adelie Gentoo

bil
l_l

en
gt

h_
m

m

bo
dy

_m
as

s_
g

bil
l_d

ep
th

_m
m

flip
pe

r_
len

gt
h_

m
m

bil
l_l

en
gt

h_
m

m

bo
dy

_m
as

s_
g

bil
l_d

ep
th

_m
m

flip
pe

r_
len

gt
h_

m
m

 0

 20.00

 40.00

 60.00

 80.00

Feature
R

el
ev

an
ce

(b) Visualization created with boxplot()

Figure 7: Generated visualizations of IntegratedGradient results with average feature value
as a baseline on the penguin dataset. Sub-figure (a) shows the individual results from data
points 1 and 50 from the test data test_data for the Adelie and Gentoo classes. In contrast,
the summarized results as box plots across the whole test data for the same two classes can
be found in (b), including the individual result of the first data point with the red line.

mentioned in Section 3, these two variants can be treated and modified like ordinary ggplot2
objects, e.g., adding themes or rotating the x axis labels. Both visualizations are executed by
the following code and can be viewed in Figure 7:

R> library("ggplot2")
R> plot(intgrad, data_idx = c(1, 50), output_label = c("Adelie", "Gentoo")) +
+ theme_bw() + theme(axis.text.x = element_text(angle = 45, vjust = 0.6))
R> boxplot(intgrad, output_label = c("Adelie", "Gentoo"), ref_data_idx = 1) +
+ theme_bw() + theme(axis.text.x = element_text(angle = 45, vjust = 0.6))

In Figure 7a, it can be seen that the bill length for the chosen penguin of the Adelie class
(index 1 in the dataset test_data) is highly relevant – based on the trained model – for this
particular class aligning to the prediction of 100% which is shown in the info box. At the same
time, the penguin’s flipper length argues against the Gentoo class due to its strong negative
relevance. For the Gentoo penguin, the bottom row in Figure 7a reveals that the bill depth
is decisively in favor of the Gentoo class and concurrently against the Adelie species. The
respective info boxes show that the model is generally very confident in its prediction and that
the method has achieved its decomposition goal very well. As mentioned at the beginning
of the section, the pre-activations are decomposed by default for classification problems and
not the probability scores. Besides these instance-wise explanations, the boxplot() function
provides aggregate insights across the entire test data test_data, summarized in Figure 7b.
The box plots show that, indeed, the bill length and depth are the most crucial variables for
the Adelie class and consequently strongly influence it. Simultaneously, however, the length

22 innsight: Interpreting Deep Neural Networks in R

Input (∗, 10)

Ta
bu

la
r

m
od

el
Dense-32 (ReLU)

Dense-16 (ReLU)

Dense-8 (linear) Im
ag

e
m

od
el

Input (∗, 224, 224, 3)

Conv2D-n (ReLU)

2x Conv2D-n (ReLU

Add

2x Conv2D-n (ReLU)

Add

AvgPool2D

Flatten

Dense-512 (ReLU)

Dense-256

fo
r

n
=

32
,6

4,
12

8
an

d
25

6

Concatenation

Dense-256 (ReLU)

Dense-1 (Sigmoid)

Figure 8: Model architecture for the melanoma dataset.

of the bill is not as decisive for the Gentoo class, but the bill depth is. It further emerges that
the flipper length is another crucial feature for the Gentoo class. The red lines for the first
penguin also show that the bill depth is not as relevant as it is on a global scale.

4.2. Example 2: Melanoma dataset

The second example examines the melanoma dataset (Rotemberg et al. 2020) from the Kaggle
challenge2 in 2020, issued by the society of imaging informatics in medicine (SIIM) and based
on the international skin imaging collaboration (ISIC) archive, the most extensive publicly
available collection of quality-controlled dermoscopic images of skin lesions. This dataset
consists of 33 126 labeled images with associated patient-level contextual information, such
as the age, gender, and image location of the skin lesion or mole.
Due to the complexity and high dimensionality of the data, training a neural network is not
straightforward and overall not the main focus of this paper thus, reference is made to the
GitHub repository for reproduction (https://github.com/bips-hb/JSS_innsight/), and
only the most notable points are summarized in the following: The tabular input part’s nu-
merical and one-hot encoded categorical variables are fed into a sequential model of dense
layers. On the other hand, an architecture based on the established residual layers (He, Zhang,
Ren, and Sun 2016) considering skip connections between convolutional layers is used for the
image data. Afterward, the two outputs of the respective input parts are merged by concate-
nation and finally flow in a sequential model with only dense layers to obtain a prediction

2See the following link for the official dataset description https://www.kaggle.com/competitions/
siim-isic-melanoma-classification/overview/description.

https://github.com/bips-hb/JSS_innsight/
https://www.kaggle.com/competitions/siim-isic-melanoma-classification/overview/description
https://www.kaggle.com/competitions/siim-isic-melanoma-classification/overview/description

Journal of Statistical Software 23

probability for the skin lesion status. The coarse structure is summarized in Figure 8, where
additional dropout layers are used between dense layers. Furthermore, the numerical variable
age and the one-hot encoded variables gender and location yield ten features as inputs for the
tabular model, and the images are resized to 224×224×3 for the image model. This model
architecture is trained on the melanoma dataset with a validation split of 20% and a batch
size of 256 instances using the Keras library (Chollet et al. 2015) with stochastic gradient
descent as the optimizer and class-weighted binary cross-entropy as the loss function. The
best model is selected based on the highest value of the area under the ROC curve (AUC) on
the validation data. This metric is chosen because the dataset is highly imbalanced with only
584 of the 33 126 images containing a malignant skin lesion. Since the model is trained from
scratch and the image model has significantly more parameters than the tabular one, training
starts with 300 warm-up epochs on the image model using the image data only. Then, the
image model is joined with the tabular and the dense output model. Afterward, training
continues on the image and tabular data, saving the model with the highest value of the
AUC metric on the validation data. In addition, the initial learning rate of 0.01 is reduced
by a factor of 0.1 after 20 epochs without a validation AUC improvement, and training is
terminated after 40 unimproved epochs. With this approach, an AUC value of 87.71% and
an accuracy of 84.19% on the validation data are achieved, and the model to be interpreted
is selected.
Based on this model, the obtained predictions can now be explained using the 3-step approach
of innsight: In the first step, the trained model is loaded and converted to a torch-based
model using the convert() function for initializing a ‘Converter’ object. However, since
keras models do not include names of the input variables and output nodes, these can be
passed along when initializing the converter to preserve meaningful labels of the input and
output variables in the visualizations. Thus, the first step is executed by the following R code:

R> library("keras")
R> library("innsight")
R> model <- load_model_tf("additional_files/melanoma_model.h5")
R> input_names <- list(
+ list(paste0("C", 1:3), paste0("H", 1:224), paste0("W", 1:224)),
+ list(c("Sex: Male", "Sex: Female", "Age",
+ "Loc: Head/neck", "Loc: Torso", "Loc: Upper extrm.",
+ "Loc: Lower extrem.", "Loc: Palms/soles", "Loc: Oral/genital",
+ "Loc: Missing")))
R> output_name <- c("Probability of malignant lesion")
R> converter <- convert(model, input_names = input_names,
+ output_names = output_name)

Next, the LRP method with composite rules is applied, which selects the propagation rule
depending on the layer type. For convolutional layers, the α-β-rule with α = 1.5 is used
to favor the positive over the negative relevances. In addition, the ε-rule with ε = 0.01 is
performed on all dense layers and the simple rule – the rule used by default – on average
pooling layers. This second step is performed with innsight as follows:

R> rule_name <- list(Conv2D_Layer = "alpha_beta", Dense_Layer = "epsilon")
R> rule_param <- list(Conv2D_Layer = 1.5, Dense_Layer = 0.01)

24 innsight: Interpreting Deep Neural Networks in R

R> res <- run_lrp(converter, inputs, channels_first = FALSE,
+ rule_name = rule_name, rule_param = rule_param)

For the sake of simplicity, the loading of the input data inputs is omitted in the above code
snippet and can be found in the reproduction material together with the whole example. In
addition, the channel axis of the images is located at the last position, which is why the
argument channels_first must be set to FALSE. The results can be visualized using the
implemented plot() function. By default, the results are scaled using colors (red for positive
and blue for negative relevances) for each instance, each considered output node and each
input layer individually. This behavior is especially appropriate for models with multiple
input layers consisting of images mixed with tabular data. Because even if the relevances
are the same at the end of the tabular and image model before merging, they are further
propagated to only ten input variables for the tabular and 224 × 224 × 3 variables for the
image model, leading to potentially different relevance scales. The following code produces
the plot object based on the S4 class ‘innsight_ggplot2’ for the first three dataset instances,
which can be treated as a ggplot2 object (see Appendix C for details):

R> library("ggplot2")
R> p <- plot(res, data_idx = 1:3) + theme_bw()

Since this model has no standard architecture and the visualization is more extensive, the
suggested packages gridExtra (Auguie 2017) and gtable (Wickham and Pedersen 2024) are
required. However, each individual plot in the object p can now be modified individually based
on the ggplot2 syntax. The indexing works as the objects are plotted in a matrix-wise fashion,
provided by the facet rows and columns. It is pointed out that each plot object is based on
the same dataset, which is also created by the method get_result(type = "data.frame"),
i.e., the same column names can be used within the ggplot2 syntax. In the following code
snippet, the facet and the x axis labels are changed manually, and the plot is visualized, which
can be found in Figure 9:

R> p[1, 1] <- p[1, 1, restyle = FALSE] + facet_grid(cols = vars(model_input),
+ labeller = as_labeller(c(Input_1 = "Image input")))
R> p[1, 2] <- p[1, 2, restyle = FALSE] + facet_grid(cols = vars(model_input),
+ rows = vars(data), labeller = as_labeller(c(Input_2 = "Tabular input",
+ data_1 = "malignant")))
R> p <- p + theme(axis.text.x = element_text(angle = 45, vjust = 0.6))
R> plot(p, heights = c(0.31, 0.31, 0.38))

