
JSS Journal of Statistical Software
November 2024, Volume 111, Issue 6. doi: 10.18637/jss.v111.i06

pyStoNED: A Python Package for Convex Regression
and Frontier Estimation

Sheng Dai
Zhongnan University of Economics and Law

Yu-Hsueh Fang
National Taiwan University

Chia-Yen Lee
National Taiwan University

Timo Kuosmanen
University of Turku

Abstract

Shape-constrained nonparametric regression is a growing area in econometrics, statis-
tics, operations research, machine learning, and related fields. In the field of productivity
and efficiency analysis, recent developments in multivariate convex regression and re-
lated techniques such as convex quantile regression and convex expectile regression have
bridged the long-standing gap between the conventional deterministic-nonparametric and
stochastic-parametric methods. Unfortunately, the heavy computational burden and the
lack of a powerful, reliable, and fully open-access computational package have slowed
down the diffusion of these advanced estimation techniques to the empirical practice. The
purpose of the Python package pyStoNED is to address this challenge by providing a
freely available and user-friendly tool for multivariate convex regression, convex quantile
regression, convex expectile regression, isotonic regression, stochastic nonparametric en-
velopment of data, and related methods. This paper presents a tutorial of the pyStoNED
package and illustrates its application, focusing on estimating frontier cost and production
functions.

Keywords: multivariate convex regression, nonparametric least squares, frontier estimation,
efficiency analysis, stochastic noise, Python.

1. Introduction

Early contributions to nonparametric regression by Hildreth (1954), Brunk (1955), and Grenan-
der (1956) built exclusively on the convexity and monotonicity constraints of the regression
function. However, extending these approaches from the univariate setting to the more general
multivariate regression proved a vexing challenge. Since the development of an explicit piece-

https://doi.org/10.18637/jss.v111.i06
https://orcid.org/0000-0001-6083-0362
https://orcid.org/0000-0002-2928-3337
https://orcid.org/0000-0001-9232-5387

2 pyStoNED: Convex Regression and Frontier Estimation in Python

wise linear characterization of the multivariate convex nonparametric least squares (CNLS) by
Kuosmanen (2008), convex regression has attracted growing interest in econometrics, statis-
tics, operations research, machine learning, and related fields (e.g., Magnani and Boyd 2009;
Seijo and Sen 2011; Lim and Glynn 2012; Hannah and Dunson 2013; Mazumder, Choud-
hury, Iyengar, and Sen 2019; Bertsimas and Mundru 2021). The recent study by Yagi, Chen,
Johnson, and Kuosmanen (2020) applies insights from convex regression to impose shape
constraints on a local polynomial kernel estimator.
Convexity and monotonicity constraints are particularly relevant in the microeconomic ap-
plications where the duality theory of production and consumption directly implies certain
monotonicity and convexity/concavity properties for many functions of interest (e.g., Afriat
1967, 1972; Varian 1982, 1984). For example, the cost function of a firm must be monotonic
increasing and convex with respect to the input prices. Similar to the fact that a density
function must be non-negative and its definite integral over the entire domain is equal to
one, the cost function must satisfy the monotonicity and convexity properties implied by
the theory, otherwise it is not really a cost function at all. The recent developments in the
convex regression enable researchers to impose the concavity or convexity constraints implied
by the theory to estimate the functions of interest without any parametric functional form
assumptions.
In recent years, convex regression and related techniques have increasingly been utilized in
the estimation of frontier cost and production functions in the field of productivity and effi-
ciency analysis, a multidisciplinary field that is widely applied in such areas as agriculture,
banking, education, environment, health care, energy, manufacturing, transportation, and
utilities (e.g., Kuosmanen, Johnson, and Saastamoinen 2015; Johnson and Kuosmanen 2015).
Traditionally, this field was divided into two competing paradigms: Data envelopment analy-
sis (DEA; Charnes, Cooper, and Rhodes 1978) and stochastic frontier analysis (SFA; Aigner,
Lovell, and Schmidt 1977; Meeusen, Van, and Broeck 1977). DEA is a deterministic, fully non-
parametric approach whereas SFA is a probabilistic, fully parametric approach. To bridge the
gap between these two paradigms, stochastic nonparametric envelopment of data (StoNED;
Kuosmanen 2006; Kuosmanen and Kortelainen 2012) was proposed as a unified framework
that combines the virtues of DEA and SFA, encompassing both approaches as its restricted
special cases.
In practice, convex regression and StoNED are computationally demanding approaches, re-
quiring a user to solve a mathematical programming problem subject to a large number of
linear constraints. For example, the additive CNLS formulation by Kuosmanen (2008) is a
quadratic programming (QP) problem, whereas the multiplicative logarithmic formulation
first considered by Kuosmanen and Kortelainen (2012) requires solving a nonlinear program-
ming (NLP) problem. Therefore, most empirical applications published thus far make use
of commercial QP and NLP solvers, which can be coded using high-level mathematical com-
puting languages such as GAMS (GAMS Development Corporation 2013) or MATLAB (The
Mathworks, Inc. 2021). Johnson and Kuosmanen (2015) present detailed examples of how to
calculate the basic CNLS and StoNED models in MATLAB and GAMS. Recently, the R (R
Core Team 2024) package Benchmarking (Bogetoft and Otto 2010) provides a new function
StoNED() to estimate CNLS/StoNED but limited to the additive CNLS QP formulation.
Similarly, while CVXPY (Diamond and Boyd 2016) and CVXOPT (Andersen, Dahl, and
Vandenberghe 2023) can be applied to solve CNLS, they are also restricted to the additive
model only.

Journal of Statistical Software 3

Model pyStoNED GAMS MATLAB Benchmarking
Convex regression

Additive CNLS ✓ ✓ ✓ ✓
Multiplicative CNLS ✓ ✓
Corrected CNLS ✓
CQR/CER ✓
CNLS with z variables ✓ ✓ ✓
CQR/CER with z variables ✓
CNLS with multiple outputs ✓ ✓
CQR/CER with multiple outputs ✓
Isotonic CNLS ✓
Isotonic CQR/CER ✓
CNLS-G algorithm for CNLS ✓ ✓ ✓
CNLS-G algorithm for CQR/CER ✓

Frontier estimation
StoNED with method of moments ✓ ✓ ✓ ✓
StoNED with quasi-likelihood ✓ ✓ ✓ ✓
StoNED with kernel deconvolution ✓

Plotting
One-input and one-output ✓
Two-input and one-output ✓

Table 1: Functionality comparison of different software packages.

The lack of a comprehensive, powerful, reliable, and fully open-access computational package
for the CNLS, StoNED, and related methods has slowed down the diffusion of these techniques
to the empirical practice, which still heavily relies on the simple DEA and SFA techniques
that either assume away noise or rely on restrictive functional form assumptions. To lower
the barrier for applied researchers and practitioners to apply more advanced techniques that
help to relax unnecessarily restrictive assumptions, the pyStoNED package for Python (Van
Rossum et al. 2021) was first introduced in April 2020 to prove a freely available and user-
friendly tool for the multivariate CNLS and StoNED methods.
The pyStoNED package not only translates existing codes or tools to Python, but also provides
many functionalities and modules that are not available in any other package or published
code (see Table 1). Its latest edition also includes modules for convex quantile regression
(CQR), convex expectile regression (CER), isotonic regression, penalized convex regression,
and graphical illustration. It also facilitates efficiency measurement using the conventional
DEA and free disposable hull (FDH) approaches. pyStoNED allows users to estimate these
models in an open-access environment under a GPL-3.0 License. The project, including source
code, internal data, notebook tutorials, and web documentation, is publicly available on the
GitHub repository https://github.com/ds2010/pyStoNED.
This paper presents a tutorial of the pyStoNED package, briefly reviews the alternative
models supported, and illustrates its application. We focus on the estimation of frontier
cost and production functions, which currently forms the main application area of these
techniques, emphasizing that the various modules in pyStoNED are directly applicable for

https://github.com/ds2010/pyStoNED

4 pyStoNED: Convex Regression and Frontier Estimation in Python

semi/nonparametric regression analysis in any other contexts as well (see, e.g., traffic flow
modeling by Kriuchkov and Kuosmanen 2023). We emphasize that the pyStoNED package is
an ongoing development by the users for the users: Further model specifications and method-
ological advances will be implemented and added to the pyStoNED package continuously.
The rest of this paper is organized as follows. Section 2 describes the basic setups of the pyS-
toNED package, and Section 3 introduces the structures of example data and the attributes
of different models. Section 4 describes the first step of the StoNED model (e.g., CNLS es-
timation) to estimate the conditional mean and some other commonly used extensions. The
Python code for the CNLS estimator and these extensions are included. Section 5 demon-
strates the rest of the steps of the StoNED model and related codes. Section 6 illustrates
how to implement the CNLS-G algorithm to calculate the CNLS estimator in pyStoNED.
The plot of the estimated function can be found in Section 7. Section 8 concludes this pa-
per. The list of acronyms is presented in Appendix A. Appendices B, C and D present a
comparison of residuals for the same additive CNLS model solved by pyStoNED, GAMS and
R/Benchmarking, respectively. Appendix E briefly describes the variables included in the
four internal datasets.

2. Setup

2.1. Installation

The pyStoNED package supports Python 3.8 or later versions on Linux, macOS, and Windows,
and is freely available on the Python package index (PyPI) at https://pypi.org/project/
pystoned. The package can be installed either from PyPI or from GitHub using:1

1. pip install pystoned

2. pip install -U git+https://github.com/ds2010/pyStoNED

The pyStoNED package is built based on a few existing dependencies. It is worth highlighting
that Pyomo (Bynum et al. 2021) is a full-featured high-level programming language that
provides a rich set of supporting libraries to program CNLS, StoNED, and various extensions.
The other dependencies are also essential for pyStoNED. Specifically, NumPy (Harris et al.
2020) and pandas (McKinney 2010) are used to import input-output data, manage data, and
export the estimation results. SciPy (Virtanen et al. 2020) provides the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm to optimize the quasi-likelihood function. Matplotlib
(Hunter 2007) is associated with the graphical illustration of the estimated functions.

2.2. Solvers

All models supported by pyStoNED are either additive or multiplicative models, depending
on the specification of the error term. From the optimization perspective, the additive models
are usually stated as QP problems except for the CQR model, which is a linear programming
(LP) problem, whereas all multiplicative models are NLP problems.

1Python for Non-Programmers is recommended for beginners to learn and set up their Python environment,
https://wiki.python.org/moin/BeginnersGuide/NonProgrammers.

https://pypi.org/project/pystoned
https://pypi.org/project/pystoned
https://wiki.python.org/moin/BeginnersGuide/NonProgrammers

Journal of Statistical Software 5

To solve the relevant QP or NLP problems, external off-the-shelf solvers are required. In our
experience, CPLEX (CPLEX, IBM ILOG 2009) and MOSEK (MOSEK ApS 2021) provide
reliable and convenient platforms for solving the QP and LP problems in the present context.
The NLP problem can be efficiently solved by MINOS (Murtagh and Saunders 2003) or
KNITRO (Byrd, Nocedal, and Waltz 2006). With the help of Pyomo, all models supported
by pyStoNED are computable by these off-the-shelf solvers.

Remote solver

pyStoNED interfaces with Pyomo to access the network-enabled optimization system (NEOS)
server that freely provides a large number of academic solvers for solving the additive or mul-
tiplicative models remotely.2 In this case, there is no need to install solvers and corresponding
licenses on local machines. Here we have a model estimated by the remote solver

>>> model.optimize(email = "email@address")

Replace the argument email@address with your email address.3 By default, the additive and
multiplicative models will be solved by MOSEK and KNITRO, respectively. In addition, the
users can check all the available solvers provided in NEOS via get_remote_solvers() and
then select their preferred solver (e.g., solver = "minos").

>>> from pystoned.utils.tools import get_remote_solvers
>>> print(get_remote_solvers())

['minto', 'couenne', 'lgo', 'minos', 'filmint', 'cbc', 'sbb', 'ipopt',
'bonmin', 'lancelot', 'ooqp', 'knitro', 'miles', 'snopt', 'loqo',
'path', 'dicopt', 'l-bfgs-b', 'baron', 'cplex', 'raposa', 'pathnlp',
'octeract', 'scip', 'conopt', 'filter', 'nlpec', 'xpress', 'mosek',
'minlp', 'gams-ampl', 'lindoglobal', 'alphaecp']

>>> model.optimize(email = "email@address", solver = 'minos')

The value of the option in solver could be any possible solver, which depends on the specific
optimization problem and its availability. That is, there are a lot of different choices (see
Table 2 for the commonly used setting), but the performance of solvers varies depending on
the application.

Local solver

Pyomo also provides an application programming interface for pyStoNED to import the local
solvers. In the pyStoNED package, MOSEK is attached as the internal dependency to solve
the additive model. Note that the academic license for MOSEK is required to be installed; see
The tutorial of MOSEK license installation is available at more tutorial on this installation.4
After that, we can use the following command to calculate the additive models.