The argument restyle is set when indexing the ‘innsight_ggplot2’ object, ensuring that
the subplots are extracted in the same way as they are displayed in the whole plot. Otherwise,
the entire plot’s corresponding facet stripes and axis labels are transferred to the selection.
In addition, the arguments in the generic function plot() for ‘innsight_ggplot2’ objects
are forwarded to the function gridExtra::arrangeGrob() when the plot is finally rendered.
This feature allows adjusting the relative heights and widths, demonstrated in the last line of
code, to slightly compensate for the increased vertical space of the rotated axis labels.
The three instances in Figure 9 describe different explanatory approaches to the trained
model’s predictions: The top image in Figure 9a of a malignant lesion was recorded on the

Journal of Statistical Software 25

(a) Input images

Output_1: Probability of malignant lesion

Pred.: 0.8782

Sum: 2.0520

Goal: 1.9750

Image input

50

100

150

200

Im
ag

e
H

ei
gh

t

Relevance

−3.6e−05

0

0.00052

Pred.: 0.0004913

Sum: −4.3620000

Goal: −7.6180000

50

100

150

200

Im
ag

e
H

ei
gh

t

Relevance

−0.0017

0

1e−04

Pred.: 0.47480

Sum: 0.02704

Goal: −0.10070

50 10
0

15
0

20
0

50

100

150

200

Image Width

Im
ag

e
H

ei
gh

t

Relevance

−0.00024

0

0.00024

Pred.: 0.8782

Sum: 0.7400

Goal: 1.9750

Tabular input

m
alignant

 0

 0.100

 0.200

 0.300

 0.400

Pred.: 0.0004913

Sum: 0.0673400

Goal: −7.6180000

data_2

 −0.020

 0

 0.020

 0.040

Pred.: 0.4748

Sum: 1.1500

Goal: −0.1007

data_3

Sex
: M

ale

Lo
c:

M
iss

ing

Lo
c:

To
rs

o

Age

Sex
: F

em
ale

Lo
c:

Hea
d/

ne
ck

Lo
c:

Lo
wer

 ex
tre

m
.

Lo
c:

Upp
er

 ex
trm

.

Lo
c:

Palm
s/s

ole
s

Lo
c:

Ora
l/g

en
ita

l
 0

 0.250

 0.500

 0.750

Feature

(b) Plot generated by innsight

Figure 9: The image part of the instance of the melanoma dataset to be explained and the
associated visualization generated by innsight. Figure (a) shows a (top) malignant lesion
image of a 65-year-old female, (middle) benign lesion of a 40-year-old male, and (bottom)
malignant lesion of a 90-year-old female patient. Figure (b) displays the LRP explanation of
the patients from (a) created with the plot() function and subsequent minor modifications
such as facet and x axis labels.

torso of a 65-year-old female patient. In the associated interpretation generated by innsight
(top row in Figure 9b), it can be observed that, on the one hand, the model identifies the
lesioned skin area. On the other hand, the darker and patchy pigmentation and the ragged
borders positively influenced the prediction of 87.82% for melanoma (shown as 0.8782 in the
corresponding infobox in Figure 9b). This observation is also consistent with the official
ABCD checklist for melanoma (Friedman, Rigel, and Kopf 1985), which states that asymme-
try, irregular borders, varying color, and large diameters are indicative of a malignant skin
lesion. However, the patient’s age also positively affected the prediction, as evident from the
tabular patient-level information explanation in Figure 9b. A complimentary picture results
from the middle image in Figure 9a, showing a benign mole located on the lower extremities
of a 40-year-old man. The model predicted a probability of only 0.05% for a malignant lesion
and explains its decision with the symmetrical shape, uniform color pigmentation, and lack
of notched borders. In addition, the age of 40 also has a slightly negative influence on the
prediction, whereas the location seems to contribute a large positive effect (middle row in
Figure 9b). The last instance exemplifies a situation where the model is uncertain whether
it is a malignant or benign skin lesion since its prediction is 47.48%. The truly malignant
skin area originates from the lower extremities of a 90-year-old woman (bottom image in
Figure 9a). Especially the image input explanation in the last row in Figure 9b shows the
model’s uncertainty because the mole’s upper part looks very regular, arguing for a healthy
lesion and consistently highlighted with negative relevance (blue) by the model’s explanation.
In contrast, the lower part contains some notches potentially favoring melanoma, which the
model also correctly identified. Furthermore, the high age of the 90-year-old patient has a

26 innsight: Interpreting Deep Neural Networks in R

strong positive relevance to the model’s prediction, demonstrating the strong effect of the
feature age. The corresponding infoboxes in Figure 9b also show that – while the decom-
position goals are not achieved, which, however, is expected in LRP due to the absorption
of relevance into the bias vectors – the majority of relevance for the top two patients comes
from the image and less from patient-level data. Only in the case of the last patient do the
image relevances seem to cancel each other out so that the tabular features have the strongest
contribution to the prediction.

5. Validation and runtime
To evaluate the validity and computational performance of innsight, the results of the pre-
sented feature attribution methods on simulated models and data are compared with the
results of the Python implementations zennit (Anders et al. 2021), innvestigate (Alber et al.
2019), captum (Kokhlikyan et al. 2020), deeplift (Shrikumar et al. 2017a), and shap (Lund-
berg and Lee 2017). The packages deeplift and innvestigate are based on the high-level
machine learning library Keras (Chollet et al. 2015) and utilize TensorFlow (Abadi et al.
2015) as the backend for all calculations. In addition, both packages initially create a replica-
tion of the passed model with the interpretation methods pre-implemented in the individual
layers, similar to innsight. In contrast, the packages zennit and captum use PyTorch (Paszke
et al. 2019) and run without a conversion step since hooks are used to modify the automated
backward pass according to the applied method on the fly (see Appendix B for more de-
tails). The package shap can handle both Keras and PyTorch models, and also uses hooks
to modify automatic gradients. However, this only enables the application of methods that
can be considered independent of the preceding and following layers, which complicates, for
example, an implementation of DeepLift with the RevealCancel rule. Furthermore, not every
package supports all methods. For example, innvestigate and zennit are more geared towards
standard gradient methods and LRP, whereas deeplift is more or less an implementation of

Package

captum deeplift innvestigate shap zennit innsight

Gradient ✖

SmoothGrad ✖

Gradient × Input ✖

IntegratedGradient ∗ ✖

ExpectedGradient ✖ ✖ ✖

LRP (simple rule) ✖ ✖

LRP (ε-rule) ✖ ✖

LRP (α-β-rule) ✖ ✖ † ✖

DeepLift (rescale) ✖ ✖ ✖

DeepLift (reveal-cancel) ✖ ✖ ✖ ✖

DeepSHAP ✖ ✖ ‡ ✖

Table 1: Summary of the implemented feature attribution methods in each package. ∗deeplift
applies the middle Riemann sum, whereas captum, zennit and innsight use right Riemann
sum. †innvestigate uses another definition of the positive and negative part of the bias vector
(see Appendix E). ‡For max pooling layers, shap uses the cross maximal value of x and
reference value x̃ instead their individual maximal value.

Journal of Statistical Software 27

(a) Gradient-based (Section 2.1) (b) DeepLift (Section 2.3) (c) LRP (Section 2.2)

Figure 10: Comparison of feature attribution methods’ results of innsight and the reference
implementations captum, zennit, innvestigate, deeplift and shap regarding the mean absolute
difference as box plots over different model architectures and repetitions. It shows the results
separated into (a) gradient-based methods, (b) DeepLift, and (c) LRP. The shaded gray area
indicates the error tolerance of 10−6.

the methods from its associated paper and focuses on the DeepLift method. Package shap,
originating from a methods paper, primarily considers Shapley-value-based methods. On the
other hand, captum is a good all-rounder, but still has some gaps in the context of LRP. A
summary of the packages’ implemented feature attribution methods is provided in Table 1.

5.1. Validity comparison

For the validation, shallow untrained dense and convolutional models with the most com-
monly used layer types – such as 2D convolution, 2D maximum/average pooling, and dense
layers – and normally distributed input data are generated. More specifically, 32 different
architectures are considered, using ReLU and hyperbolic tangent to include both constrained
and unconstrained activation functions, with and without bias vectors, with varying pooling
layers, and a different number of output nodes. From each of these architectures, 50 randomly
initialized models are created, resulting in 1 600 distinct models, and evaluated on normally
distributed datasets with 16 input instances each. The experimental details can be found
in Appendix D.1. Moreover, all figures and results are reproducible using the code in the
reproduction material or on GitHub (https://github.com/bips-hb/JSS_innsight). As a
measure of quality, the mean absolute difference between the results of innsight and the cor-
responding reference implementation over all input variables and output nodes is considered.
Consequently, for each combination of method, model, input instance, and output node, a
value for this quality measure is derived, leading to box plots for visualizing the differences.
In addition to the box plots, an acceptable error range of up to 10−6 is highlighted in light
gray to distinguish numerical tolerated differences caused by calculations of single-precision
floating point numbers according to the IEEE 754 standard (IEEE 2019) from abnormal
discrepancies. The results are summarized in Figure 10.
For the gradient-based methods Gradient and Gradient × Input, the method’s results mostly
coincide for all packages (see Figure 10a). The only discrepancy is with the IntegratedGradient
method for the package deeplift, but this is due to the fact that innsight approximates the

https://github.com/bips-hb/JSS_innsight

28 innsight: Interpreting Deep Neural Networks in R

integral with the right and deeplift with the middle Riemann sum.3 The right Riemann sum
is also used in zennit4, whereas various approximation methods can be selected in captum.

A similar picture results for the DeepLift method with the Rescale and RevealCancel rules, but
with a few outliers with a maximum error of up to 10−3 for the Rescale rule (see Figure 10b).
However, all outliers with an error exceeding 10−6 originate from models with the hyperbolic
tangent as activation and can thus be explained by numerical inaccuracies due to the saturated
activation. In addition, minor discrepancies are probably caused by different treatments of
vanishing denominators in the multipliers or numerical uncertainties between the backends
PyTorch/LibTorch and TensorFlow in general. With the DeepSHAP method – similar to
IntegratedGradient – the results of innsight largely match those of captum, but they differ from
the results of shap. However, this is mainly due to the max pooling layer (see Figure 10b),
which is handled differently in shap than in innsight and captum. Since DeepSHAP is a
repeated application of DeepLift with different reference values, the numerical inaccuracies
from the DeepLift method accumulate and, thus, cause the visible outliers.