2NEOS server: State-of-the-art solvers for numerical optimization, https://neos-server.org/neos.
3As of January 2021, the NOES server requires a valid email address in all submissions; see NEOS Server

FAQ https://neos-guide.org/content/FAQ#email.
4https://pystoned.readthedocs.io/en/latest/install/index.html#solver.

https://neos-server.org/neos
https://neos-guide.org/content/FAQ#email
https://pystoned.readthedocs.io/en/latest/install/index.html#solver

6 pyStoNED: Convex Regression and Frontier Estimation in Python

solver = Remote Local QP NLP Recommended
'cplex' ✓ ✓
'gurobi' ✓ ✓
'knitro' ✓ ✓ ✓
'mosek' ✓ ✓ ✓ ✓
'minos' ✓ ✓

Table 2: The commonly used option in solver.

>>> model.optimize(OPT_LOCAL)

The parameter OPT_LOCAL is added in the function .optimize(...) to indicate that the
model is computed locally. By default, the additive model is solved by MOSEK. Furthermore,
we can check if other solvers are preinstalled in the local environment. For example, in the
following case, CPLEX has been installed on the machine using an academic license, and
therefore, we can utilize it to solve the additive model.

>>> from pystoned.utils.tools import check_local_solver
>>> print(check_local_solver("cplex"))

True

>>> model.optimize(OPT_LOCAL, solver = 'cplex')

Overall, the remote solver through the NEOS server is highly recommended for all light
computing jobs with no more than 500 observations. The local solver for calculating the
multiplicative model will be supported in pyStoNED when a license for an appropriate NLP
solver is available.

3. Data structures and dataset

3.1. Data structures
Data pre-processing is the first step to using the developed package, and thus, the user must
prepare the dataset based on the data structures of pyStoNED. In all CNLS/StoNED mod-
els, two common vectors or matrix are required: Input variables xi and output variables yi

for observed decision making unit (DMU) i = 1, 2, . . . , n. For a model considering opera-
tional conditions and practices, contextual variables zi can be used. The directional distance
function (DDF) based models handle the multi-dimensional inputs and outputs with given
directional vectors gx and gy, respectively. The DDF based models also consider undesired
outputs bi and its directional vector gb. Table 3 summarizes the data structures used in all
the CNLS/StoNED models.

3.2. Internal data
To illustrate the application of the pyStoNED package, four commonly used datasets are
attached.

Journal of Statistical Software 7

Symbol Model Description
x All models Input variables
y All models Output variables
z Contextual based models Contextual variables
b DDF based models Undesirable outputs
gx DDF based models The direction of inputs
gy DDF based models The direction of outputs
gb DDF based models The direction of undesirable outputs

Table 3: Data structures.

1. Finnish electricity distribution firms (load_Finnish_electricity_firm).

The data of Finnish electricity distribution firms are collected from Kuosmanen (2012)
and Kuosmanen, Saastamoinen, and Sipiläinen (2013). The data consist of seven vari-
ables: Three different expenditures are used as inputs (i.e., OPEX, CAPEX, and TO-
TEX);5 Energy, Length, and Customers are considered as outputs; Further, PerUndGr
is denoted as the contextual variable. Table 5 presents the description of this dataset.

2. GHG abatement cost of OECD countries (load_GHG_abatement_cost).

The data on the greenhouse gas (GHG) abatement cost of OECD countries are provided
by Kuosmanen, Zhou, and Dai (2020). The data contain two input variables (i.e., CPNK
and HRSN), one good output variable (i.e., VALK), and one undesirable output variable
(i.e., GHG) (see Table 6).

3. Data provided with Tim Coelli’s Frontier 4.1 (load_Tim_Coelli_frontier).

The classic 60-firm dataset attached in Frontier 4.1 (Coelli 1996) includes two input
variables (i.e., capital and labour) and one output variable (i.e., output) (see Table 7).

4. Rice Production in the Philippines (load_Philipines_rice_production).

The Rice Production in the Philippines dataset collected from Coelli, Rao, O’Donnell,
and Battese (2005) consists of 17 different variables. The different variables can be
organized into diversified combinations for target models (see Table 8).

These datasets can be imported through the module dataset of pyStoNED. The variables in
Tables 5–8 are used as parameters of dataset to upload the input data. The following example
demonstrates how to upload the input-output data of the Finnish electricity distribution firms
dataset. We first import the dataset module using the function load_Finnish_electricity_firm
(Line 1) and define the x and y according to the imported dataset (Line 2).6 We then check
the input and output data using the function print().

5Note that TOTEX = OPEX + CAPEX. It is possible to use TOTEX as an aggregate input or model
OPEX and CAPEX as two separate input variables.

6In addition to the presented example, we can download other datasets using the corresponding dataset
module, e.g., downloading the GHG data: from pystoned.dataset import load_GHG_abatement_cost.

8 pyStoNED: Convex Regression and Frontier Estimation in Python

>>> from pystoned.dataset import load_Finnish_electricity_firm
>>> data = load_Finnish_electricity_firm(x_select = ['Energy', 'Length',
... 'Customers'], y_select = ['TOTEX'], z_select = ['PerUndGr'])

>>> print(data.x)

[[75 878 4933]
...

[105 575 9084]]

>>> print(data.y)

[[1612]
...

[1776]]

>>> print(data.z)

[[0.11]
...

[0.59]]

The parameters x_select, y_select, and z_select in load_Finnish_electricity_firm(
x_select, y_select, z_select) are used to select the inputs, outputs, and contextual
variables, respectively. Note that the parameters in the module dataset can be defined
according to the user’s purpose. For example, if the target model only consists of two inputs
(e.g., Energy and Customers) and one output (e.g., TOTEX), then Line 2 should be

>>> data = load_Finnish_electricity_firm(x_select = ['Energy', 'Customers'],
... y_select = ['TOTEX'])

3.3. External data

In practice, the user’s own dataset is the main input of pyStoNED. We present an example to
show how to import the user’s own data. Assume that Table 4 is the input-output data stored
in an Excel file (e.g., table1.xlsx), the following code utilizes pandas to read the dataset
from table1.xlsx and organize the data with NumPy. Input x is a matrix, and output y is
an array.
In the following example, we first import the packages NumPy and pandas in Lines 1 and 2.
Line 3 is used to read the table.xlsx file from the local disk, and the rest of the lines define
the input and output variables. See more examples in Section 6.

>>> import numpy as np
>>> import pandas as pd
>>> df = pd.read_excel("table1.xlsx")
>>> y = df['output']

Journal of Statistical Software 9

id output input1 input2
1 120 10 55
2 80 30 49
...

...
...

...
100 90 25 72

Table 4: An example of user’s own dataset.

>>> x1 = df['input1']
>>> x1 = np.asmatrix(x1).T
>>> x2 = df['input2']
>>> x2 = np.asmatrix(x2).T
>>> x = np.concatenate((x1, x2), axis = 1)

>>> print(y)

0 120
...
99 90

>>> print(x)

[[10 55]
...
[25 72]]

4. Shape-constrained nonparametric regression
In this section, we review the commonly seen shape-constrained nonparametric regression
models supported by pyStoNED and then illustrate how they can be solved and implemented
in the developed package.7

Consider a standard multivariate, cross-sectional model in production economics

yi = f(xi) + εi (1)

where yi is the output of the DMU i, f : Rm
+ → R+ is the production (cost) function

that characterizes the production (cost) technology, and xi = (xi1, xi2, . . . , xim)′ denotes the
input vector of unit i. To estimate the function f , one could resort to the parametric and
nonparametric methods or neoclassical and frontier models, which are classified based on the
specifications of f and error term ε (see Kuosmanen and Johnson 2010 for a review). In
this paper, we assume certain axiomatic properties (e.g., monotonicity, concavity) instead of

7In addition, pyStoNED can also be used to solve other deterministic frontier models (e.g., DEA and FDH).
See more DEA and FDH tutorials at https://pystoned.readthedocs.io/.

https://pystoned.readthedocs.io/

10 pyStoNED: Convex Regression and Frontier Estimation in Python

prespecified functional form for the function f and apply the following nonparametric methods
to estimate the function f .

4.1. Convex nonparametric least squares

Additive CNLS model

Hildreth (1954) was the first to consider the nonparametric regression subject to monotonicity
and concavity constraints in the case of a single input variable x. Afriat (1972) also proposes
methods to impose convexity on estimating a production function. Kuosmanen (2008) extends
Hildreth’s approach to the multivariate setting with the multidimensional inputs x, and refers
to it as the CNLS. CNLS builds upon the assumption that the production function f belongs
to a family of continuous, monotonic increasing, and globally concave (convex) functions,
imposing the same production axioms as standard DEA (see further discussion in Kuosmanen
and Johnson 2010). The two additive multivariate CNLS formulations are defined as

• Production function (i.e., regression function f is concave and increasing).

min
α,β,ε

n∑
i=1

ε2
i (2)

s.t. yi = αi + β
′
ixi + εi ∀i

αi + β
′
ixi ≤ αj + β

′
jxi ∀i, j, and i ̸= j

βi ≥ 0 ∀i

• Cost function (i.e., regression function f is convex and increasing).

min
α,β,ε

n∑
i=1

ε2
i (3)

s.t. yi = αi + β
′
ixi + εi ∀i

αi + β
′
ixi ≥ αj + β

′
jxi ∀i, j, and i ̸= j

βi ≥ 0 ∀i

where αi and βi define the intercept and slope parameters of tangent hyperplanes that char-
acterize the estimated piecewise linear frontier, respectively. The first constraint can be
interpreted as a multivariate regression equation, the second constraint imposes convexity
(concavity), and the third constraint imposes monotonicity. Problems (2) and (3) allow for
variable returns to scale (VRS), and other specifications of returns to scale can be imposed
by an additional constraint on the intercept term αi. If αi = 0, problems (2) and (3) impose
constant returns to scale (CRS). Note that both (2) and (3) are QP problems and hence can
be solved by MOSEK or CPLEX.
The basic additive CNLS model can be estimated by pyStoNED using the module CNLS(y, x,
...) with the contextual variable z parameter set to None (default) and the type of model
cet parameter set to CET_ADDI (additive model; default). The type of estimated function
can be classified by setting the fun parameter to FUN_PROD (production function; default) or

Journal of Statistical Software 11

FUN_COST (cost function). The returns to scale assumption can be specified by setting the
rts parameter to RTS_VRS (VRS model; default) or RTS_CRS (CRS model). The estimated
coefficients (e.g., α̂i) can be displayed on the screen directly using .display_alpha() or
stored in the memory using .get_alpha().
We first present an example to solve the VRS production model.

>>> from pystoned import CNLS
>>> from pystoned.constant import CET_ADDI, FUN_PROD, OPT_LOCAL, RTS_VRS
>>> from pystoned.dataset import load_Finnish_electricity_firm
>>> data = load_Finnish_electricity_firm(x_select = ['OPEX', 'CAPEX'],
... y_select = ['Energy'])
>>> model = CNLS.CNLS(y = data.y, x = data.x, z = None,
... cet = CET_ADDI, fun = FUN_PROD, rts = RTS_VRS)
>>> model.optimize(OPT_LOCAL)
>>> model.display_alpha()
>>> model.display_beta()
>>> model.display_residual()
>>> alpha = model.get_alpha()
>>> beta = model.get_beta()
>>> residuals = model.get_residual()

alpha : alpha
Size=89, Index=I
Key : Lower : Value : Upper : Fixed : Stale : Domain

0 : None : -22.93587954013432 : None : False : False : Reals
...

88 : None : -22.8603341852995 : None : False : False : Reals

beta : beta
Size=178, Index=beta_index
Key : Lower : Value : Upper : Fixed : Stale : Domain
(0, 0) : 0.0 : 0.13585804486689262: None : False : False : Reals
...

(88, 1) : 0.0 : 0.011417186366215866: None : False : False : Reals

epsilon : residual
Size=89, Index=I
Key : Lower : Value : Upper : Fixed : Stale : Domain

0 : None : -2.802404436894662 : None : False : False : Reals
...

88 : None : -0.8851559509243998 : None : False : False : Reals

In this example, Lines 1–3 import the CNLS module, parameter setting modules, and dataset
module. Line 4 defines the input and output variables using the Finnish electricity distribution
firm data. Lines 5–6 define the CNLS production model with a user-defined name (e.g., model)
and solve the production model using the local MOSEK solver. Lines 7–9 directly display the

12 pyStoNED: Convex Regression and Frontier Estimation in Python

estimated coefficients (i.e., α̂i, β̂i, and ε̂i) on screen, and Lines 10–12 store the estimates in
memory with a special variable name (e.g., alpha). See the online supplementary zip file for
all the replicated scripts and results.
Appendix B presents the full estimated CNLS residuals that are equivalent to those in GAMS
(cf. Appendix C). Note that the estimated alpha and beta coefficients in pyStoNED may be
slightly different from those in GAMS because the optimal solution is generally not unique
in terms of those coefficients, and hence there exist alternate optima (Kuosmanen 2008; Dai
2021).8 The estimated residuals by Benchmarking are reported in Appendix D. The scatter
plot in Figure 3 shows that the estimated residuals by pyStoNED and Benchmarking are
similar, but not exactly the same. Further, the sum of squared residuals of Benchmarking
is 0.17% higher than that of pyStoNED and GAMS, suggesting that Benchmarking fails to
converge to the global optimum.

Multiplicative CNLS model

The Cobb-Douglas and translog functions are commonly used functional forms for the function
f , where the error term ε affects output y in a multiplicative fashion. Thus, we next consider
a multiplicative specification in the present nonparametric setting. Under the multiplicative
error structure, model (1) is rephrased as

yi = f(xi) exp (εi) (4)

Applying the log-transformation to (4), we have

ln yi = ln f(xi) + εi (5)

To estimate (5), we reformulate the additive production model (2) and obtain the following
log-transformed CNLS formulation.

min
α,β,ϕ,ε

n∑
i=1

ε2
i (6)

s.t. ln yi = ln(ϕi + 1) + εi ∀i

ϕi = αi + β
′
ixi − 1 ∀i

αi + β
′
ixi ≤ αj + β

′
jxi ∀i, j, and i ̸= j

βi ≥ 0 ∀i

where ϕi +1 is the CNLS estimator of E[yi | xi]. The value of one is added here to ensure that
the computational algorithms do not take the logarithm of zero. The first equality can be
interpreted as the log-transformed regression equation (using the natural logarithm function
ln(·)). The rest of the constraints are the same as those of the additive models. The use of ϕi

allows the estimation of a multiplicative relationship between output and input while assuring
convexity of the production possibility set in the original input-output space. Note that one
could not apply the log transformation directly to the input data x due to the fact that

8The additive CNLS model can also be solved using other convex optimization tools such as CVXPY or
CVXOPT. To apply these tools, a user must create QP matrices manually and then plug them into an off-the-
shelf solver. For the interesting readers, see an additional example where the additive CNLS model is solved
by CVXOPT, https://github.com/ds2010/CNLS-Python.

https://github.com/ds2010/CNLS-Python

Journal of Statistical Software 13

the piece-wise log-linear frontier does not satisfy the axiomatic property (i.e., concavity or
convexity) of the function f . Since the multiplicative model (6) includes nonlinear constraints,
we need to use NLP solvers such as MINOS and KNITRO.
We next demonstrate the estimation of multiplicative cost function under VRS and CRS. Let
the type of model cet parameter be CET_MULT (multiplicative model). Note that the following
NLP models are remotely solved by KNITRO via the NEOS server.

>>> from pystoned import CNLS
>>> from pystoned.constant import CET_MULT, FUN_COST, RTS_VRS, RTS_CRS
>>> from pystoned.dataset import load_Finnish_electricity_firm
>>> data = load_Finnish_electricity_firm(x_select = ['Energy', 'Length',
... 'Customers'], y_select = ['TOTEX'])
>>> model1 = CNLS.CNLS(y = data.y, x = data.x, z = None,
... cet = CET_MULT, fun = FUN_COST, rts = RTS_VRS)
>>> model1.optimize('email@address')
>>> model2 = CNLS.CNLS(y = data.y, x = data.x, z = None,
... cet = CET_MULT, fun = FUN_COST, rts = RTS_CRS)
>>> model2.optimize('email@address')
>>> model1.display_residual()
>>> model2.display_residual()

4.2. Convex quantile and expectile regression

Quantile regression estimates the conditional median or other quantiles of the response vari-
able (Koenker and Bassett 1978; Koenker 2005), whereas the CNLS estimator focuses on the
conditional mean E[yi | xi]. In this section, we extend CNLS to CQR (Wang, Wang, Dang,
and Ge 2014) and CER (Kuosmanen et al. 2015), see Kuosmanen and Zhou 2021 and Dai,
Kuosmanen, and Zhou 2023a for further elaboration of both CQR and CER. Note that both
quantile and expectile estimators are generally more robust to outliers and heteroscedasticity
than the conditional mean.

Convex quantile regression

Given a pre-specified quantile τ ∈ (0, 1), the CQR model is formulated as

min
α,β,ε+,ε−

τ
n∑

i=1
ε+

i + (1 − τ)
n∑

i=1
ε−

i (7)

s.t. yi = αi + β
′
ixi + ε+

i − ε−
i ∀i

αi + β
′
ixi ≤ αj + β

′
jxi ∀i, j, and i ̸= j

βi ≥ 0 ∀i

ε+
i ≥ 0, ε−

i ≥ 0 ∀i

where the quantile τ splits the observations 100 · τ% above and 100 · (1 − τ)% below, and
ε+

i and ε−
i denote the two non-negative components. The objective function in (7) minimizes

the asymmetric absolute deviations from the function rather than the symmetric quadratic
deviations. The last set of constraints is the sign constraint of the error terms. The other

14 pyStoNED: Convex Regression and Frontier Estimation in Python

constraints are the same as those of the CNLS problem (2). See Dai (2021), Dai et al. (2023a),
and Dai, Kuosmanen, and Zhou (2023b) for more recent developments on CQR models.

Convex expectile regression

Convex quantile regression (7) may suffer from non-uniqueness due to that problem (7) is
an LP problem (Kuosmanen et al. 2015). To address this problem, Kuosmanen et al. (2015)
propose a CER approach, where a quadratic objective function is used to ensure unique
estimates of the quantile functions. Consider the following QP problem

min
α,β,ε+,ε−

τ̃
n∑

i=1
(ε+

i)2 + (1 − τ̃)
n∑

i=1
(ε−

i)2 (8)

s.t. yi = αi + β
′
ixi + ε+

i − ε−
i ∀i

αi + β
′
ixi ≤ αj + β

′
jxi ∀i, j, and i ̸= j

βi ≥ 0 ∀i

ε+
i ≥ 0, ε−

i ≥ 0 ∀i

where the expectile τ̃ ∈ (0, 1) is not the same as the quantile τ , but it can be converted from/to
the quantile τ (Dai et al. 2023a). See Dai, Zhou, and Kuosmanen (2020), Kuosmanen et al.
(2020), and Kuosmanen and Zhou (2021) for the empirical applications of CER.
The alternative module CQER includes the function CQR(y, x, ...) that is designed to solve
the CQR problem and the function CER(y, x, ...) to solve the CER problem. Therefore,
we use the CQER.CQR() and CQER.CER() to define the CQR problem (see, e.g., Line 5 in
the following example) and the CER problem, respectively. The other parameters’ settings
are similar to those in module CNLS(). To display the estimated ε+

i and ε−
i , the functions

.display_positive_residual() and .display_negative_residual() are designed in the
new module CQER. The following additive CQR model is presented to estimate a quantile
production function.

>>> from pystoned import CQER
>>> from pystoned.constant import CET_ADDI, FUN_PROD, OPT_LOCAL, RTS_VRS
>>> from pystoned import dataset as dataset
>>> data = dataset.load_GHG_abatement_cost(x_select = ['HRSN', 'CPNK',
... 'GHG'], y_select = ['VALK'])
>>> model = CQER.CQR(y = data.y, x = data.x, tau = 0.5, z = None,
... cet = CET_ADDI, fun = FUN_PROD, rts = RTS_VRS)
>>> model.optimize(OPT_LOCAL)
>>> model.display_alpha()
>>> model.display_beta()
>>> model.display_positive_residual()
>>> model.display_negative_residual()

4.3. Contextual variables

A firm’s productive performance to operate efficiently typically depends on operational con-
ditions and practices, such as the production environment and firm-specific characteristics

Journal of Statistical Software 15

(i.e., technology selection and managerial practices). Johnson and Kuosmanen (2011, 2012)
refer to both variables that characterize operational conditions and practices as contextual
variables.

• Contextual variables are often, though not always, external factors that are beyond the
control of firms.

– Examples: Competition, regulation, weather, location;
– Policymakers may influence the operating environment.

• Contextual variables can also be internal factors.

– Examples: Management practices, ownership;
– A better understanding of the internal factors can help the firm improve perfor-

mance.

By introducing the contextual variables zi = (zi1, zi2, . . . , zir)′ , the multiplicative model (5)
is reformulated as a partial log-linear model to take the operational conditions and practices
into account.

ln yi = ln f(xi) + λ
′
zi + εi

where parameter vector λ = (λ1, . . . , λr) represents the marginal effects of contextual variables
on output. All other variables maintain their previous definitions. Similarly, we can also
introduce the contextual variables to the additive model. In this section, we consider the
multiplicative production model as our starting point.

CNLS with z variables

Following Johnson and Kuosmanen (2011), we incorporate the contextual variables in the
multiplicative CNLS model and redefine it as follows

min
α,β,λ,ε

n∑
i=1

ε2
i (9)

s.t. ln yi = ln(ϕi + 1) + λ
′
zi + εi ∀i

ϕi = αi + β
′
ixi − 1 ∀i

αi + β
′
ixi ≤ αj + β

′
jxi ∀i, j, and i ̸= j

βi ≥ 0 ∀i

Denote by λ̂ the coefficients of the contextual variables obtained as the optimal solution to the
above nonlinear problem. Johnson and Kuosmanen (2011) examine the statistical properties
of this estimator in detail, showing its unbiasedness, consistency, and asymptotic efficiency.
The contextual variables z have been integrated into the modules CNLS() and CQER(). Fur-
ther, the function .display_lamda() is used to display the marginal effect of contextual
variables. In the following example, we estimate a log-transformed cost function model with
z variable. Note that the model specification is assumed to be CRS in this example.

16 pyStoNED: Convex Regression and Frontier Estimation in Python

>>> from pystoned import CNLS
>>> from pystoned.constant import CET_MULT, FUN_COST, RTS_CRS
>>> from pystoned.dataset import load_Finnish_electricity_firm
>>> data = load_Finnish_electricity_firm(x_select = ['Energy', 'Length',
... 'Customers'], y_select = ['TOTEX'], z_select = ['PerUndGr'])
>>> model = CNLS.CNLS(y = data.y, x = data.x, z = data.z,
... cet = CET_MULT, fun = FUN_COST, rts = RTS_CRS)
>>> model.optimize('email@address')
>>> model.display_lamda()

CER with z variables

Following Kuosmanen, Tan, and Dai (2023), we can incorporate contextual variables in the
multiplicative CER estimation. The reformulation of the CER model is

min
α,β,λ,ε+,ε−

τ̃
n∑

i=1
(ε+

i)2 + (1 − τ̃)
n∑

i=1
(ε−

i)2 (10)

s.t. ln yi = ln(ϕi + 1) + λ
′
zi + ε+

i − ε−
i ∀i

ϕi = αi + β
′
ixi − 1 ∀i

αi + β
′
ixi ≤ αj + β

′
jxi ∀i, j, and i ̸= j

βi ≥ 0 ∀i

ε+
i ≥ 0, ε−

i ≥ 0 ∀i

The following code is prepared to solve the CER model with z-variable. We now use the
function CQER.CER(y, x, ...) to model CER with z-variable and assume expectile τ̃ = 0.5.
In this example, we also estimate a CRS cost function.

>>> from pystoned import CQER
>>> from pystoned.constant import CET_MULT, FUN_COST, RTS_CRS
>>> from pystoned.dataset import load_Finnish_electricity_firm
>>> data = load_Finnish_electricity_firm(x_select = ['Energy', 'Length',
... 'Customers'], y_select = ['TOTEX'], z_select = ['PerUndGr'])
>>> model = CQER.CER(y = data.y, x = data.x, z = data.z, tau = 0.5,
... cet = CET_MULT, fun = FUN_COST, rts = RTS_CRS)
>>> model.optimize('email@address')
>>> model.display_lamda()

4.4. Multiple outputs

CNLS with multiple outputs

The convex regression approaches reviewed above have been presented within the single out-
put, multiple input framework. This section describes the CNLS/CQR/CER approaches that
use the directional distance function (DDF) to model multiple-input multiple-output data.

Journal of Statistical Software 17

The DDF is a functional representation of the technology, defined as (Chambers, Chung, and
Färe 1996, 1998)

D⃗T (x, y, gx, gy) = sup{θ | (x − θgx, y + θgy) ∈ T},

where (gx, gy) is a direction vector, and T = {(x, y) | x can produce y} is the production
possibility set. The DDF must always satisfy translation property and homogeneity of degree
−1 in the direction vector, and it inherits the monotonicity and convexity properties of T .
In the stochastic setting, the data generating process satisfies the assumptions introduced by
Kuosmanen and Johnson (2017), then the value of the DDF is equal to the random error term

D⃗T (x, y, gx, gy) = εi, ∀i.

To estimate DDF empirically, we solve the following QP problem

min
α,β,γ,ε

n∑
i=1

ε2
i (11)

s.t. γ
′
iyi = αi + β

′
ixi − εi ∀i

αi + β
′
ixi − γ

′
iyi ≤ αj + β

′
jxi − γ

′
jyi ∀i, j, and i ̸= j

γ
′
ig

y + β
′
ig

x = 1 ∀i

βi ≥ 0, γi ≥ 0 ∀i

In addition to the same notations as the CNLS estimator, we also introduce firm-specific
coefficients γi that represent marginal effects of outputs to the DDF.
The first constraint defines the distance to the boundary of T as a linear function of inputs and
outputs. The linear approximation is based on the supporting hyperplanes of T analogous to
CNLS (2). The second set of constraints is the system of Afriat inequalities that impose global
concavity. The third constraint is a normalization constraint that ensures the translation
property. The last two constraints impose monotonicity in all inputs and outputs.
To perform the DDF models, pyStoNED includes the module CNLSDDF(), which also allows
one to include undesirable outputs denoted by b. We present the CNLS-DDF models in the fol-
lowing two examples with and without undesirable outputs. To apply the module CNLSDDF(y,
x, ...), we have to pre-define the directional vector for the parameters gx, gb (None; de-
fault), and gy (see Line 5). The module reports the estimates using .display_alpha(),
.display_beta(), .display_gamma(), and .display_residual().