For the LRP methods, a few adjustments are needed for the innvestigate and captum packages
since they use only the simple rule for average pooling layers, which is modified in innsight
using composite rules. Apart from that, the results from innsight compared to captum or
zennit for the simple, ε-rule and α-β-rule differ negligibly and are far below the maximally
tolerated error of 10−6 (see Figure 10c). For the simple and ε-rule, innvestigate is consistent
with innsight except for a few deviations. Again, almost all of the cases with errors exceeding
10−6 are caused by a saturated hyperbolic tangent activation, lower errors on different sta-
bilizers for the denominators in the relevance messages, and general numerical inaccuracies
between their backends. However, significant discrepancies can be observed using the α-β-
rule, which only occur in models with a bias vector (see Figure 10c bottom). The reason for
this is a different interpretation of the positive or negative part of the bias vector, which is
discussed in more detail in the Appendix E.

5.2. Runtime comparison

In addition to comparing whether innsight’s results are consistent with the reference imple-
mentations, a runtime comparison is also conducted concerning the number of output nodes,
hidden units or filters, hidden layers, batch size, and, for images, the size of the input im-
ages. It must be noted again that the packages based on Keras and innsight first convert
the passed model, and the PyTorch-based packages use hooks to overwrite the automated
backward pass while executing, making them considerably faster. Therefore, in the results,
only the execution time excluding the conversion step – as far as possible – is presented and
not the total time. For comparisons of the total time needed to calculate an explanation, see
Appendix D.3. However, the innvestigate package has a special characteristic in this regard
since the entire conversion process and the construction of the underlying graph only happens
during the analysis of the first batch of input data.5 For this reason, conversion times are
almost hardly present in the results. Since this simulation assumes that an interpretation
method is being applied for the first time to a model and only to a single batch of input

3See https://github.com/kundajelab/deeplift/blob/master/deeplift/util.py#L261.
4See https://github.com/chr5tphr/zennit/blob/0.5.1/src/zennit/attribution.py#L453.
5See the GitHub issues https://github.com/albermax/innvestigate/issues/50 and https://github.

com/albermax/innvestigate/issues/129.

https://github.com/kundajelab/deeplift/blob/master/deeplift/util.py#L261
https://github.com/chr5tphr/zennit/blob/0.5.1/src/zennit/attribution.py#L453
https://github.com/albermax/innvestigate/issues/50
https://github.com/albermax/innvestigate/issues/129
https://github.com/albermax/innvestigate/issues/129

Journal of Statistical Software 29

(a) Time comparison for a varying number of hidden layers (L)

(b) Time comparison for a varying number of output nodes (C)

Figure 11: Package’s average evaluation time in seconds over 20 repetitions for applying
different feature attribution methods on models with (a) a varying number of hidden layers
and (b) a varying number of output nodes (only image data).

instances, the results of innvestigate are slightly biased and would be notably quicker if the
same model is employed with more input batches.
Analogously to the comparison from Section 5.1, untrained dense and convolutional neural
networks, and normally distributed input data are used for the runtime comparisons. De-
pending on the type of time comparison, the hyperparameters for the number of output nodes,
number of hidden units or filter size, number of hidden layers, batch size, and the size of the
input images are varied. The hyperparameters not considered in the respective comparison
remain unchanged and take default values, i.e., one output node, 128 hidden units for the
tabular model and 5 filters for the image model, two layers in total, a batch size of 16 and
an input image size of 64 × 64. In addition, 20 replicates of each architecture are created to
compensate for potential numerical fluctuations. For a more detailed simulation description
or analysis of the results, including the total time, please refer to Appendix D.2 and Ap-
pendix D.3, and for a reproduction of the results, see the reproduction material or the code
in the GitHub repository at https://github.com/bips-hb/JSS_innsight/.

https://github.com/bips-hb/JSS_innsight/

30 innsight: Interpreting Deep Neural Networks in R

In general, comparing the runtimes of the different packages reveals that innsight is faster
than innvestigate and deeplift (which are based on Keras), but slower than captum, zennit
and shap (which are based on PyTorch). This overall trend is particularly evident when
adding more layers to dense models: innsight is 10 − 15 times slower than captum and
zennit, but still for the same order of magnitude faster or even faster than innvestigate and
deeplift (see Figure 11a). In addition, innsight is similarly fast as shap for the methods
DeepSHAP and ExpectedGradient. This trend can largely be extended to image inputs as
well, with the exception that the evaluation times in innsight approach those of PyTorch-
based implementations very closely. However, the DeepLift methods, particularly with the
Rescale rule and thus even more with DeepSHAP, are considerably slower when applied to
images compared to deeplift (see Figure 15).

The same trend can also be observed for a varying number of output nodes. In the case of
image data, innsight is similarly fast as the PyTorch-based packages and mostly considerably
faster than innvestigate and deeplift. However, the exception concerning the DeepLift meth-
ods applies here as well: DeepLift using the Rescale rule runs almost 10 times slower than in
captum. Consequently, DeepSHAP is also considerably slower than the runtime in shap and
captum (see Figure 11b). On the other hand, innsight stands out for all rule-based meth-
ods applied to dense models and performs similarly or even faster than the PyTorch-based
packages (see Figure 14). The primary reason for this is that the results for several output
nodes can be calculated at once in innsight. In contrast, all other implementations only allow
the calculation for single nodes, and thus, the method’s results are computed by iterative
execution.

These tendencies can also be observed in the other simulations’ results when changing the
number of hidden units/filters, batch size, or image size (see Figure 16, 17 and 18 in the
Appendix). In the gradient-based methods and LRP, the execution times of innsight are
increasingly approaching the times of the PyTorch-based implementations. With a larger
number of filters in the convolutional models, the runtimes are almost identical. At the same
time, it can be seen that the Keras-based packages run considerably slower than all other
packages. An exception to this is with a high number of filters in convolutional models:
in these cases, innvestigate and innsight applied to standard gradient-based methods and
LRP are faster than all other implementations. In addition, the previously observed pattern
with the DeepLift methods repeats in the other simulations as well: the execution time of
DeepLift with the Rescale rule for image data is noticeably slower than in the reference
implementations, which also explains the high execution time of DeepSHAP. Nevertheless,
innsight is considerably faster than deeplift in dense models running DeepLift methods, and,
in the case of batch size, also faster than shap.

In summary, innsight is mostly faster than the Keras-based packages and becomes more
comparable to the PyTorch packages with increasing number of input instances, hidden
units/filters, image size, and number of output nodes. However, the evaluation time of
DeepLift with the Rescale rule and DeepSHAP applied to images is a weakness of innsight
and shows the largest discrepancy in the runtime comparison. Even though the packages in
this section are compared regarding runtime and some packages’ weaknesses are revealed, all
considered implementations provide an explanation within a reasonable time of a few seconds,
even for deep neural networks with several large images as inputs.

Journal of Statistical Software 31

6. Summary and discussion

In summary, we have presented innsight, an R package that provides the most well-known
feature attribution methods for interpreting neural network predictions. After a detailed
introduction of the implemented feature attribution methods, the internal structure uti-
lizing torch’s fast array calculations and conversion function convert() for initializing an
Converter object demonstrated how the deep-learning-model-agnostic approach was imple-
mented to enable the analysis of models from any R package in an efficient way. This flexi-
bility is complemented by a unified 3-step approach from model to plotted results, including
multiple visualization tools based on ggplot2 or plotly for interactive plots. The step-wise
procedure was illustrated using a model on the tabular penguin dataset and a deep neu-
ral network on the melanoma dataset consisting of structured patient-level information and
images. Furthermore, the results of the simulation study show that innsight returns nearly
identical feature-wise explanations to the reference implementations captum, zennit, innves-
tigate, deeplift, and shap in Python. Any observed differences are either below the accepted
error tolerance of 10−6, reflecting negligible numerical inaccuracies, or caused by variations
in layer treatments, e.g., max pooling layer in shap for DeepSHAP or another integral esti-
mation for IntegratedGradient in deeplift. In terms of runtime, the package shows that it is
generally faster than the Keras-based packages and slower or comparable fast than captum,
zennit, and shap. It only suffers with the DeepLift method using the Rescale rule for image
data, which is also reflected in the DeepSHAP method that builds on it. Apart from that,
the package also has some limitations that could be improved in the future. For example,
only converting sequential models (i.e., nn_sequential) from the torch package is possible
because no structured network graph can be extracted from an arbitrary nn_module. For all
the gradient-based methods, however, this is not strictly necessary, which is why these could
be extended for arbitrary nn_modules. Nevertheless, passing a model as a list allows the user
to do the conversion step on their own in such cases. The package can also be extended me-
thodically and offer permutation-based methods such as e.g., Occlusion or RISE (Zeiler and
Fergus 2014; Petsiuk, Das, and Saenko 2018). Furthermore, an activation function is assigned
to a linear or convolutional layer only if it is defined in the layer itself or immediately after the
layer. This behavior is especially relevant for the RevealCancel rule in the DeepLift method,
because innsight handles separated activations with the Rescale rule, which is the case, for
example, with the layer sequence of convolution, batch normalization, and activation. More-
over, even if it is possible in the torch package, the innsight package currently only supports
computations on CPUs and not on GPUs.

Computational details

A 64-bit Linux platform running Ubuntu 20.04 with an AMD Ryzen Threadrippper 3960X
(24 cores, 48 threads) CPU including 256 gigabyte RAM and two NVIDIA Titan RTX GPUs
was used for all computations. All comparisons and calculations with the reference imple-
mentations were performed in a separate session – created by callr (Csárdi and Chang 2024)
– using only a single CPU thread per job. An exception was the neural network training on
the melanoma dataset using a single GPU, which was also the only code executed by Python
and not from R (R Core Team 2024). Due to the package requirement mismatch, separate
environments were created for each of the Keras-based and the PyTorch-based packages, i.e.,

32 innsight: Interpreting Deep Neural Networks in R

• innvestigate 2.0.2: Using Python 3.8.15 with Keras 2.10.0 and TensorFlow 2.10

• deeplift 0.6.13: Using Python 3.6.15 with Keras 2.2.4 and TensorFlow 1.15

• captum 0.6.0, zennit 0.5.0 and shap 0.44.0: Using Python 3.8.12 with PyTorch 1.13.1
(cpu)

The corresponding environments were loaded in R, and then the code was executed in Python
using reticulate 1.39 (Ushey, Allaire, and Tang 2024). In addition, the computer was used
exclusively for the runtime measurements for the corresponding job and was not distorted by
other simultaneous processes.