>>> from pystoned import CNLSDDF
>>> from pystoned.constant import FUN_PROD, OPT_LOCAL
>>> from pystoned.dataset import load_Finnish_electricity_firm
>>> data = load_Finnish_electricity_firm(x_select = ['OPEX', 'CAPEX'],
... y_select = ['Energy','Length','Customers'])
>>> model = CNLSDDF.CNLSDDF(y = data.y, x = data.x, b = None,
... fun = FUN_PROD, gx = [1.0, 0.0], gb = None, gy = [0.0, 0.0, 0.0])
>>> model.optimize(OPT_LOCAL)
>>> model.display_alpha()
>>> model.display_beta()
>>> model.display_gamma()
>>> model.display_residual()

18 pyStoNED: Convex Regression and Frontier Estimation in Python

When considering undesirable outputs b, CNLS-DDF (11) can be reformulated as

min
α,β,γ,δ,ε

n∑
i=1

ε2
i

s.t. γ
′
iyi − δ

′
ibi = αi + β

′
ixi − εi ∀i

αi + β
′
ixi + δ

′
ibi − γ

′
iyi ≤ αj + β

′
jxi + δ

′
jbi − γ

′
jyi ∀i, j, and i ̸= j

γ
′
ig

y + β
′
ig

x + δ
′
ig

b = 1 ∀i

βi ≥ 0, γi ≥ 0 ∀i

where the coefficients δi denote marginal effects of undesirable outputs to the DDF.
We can also model the undesirable outputs (b) in the framework of DDF via the module
CNLSDDF(y, x, b, ...) (Line 5; cf., the example above). The estimated coefficients can be
displayed by using the function .display_delta().

>>> from pystoned import CNLSDDF
>>> from pystoned.constant import FUN_PROD, OPT_LOCAL
>>> from pystoned import dataset as dataset
>>> data = dataset.load_GHG_abatement_cost()
>>> model = CNLSDDF.CNLSDDF(y = data.y, x = data.x, b = data.b,
... fun = FUN_PROD, gx = [0.0, 0.0], gb = -1.0, gy = 1.0)
>>> model.optimize(OPT_LOCAL)
>>> model.display_delta()

CQR and CER with multiple outputs

Similar to CNLS with DDF, we present another two approaches integrating DDF to convex
quantile/expectile regression by using the CQERDDF() module.9

• CQR-DDF model.

min
α,β,γ,ε+,ε−

τ
n∑

i=1
ε+

i + (1 − τ)
n∑

i=1
ε−

i

s.t. γ
′
iyi = αi + β

′
ixi + ε+

i − ε−
i ∀i

αi + β
′
ixi − γ

′
iyi ≤ αj + β

′
jxi − γ

′
jyi ∀i, j, and i ̸= j

γ
′
ig

y + β
′
ig

x = 1 ∀i

βi ≥ 0, γi ≥ 0 ∀i

ε+
i ≥ 0, ε−

i ≥ 0 ∀i

9The undesirable outputs b can also be included, similar to the CNLSDDF() module, but are omitted here to
keep the discussion and notations more concise.

Journal of Statistical Software 19

• CER-DDF model.

min
α,β,γ,ε+,ε−

τ̃
n∑

i=1
(ε+

i)2 + (1 − τ̃)
n∑

i=1
(ε−

i)2

s.t. γ
′
iyi = αi + β

′
ixi + ε+

i − ε−
i ∀i

αi + β
′
ixi − γ

′
iyi ≤ αj + β

′
jxi − γ

′
jyi ∀i, j, and i ̸= j

γ
′
ig

y + β
′
ig

x = 1 ∀i

βi ≥ 0, γi ≥ 0 ∀i

ε+
i ≥ 0, ε−

i ≥ 0 ∀i

Similar to the module CNLSDDF(), the module CQERDDF() uses the same parameters and is
applied to estimate the CQR/CER-DDF model. The results can be reported using the func-
tions that have been introduced in module CQER.CQR()/.CER(). For instance, the functions
.display_positive_residual() and .display_negative_residual() are used to display
the estimated residuals, respectively (Lines 7 and 8).

>>> from pystoned import CQERDDF
>>> from pystoned.constant import FUN_PROD, OPT_LOCAL
>>> from pystoned import dataset as dataset
>>> data = dataset.load_Finnish_electricity_firm(x_select = ['OPEX', 'CAPEX'],
... y_select = ['Energy', 'Length', 'Customers'])
>>> model = CQERDDF.CQRDDF(y = data.y, x = data.x, b = None, tau = 0.9,
... fun = FUN_PROD, gx = [1.0, 0.0], gb = None, gy = [0.0, 0.0, 0.0])
>>> model.optimize(OPT_LOCAL)
>>> model.display_positive_residual()
>>> model.display_negative_residual()

4.5. Relaxing convexity

Isotonic CNLS

This section introduces a variant of the CNLS estimator, isotonic CNLS that only imposes
monotonicity. To relax the concavity assumption in CNLS estimation (i.e., estimating a
production function), we rephrase the Afriat inequality constraint in problem (2).
Define the following binary matrix P =

[
pij

]
n×n

to represent isotonicity (Keshvari and Ku-
osmanen 2013).

pij =
{

1 if xi ≼ xj

0 otherwise

We apply a simple enumeration method to define the elements of matrix P and then solve

20 pyStoNED: Convex Regression and Frontier Estimation in Python

the following QP problem

min
α,β,ε

n∑
i=1

ε2
i

s.t. yi = αi + β
′
ixi + εi ∀i

pij(αi + β
′
ixi) ≤ pij(αj + β

′
jxi) ∀i, j, and i ̸= j

βi ≥ 0 ∀i

Note that the concavity constraints between units i and j are relaxed whenever pij = 0. If the
pij = 1 for all i and j, then the above isotonic CNLS problem reduces to the CNLS problem.
To calculate the monotonic models, the pyStoNED package provides the modules ICNLS(y,
x, ...) and ICQER.ICQR(y, x, ...)/ICQER.ICER(y, x, ...), of which inherit the pa-
rameter settings from the modules CNLS() and CQER(). Therefore, the implementations of
ICNLS() and ICQER() are similar to those of CNLS() and CQER(). Note that the matrix P is
enumerated as an internal function in this module.

>>> from pystoned import ICNLS
>>> from pystoned.constant import CET_ADDI, FUN_PROD, OPT_LOCAL, RTS_VRS
>>> from pystoned.dataset import load_Finnish_electricity_firm
>>> data = load_Finnish_electricity_firm(x_select = ['OPEX', 'CAPEX'],
... y_select = ['Energy'])
>>> model = ICNLS.ICNLS(y = data.y, x = data.x, z = None,
... cet = CET_ADDI, fun = FUN_PROD, rts = RTS_VRS)
>>> model.optimize(OPT_LOCAL)
>>> model.display_residual()

Isotonic CQR and CER

Similar to isotonic CNLS, the isotonic CQR and CER approaches are defined as follows (Dai
et al. 2023a)

• Isotonic CQR.

min
α,β,ε+,ε−

τ
n∑

i=1
ε+

i + (1 − τ)
n∑

i=1
ε−

i

s.t. yi = αi + β
′
ixi + ε+

i − ε−
i ∀i

pij(αi + β
′
ixi) ≤ pij(αj + β

′
jxi) ∀i, j, and i ̸= j

βi ≥ 0 ∀i

ε+
i ≥ 0, ε−

i ≥ 0 ∀i

Journal of Statistical Software 21

• Isotonic CER.

min
α,β,ε+,ε−

τ̃
n∑

i=1
(ε+

i)2 + (1 − τ̃)
n∑

i=1
(ε−

i)2

s.t. yi = αi + β
′
ixi + ε+

i − ε−
i ∀i

pij(αi + β
′
ixi) ≤ pij(αj + β

′
jxi) ∀i, j, and i ̸= j

βi ≥ 0 ∀i

ε+
i ≥ 0, ε−

i ≥ 0 ∀i

These two isotonic CQR/CER models can be computed by using the function ICQR(y, x,
tau, ...) or ICER(y, x, tau, ...) embedded in pyStoNED. The following example
shows an isotonic CER model solved by the developed package.

>>> from pystoned import ICQER
>>> from pystoned.constant import CET_ADDI, FUN_PROD, OPT_LOCAL, RTS_VRS
>>> from pystoned.dataset import load_Finnish_electricity_firm
>>> data = load_Finnish_electricity_firm(x_select = ['OPEX', 'CAPEX'],
... y_select = ['Energy'])
>>> model = ICQER.ICER(y = data.y, x = data.x, tau = 0.9, z = None,
... cet = CET_ADDI, fun = FUN_PROD, rts = RTS_VRS)
>>> model.optimize(OPT_LOCAL)
>>> model.display_residual()

4.6. Corrected CNLS
To pave the way to the stochastic nonparametric frontier estimation to be examined in Sec-
tion 5, we complete this section with a simple deterministic approach to frontier estimation.
Corrected convex nonparametric least squares (C2NLS) (Kuosmanen and Johnson 2010) is a
nonparametric extension of the corrected ordinary least squares (COLS), in which nonpara-
metric least squares subject to monotonicity and concavity constraints replace the first-stage
parametric ordinary least squares (OLS) regression. To estimate the frontier production func-
tion f using the C2NLS estimator, we assume that f is a monotonic increasing and globally
concave production function. The key difference to model (1) is that we now assume εi ≤ 0
represent technical inefficiency. Otherwise, we maintain the assumption that the inefficiencies
ε are uncorrelated with inputs x.
Similar to COLS, C2NLS includes two steps stated as follows:

• Estimate the residuals εCNLS
i by solving the additive CNLS model (2).

• Obtain the shifted residuals ε̂C2NLS
i = εCNLS

i − maxj εCNLS
j

such that ε̂C2NLS
i satisfy ε̂ ≤ 0 with 0 indicating efficient performance. Subsequently,

we adjust the CNLS intercepts αi as

α̂C2NLS
i = αCNLS

i + max
j

εCNLS
j

where αCNLS
i is the optimal intercept for firm i in the above CNLS problem and α̂C2NLS

i

is the estimated intercept term in the C2NLS problem. Slope coefficients βi for C2NLS
are obtained directly as the optimal solution to the CNLS problem.

22 pyStoNED: Convex Regression and Frontier Estimation in Python

To solve the C2NLS model in pyStoNED, we introduce two new functions: .get_adjusted_re
sidual() and .get_adjusted_alpha(). After completing the first-stage estimation, we use
these two functions to obtain the adjusted residuals and intercept terms.

>>> from pystoned import CNLS
>>> from pystoned.constant import CET_ADDI, FUN_PROD, OPT_LOCAL, RTS_VRS
>>> from pystoned.dataset import load_Finnish_electricity_firm
>>> data = load_Finnish_electricity_firm(x_select = ['OPEX', 'CAPEX'],
... y_select = ['Energy'])
>>> model = CNLS.CNLS(y = data.y, x = data.x, z = None,
... cet = CET_ADDI, fun = FUN_PROD, rts = RTS_VRS)
>>> model.optimize(OPT_LOCAL)
>>> print(model.get_adjusted_residual())
>>> print(model.get_adjusted_alpha())

5. Stochastic nonparametric envelopment of data
Consider now the production model with a composite error structure

yi = f(xi) + vi − ui ∀i

In contrast to model (1), the error term εi here consists of the inefficiency term ui > 0 and the
stochastic noise term vi (εi = vi −ui). For the cost function model, the error term εi = vi +ui.
Combining virtues of SFA and DEA in a unified framework, Kuosmanen (2006) and Kuosma-
nen and Kortelainen (2012) propose the StoNED estimator to estimate the production/cost
frontier and inefficiency. Specifically,

• Step 1: Estimating the conditional mean E[yi | xi] using the CNLS estimator;

• Step 2: Estimating the expected inefficiency µ based on the residual εCNLS
i ;

• Step 3: Estimating the StoNED frontier f̂StoNED based on the µ̂;

• Step 4: Estimating firm-specific inefficiencies E[ui | εCNLS
i].

Besides the CNLS estimator, we can apply other convex regression approaches such as isotonic
CNLS and CNLS-DDF to estimate the conditional mean in the first step (see Keshvari and
Kuosmanen 2013; Kuosmanen and Johnson 2017).

5.1. Estimating the expected inefficiency

After obtaining the residuals (e.g., ε̂CNLS
i) from the convex regression approaches, one can esti-

mate the expected value of the inefficiency term µ = E(ui). In practice, three commonly used
methods are available to estimate the expected inefficiency µ: Method of moments (Aigner
et al. 1977), quasi-likelihood estimation (Fan, Li, and Weersink 1996), and kernel deconvo-
lution estimation (Hall and Simar 2002). We next briefly review these three approaches and
demonstrate the application of pyStoNED; see Kuosmanen et al. (2015) for a more detailed
theoretical introduction.

Journal of Statistical Software 23

Method of moments

The method of moments requires some additional parametric distributional assumptions.
Under the assumptions of half-normal inefficiency, ui ∼ N+(0, σ2

u), and normal noise, vi ∼
N(0, σ2

v), the second and third central moments of the residual distribution are

M2 =
[

π − 2
π

]
σ2

u + σ2
v

M3 =
(√

2
π

)[
1 − 4

π

]
σ2

u

The second and third central moments can be estimated based on the CNLS residuals as

M̂2 =
n∑

i=1
(ε̂i − ε̄)2/n

M̂3 =
n∑

i=1
(ε̂i − ε̄)3/n

Note that the third moment M3 (which measures the skewness of the distribution) only
depends on the standard deviation parameter σu of the inefficiency distribution. Thus, given
the estimated M̂3 (which should be positive in the case of a cost frontier), we can estimate
the parameters σu and σv by

σ̂u = 3

√√√√√√ M̂3(√
2
π

)[
1 − 4

π

]

σ̂v = 2

√
M̂2 −

[
π − 2

π

]
σ̂2

u

To estimate the expected inefficiency (µ̂ = σ̂u

√
2/π), we provide a module StoNED()

that inherits the parameter setting from the module CNLS(). We estimate the conditional ex-
pected inefficiency through the example presented below. Following the stepwise
procedure outlined above, we first utilize the module CNLS() to estimate the conditional
mean E[yi | xi] (i.e., Lines 5–6), then apply the module StoNED(model), where the
parameter model is defined as the name of the CNLS model, to decompose the estimated
residuals (Line 7). We develop and import the parameter RED_MOM (Line 3) to
decompose the residuals using the moment method. We finally resort to the function
.get_unconditional_expected_inefficiency(RED_MOM) included in the module StoNED()
to retrieve the expected inefficiency µ̂.

>>> from pystoned import CNLS, StoNED
>>> from pystoned.dataset import load_Finnish_electricity_firm
>>> from pystoned.constant import CET_MULT, FUN_COST, RTS_VRS, RED_MOM
>>> data = load_Finnish_electricity_firm(x_select = ['Energy', 'Length',
... 'Customers'], y_select = ['TOTEX'])

24 pyStoNED: Convex Regression and Frontier Estimation in Python

>>> model = CNLS.CNLS(data.y, data.x, z = None,
... cet = CET_MULT, fun = FUN_COST, rts = RTS_VRS)
>>> model.optimize('email@address')
>>> rd = StoNED.StoNED(model)
>>> print(rd.get_unconditional_expected_inefficiency(RED_MOM))

Quasi-likelihood estimation

Quasi-likelihood estimation is an alternative approach to decomposing σu and σv suggested
by Fan et al. (1996). Given the shape of the CNLS curve, we apply the standard maximum
likelihood method to estimate the parameters σu and σv. The quasi-likelihood function is
formulated as

ln L(λ) = −n ln(σ̂) +
∑

ln Φ
[−ε̂iλ

σ̂

]
− 1

2σ̂2

∑
ε̂2

i

where

ε̂i = ε̂CNLS
i − (

√
2λσ̂)/[π(1 + λ2)]1/2

σ̂ =
{

1
n

∑
(ε̂CNLS

i)2/

[
1 − 2λ2

π(1 + λ2)

]}
.

Note that the quasi-likelihood function only consists of a single parameter λ (i.e., the signal-
to-noise ratio λ = σu/σv).10 The symbol Φ represents the cumulative distribution function
of the standard normal distribution. In the pyStoNED package, we use the BFGS algorithm
provided by SciPy to estimate the maximum likelihood function.
Since we apply the quasi-likelihood estimation to decompose the residuals, we need to import
the parameter RED_QLE to the module StoNED().

>>> from pystoned import CNLS, StoNED
>>> from pystoned.dataset import load_Finnish_electricity_firm
>>> from pystoned.constant import CET_MULT, FUN_COST, RTS_VRS, RED_QLE
>>> data = load_Finnish_electricity_firm(x_select = ['Energy', 'Length',
... 'Customers'], y_select = ['TOTEX'])
>>> model = CNLS.CNLS(data.y, data.x, z = None,
... cet = CET_MULT, fun = FUN_COST, rts = RTS_VRS)
>>> model.optimize('email@address')
>>> rd = StoNED.StoNED(model)
>>> print(rd.get_unconditional_expected_inefficiency(RED_QLE))

Kernel deconvolution estimation

While the method of moments and quasi-likelihood approaches require additional distribu-
tional assumptions for the inefficiency and noise terms, an alternative nonparametric estima-
tion of the expected inefficiency µ is available by applying nonparametric kernel deconvolution,

10Note the notation difference between signal-to-noise ratio λ and the marginal effect of contextual variable
λ in problems (9) and (10).

Journal of Statistical Software 25

as proposed by Hall and Simar (2002). Note that the residual ε̂CNLS
i is a consistent estimator

of eo = εi + µ (for production model). The density function of eo is

f̂eo(z) = (nh)−1
n∑

i=1
K

(
z − eo

i

h

)
,

where K(·) is a compactly supported kernel, and h is a bandwidth. Hall and Simar (2002)
show that the first derivative of the density function of the composite error term (f ′

ε) is
proportional to that of the inefficiency term (f ′

u) in the neighborhood of µ. Therefore, a
nonparametric estimator of expected inefficiency µ is obtained as

µ̂ = arg max
z∈C

(f̂ ′
eo(z)),

where C is a closed interval in the right tail of feo .
We then import the parameter RED_KDE to decompose the estimated CNLS residuals.

>>> from pystoned import CNLS, StoNED
>>> from pystoned.dataset import load_Finnish_electricity_firm
>>> from pystoned.constant import CET_MULT, FUN_COST, RTS_VRS, RED_KDE
>>> data = load_Finnish_electricity_firm(x_select = ['Energy', 'Length',
... 'Customers'], y_select = ['TOTEX'])
>>> model = CNLS.CNLS(data.y, data.x, z = None,
... cet = CET_MULT, fun = FUN_COST, rts = RTS_VRS)
>>> model.optimize('email@address')
>>> rd = StoNED.StoNED(model)
>>> print(rd.get_unconditional_expected_inefficiency(RED_KDE))

5.2. Estimating the StoNED frontier

Having estimated the expected inefficiency µ̂ in Section 5.1, we can estimate the efficient
frontier by adjusting the conditional mean function estimated by CNLS. In this subsection
we briefly discuss the cases of the additive and multiplicative models under VRS and CRS.
Given the fact that the function estimated by CNLS is only unique for the observed data
points (xi, yi), we then follow Kuosmanen and Kortelainen (2012) to estimate the unique
conditional mean function ĝCNLS

min (x) under VRS. Note that CRS is imposed by setting α = 0.

ĝCNLS
min (x) = min

α,β
{α + β′x | α + β′xi ≥ ĝCNLS(xi), ∀i}

where ĝCNLS(xi) is the conditional mean function estimated by the CNLS estimator. We
subsequently shift the conditional mean function ĝCNLS

min (x) to the frontier using

• Production function.

– Additive model: f̂StoNED(x) = ĝCNLS
min (x) + µ̂;

– Multiplicative model: f̂StoNED(x) = ĝCNLS
min (x) · exp(µ̂).

• Cost function.

26 pyStoNED: Convex Regression and Frontier Estimation in Python

– Additive model: f̂StoNED(x) = ĝCNLS
min (x) − µ̂;

– Multiplicative model: f̂StoNED(x) = ĝCNLS
min (x) · exp(−µ̂).

In the following example, we demonstrate how to obtain the StoNED frontier via the package.
The method of moments is utilized to decompose the CNLS residuals and calculate µ̂, and
we then use .get_stoned() to obtain the StoNED frontier (the last line).

>>> from pystoned import CNLS, StoNED
>>> from pystoned.dataset import load_Finnish_electricity_firm
>>> from pystoned.constant import CET_MULT, FUN_COST, RTS_VRS, RED_MOM
>>> data = load_Finnish_electricity_firm(x_select = ['Energy', 'Length',
... 'Customers'], y_select = ['TOTEX'])
>>> model = CNLS.CNLS(data.y, data.x, z = None,
... cet = CET_MULT, fun = FUN_COST, rts = RTS_VRS)
>>> model.optimize('email@address')
>>> rd = StoNED.StoNED(model)
>>> print(rd.get_stoned(RED_MOM))

5.3. Estimating firm-specific inefficiencies

If the efficient production or cost frontier is the object of interest, there is no need to proceed
further to Step 4. Kuosmanen et al. (2015) emphasize that unbiased and consistent estimators
of the frontier are available, however, there is no consistent method for estimating firm-specific
efficiencies in the cross-sectional setting under noise. In essence, in this subsection we engage
in the daunting task of trying to predict a realization of a random variable based on a single
observation that is subject to noise. A reader should be duly warned that this is a highly
speculative exercise.
Prediction of firm-specific inefficiency relies heavily on the parametric distributional as-
sumptions. After estimating the expected inefficiency µ using the methods of the moment
(MOM) or quasi-likelihood estimation (QLE), we can employ the JLMS estimator proposed
by Jondrow, Lovell, Materov, and Schmidt (1982) to estimate the firm-specific inefficiencies
(Johnson and Kuosmanen 2015). Under the assumption of a normally distributed error term
and a half-normally distributed inefficiency term, Jondrow et al. (1982) formulate the condi-
tional distribution of inefficiency ui, given ε̂i, and proposes the inefficiency estimator as the
conditional mean E[ui | ε̂i].
The conditional expected inefficiency E[ui | ε̂i] for production function and cost function are

• Production function.

E[ui | ε̂i] = µ∗i + σ∗

[
ϕ(−µ∗i/σ∗)

1 − Φ(−µ∗i/σ∗)

]
= σ∗

[
ϕ(ε̂iλ/σ)

1 − Φ(ε̂iλ/σ) − ε̂iλ

σ

]

where µ∗i = −ε̂iσ
2
u/σ2, σ2

∗ = σ2
uσ2

v/σ2, λ = σu/σv, and σ2 = σ2
u + σ2

v . The symbol
ϕ is the standard normal density function, and the symbol Φ denotes the cumulative
distribution function of the standard normal distribution.

Journal of Statistical Software 27

• Cost function.

E[ui | ε̂i] = µ∗i + σ∗

[
ϕ(−µ∗i/σ∗)

1 − Φ(−µ∗i/σ∗)

]
= σ∗

[
ϕ(εiλ/σ)

1 − Φ(−εiλ/σ) + εiλ

σ

]

where µ∗ = εσ2
u/σ2, σ2

∗ = σ2
uσ2

v/σ2, λ = σu/σv, and σ2 = σ2
u + σ2

v .

The firm-level technical efficiency (TE) can be expressed based on the estimated conditional
mean as

• Production function.

– Multiplicative model: TE = exp(−E[ui | εi]);

– Additive model: TE = y − E[ui | εi]
y

.

• Cost function.

– Multiplicative model: TE = exp(E[ui | εi]);

– Additive model: TE = y + E[ui | εi]
y

.

To calculate the firm-level technical efficiency, we resort to the function .get_technical_
inefficiency(). We either set the parameter in function .get_technical_inefficiency()
to RED_MOM (i.e., using the MOM approach to calculate the efficiency; Line 8) or to RED_QLE
(i.e., using the quasi-likelihood estimation approach).

>>> from pystoned import CNLS, StoNED
>>> from pystoned.dataset import load_Finnish_electricity_firm
>>> from pystoned.constant import CET_MULT, FUN_COST, RTS_VRS, RED_MOM
>>> data = load_Finnish_electricity_firm(x_select = ['Energy', 'Length',
... 'Customers'], y_select = ['TOTEX'])
>>> model = CNLS.CNLS(data.y, data.x, z = None,
... cet = CET_MULT, fun = FUN_COST, rts = RTS_VRS)
>>> model.optimize('email@address')
>>> rd = StoNED.StoNED(model)
>>> print(rd.get_technical_inefficiency(RED_MOM))

6. CNLS-G algorithm
Since convex regression approaches impose the convexity (concavity) of the regression function
using the Afriat inequality, the computation can become excessively expensive due to the
O(n2) linear constraints. For example, if the data samples have 500 observations, the total
number of linear constraints is equal to 250,000. To speed up computation, Lee, Johnson,
Moreno-Centeno, and Kuosmanen (2013) propose a more efficient generic algorithm, CNLS-
G, which uses the relaxed Afriat constraint set and iteratively adds violated constraints to
the relaxed model as necessary. See further discussions in Lee et al. (2013).

28 pyStoNED: Convex Regression and Frontier Estimation in Python

To illustrate the CNLS-G algorithm, we follow Lee et al. (2013) to generate the input and
output variables. In this section, we assume an additive production function with two-input
and one-output, y = x0.4

1 × x0.4
2 + ε. We randomly draw the inputs x1 and x2 from a uniform

distribution, x ∼ U [1, 10], and the error term ε from a normal distribution, ε ∼ N(0, 0.72). We
generate 500 artificial observations, estimate the CNLS problem (2) and the CER problem (8),
and calculate the firm-level technical efficiency using the CNLS-G algorithm.

6.1. Solving CNLS model

We first compare the running time of the original CNLS and CNLS-G algorithm in the
same computation environment. Line 1 imports the modules CNLSG() that is designed to
perform the CNLS-G algorithm and CNLS(). Note that the module CNLSG() has the same
parameters as the module CNLS(). Line 3 imports NumPy to provide multidimensional arrays
and functions for linear algebra. We use time to count the running time for CNLS estimation
(see Lines 4, 9, and 12) and employ the function .get_runningtime() to directly obtain the
running time for CNLS-G algorithm (Line 15). To replicate the experiment, we set a random
seed using np.random.seed(0). Lines 6–8 generate the variables x, ε, and y. model1 and
model2 are the CNLS model and CNLS-G model, respectively. To count the number of
constraints included in the CNLS-G algorithm, the module CNLSG() provides an internal
function .get_totalconstr() (Line 17).