Acknowledgments
This project was funded by the German Research Foundation (DFG), Emmy Noether Grant
437611051.

References

Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J,
Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser
L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M,
Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F,
Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015). “TensorFlow: Large-
Scale Machine Learning on Heterogeneous Systems.” URL https://www.tensorflow.org/.

Alber M, Lapuschkin S, Seegerer P, Hägele M, Schütt KT, Montavon G, Samek W, Müller KR,
Dähne S, Kindermans PJ (2019). “iNNvestigate Neural Networks!” Journal of Machine
Learning Research, 20(93), 1–8.

Allaire JJ, Chollet F (2024). keras: R Interface to Keras. doi:10.32614/CRAN.package.
keras. R package version 2.15.0.

Ancona M, Ceolini E, Öztireli C, Gross M (2018). “Towards Better Understanding of
Gradient-Based Attribution Methods for Deep Neural Networks.” In Proceedings of the
6th International Conference on Learning Representations. URL https://openreview.
net/forum?id=Sy21R9JAW.

Anders CJ, Montavon G, Samek W, Müller KR (2019). “Understanding Patch-Based Learning
of Video Data by Explaining Predictions.” In Explainable AI: Interpreting, Explaining and
Visualizing Deep Learning, Lecture Notes in Computer Science, pp. 297–309. Springer-
Verlag. doi:10.1007/978-3-030-28954-6_16.

Anders CJ, Neumann D, Samek W, Müller KR, Lapuschkin S (2021). “Software for Dataset-
Wide XAI: From Local Explanations to Global Insights with Zennit, CoRelAy, and ViRe-
lAy.” arXiv 2106.13200, arXiv.org E-Print Archive. doi:10.48550/arxiv.2106.13200.

https://www.tensorflow.org/
https://doi.org/10.32614/CRAN.package.keras
https://doi.org/10.32614/CRAN.package.keras
https://openreview.net/forum?id=Sy21R9JAW
https://openreview.net/forum?id=Sy21R9JAW
https://doi.org/10.1007/978-3-030-28954-6_16
https://doi.org/10.48550/arxiv.2106.13200

Journal of Statistical Software 33

Apley DW, Zhu J (2020). “Visualizing the Effects of Predictor Variables in Black Box Su-
pervised Learning Models.” Journal of the Royal Statistical Society B, 82(4), 1059–1086.
doi:10.1111/rssb.12377.

Arras L, Osman A, Samek W (2022). “CLEVR-XAI: A Benchmark Dataset for the Ground
Truth Evaluation of Neural Network Explanations.” Information Fusion, 81, 14–40. doi:
10.1016/j.inffus.2021.11.008.

Auguie B (2017). gridExtra: Miscellaneous Functions for “Grid” Graphics. doi:10.32614/
CRAN.package.gridExtra. R package version 2.3.

Bach S, Binder A, Montavon G, Klauschen F, Müller KR, Samek W (2015). “On Pixel-Wise
Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation.”
Public Library of Science One, 10(7), 1–46. doi:10.1371/journal.pone.0130140.

Bengio Y, Lecun Y, Hinton G (2021). “Deep Learning for AI.” Communications of the
Association for Computing Machinery, 64(7), 58–65. doi:10.1145/3448250.

Biecek P (2018). “DALEX: Explainers for Complex Predictive Models in R.” Journal of
Machine Learning Research, 19(84), 1–5.

Chang W (2021). R6: Encapsulated Classes with Reference Semantics. doi:10.32614/CRAN.
package.R6. R package version 2.5.1.

Chollet F, et al. (2015). “Keras.” https://keras.io/.

Csárdi G (2024). cli: Helpers for Developing Command Line Interfaces. doi:10.32614/
CRAN.package.cli. R package version 3.6.3.

Csárdi G, Chang W (2024). callr: Call R from R. doi:10.32614/CRAN.package.callr.
R package version 3.7.6.

Erion G, Janizek JD, Sturmfels P, Lundberg SM, Lee SI (2021). “Improving Performance of
Deep Learning Models with Axiomatic Attribution Priors and Expected Gradients.” Nature
Machine Intelligence, 3(7), 620–631. doi:10.1038/s42256-021-00343-w.

European Union (2016). “Regulation (EU) 2016/679 of the European Parliament and of
the Council of 27 April 2016 on the Protection of Natural Persons with Regard to the
Processing of Personal Data and on the Free Movement of Such Data, and Repealing
Directive 95/46/EC (General Data Protection Regulation).” Official Journal L119, 59,
1–88. doi:10.5593/sgemsocial2019v/1.1/s02.022.

Falbel D, Luraschi J (2024). torch: Tensors and Neural Networks with ‘GPU’ Acceleration.
doi:10.32614/CRAN.package.torch. R package version 0.13.0.

Fanaee-T H (2013). “Bike Sharing Dataset.” UCI Machine Learning Repository. doi:10.
24432/c5w894.

Fisher A, Rudin C, Dominici F (2019). “All Models Are Wrong, but Many Are Use-
ful: Learning a Variable’s Importance by Studying an Entire Class of Prediction Mod-
els Simultaneously.” Journal of Machine Learning Research, 20(177), 1–81. doi:
10.1101/2023.03.27.534311.

https://doi.org/10.1111/rssb.12377
https://doi.org/10.1016/j.inffus.2021.11.008
https://doi.org/10.1016/j.inffus.2021.11.008
https://doi.org/10.32614/CRAN.package.gridExtra
https://doi.org/10.32614/CRAN.package.gridExtra
https://doi.org/10.1371/journal.pone.0130140
https://doi.org/10.1145/3448250
https://doi.org/10.32614/CRAN.package.R6
https://doi.org/10.32614/CRAN.package.R6
https://keras.io/
https://doi.org/10.32614/CRAN.package.cli
https://doi.org/10.32614/CRAN.package.cli
https://doi.org/10.32614/CRAN.package.callr
https://doi.org/10.1038/s42256-021-00343-w
https://doi.org/10.5593/sgemsocial2019v/1.1/s02.022
https://doi.org/10.32614/CRAN.package.torch
https://doi.org/10.24432/c5w894
https://doi.org/10.24432/c5w894
https://doi.org/10.1101/2023.03.27.534311
https://doi.org/10.1101/2023.03.27.534311

34 innsight: Interpreting Deep Neural Networks in R

Friedman JH (2001). “Greedy Function Approximation: A Gradient Boosting Machine.” The
Annals of Statistics, 29(5), 1189–1232. doi:10.1214/aos/1013203451.

Friedman RJ, Rigel DS, Kopf AW (1985). “Early Detection of Malignant Melanoma: The
Role of Physician Examination and Self-Examination of the Skin.” CA: A Cancer Journal
for Clinicians, 35(3), 130–151. doi:10.3322/canjclin.35.3.130.

Goldstein A, Kapelner A, Bleich J, Pitkin E (2015). “Peeking Inside the Black Box: Visualiz-
ing Statistical Learning with Plots of Individual Conditional Expectation.” Journal of Com-
putational and Graphical Statistics, 24(1), 44–65. doi:10.1080/10618600.2014.907095.

Goodman B, Flaxman S (2017). “European Union Regulations on Algorithmic Decision-
Making and a “Right to Explanation”.” AI Magazine, 38(3), 50–57. doi:10.1609/aimag.
v38i3.2741.

Greenwell B (2024). fastshap: Fast Approximate Shapley Values. doi:10.32614/CRAN.
package.fastshap. R package version 0.1.1.

Greenwell BM, Boehmke BC, McCarthy AJ (2018). “A Simple and Effective Model-Based
Variable Importance Measure.” arXiv 1805.04755, arXiv.org E-Print Archive. doi:10.
48550/arxiv.1805.04755.

Gunning D, Aha D (2019). “DARPA’s Explainable Artificial Intelligence (XAI) Program.”
AI Magazine, 40(2), 44–58. doi:10.1609/aimag.v40i2.2850.

Günther F, Fritsch S (2010). “neuralnet: Training of Neural Networks.” The R Journal, 2(1),
30–38. doi:10.32614/rj-2010-006.

Haug J, Zürn S, El-Jiz P, Kasneci G (2022). “On Baselines for Local Feature Attributions.”
arXiv 2101.00905, arXiv.org E-Print Archive. doi:10.48550/arxiv.2101.00905.

He K, Zhang X, Ren S, Sun J (2016). “Deep Residual Learning for Image Recognition.” In
Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778. IEEE. doi:10.1109/cvpr.2016.90.

Horst AM, Hill AP, Gorman KB (2022). palmerpenguins: Palmer Archipelago (Antarctica)
Penguin Data. doi:10.32614/CRAN.package.palmerpenguins. R package version 0.1.1.

Hvitfeldt E, Pedersen TL, Benesty M (2022). lime: Local Interpretable Model-Agnostic Ex-
planations. doi:10.32614/CRAN.package.lime. R package version 0.5.3.

IEEE (2019). “IEEE Standard for Floating-Point Arithmetic.” IEEE Std 754-2019 (Revision
of IEEE 754-2008), pp. 1–84. doi:10.1109/ieeestd.2019.8766229.

Kim B, Wattenberg M, Gilmer J, Cai C, Wexler J, Viegas F, sayres R (2018). “Interpretabil-
ity beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors
(TCAV).” In J Dy, A Krause (eds.), Proceedings of the 35th International Conference on
Machine Learning, volume 80, pp. 2668–2677. PMLR. URL https://proceedings.mlr.
press/v80/kim18d.html.