>>> from pystoned import CNLSG, CNLS
>>> from pystoned.constant import CET_ADDI, FUN_PROD, OPT_LOCAL, RTS_VRS
>>> import numpy as np
>>> import time
>>> np.random.seed(0)
>>> x = np.random.uniform(low = 1, high = 10, size = (500, 2))
>>> epsilon = np.random.normal(loc = 0, scale = 0.7, size = 500)
>>> y = x[:, 0]**0.4 * x[:, 1]**0.4 + epsilon
>>> t1 = time.time()
>>> model1 = CNLS.CNLS(y, x, z = None, cet = CET_ADDI, fun = FUN_PROD,
... rts = RTS_VRS)
>>> model1.optimize(OPT_LOCAL)
>>> CNLS_time = time.time() - t1
>>> model2 = CNLSG.CNLSG(y, x, z = None, cet = CET_ADDI, fun = FUN_PROD,
... rts = RTS_VRS)
>>> model2.optimize(OPT_LOCAL)
>>> print("The running time with algorithm is ", model2.get_runningtime())
>>> print("The running time without algorithm is ", CNLS_time)
>>> print("The total number of constraints is ", model2.get_totalconstr())

6.2. Solving CER model

We next demonstrate a CER model solved by the CNLS-G algorithm prepared in module
CQERG(). The other experimental settings are similar to those in Section 6.1. Note that the
CNLS-G algorithm can also solve the CQR model via the function CQERG.CQRG(y, x, ...).

Journal of Statistical Software 29

>>> from pystoned import CQERG, CQER
>>> from pystoned.constant import CET_ADDI, FUN_PROD, OPT_LOCAL, RTS_VRS
>>> import numpy as np
>>> import time
>>> np.random.seed(0)
>>> x = np.random.uniform(low = 1, high = 10, size = (500, 2))
>>> epsilon = np.random.normal(loc = 0, scale = 0.7, size = 500)
>>> y = x[:, 0]**0.4 * x[:, 1]**0.4 + epsilon
>>> tau = 0.5
>>> t1 = time.time()
>>> model1 = CQER.CER(y, x, tau, z = None, cet = CET_ADDI, fun = FUN_PROD,
... rts = RTS_VRS)
>>> model1.optimize(OPT_LOCAL)
>>> CER_time = time.time() - t1
>>> model2 = CQERG.CERG(y, x, tau, z = None, cet = CET_ADDI, fun = FUN_PROD,
... rts = RTS_VRS)
>>> model2.optimize(OPT_LOCAL)
>>> print("The running time with algorithm is ", model2.get_runningtime())
>>> print("The running time without algorithm is ", CER_time)
>>> print("The total number of constraints in CER model is ",
... model2.get_totalconstr())

6.3. Calculating the expected inefficiency

We can apply the CNLS-G algorithm to calculate the unconditional expected inefficiency µ̂
more efficiently. In the first step of the StoNED() estimator, we use the module CNLSG(y, x,
...) as a substitute for the module CNLS(y, x, ...).

>>> from pystoned import CNLSG, StoNED
>>> from pystoned.dataset import load_Finnish_electricity_firm
>>> from pystoned.constant import CET_MULT, FUN_COST, RTS_VRS, RED_MOM
>>> data = load_Finnish_electricity_firm(x_select = ['Energy', 'Length',
... 'Customers'], y_select = ['TOTEX'])
>>> model = CNLSG.CNLSG(data.y, data.x, z = None,
... cet = CET_MULT, fun = FUN_COST, rts = RTS_VRS)
>>> model.optimize('email@address')
>>> rd = StoNED.StoNED(model)
>>> print(rd.get_unconditional_expected_inefficiency(RED_MOM))

7. Graphical illustration of estimated functions
To illustrate how the estimated regression function looks like, the pyStoNED package provides
the functions plot.plot2d() and plot.plot3d() to plot two- and three-dimensional (2D and
3D) functions. As with the usage of the module StoNED(y, x, ...), we first estimate the
nonparametric regression such as CNLS, CQR, and isotonic CNLS and then apply the plot

30 pyStoNED: Convex Regression and Frontier Estimation in Python

(a) CNLS (b) CQR (τ = 0.9)

Figure 1: CNLS and CQR estimates.

function to draw the figures. In this section, we use the internal data provided with Tim
Coelli’s Frontier 4.1 to demonstrate the process.

7.1. One-input and one-output
In the one-input and one-output case, we present two different estimated functions: The CNLS
function and the CQR function. Therefore, we import the modules CNLS and CQER in Line 1
as the estimators, the plotting module plot2d (Line 2), and the example dataset (Line 4).
Lines 6 and 7 and Lines 9 and 10 define and solve the CNLS and CQR models, respectively.
Lines 8 and 11 are used to plot the estimated functions. There are four parameters in the
module plot2d(...): The first is the model’s name, the second parameter x_select defines
which the selected input x is, the third and last are the given names of the legend and
generated picture, respectively. Figure 1 depicts the functions estimated by the CNLS and
CQR model.

>>> from pystoned import CNLS, CQER
>>> from pystoned.plot import plot2d
>>> from pystoned.constant import CET_ADDI, FUN_PROD, OPT_LOCAL, RTS_VRS
>>> from pystoned.dataset import load_Tim_Coelli_frontier
>>> data = load_Tim_Coelli_frontier(x_select = ['labour'],
... y_select = ['output'])
>>> CNLS_model = CNLS.CNLS(y = data.y, x = data.x, z = None,
... cet = CET_ADDI, fun = FUN_PROD, rts = RTS_VRS)
>>> CNLS_model.optimize(OPT_LOCAL)
>>> plot2d(CNLS_model, x_select = 0, label_name = "CNLS estimated function",
... fig_name = "CNLS_2d")
>>> CQR_model = CQER.CQR(y = data.y, x = data.x, tau = 0.5, z = None,
... cet = CET_ADDI, fun = FUN_PROD, rts = RTS_VRS)
>>> CQR_model.optimize(OPT_LOCAL)
>>> plot2d(CQR_model, x_select = 0, label_name = "CQR estimated function",
... fig_name = "CQR_2d")

Journal of Statistical Software 31

Figure 2: 3D plot of the piece-wise linear function estimated with CNLS.

7.2. Two-input and one-output

We first use the linear interpolation technique to obtain the 3D surface because CNLS esti-
mates hyperplanes at the observed data points. The function plot3d(model, x_select_1,
x_select_2, fig_name = None, line_transparent = False, pane_transparent = False)
includes six parameters: The first is the name of the estimated model, the second and third
define the selected input, the fourth is the name of the generated figure, the last two are the
basic settings for the figure (False; default). We import function plot3d(...) in Line 2 and
plot the figure in Line 8. Figure 2 presents the estimated 3D function.

>>> from pystoned import CNLS
>>> from pystoned.plot import plot3d
>>> from pystoned.constant import CET_ADDI, FUN_PROD, OPT_LOCAL, RTS_VRS
>>> from pystoned.dataset import load_Tim_Coelli_frontier
>>> data = load_Tim_Coelli_frontier(x_select = ['capital', 'labour'],
... y_select = ['output'])
>>> CNLS_model = CNLS.CNLS(y = data.y, x = data.x, z = None,
... cet = CET_ADDI, fun = FUN_PROD, rts = RTS_VRS)
>>> CNLS_model.optimize(OPT_LOCAL)
>>> plot3d(CNLS_model, x_select_1 = 0, x_select_2 = 1, fig_name = "CNLS_3d")

8. Conclusions
Convex regression and related methods provide an appealing way to impose shape constraints
without making restrictive assumptions about the functional form. As these techniques are
becoming increasingly popular, there is a great demand for a powerful, reliable, and fully
open-access computational package. Several existing tools or packages have been developed
and can be utilized in certain special cases. For example, R/Benchmarking only supports

32 pyStoNED: Convex Regression and Frontier Estimation in Python

additive CNLS/StoNED models, not CQR/CER or other more recent models. CVXOPT
and CVXPY require that the user is able to manually construct the necessary QP matrices,
which can be challenging for applied researchers and practitioners with limited experience
in mathematical programming. Therefore, the developed pyStoNED package aims to fully
address this need, providing a comprehensive set of functions for estimating CNLS, StoNED,
and their numerous variants.
This paper has reviewed the models and specifications currently supported by pyStoNED
and demonstrated its use with empirical examples taken from the literature on productivity
and efficiency analysis. All modules are implemented in a fully open-access environment. We
encourage the users to utilize pyStoNED to further develop their own packages for specific
estimation purposes.
In the future, our plan is to include further extensions to pyStoNED on a continuous basis.
One interesting avenue of ongoing research is to include additional penalty terms to the
objective function of the CNLS/CQR/CER problems to alleviate overfitting and the curse of
dimensionality (e.g., Lee and Cai 2020). More efficient computational algorithms such as the
CNLS-A proposed by Dai (2021) are under active development and will be included in future
editions of pyStoNED.
We hope that the pyStoNED package could contribute to raising the standards of empirical
applications in productivity and efficiency analysis, and facilitate more meaningful and rele-
vant empirical evidence that influence managerial and policy decisions. The basic idea of the
StoNED approach is to enable applied researchers and practitioners of efficiency analysis to
integrate existing tools and techniques from different domains such as econometrics, statistics,
operational research, and machine learning into a logically consistent unified framework, and
to facilitate further methodological development in a multi-disciplinary environment. The
purpose of the pyStoNED package is to support this development.
While we have phrased this review and the pyStoNED modules in terms of cost and production
functions, most of the modules are readily applicable to nonparametric regression analysis in
any other context as well. We hope that the convex regression and related techniques could
also prove useful in other application areas where shape constraints play an essential role.
For example, optimization behavior also implies specific convexity constraints in the context
of consumer demand analysis (see, e.g., Afriat 1967; Varian 1982).

Acknowledgments
We gratefully acknowledge financial support from the Foundation for Economic Education
(Liikesivistysrahasto) [Nos. 180019, 190073, 210075], the HSE Support Foundation [No. 11–
2290], and Ministry of Science and Technology, Taiwan [MOST108-2221–E–006–223–MY3].

References

Afriat SN (1967). “The Construction of Utility Functions from Expenditure Data.” Interna-
tional Economic Review, 8(1), 67–77. doi:10.2307/2525382.

Afriat SN (1972). “Efficiency Estimation of Production Functions.” International Economic
Review, 13(3), 568–598. doi:10.2307/2525845.

https://doi.org/10.2307/2525382
https://doi.org/10.2307/2525845

Journal of Statistical Software 33

Aigner D, Lovell CK, Schmidt P (1977). “Formulation and Estimation of Stochastic
Frontier Production Function Models.” Journal of Econometrics, 6(1), 21–37. doi:
10.1016/0304-4076(77)90052-5.

Andersen M, Dahl J, Vandenberghe L (2023). CVXOPT: A Python Package for Convex
Optimization. Version 1.3. URL https://cvxopt.org.

Bertsimas D, Mundru N (2021). “Sparse Convex Regression.” INFORMS Journal on Com-
puting, 33(1), 262–279. doi:10.1287/ijoc.2020.0954.

Bogetoft P, Otto L (2010). Benchmarking with DEA, SFA, and R. Springer-Verlag, New
York. doi:10.1007/978-1-4419-7961-2.

Brunk HD (1955). “Maximum Likelihood Estimates of Monotone Parameters.” The Annals
of Mathematical Statistics, 26(4), 607–616. doi:10.1214/aoms/1177728420.

Bynum ML, Hackebeil GA, Hart WE, Laird CD, Nicholson BL, Siirola JD, Watson JP,
Woodruff DL (2021). Pyomo – Optimization Modeling in Python. 3rd edition. Springer-
Verlag. doi:10.1007/978-3-030-68928-5.

Byrd RH, Nocedal J, Waltz RA (2006). “KNITRO: An Integrated Package for Nonlinear
Optimization.” In Large-Scale Nonlinear Optimization, pp. 35–59. Springer-Verlag, New
York. doi:10.1007/0-387-30065-1_4.

Chambers RG, Chung Y, Färe R (1996). “Benefit and Distance Functions.” Journal of
Economic Theory, 70(2), 407–419. doi:10.1006/jeth.1996.0096.

Chambers RG, Chung Y, Färe R (1998). “Profit, Directional Distance Functions, and Nerlo-
vian Efficiency.” Journal of Optimization Theory and Applications, 98(2), 351–364. doi:
10.1023/a:1022637501082.

Charnes A, Cooper WW, Rhodes E (1978). “Measuring the Efficiency of Decision Mak-
ing Units.” European Journal of Operational Research, 2(6), 429–444. doi:10.1016/
0377-2217(78)90138-8.

Coelli T (1996). “A Guide to FRONTIER Version 4.1: A Computer Program for Stochastic
Frontier Production and Cost Function Estimation.” CEPA Working Paper 96/08, Univer-
sity of New England. URL http://www.uq.edu.au/economics/cepa/frontier.php.

Coelli T, Rao DSP, O’Donnell CJ, Battese GE (2005). An Introduction to Efficiency and
Productivity Analysis. Springer-Verlag, New York. doi:10.1007/b136381.

CPLEX, IBM ILOG (2009). “V12.1: User’s Manual for CPLEX.” International Business
Machines Corporation, 46(53), 157. doi:10.1007/978-3-662-62185-1_2.

Dai S (2021). “Variable Selection in Convex Quantile Regression: L1-Norm or L0-Norm
Regularization?” European Journal of Operational Research, 305(1), 338–355. doi:10.
1016/j.ejor.2022.05.041.

Dai S, Kuosmanen T, Zhou X (2023a). “Generalized Quantile and Expectile Properties for
Shape Constrained Nonparametric Estimation.” European Journal of Operational Research,
310(2), 914–927. doi:10.1016/j.ejor.2023.04.004.

https://doi.org/10.1016/0304-4076(77)90052-5
https://doi.org/10.1016/0304-4076(77)90052-5
https://cvxopt.org
https://doi.org/10.1287/ijoc.2020.0954
https://doi.org/10.1007/978-1-4419-7961-2
https://doi.org/10.1214/aoms/1177728420
https://doi.org/10.1007/978-3-030-68928-5
https://doi.org/10.1007/0-387-30065-1_4
https://doi.org/10.1006/jeth.1996.0096
https://doi.org/10.1023/a:1022637501082
https://doi.org/10.1023/a:1022637501082
https://doi.org/10.1016/0377-2217(78)90138-8
https://doi.org/10.1016/0377-2217(78)90138-8
http://www.uq.edu.au/economics/cepa/frontier.php
https://doi.org/10.1007/b136381
https://doi.org/10.1007/978-3-662-62185-1_2
https://doi.org/10.1016/j.ejor.2022.05.041
https://doi.org/10.1016/j.ejor.2022.05.041
https://doi.org/10.1016/j.ejor.2023.04.004

34 pyStoNED: Convex Regression and Frontier Estimation in Python

Dai S, Kuosmanen T, Zhou X (2023b). “Non-Crossing Convex Quantile Regression.” Eco-
nomics Letters, 233, 111396. doi:10.1016/j.econlet.2023.111396.

Dai S, Zhou X, Kuosmanen T (2020). “Forward-Looking Assessment of the GHG Abatement
Cost: Application to China.” Energy Economics, 88, 104758. doi:10.1016/j.eneco.
2020.104758.

Diamond S, Boyd S (2016). “CVXPY: A Python-Embedded Modeling Language for Convex
Optimization.” Journal of Machine Learning Research, 17(83), 1–5. doi:10.1109/pyhpc.
2016.009.

Fan Y, Li Q, Weersink A (1996). “Semiparametric Estimation of Stochastic Production
Frontier Models.” Journal of Business & Economic Statistics, 14(4), 460–468. doi:10.
2307/1392254.

GAMS Development Corporation (2013). General Algebraic Modeling System (GAMS) Release
24.2.1. Washington, DC. URL http://www.gams.com/.

Grenander U (1956). “On the Theory of Mortality Measurement.” Scandinavian Actuarial
Journal, 1956(2), 125–153. doi:10.1080/03461238.1956.10414944.

Hall P, Simar L (2002). “Estimating a Change Point, Boundary, or Frontier in the Presence
of Observation Error.” Journal of the American Statistical Association, 97(458), 523–534.
doi:10.1198/016214502760047050.

Hannah LA, Dunson DB (2013). “Multivariate Convex Regression with Adaptive Par-
titioning.” Journal of Machine Learning Research, 14(66), 3153–3188. doi:10.1201/
9780367816377-7.

Harris CR, Millman KJ, Van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser
E, Taylor J, Berg S, Smith NJ, Kern R, Picus M, Hoyer S, Van Kerkwijk MH, Brett
M, Haldane A, ndez del Río JF, Wiebe M, Peterson P, Gérard-Marchant P, Sheppard K,
Reddy T, Weckesser W, Abbasi H, Gohlke C, Oliphant TE (2020). “Array Programming
with NumPy.” Nature, 585, 357–362. doi:10.1038/s41586-020-2649-2.

Hildreth C (1954). “Point Estimates of Ordinates of Concave Functions.” Journal of the
American Statistical Association, 49(267), 598–619. doi:10.2307/2281132.

Hunter JD (2007). “Matplotlib: A 2D Graphics Environment.” Computing in Science &
Engineering, 9(3), 90–95. doi:10.1109/mcse.2007.55.

Johnson AL, Kuosmanen T (2011). “One-Stage Estimation of the Effects of Operational
Conditions and Practices on Productive Performance: Asymptotically Normal and Efficient,
Root-n Consistent StoNEZD Method.” Journal of Productivity Analysis, 36, 219–230. doi:
10.1007/s11123-011-0231-5.

Johnson AL, Kuosmanen T (2012). “One-Stage and Two-Stage DEA Estimation of the Effects
of Contextual Vriables.” European Journal of Operational Research, 220(2), 559–570. doi:
10.1016/j.ejor.2012.01.023.

https://doi.org/10.1016/j.econlet.2023.111396
https://doi.org/10.1016/j.eneco.2020.104758
https://doi.org/10.1016/j.eneco.2020.104758
https://doi.org/10.1109/pyhpc.2016.009
https://doi.org/10.1109/pyhpc.2016.009
https://doi.org/10.2307/1392254
https://doi.org/10.2307/1392254
http://www.gams.com/
https://doi.org/10.1080/03461238.1956.10414944
https://doi.org/10.1198/016214502760047050
https://doi.org/10.1201/9780367816377-7
https://doi.org/10.1201/9780367816377-7
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.2307/2281132
https://doi.org/10.1109/mcse.2007.55
https://doi.org/10.1007/s11123-011-0231-5
https://doi.org/10.1007/s11123-011-0231-5
https://doi.org/10.1016/j.ejor.2012.01.023
https://doi.org/10.1016/j.ejor.2012.01.023

Journal of Statistical Software 35

Johnson AL, Kuosmanen T (2015). “An Introduction to CNLS and StoNED Methods for
Efficiency Analysis: Economic Insights and Computational Aspects.” In SC Ray, SC Kumb-
hakar, P Dua (eds.), Benchmarking for Performance Evaluation: A Production Frontier
Approach, chapter 3, pp. 117–186. Springer-Verlag. doi:10.1007/978-81-322-2253-8_3.

Jondrow J, Lovell CK, Materov IS, Schmidt P (1982). “On the Estimation of Technical Inef-
ficiency in the Stochastic Frontier Production Function Model.” Journal of Econometrics,
19(2–3), 233–238. doi:10.1016/0304-4076(82)90004-5.

Keshvari A, Kuosmanen T (2013). “Stochastic Non-Convex Envelopment of Data: Applying
Isotonic Regression to Frontier Estimation.” European Journal of Operational Research,
231(2), 481–491. doi:10.1016/j.ejor.2013.06.005.

Koenker R (2005). Quantile Regression. Cambridge University Press, Cambridge. doi:
10.1017/cbo9780511754098.

Koenker R, Bassett G (1978). “Regression Quantiles.” Econometrica, 46(1), 33–50. doi:
10.2307/1913643.

Kriuchkov I, Kuosmanen T (2023). “Stochastic Nonparametric Estimation of the Density-
Flow Curve.” arXiv 2305.17517, arXiv.org E-Print Archive. doi:10.48550/arXiv.2305.
17517.

Kuosmanen T (2006). “Stochastic Nonparametric Envelopment of Data: Combining Virtues
of SFA and DEA in a Unified Framework.” MTT Discussion Paper 3/2006, SSRN. doi:
10.2139/ssrn.905758.

Kuosmanen T (2008). “Representation Theorem for Convex Nonparametric Least Squares.”
Econometrics Journal, 11(2), 308–325. doi:10.1111/j.1368-423x.2008.00239.x.

Kuosmanen T (2012). “Stochastic Semi-Nonparametric Frontier Estimation of Electricity
Distribution Networks: Application of the StoNED Method in the Finnish Regulatory
Model.” Energy Economics, 34(6), 2189–2199. doi:10.1016/j.eneco.2012.03.005.

Kuosmanen T, Johnson AL (2010). “Data Envelopment Analysis as Nonparametric Least-
Squares Regression.” Operations Research, 58(1), 149–160. doi:10.1287/opre.1090.0722.

Kuosmanen T, Johnson AL (2017). “Modeling Joint Production of Multiple Outputs in
StoNED: Directional Distance Function Approach.” European Journal of Operational Re-
search, 262(2), 792–801. doi:10.1016/j.ejor.2017.04.014.

Kuosmanen T, Johnson AL, Saastamoinen A (2015). “Stochastic Nonparametric Approach
to Efficiency Analysis: A Unified Framework.” In J Zhu (ed.), Data Envelopment Analysis,
chapter 7, pp. 191–244. Springer-Verlag, New York. doi:10.1007/978-1-4899-7553-9_7.

Kuosmanen T, Kortelainen M (2012). “Stochastic Non-Smooth Envelopment of Data: Semi-
Parametric Frontier Estimation Subject to Shape Constraints.” Journal of Productivity
Analysis, 38, 11–28. doi:10.1007/s11123-010-0201-3.

Kuosmanen T, Saastamoinen A, Sipiläinen T (2013). “What Is the Best Practice for Bench-
mark Regulation of Electricity Distribution? Comparison of DEA, SFA and StoNED Meth-
ods.” Energy Policy, 61, 740–750. doi:10.1016/j.enpol.2013.05.091.

https://doi.org/10.1007/978-81-322-2253-8_3
https://doi.org/10.1016/0304-4076(82)90004-5
https://doi.org/10.1016/j.ejor.2013.06.005
https://doi.org/10.1017/cbo9780511754098
https://doi.org/10.1017/cbo9780511754098
https://doi.org/10.2307/1913643
https://doi.org/10.2307/1913643
https://doi.org/10.48550/arXiv.2305.17517
https://doi.org/10.48550/arXiv.2305.17517
https://doi.org/10.2139/ssrn.905758
https://doi.org/10.2139/ssrn.905758
https://doi.org/10.1111/j.1368-423x.2008.00239.x
https://doi.org/10.1016/j.eneco.2012.03.005
https://doi.org/10.1287/opre.1090.0722
https://doi.org/10.1016/j.ejor.2017.04.014
https://doi.org/10.1007/978-1-4899-7553-9_7
https://doi.org/10.1007/s11123-010-0201-3
https://doi.org/10.1016/j.enpol.2013.05.091

36 pyStoNED: Convex Regression and Frontier Estimation in Python

Kuosmanen T, Tan A, Dai S (2023). “Performance Analysis of English Hospitals during the
First and Second Waves of the Coronavirus Pandemic.” Health Care Management Science,
26, 447–460. doi:10.1007/s10729-023-09634-7.

Kuosmanen T, Zhou X (2021). “Shadow Prices and Marginal Abatement Costs: Convex
Quantile Regression Approach.” European Journal of Operational Research, 289(2), 666–
675. doi:10.1016/j.ejor.2020.07.036.

Kuosmanen T, Zhou X, Dai S (2020). “How Much Climate Policy Has Cost for OECD
Countries?” World Development, 125, 104681. doi:10.1016/j.worlddev.2019.104681.

Lee CY, Cai JY (2020). “LASSO Variable Selection in Data Envelopment Analysis with Small
Datasets.” Omega, 91, 102019. doi:10.1016/j.omega.2018.12.008.

Lee CY, Johnson AL, Moreno-Centeno E, Kuosmanen T (2013). “A More Efficient Algorithm
for Convex Nonparametric Least Squares.” European Journal of Operational Research,
227(2), 391–400. doi:10.1016/j.ejor.2012.11.054.

Lim E, Glynn PW (2012). “Consistency of Multidimensional Convex Regression.” Operations
Research, 60(1), 196–208. doi:10.1287/opre.1110.1007.

Magnani A, Boyd SP (2009). “Convex Piecewise-Linear Fitting.” Optimization and Engineer-
ing, 10, 1–17. doi:10.1007/s11081-008-9045-3.

Mazumder R, Choudhury A, Iyengar G, Sen B (2019). “A Computational Framework for
Multivariate Convex Regression and Its Variants.” Journal of the American Statistical
Association, 114(525), 318–331. doi:10.1080/01621459.2017.1407771.

McKinney W (2010). “Data Structures for Statistical Computing in Python.” In S van der
Walt, J Millman (eds.), Proceedings of the 9th Python in Science Conference, pp. 51–56.
doi:10.25080/majora-92bf1922-00a.

Meeusen W, Van J, Broeck D (1977). “Efficiency Estimation from Cobb-Douglas Production
Functions with Composed Error.” International Economic Review, 18(2), 435–444. doi:
10.2307/2525757.

MOSEK ApS (2021). The MOSEK Optimization Toolbox for Python Manual, Version 9.2.47.
URL https://docs.mosek.com/9.2/toolbox/.

Murtagh B, Saunders M (2003). MINOS 5.51 User’s Guide. URL http://stanford.edu/
group/SOL/guides/minos551.pdf.

R Core Team (2024). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna. URL https://www.R-project.org/.