Kindermans PJ, Hooker S, Adebayo J, Alber M, Schütt KT, Dähne S, Erhan D, Kim B (2019).
“The (Un)Reliability of Saliency Methods.” Explainable AI: Interpreting, Explaining and
Visualizing Deep Learning, pp. 267–280. doi:10.1007/978-3-030-28954-6_14.

https://doi.org/10.1214/aos/1013203451
https://doi.org/10.3322/canjclin.35.3.130
https://doi.org/10.1080/10618600.2014.907095
https://doi.org/10.1609/aimag.v38i3.2741
https://doi.org/10.1609/aimag.v38i3.2741
https://doi.org/10.32614/CRAN.package.fastshap
https://doi.org/10.32614/CRAN.package.fastshap
https://doi.org/10.48550/arxiv.1805.04755
https://doi.org/10.48550/arxiv.1805.04755
https://doi.org/10.1609/aimag.v40i2.2850
https://doi.org/10.32614/rj-2010-006
https://doi.org/10.48550/arxiv.2101.00905
https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.32614/CRAN.package.palmerpenguins
https://doi.org/10.32614/CRAN.package.lime
https://doi.org/10.1109/ieeestd.2019.8766229
https://proceedings.mlr.press/v80/kim18d.html
https://proceedings.mlr.press/v80/kim18d.html
https://doi.org/10.1007/978-3-030-28954-6_14

Journal of Statistical Software 35

Kohlbrenner M, Bauer A, Nakajima S, Binder A, Samek W, Lapuschkin S (2020). “Towards
Best Practice in Explaining Neural Network Decisions with LRP.” In Proceedings of the
2020 International Joint Conference on Neural Networks, pp. 1–7. IEEE. doi:10.1109/
ijcnn48605.2020.9206975.

Kokhlikyan N, Miglani V, Martin M, Wang E, Alsallakh B, Reynolds J, Melnikov A, Kliushk-
ina N, Araya C, Yan S, Reblitz-Richardson O (2020). “Captum: A Unified and Generic
Model Interpretability Library for PyTorch.” arXiv 2009.07896, arXiv.org E-Print Archive.
doi:10.48550/arxiv.2009.07896.

Krizhevsky A, Sutskever I, Hinton GE (2017). “ImageNet Classification with Deep Convo-
lutional Neural Networks.” Communications of the Association for Computing Machinery,
60(6), 84–90. doi:10.1145/3065386.

Lang M (2017). “checkmate: Fast Argument Checks for Defensive R Programming.” The R
Journal, 9(1), 437–445. doi:10.32614/rj-2017-028.

Lauritsen SM, Kristensen M, Olsen MV, Larsen MS, Lauritsen KM, Jørgensen MJ, Lange
J, Thiesson B (2020). “Explainable Artificial Intelligence Model to Predict Acute Critical
Illness from Electronic Health Records.” Nature Communications, 11(1), 3852. doi:10.
1038/s41467-020-17431-x.

LeCun Y, Bengio Y, Hinton G (2015). “Deep Learning.” Nature, 521(7553), 436–444. doi:
10.1038/nature14539.

Lundberg SM, Lee SI (2017). “A Unified Approach to Interpreting Model Predictions.” In
Proceedings of the 31st International Conference on Neural Information Processing Systems,
pp. 4768–4777. Curran Associates Inc. doi:10.5555/3295222.3295230.

Molnar C, Casalicchio G, Bischl B (2018). “iml: An R Package for Interpretable Machine
Learning.” Journal of Open Source Software, 3(26), 786. doi:10.21105/joss.00786.

Montavon G, Binder A, Lapuschkin S, Samek W, Müller KR (2019). “Layer-Wise Relevance
Propagation: An Overview.” In Explainable AI: Interpreting, Explaining and Visualizing
Deep Learning, Lecture Notes in Computer Science, pp. 193–209. Springer-Verlag. doi:
10.1007/978-3-030-28954-6_10.

Montavon G, Lapuschkin S, Binder A, Samek W, Müller KR (2017). “Explaining Nonlinear
Classification Decisions with Deep Taylor Decomposition.” Pattern Recognition, 65, 211–
222. doi:10.1016/j.patcog.2016.11.008.

Nielsen IE, Dera D, Rasool G, Ramachandran RP, Bouaynaya NC (2022). “Robust Explain-
ability: A Tutorial on Gradient-Based Attribution Methods for Deep Neural Networks.”
IEEE Signal Processing Magazine, 39(4), 73–84. doi:10.1109/msp.2022.3142719.

Olah C, Mordvintsev A, Schubert L (2017). “Feature Visualization.” Distill, 2(11), e7. doi:
10.23915/distill.00007.

Olden JD, Joy MK, Death RG (2004). “An Accurate Comparison of Methods for Quantify-
ing Variable Importance in Artificial Neural Networks Using Simulated Data.” Ecological
Modelling, 178(3), 389–397. doi:10.1016/j.ecolmodel.2004.03.013.

https://doi.org/10.1109/ijcnn48605.2020.9206975
https://doi.org/10.1109/ijcnn48605.2020.9206975
https://doi.org/10.48550/arxiv.2009.07896
https://doi.org/10.1145/3065386
https://doi.org/10.32614/rj-2017-028
https://doi.org/10.1038/s41467-020-17431-x
https://doi.org/10.1038/s41467-020-17431-x
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.5555/3295222.3295230
https://doi.org/10.21105/joss.00786
https://doi.org/10.1007/978-3-030-28954-6_10
https://doi.org/10.1007/978-3-030-28954-6_10
https://doi.org/10.1016/j.patcog.2016.11.008
https://doi.org/10.1109/msp.2022.3142719
https://doi.org/10.23915/distill.00007
https://doi.org/10.23915/distill.00007
https://doi.org/10.1016/j.ecolmodel.2004.03.013

36 innsight: Interpreting Deep Neural Networks in R

O’Sullivan S, Nevejans N, Allen C, Blyth A, Leonard S, Pagallo U, Holzinger K, Holzinger
A, Sajid MI, Ashrafian H (2019). “Legal, Regulatory, and Ethical Frameworks for Devel-
opment of Standards in Artificial Intelligence (AI) and Autonomous Robotic Surgery.” The
International Journal of Medical Robotics and Computer Assisted Surgery, 15(1), e1968.
doi:10.1002/rcs.1968.

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein
N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chil-
amkurthy S, Steiner B, Fang L, Bai J, Chintala S (2019). “PyTorch: An Imper-
ative Style, High-Performance Deep Learning Library.” In Proceedings of the 2019
Conference on Advances in Neural Information Processing Systems, volume 32. Curran
Associates. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/
bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

Petsiuk V, Das A, Saenko K (2018). “Rise: Randomized Input Sampling for Explanation of
Black-Box Models.” arXiv 1806.07421, arXiv.org E-Print Archive. doi:10.48550/arxiv.
1806.07421.

R Core Team (2024). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Ribeiro MT, Singh S, Guestrin C (2016). “Why Should I Trust You?": Explaining the Predic-
tions of Any Classifier.” In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 1135–1144. Association for Computing Ma-
chinery. doi:10.1145/2939672.2939778.

Rotemberg VM, Kurtansky NR, Betz-Stablein B, Caffery LJ, Chousakos E, Codella NCF,
Combalia M, Dusza SW, Guitera P, Gutman DA, Halpern AC, Kittler H, Köse K,
Langer SG, Liopryis K, Malvehy J, Musthaq S, Nanda J, Reiter O, Shih G, Stratigos
AJ, Tschandl P, Weber J, Soyer HP (2020). “A Patient-Centric Dataset of Images and
Metadata for Identifying Melanomas Using Clinical Context.” Scientific Data, 8(1). doi:
10.1038/s41597-021-00815-z.

Schneeberger D, Stöger K, Holzinger A (2020). “The European Legal Framework for Medical
AI.” In Lecture Notes in Computer Science, pp. 209–226. Springer-Verlag, Cham. doi:
10.1007/978-3-030-57321-8_12.

Shrikumar A, Greenside P, Kundaje A (2017a). “Learning Important Features through Prop-
agating Activation Differences.” In Proceedings of the 34th International Conference on
Machine Learning, volume 70, pp. 3145–3153. PMLR. URL https://proceedings.mlr.
press/v70/shrikumar17a.html.

Shrikumar A, Greenside P, Shcherbina A, Kundaje A (2017b). “Not Just a Black Box: Learn-
ing Important Features through Propagating Activation Differences.” arXiv 1605.01713,
arXiv.org E-Print Archive. doi:10.48550/arxiv.1605.01713.

Sievert C (2020). Interactive Web-Based Data Visualization with R, plotly, and shiny. Chap-
man & Hall/CRC. ISBN 9781138331457. doi:10.1201/9780429447273.

https://doi.org/10.1002/rcs.1968
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://doi.org/10.48550/arxiv.1806.07421
https://doi.org/10.48550/arxiv.1806.07421
https://www.R-project.org/
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1038/s41597-021-00815-z
https://doi.org/10.1038/s41597-021-00815-z
https://doi.org/10.1007/978-3-030-57321-8_12
https://doi.org/10.1007/978-3-030-57321-8_12
https://proceedings.mlr.press/v70/shrikumar17a.html
https://proceedings.mlr.press/v70/shrikumar17a.html
https://doi.org/10.48550/arxiv.1605.01713
https://doi.org/10.1201/9780429447273

Journal of Statistical Software 37

Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van den Driessche G, Schrittwieser J,
Antonoglou I, Panneershelvam V, Lanctot M, Dieleman S, Grewe D, Nham J, Kalchbrenner
N, Sutskever I, Lillicrap T, Leach M, Kavukcuoglu K, Graepel T, Hassabis D (2016). “Mas-
tering the Game of Go with Deep Neural Networks and Tree Search.” Nature, 529(7587),
484–489. doi:10.1038/nature16961.

Simonyan K, Vedaldi A, Zisserman A (2014). “Deep Inside Convolutional Networks: Visual-
ising Image Classification Models and Saliency Maps.” arXiv 1312.6034, arXiv.org E-Print
Archive. doi:10.48550/arxiv.1312.6034.

Smilkov D, Thorat N, Kim B, Viégas F, Wattenberg M (2017). “SmoothGrad: Removing
Noise by Adding Noise.” arXiv 1706.03825, arXiv.org E-Print Archive. doi:10.48550/
arxiv.1706.03825.

Stroustrup B (2013). The C++ Programming Language. 4th edition. Addison-Wesley.

Strumbelj E, Kononenko I (2010). “An Efficient Explanation of Individual Classifications
Using Game Theory.” Journal of Machine Learning Research, 11, 1–18.

Sundararajan M, Taly A, Yan Q (2017). “Axiomatic Attribution for Deep Networks.” arXiv
1703.01365, arXiv.org E-Print Archive. doi:10.48550/arxiv.1703.01365.

Ushey K, Allaire JJ, Tang Y (2024). reticulate: Interface to Python. doi:10.32614/CRAN.
package.reticulate. R package version 1.39.0.

Van Rossum G, et al. (2011). Python Programming Language. URL http://www.python.
org/.

Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York.
ISBN 978-3-319-24277-4. doi:10.1007/978-0-387-98141-3.

Wickham H, Pedersen TL (2024). gtable: Arrange ‘Grobs’ in Tables. doi:10.32614/CRAN.
package.gtable. R package version 0.3.6.

Zeiler MD, Fergus R (2014). “Visualizing and Understanding Convolutional Networks.” In
Computer Vision – ECCV 2014: Proceedings, Part I 13, pp. 818–833. Springer-Verlag.
doi:10.1007/978-3-319-10590-1_53.

Zuallaert J, Godin F, Kim M, Soete A, Saeys Y, De Neve W (2018). “SpliceRover: Inter-
pretable Convolutional Neural Networks for Improved Splice Site Prediction.” Bioinfor-
matics, 34(24), 4180–4188. doi:10.1093/bioinformatics/bty497.

https://doi.org/10.1038/nature16961
https://doi.org/10.48550/arxiv.1312.6034
https://doi.org/10.48550/arxiv.1706.03825
https://doi.org/10.48550/arxiv.1706.03825
https://doi.org/10.48550/arxiv.1703.01365
https://doi.org/10.32614/CRAN.package.reticulate
https://doi.org/10.32614/CRAN.package.reticulate
http://www.python.org/
http://www.python.org/
https://doi.org/10.1007/978-0-387-98141-3
https://doi.org/10.32614/CRAN.package.gtable
https://doi.org/10.32614/CRAN.package.gtable
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1093/bioinformatics/bty497

38 innsight: Interpreting Deep Neural Networks in R

A. Details on LRP and DeepLift

A.1. Details on LRP
The layer-wise relevance propagation (LRP) method was introduced by Bach et al. (2015) and
has a similar goal as the Gradient × Input approach: decomposing the output into variable-
wise relevances conforming to Equation 1. The distinguishing aspect is that the prediction
ŷc is redistributed layer by layer from the output node back to the inputs according to the
layer’s weights and intermediate values. The entire procedure is accomplished by rule-based
relevance messages defining how to redistribute the upper-layer relevance to the lower layer.
More precisely, the relevance message r

(l,l+1)
i←j describes the amount of the relevance Rl+1

j of
node j in layer l + 1 sent to the lower-layer node i. The relevance for the lower-layer node i
is calculated as the sum of all incoming relevance messages, i.e.,

Rl
i =

∑
j

r
(l,l+1)
i←j . (4)

In the following, we briefly overview the most popular variations of relevance messages flowing
from a node of index j in layer l + 1 to node i in the preceding layer:

• The simple rule: The fundamental rule on which all other variations of relevance
messages are more or less based is the simple rule (also known as LRP-0). The rel-
evances are redistributed to the lower layers according to the ratio between local and
global pre-activation. Let x be the inputs of the preceding layer, w the weight matrix
and b the bias vector of layer l, and Rl+1

j the upper-layer relevance; then xi wij is the
local and zj = bj +∑

k xk wkj the global pre-activation defining the simple rule as

r
(l, l+1)
i←j = xi wij

zj
Rl+1

j .

• The ε-rule: One issue with the simple rule is that it is numerically unstable when
the global pre-activation zj vanishes and causes a division by zero. The ε-rule (also
known as LRP-ε) tackles those situations by adding a stabilizer ε > 0 that moves the
denominator away from zero, i.e.,

r
(l, l+1)
i←j = xi wij

zj + sign(zj) ε
Rl+1

j .

This inserted value ε absorbs some of the relevance and can, therefore, be utilized to
achieve sparser and less noisy results for the explanation. As ε increases, a greater
portion of the relevance is intercepted, sustaining only the most salient relevances for
this relevance message.

Both variants have in common that they distribute the upper-layer relevance proportionally
downward regarding the local and global pre-activations, i.e., xiwij and zj . Even though
the ε-rule avoids division by zero, numerical inconsistencies can occur in both variants for
very deep models. Since the pre-activations are not necessarily guaranteed to be positive,
the local pre-activations may take on substantial positive or negative values that cancel out
in the global pre-activation, leading to magnified values in the preceding layer. As a result,

Journal of Statistical Software 39

larger relevances in the lower layers potentially accumulate in deep models and increasingly
reach the limits of computational representation of floating point numbers. To prevent this
blow-up of relevances, the authors introduced the α-β-rule, which treats positive and negative
pre-activations separately:

• The α-β-rule: The α-β-rule was introduced to avoid numerical instabilities and enable
a weighting between positive and negative relevances depending on the user’s focus.
This relevance message applies the simple rule to the positive and negative parts of the
pre-activations, respectively, and takes the weighted sum of both. The weighting can
be regulated by the hyperparameters α, β ∈ R satisfying α + β = 1. Mathematically
formulated, the rule is defined as follows:

r
(l, l+1)
i←j =

(
α

(xi wij)+

z+
j

+ β
(xi wij)−

z−j

)
Rl+1

j

with z±j = (bj)± +
∑

k

(xk wkj)±, (·)+ = max(·, 0), (·)− = min(·, 0).

Since the bias vector bj is included in the computation of the global pre-activations in all
presented variants, this term absorbs a certain amount of the upper-layer relevance. Con-
sequently, the LRP methods approximate the output prediction rather than providing an
accurate representation of the targeted decomposition in Equation 1.
There are even more variants of relevance messages discussed in the literature suitable for
various situations or layer types: For example, the deep Taylor decomposition (also called z+-
rule) in ReLU models – also achieved with the α-β-rule with α = 1 – allows filtering out only
positive relevances (Montavon, Lapuschkin, Binder, Samek, and Müller 2017), or the γ-rule
favoring positive over negative relevances (Montavon et al. 2019). Moreover, some rules are
specifically designed for the input layer (Montavon et al. 2017). Due to the rule independence
of how the lower-layer relevances are computed from the relevance messages in Equation 4,
the rules can also be set individually for each layer, called composite-rule (Montavon et al.
2019; Kohlbrenner, Bauer, Nakajima, Binder, Samek, and Lapuschkin 2020).

A.2. Details on DeepLift

The deep learning important features (DeepLift) method introduced by Shrikumar et al.
(2017a) behaves similarly to LRP in a layer-by-layer backpropagation fashion from a selected
output node back to the input variables considering the simple rule. However, it incorpo-
rates a reference value x̃ to compare the relevances with each other. Hence, the relevances
of DeepLift represent the relative effect of the outputs of the instance to be explained f(x)c

and the output of the reference value f(x̃)c. By taking the difference, the bias term is elimi-
nated in the relevance messages, preventing the relevance absorption and leading to an exact
variable-wise decomposition of the difference-from-reference output ∆ŷc = f(x)c −f(x̃)c, i.e.,

∆ŷc = f(x)c − f(x̃)c =
d∑

i=1
Rc

i .

In contrast to the LRP method, DeepLift defines a multiplier layer by layer, starting from the
output layer and propagating to the input layer instead of directly determining the relevances

40 innsight: Interpreting Deep Neural Networks in R

in each intermediate stage. Based on these multipliers, the contribution of an arbitrary
variable to the difference-from-reference output can be obtained by multiplying it by the
corresponding difference-from-reference input. For an arbitrary layer with the layer’s input
x, reference input x̃ and multiplier m∆x∆ŷc , this means:∑

i

m∆xi∆ŷc (xi − x̃i) = m∆x∆ŷc · (∆x)⊤ = ∆ŷc. (5)

The multipliers fulfill a chain rule allowing the computation of the multiplier for the preceding
layer given the already calculated one m∆t,∆ŷc , i.e.,

m∆xi∆ŷc =
∑

j

m∆xi∆tj
m∆tj∆ŷc . (6)

In other words, the chain rule justifies defining the multipliers for each layer or part of
a layer separately before combining them with the upper-layer multipliers. The authors
distinguish between the linear and nonlinear components of a layer and provide definitions of
the multipliers for each of them:

• Linear rule: For the linear components of a layer, such as matrix multiplication in
dense or convolution layers, the weights of the corresponding layer are used as the
multipliers, i.e., m∆xi∆zj

= wij .

• Rescale rule: This rule can be used for all nonlinear parts of a layer that can be reduced
to a one-dimensional function σ, e.g., all activations such as ReLU, tanh, or sigmoid. In
this case, the ratio between the difference-from-reference activation ∆σ(z)j = σ(zj) −
σ(z̃j) and the pre-activation ∆zj = zj −z̃j gives the multiplier, i.e., m∆zj∆σ(z)j

= ∆σ(z)j

∆zj
.

To avoid numerical instability caused by a vanishing denominator, the gradient of σ at
zj is used instead of the multiplier when zj is close to its reference value z̃j .

• RevealCancel rule: This rule is designed for non-linearities σ to propagate meaning-
ful relevances for saturated activations and discontinuous gradients through the layers’
activation part, even when activations like ReLU eliminate the values. Similar to the
normal pre-activations in the α-β-rule for LRP, the positive ∆z+

j and negative ∆z−j
difference-from-reference pre-activations are considered separately, ensuring the prop-
agation of expressive contribution scores. Descriptively, the RevealCancel rule can be
explained in a way that the multiplier for the positive part m∆z+

j ∆y+
j

is the ratio between
the average effect of ∆z+

j after activating, before and after the negative part ∆z−j has
been added, and the positive difference-from-reference pre-activation ∆z+

j . In the same
way, the negative multiplier m∆z−j ∆y−j

is given by the ratio of the average impact of
∆z−j after activating, before and after the positive part ∆z+

j has been added, to ∆z−j .
Mathematically, the rule is defined as

m∆z±j ∆y±j
=

1
2

(
σ(z̃j + ∆z±j) − σ(z̃j) + σ(z̃j + ∆z±j + ∆z∓j) − σ(z̃j + ∆z±j)

)
∆z±j

.

These rules, along with the chain rule (Equations 5 and 6), enable the successive computation
of the input variables’ contributions Ri to the difference-from-reference output ∆ŷc in a single
backward pass.

Journal of Statistical Software 41

B. Remarks on accepted models and layers
As described in Section 3.1, conversion functions are only provided by default for the pack-
ages torch, keras, and neuralnet to transfer a neural network into a list structure, which is
explained in more detail in the next paragraph. However, any model in this list format can
be directly passed to the Converter. When initializing the Converter object, a torch-based
copy of the model is then generated from this list. This is one of the most crucial differences
compared to packages like captum, zennit, and shap, as these packages override the automatic
differentiation graph in the backward pass of the method through so-called backward hooks.6
Consequently, there is no need to analyze and copy the computational graph of the neural
network; instead, adjusting the gradient computation of the relevant layers in the backward
pass is sufficient. This feature is not available in version 0.12.0 of torch in R, which is why we
opted for copying the layers as in the packages innvestigate and deeplift and extended it to
a deep-learning-model-agnostic approach. However, this advantage comes with the require-
ment that all calculations in the network need to be registered and transferred to torch. For
example, the gradient function does not need to be overridden and registered for a flatten
layer in captum, zennit and shap – as it only rearranges the values – aligning with the existing
automatic differentiation function. In innsight, the entire model is copied, so an equivalent
in torch must be created for this layer as well. In general, every model from the neuralnet
and keras packages can be converted. In the case of keras, this includes both sequential
models created with keras_model_sequential() and non-sequential models created with
keras_model(), as long as they only include the accepted layers listed in Table 2. Since it is
not possible to reconstruct a computational graph for torch models, only nn_sequential()
models are accepted, and only the layers listed in Table 2 are recognized.
Internally, a model is being transferred from the packages keras, torch, and neuralnet into a
list, from which a torch-based model is subsequently created. This list requires the entries
"input_dim" representing the input dimension excluding the batch dimension, "layers" for
the model’s layers (again a list), and "input_nodes"/"output_nodes" for the indices of the
model’s input and output layers from "layers". Additionally, input and output labels can
be specified using the entries "input_names" and "output_names". The input and output
names are identical to the fields in the converter object, but when passing a model, they
are optional and will be automatically filled otherwise. They always represent a list for each
input or output layer, and then contain a list of names for each dimension. For example,
list(list("a", "b", "c"), list("1", "2", "3")) is valid as input names for a model
with one input layer that expects a two-dimensional input of shape 3×3. The entry "layers"
again forms a list of individual layers of the neural network. For each layer, the "type"
entry specifies the layer type, and, depending on the type, other relevant components of
the layer. For example, a dense layer (type = "Dense") has the entries "weight" for the
weight matrix and "bias" for the bias vector. In addition to these layer-specific entries, each
layer has entries "input_layers" and "output_layers", indicating the indices in "layers"
of the incoming and outgoing layers. All available layer types are listed in Table 2. For a
more detailed description of the entries and the requirements for the other layer types, please
refer to the vignette “In-depth explanation” (see vignette("detailed_overview", package
= "innsight") or the online documentation at https://bips-hb.github.io/innsight/

6See, e.g., register_full_backward_hook() in PyTorch (https://pytorch.org/docs/stable/generated/
torch.nn.Module.html#torch.nn.Module.register_full_backward_hook) or tf.RegisterGradient in Ten-
sorFlow/Keras (https://www.tensorflow.org/api_docs/python/tf/RegisterGradient).

https://bips-hb.github.io/innsight/articles/detailed_overview.html
https://bips-hb.github.io/innsight/articles/detailed_overview.html
https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.M odule.register_full_backward_hook
https://bips-hb.github.io/innsight/articles/detailed_overview.html
https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.M odule.register_full_backward_hook
https://bips-hb.github.io/innsight/articles/detailed_overview.html
https://www.tensorflow.org/api_docs/python/tf/RegisterGradient

42 innsight: Interpreting Deep Neural Networks in R

Package

keras torch as list (type =)
Dense layer_dense() nn_linear() "Dense"

Convolution layer_conv_1d() nn_conv1d() "Conv1D"
layer_conv_2d() nn_conv2d() "Conv2D"

Pooling

layer_max_pooling_1d() nn_max_pool1d() "MaxPooling1D"
layer_max_pooling_2d() nn_max_pool2d() "MaxPooling2D"
layer_average_pooling_1d() nn_avg_pool1d() "AveragePooling1D"
layer_average_pooling_2d() nn_avg_pool2d() "AveragePooling2D"
layer_max_pooling_1d() "GlobalPooling"
layer_max_pooling_2d()
layer_average_pooling_1d()
layer_average_pooling_2d()

Batch layer_batch_normalization() nn_batch_norm1d() "BatchNorm"
Normalization nn_batch_norm2d()

Activation

layer_activation_relu() nn_relu() "Activation"
layer_activation_leaky_relu() nn_leaky_relu() with "relu", "softplus",
layer_activation_softmax() nn_softplus() "sigmoid", "softmax",
layer_activation() with nn_sigmoid() "tanh", "linear"
"relu", "softplus", nn_softmax()
"sigmoid", "softmax", "tanh" nn_tanh()

Other

layer_input() nn_flatten() "Flatten"
layer_flatten() nn_dropout() "Add"
layer_add() "Concatenate"
layer_concatenate() "Padding"
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_dropout()

Table 2: Summary of the accepted layer types for the packages keras and torch, as well as
the types for the layers provided as a list object.

articles/detailed_overview.html). For the model trained on the bike sharing dataset
in Section 3, the argument save_model_as_list in the convert() function can be used to
exemplify the list structure for a dense model:

R> conv <- convert(model,
+ output_names = c("Number of rented bikes/10,000"),
+ save_model_as_list = TRUE)
R> str(conv$model_as_list, max.level = 3)

List of 7
$ layers :List of 2
..$ Dense_1:List of 8
.. ..$ type : chr "Dense"
.. ..$ weight :Float [1:64, 1:5]
.. ..$ bias :Float [1:64]
.. ..$ activation_name: chr "logistic"
.. ..$ dim_in : int 5

https://bips-hb.github.io/innsight/articles/detailed_overview.html
https://bips-hb.github.io/innsight/articles/detailed_overview.html
https://bips-hb.github.io/innsight/articles/detailed_overview.html

Journal of Statistical Software 43

.. ..$ dim_out : int 64

.. ..$ input_layers : num 0

.. ..$ output_layers : num 2

..$ Dense_2:List of 8

.. ..$ type : chr "Dense"

.. ..$ weight :Float [1:1, 1:64]

.. ..$ bias :Float [1:1]

.. ..$ activation_name: chr "linear"

.. ..$ dim_in : int 64

.. ..$ dim_out : int 1

.. ..$ input_layers : num 1

.. ..$ output_layers : num -1
$ input_dim :List of 1
..$: int 5

$ output_dim :List of 1
..$: int 1

$ input_names :List of 1
..$:List of 1
.. ..$: Factor w/ 5 levels "holiday","workingday",..: 1 2 3 4 5

$ output_names:List of 1
..$:List of 1
.. ..$: Factor w/ 1 level "Number of rented bikes/10,000": 1

$ input_nodes : num 1
$ output_nodes: int 2

C. Advanced visualization
In Sections 3.3 the basic plot() and plot_global() functions have already been explained.
As mentioned there, these functions create either an object of the S4 class ‘innsight_ggplot2’
(if as_plotly = FALSE) or one of the S4 class ‘innsight_plotly’ (if as_plotly = TRUE).
These functions are intended to generalize the usual ggplot2, or plotly objects since, with these
packages, the limits of clear visualization possibilities for models with multiple input layers
are quickly reached. For example, two charts with different scales for each output node or
class need to be generated in a model with images and tabular data as inputs. In this case, a
ggplot2-based or plotly-based plot is generated for each single input instance and output node
and then combined into one large visualization using arrangeGrob() from gridExtra (Auguie
2017) or subplot() from plotly, respectively. In contrast, the S4 class ‘innsight_ggplot2’
behaves as a wrapper for the ggplot2 object for ordinary models with only one input or
output layer. Nevertheless, instances of the ‘innsight_ggplot2’ class can be treated and
modified as regular ggplot2 objects providing a ggplot2-typical usage by adding, for example,
themes, scales, or geometric objects; hence the intermediate step via this class is generally
not noticeable to the user. For example, the following code is valid:

plot(method) +
ggplot2::theme_bw() +
ggplot2::xlab("My new x label") +

44 innsight: Interpreting Deep Neural Networks in R

ggplot2::scale_y_continuous(trans = "pseudo_log") +
ggplot2::geom_text(ggplot2::aes(label = signif(value))

Conveniently, all ggplot2 objects are based on the same data.frame, which is also obtained
via the get_result() method (see Section 3.3), i.e., the corresponding column names can
be used as variables in the ggplot2 objects, as can be seen in the last line of the code chunk
above. For objects of the ‘innsight_plotly’ class, the entire plot is always created using the
plotly::subplot() function. However, this has the consequence that individually assigned
modifications are partially overwritten by the grouping, which is why the usual plotly-typical
adaptations can only be performed after the ‘innsight_plotly’ object has been printed and
returned by the generic print() function for this class, i.e.,

print(plot(method, as_plotly = TRUE)) %>%
plotly::hide_colorbar() %>%
plotly::layout(xaxis = list(title = "My new x label"))

In addition, generic functions for both S4 classes are implemented, which provide a deeper
and more detailed examination of an already created plot through indexing or indexed mod-
ification. Section 4.2 demonstrates the application and illustration of some of these generic
methods using visualized explanations of a model that takes tabular and image data as inputs.
However, for a more detailed description and usage of these classes, please refer to the vignette
“In-depth explanation” (see vignette("detailed_overview", package = "innsight") or
the online documentation at https://bips-hb.github.io/innsight/articles/detailed_
overview.html).

D. Simulation details

D.1. Validity comparison

In order to verify the correctness of the innsight package, a comparative simulation is per-
formed with the reference implementations zennit, captum, innvestigate, deeplift and shap
using convolutional and dense neural networks, for which the basic structure is shown in Fig-
ure 12. The dense architecture starts with an input of 10 input variables, then has 64 units
in the middle hidden layer and either one or five output units. In addition, either ReLU or
hyperbolic tangent is used to consider both unbounded and bounded activation functions.
The convolutional architecture starts with inputs of shape 32 × 32 × 3 and a convolutional
layer with five filters and a kernel size of 5×5, followed by activation with ReLU or hyperbolic
tangent. Models are created with and without a pooling layer, which comes at this point.
Average or maximum pooling layers with a kernel size of 3 × 3 are used. Nevertheless, if no
pooling layer is considered, strides of 2 × 2 are used in the preceding convolutional layer to
get a similar number of units after flattening. A dense layer with one or five output nodes
follows the flattening. Based on these models and normally distributed dataset with 16 input
instances, the following methods are compared:

• Gradient-based: Gradient, Gradient × Input, IntegatedGradient with n = 20 and with
zeros and normally distributed reference values.

https://bips-hb.github.io/innsight/articles/detailed_overview.html
https://bips-hb.github.io/innsight/articles/detailed_overview.html

Journal of Statistical Software 45

Input (∗, 10)

Dense-64

ReLU or Tanh

Dense-1 or Dense-5

Tabular model

Input (∗, 32, 32, 3)

Conv2D-5

ReLU or Tanh

AvgPool or MaxPool

Flatten

Dense-1 or Dense-5

ifno
pooling

Image model

Figure 12: The basic setup of the architectures for the comparison simulation. The expression
“-n” indicates the number n of units for dense and the number of filters for convolutional
layers.

• LRP: simple rule, ε-rule with ε = 0.01, α-β-rule with α = 1 and α = 2.

• DeepLift: Rescale and RevealCancel rule with zeros and normally distributed reference
values each.

• DeepSHAP with 32 baseline values.

In this comparison, the methods SmoothGrad and ExpectedGradient are excluded because
they are based on sampling, and consequently, they would only yield the same results with
the exact same seed and calculation order. Basically, both methods, however, rely on the
gradient calculation of Gradient or IntegratedGradient. Therefore, an agreement with these
methods can also imply the validity of SmoothGrad and ExpectedGradient.

D.2. Runtime comparison

Besides the consistency of the methods’ results, a runtime comparison of basic dense and
convolutional models between innsight and the reference implementations zennit, captum,
innvestigate and deeplift is also performed regarding several aspects: The number of output
nodes (C), hidden units or filters (U), depth of the model (L), batch size (B), and for images
the height/width (W) are varied resulting in the different architectures described in more
detail in Figure 13. In the image model, for the 2D convolutional layer, which is repeated
L − 1 times, a kernel size of 5 × 5 with default strides of 1 × 1 and padding is applied so that
the output shape corresponds to the input shape. But for the subsequent convolutional layer,
a valid padding with strides of W−4

6 × W−4
6 is used, producing an equal number of flattened

values regardless of the height and width W of the input image. Overall, the time comparison
is performed for the following methods, and the average time of 20 replications is calculated:

46 innsight: Interpreting Deep Neural Networks in R

L − 1×

Input (B, 10)

Dense-U

ReLU

Dense-C

Tabular model

×L − 1

Input (B, W, W, 3)

Conv2D-U

ReLU

Conv2D-U

ReLU

Flatten

Dense-C

Image model

Figure 13: Model architectures for the runtime comparison. The hyperparameters for the
number of outputs (C), number of hidden units or filter size (U), number of hidden layers
(L), batch size (B), and the height/width of the input images (W) were varied in each case.

• Gradient-based: Gradient, Gradient × Input, IntegratedGradient with n = 10 and a
normally distributed reference value and ExpectedGradient with 20 normally distributed
reference values and 10 samples.

• LRP: simple rule, ε-rule with ε = 0.01, α-β-rule with α = 2.

• DeepLift: Rescale and RevealCancel rule with a normally distributed reference value.

• DeepSHAP with 20 normally distributed reference values.

In addition to the total time required by a method of one of the considered packages for
generating an explanation, the pure execution time is also measured separately. How exactly
the time measurement of each method of the packages is accomplished can be found in the
reproduction material or in the GitHub repository at https://github.com/bips-hb/JSS_
innsight.

Number of output nodes (C)

In the time analysis regarding the number of output nodes, 20 dense and image models of
each of the architecture shown in Figure 13 are created for C = 1, 2, 4, 6, . . . , 20. The default
values are set for the other hyperparameters, i.e., W = 64, U = 128 for the tabular models,
U = 5 for image models, L = 2, and B = 16. Since innsight is explicitly designed to analyze
multiple output nodes or output classes simultaneously, it is only possible to generate the
results in one run with innsight. All other implementations are forced to perform a for-loop
over the output nodes.

https://github.com/bips-hb/JSS_innsight
https://github.com/bips-hb/JSS_innsight

Journal of Statistical Software 47

Figure 14: Package’s average a) evaluation and b) total runtime in seconds over 20 repetitions
for applying different feature attribution methods on models with a varying number of output
nodes.

Number of layers (L)

In the time analysis regarding the number of hidden layers, 20 dense and image models of
each of the architecture shown in Figure 13 are created for L = 1, 2, 4, 6, . . . , 20. The default
values are set for the other hyperparameters, i.e., C = 1, W = 64, U = 128 for the tabular
models and U = 5 for image models, and B = 16.

Number of hidden units/filters (U)

In the time analysis regarding the number of hidden units for dense models and number of

48 innsight: Interpreting Deep Neural Networks in R

Figure 15: Package’s average a) evaluation and b) total runtime in seconds over 20 repetitions
for applying different feature attribution methods on models with a varying number of hidden
layers.

filters for image models, 20 models each of the architecture shown in Figure 13 are created
for U = 128, 256, 512, 768, . . . , 2560 for the tabular and U = 10, 50, 100, 150, . . . , 500 for the
image model. The default values are set for the other hyperparameters, i.e., C = 1, W = 64,
L = 2, and B = 16.

Batch size (B)

In the time analysis regarding the number of input instances, 20 dense and image models of
each of the architecture shown in Figure 13 are created for B = 32, 64, 128, 192, . . . , 640 for
tabular and B = 16, 32, 64, 96, . . . , 320 for image models. The default values are set for the

Journal of Statistical Software 49

Figure 16: Package’s average a) evaluation and b) total runtime in seconds over 20 repetitions
for applying different feature attribution methods on models with a varying number of hidden
units/filters.

other hyperparameters, i.e., C = 1, W = 64, U = 128 for the tabular models and U = 5 for
image models, and L = 2.

Height and width of the image inputs (W)

In the time analysis regarding the height/width of the image inputs, 20 image models for
each of the architecture shown in Figure 13 are created for W = 16, 32, 64, 96, . . . , 320. The
default values are set for the other hyperparameters, i.e., C = 1, U = 128 for the tabular
models and U = 5 for image models, and L = 2.

50 innsight: Interpreting Deep Neural Networks in R

Figure 17: Package’s average a) evaluation and b) total runtime in seconds over 20 repetitions
for applying different feature attribution methods on models with a varying batch size.

D.3. Additional figures

Results are presented in Figure 14 for a varying number of output nodes layers, in Figure 15 for
a varying number of hidden layers, in Figure 16 for a varying number of hidden units/filters,
in Figure 17 for varying batch size. Results for varying input image size are presented in
Figure 18.

Journal of Statistical Software 51

Figure 18: Package’s average a) evaluation and b) total runtime in seconds over 20 repetitions
for applying different feature attribution methods on models with a varying input image size.

E. LRP with bias for innvestigate

As already observed in Section 5, the results of innsight and innvestigate differ significantly
in the LRP method with the α-β-rule for models with a bias vector. In the following, this
problem is analyzed using a very simple neural network with only one dense layer consisting
of one input variable and one output node. This layer has a weight of w = 1, a bias vector
of b = −0.25, and is applied to the input x = 1. Mathematically, this results in the following

52 innsight: Interpreting Deep Neural Networks in R

input relevance for x:

Rx =
(

α
(xw)+

(xw)+ + (b)+ + β
(xw)−

(xw)− + (b)−

)
ŷ

=
(

α
(1)+

(1)+ + (−0.25)+ + β
(1)−

(1)− + (−0.25)−

)
0.75

= (α · 1 + β · 0) 0.75 = 0.75α.

This yields, for example, in a relevance of Rx = 0.75 for the α-β-rule with α = 1 and Rx = 1.5
for α = 2, which are exactly the values that innsight outputs. The package innvestigate,
on the other hand, outputs relevance 1 and 2, which is probably because the bias vector
b is included in the calculation of the positive part despite the negative sign. This short
comparison can be reproduced with the reproduction material or in our GitHub repository
(https://github.com/bips-hb/JSS_innsight) and is based on version 2.0.2 of innvestigate.

Affiliation:
Niklas Koenen
Leibniz Institute for Prevention Research and Epidemiology – BIPS
Achterstraße 30
28359 Bremen, Germany
and
Faculty of Mathematics and Computer Science
University of Bremen
E-mail: koenen@leibniz-bips.de

Marvin N. Wright
Leibniz Institute for Prevention Research and Epidemiology – BIPS
Achterstraße 30
28359 Bremen, Germany
and
Faculty of Mathematics and Computer Science
University of Bremen, Germany
and
Section of Biostatistics, Department of Public Health
University of Copenhagen, Denmark
E-mail: wright@leibniz-bips.de

Journal of Statistical Software https://www.jstatsoft.org/
published by the Foundation for Open Access Statistics https://www.foastat.org/

November 2024, Volume 111, Issue 8 Submitted: 2023-06-12
doi:10.18637/jss.v111.i08 Accepted: 2024-04-30

https://github.com/bips-hb/JSS_innsight
mailto:koenen@leibniz-bips.de
mailto:wright@leibniz-bips.de
https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v111.i08

	Introduction
	Methodology of feature attribution
	Gradient-based methods
	Layer-wise relevance propagation (LRP)
	Deep learning important features (DeepLift)
	Connection weights
	Choice of the method

	Functionality and usage
	Step 1 – Convert the model
	Step 2 – Apply selected method
	Step 3 – Get and visualize the results
	Generic function getresult()
	Generic function plot()
	Generic function plotglobal()

	Illustrations
	Example 1: Penguin dataset
	Example 2: Melanoma dataset

	Validation and runtime
	Validity comparison
	Runtime comparison

	Summary and discussion
	Details on LRP and DeepLift
	Details on LRP
	Details on DeepLift

	Remarks on accepted models and layers
	Advanced visualization
	Simulation details
	Validity comparison
	Runtime comparison
	Number of output nodes (C)
	Number of layers (L)
	Number of hidden units/filters (U)
	Batch size (B)
	Height and width of the image inputs (W)

	Additional figures

	LRP with bias for innvestigate