Seijo E, Sen B (2011). “Nonparametric Least Squares Estimation of a Multivariate Convex Re-
gression Function.” The Annals of Statistics, 39(3), 1633–1657. doi:10.1214/10-aos852.

The Mathworks, Inc (2021). MATLAB – The Language of Technical Computing, Version
R2021a. Natick. URL http://www.mathworks.com/.

Van Rossum G, et al. (2021). Python Programming Language. URL https://www.python.
org/.

https://doi.org/10.1007/s10729-023-09634-7
https://doi.org/10.1016/j.ejor.2020.07.036
https://doi.org/10.1016/j.worlddev.2019.104681
https://doi.org/10.1016/j.omega.2018.12.008
https://doi.org/10.1016/j.ejor.2012.11.054
https://doi.org/10.1287/opre.1110.1007
https://doi.org/10.1007/s11081-008-9045-3
https://doi.org/10.1080/01621459.2017.1407771
https://doi.org/10.25080/majora-92bf1922-00a
https://doi.org/10.2307/2525757
https://doi.org/10.2307/2525757
https://docs.mosek.com/9.2/toolbox/
http://stanford.edu/group/SOL/guides/minos551.pdf
http://stanford.edu/group/SOL/guides/minos551.pdf
https://www.R-project.org/
https://doi.org/10.1214/10-aos852
http://www.mathworks.com/
https://www.python.org/
https://www.python.org/

Journal of Statistical Software 37

Varian HR (1982). “The Nonparametric Approach to Demand Analysis.” Econometrica,
50(4), 945–973. doi:10.2307/1912771.

Varian HR (1984). “The Nonparametric Approach to Production Analysis.” Econometrica,
52(3), 579–597. doi:10.2307/1913466.

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E,
Peterson P, Weckesser W, Bright J, Van der Walt SJ, Brett M, Wilson J, Millman KJ,
Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, Carey CJ, Polat İ, Feng Y, Moore
EW, VanderPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero EA, Harris
CR, Archibald AM, Ribeiro AH, Pedregosa F, Van Mulbregt P, SciPy 10 Contributors
(2020). “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.” Nature
Methods, 17, 261–272. doi:10.1038/s41592-019-0686-2.

Wang Y, Wang S, Dang C, Ge W (2014). “Nonparametric Quantile Frontier Estimation
Under Shape Restriction.” European Journal of Operational Research, 232(3), 671–678.
doi:10.1016/j.ejor.2013.06.049.

Yagi D, Chen Y, Johnson AL, Kuosmanen T (2020). “Shape-Constrained Kernel-Weighted
Least Squares: Estimating Production Functions for Chilean Manufacturing Industries.”
Journal of Business & Economic Statistics, 38(1), 43–54. doi:10.1080/07350015.2018.
1431128.

https://doi.org/10.2307/1912771
https://doi.org/10.2307/1913466
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1016/j.ejor.2013.06.049
https://doi.org/10.1080/07350015.2018.1431128
https://doi.org/10.1080/07350015.2018.1431128

38 pyStoNED: Convex Regression and Frontier Estimation in Python

A. List of acronyms
COLS: Corrected ordinary least squares
C2NLS: Corrected convex nonparametric least squares
CER: Convex expectile regression
CNLS: Convex nonparametric least squares
CNLS-G: Convex nonparametric least squares generic algorithm
CQR: Convex quantile regression
CRS: Constant returns to scale
DDF: Directional distance function
DEA: Data envelopment analysis
DMU: Decision-making unit
FDH: Free disposal hull
MOM: Method of moments
QLE: Quasi-likelihood estimation
ICNLS: Isotonic convex nonparametric least squares
SFA: Stochastic frontier analysis
StoNED: Stochastic nonparametric envelopment of data
StoNEZD: Stochastic semi-nonparametric envelopment of Z variables data
KDE: Kernel density estimation
VRS: Variable returns to scale

B. CNLS residuals according to pyStoNED

epsilon : residual
Size=89, Index=I
Key : Lower : Value : Upper : Fixed : Stale : Domain

0 : None : -2.802404436894662 : None : False : False : Reals
1 : None : 1.4140382715619921 : None : False : False : Reals
2 : None : -22.22373494628377 : None : False : False : Reals
3 : None : -350.91098977887805 : None : False : False : Reals
4 : None : -13.699936032611063 : None : False : False : Reals
5 : None : 101.0148658439256 : None : False : False : Reals
6 : None : -28.872353594697955 : None : False : False : Reals
7 : None : -14.039725089008101 : None : False : False : Reals
8 : None : -0.847450934771274 : None : False : False : Reals
9 : None : 56.89432734221239 : None : False : False : Reals

10 : None : 285.50688604635707 : None : False : False : Reals
11 : None : 679.3838747131822 : None : False : False : Reals
12 : None : -20.230010332395608 : None : False : False : Reals
13 : None : -70.0079122391594 : None : False : False : Reals

Journal of Statistical Software 39

14 : None : 10.50653709011658 : None : False : False : Reals
15 : None : 74.59735322137823 : None : False : False : Reals
16 : None : -6.538934579439136 : None : False : False : Reals
17 : None : -30.076418126433722 : None : False : False : Reals
18 : None : -40.134736174252836 : None : False : False : Reals
19 : None : -27.777844860524397 : None : False : False : Reals
20 : None : 48.75947590024222 : None : False : False : Reals
21 : None : 87.00802351835063 : None : False : False : Reals
22 : None : 22.480692094771772 : None : False : False : Reals
23 : None : 23.95074675252465 : None : False : False : Reals
24 : None : -2.1416800611444273 : None : False : False : Reals
25 : None : -22.836592892039732 : None : False : False : Reals
26 : None : -37.86103508965881 : None : False : False : Reals
27 : None : -351.07095371577884 : None : False : False : Reals
28 : None : 66.85757452071438 : None : False : False : Reals
29 : None : -21.702789546997877 : None : False : False : Reals
30 : None : -8.951288175416948 : None : False : False : Reals
31 : None : 216.00597134650724 : None : False : False : Reals
32 : None : 37.597367489307146 : None : False : False : Reals
33 : None : -31.811466632750154 : None : False : False : Reals
34 : None : -23.78468977794573 : None : False : False : Reals
35 : None : -201.3412378050266 : None : False : False : Reals
36 : None : -69.29031473208599 : None : False : False : Reals
37 : None : 6.268753820663875 : None : False : False : Reals
38 : None : 3.7558132227129164 : None : False : False : Reals
39 : None : -74.60738872277068 : None : False : False : Reals
40 : None : -1.9747815676415144 : None : False : False : Reals
41 : None : -11.9709086463711 : None : False : False : Reals
42 : None : -236.7462908485852 : None : False : False : Reals
43 : None : 6.574582728891016 : None : False : False : Reals
44 : None : 11.656885681175297 : None : False : False : Reals
45 : None : -20.004027899272046 : None : False : False : Reals
46 : None : -67.214557123046 : None : False : False : Reals
47 : None : -5.239151984902829 : None : False : False : Reals
48 : None : -55.94693127471322 : None : False : False : Reals
49 : None : 265.5141124871416 : None : False : False : Reals
50 : None : 1.9241615487843404 : None : False : False : Reals
51 : None : -17.65079498452741 : None : False : False : Reals
52 : None : 4.656309746806329 : None : False : False : Reals
53 : None : 38.85435764023464 : None : False : False : Reals
54 : None : -2.9033098200666387 : None : False : False : Reals
55 : None : 349.52828099701924 : None : False : False : Reals
56 : None : 163.99051800024677 : None : False : False : Reals
57 : None : 35.001367028656844 : None : False : False : Reals
58 : None : 28.392952260738326 : None : False : False : Reals
59 : None : -99.13214427853407 : None : False : False : Reals
60 : None : 32.788798287561356 : None : False : False : Reals

40 pyStoNED: Convex Regression and Frontier Estimation in Python

61 : None : -604.0398415704849 : None : False : False : Reals
62 : None : 197.1010340111934 : None : False : False : Reals
63 : None : 21.411063675293747 : None : False : False : Reals
64 : None : -26.755370561407986 : None : False : False : Reals
65 : None : -15.129740447971187 : None : False : False : Reals
66 : None : 29.38417964181255 : None : False : False : Reals
67 : None : -128.2709894317968 : None : False : False : Reals
68 : None : -16.44514183547261 : None : False : False : Reals
69 : None : -13.386266515443253 : None : False : False : Reals
70 : None : -293.86157104059725 : None : False : False : Reals
71 : None : -2.550599367605116 : None : False : False : Reals
72 : None : 476.6195990080548 : None : False : False : Reals
73 : None : -9.803577087510305 : None : False : False : Reals
74 : None : 32.08949015324251 : None : False : False : Reals
75 : None : -17.241339123458943 : None : False : False : Reals
76 : None : 114.76794160604845 : None : False : False : Reals
77 : None : -3.8514874302135453 : None : False : False : Reals
78 : None : 35.39620600887872 : None : False : False : Reals
79 : None : -62.937360855631766 : None : False : False : Reals
80 : None : 8.919365675503656 : None : False : False : Reals
81 : None : 349.39726801431743 : None : False : False : Reals
82 : None : -80.69962474583377 : None : False : False : Reals
83 : None : -604.7581448377796 : None : False : False : Reals
84 : None : -59.839712241581026 : None : False : False : Reals
85 : None : 6.718359188173217 : None : False : False : Reals
86 : None : 6.173657522415056 : None : False : False : Reals
87 : None : -6.061079238934642 : None : False : False : Reals
88 : None : -0.8851559509243998 : None : False : False : Reals

C. CNLS residuals according to GAMS

---- 160 VARIABLE e.L error terms
1 -2.802, 2 1.414, 3 -22.224, 4 -350.911, 5 -13.700
6 101.015, 7 -28.872, 8 -14.040, 9 -0.847, 10 56.894
11 285.507, 12 679.384, 13 -20.230, 14 -70.008, 15 10.507
16 74.597, 17 -6.539, 18 -30.076, 19 -40.135, 20 -27.778
21 48.760, 22 87.008, 23 22.481, 24 23.951, 25 -2.142
26 -22.837, 27 -37.861, 28 -351.071, 29 66.858, 30 -21.703
31 -8.951, 32 216.006, 33 37.597, 34 -31.811, 35 -23.785
36 -201.341, 37 -69.290, 38 6.269, 39 3.756, 40 -74.607
41 -1.975, 42 -11.971, 43 -236.746, 44 6.575, 45 11.657
46 -20.004, 47 -67.215, 48 -5.239, 49 -55.947, 50 265.514
51 1.924, 52 -17.651, 53 4.656, 54 38.854, 55 -2.903
56 349.528, 57 163.991, 58 35.001, 59 28.393, 60 -99.132
61 32.789, 62 -604.040, 63 197.101, 64 21.411, 65 -26.755

Journal of Statistical Software 41

66 -15.130, 67 29.384, 68 -128.271, 69 -16.445, 70 -13.386
71 -293.862, 72 -2.551, 73 476.620, 74 -9.804, 75 32.090
76 -17.241, 77 114.768, 78 -3.852, 79 35.396, 80 -62.937
81 8.919, 82 349.397, 83 -80.700, 84 -604.758, 85 -59.840
86 6.718, 87 6.174, 88 -6.061, 89 -0.885

D. CNLS residuals according to R/Benchmarking

-800

-600

-400

-200

0

200

400

600

800

-800 -600 -400 -200 0 200 400 600 800

Es
ti

m
at

ed
 r

es
id

u
al

s
b

y
p

yS
to

N
ED

Estimated residuals by R/Benchmarking

Figure 3: Scatterplot of residuals by pyStoNED and Benchmarking.

[1,] -7.8886697 [2,] -4.2032470 [3,] -26.3619713 [4,] -340.7346628
[5,] -20.4750870 [6,] 99.8192026 [7,] -34.9414506 [8,] -16.0153732
[9,] -6.6921578 [10,] 54.4126408 [11,] 292.9020295 [12,] 674.1823463

[13,] -24.5033276 [14,] -73.0074133 [15,] -9.0744802 [16,] 76.2853110
[17,] -13.4107689 [18,] -36.5828830 [19,] -46.0007323 [20,] -27.7717236
[21,] 47.7153749 [22,] 84.6132198 [23,] 12.8106176 [24,] 25.9149204
[25,] -8.9327371 [26,] -27.3697694 [27,] -41.8614644 [28,] -341.8454225
[29,] 59.6833391 [30,] -24.1589554 [31,] -14.9332809 [32,] 211.3275027
[33,] 36.0900266 [34,] -34.4012906 [35,] -26.2801031 [36,] -200.4334730
[37,] -68.8716540 [38,] 0.7430369 [39,] -3.5393839 [40,] -70.1454171
[41,] 2.0062502 [42,] -19.2397146 [43,] -227.9417288 [44,] 1.3279244
[45,] 6.5195718 [46,] -26.4450121 [47,] -60.1349080 [48,] -13.4667633
[49,] -53.8479333 [50,] 276.5003033 [51,] -5.0199937 [52,] -18.2306460
[53,] -0.1603049 [54,] 41.6619683 [55,] -8.9830611 [56,] 360.9327664
[57,] 165.2316377 [58,] 29.7256506 [59,] 25.8260238 [60,] -100.9986163

42 pyStoNED: Convex Regression and Frontier Estimation in Python

[61,] 23.0478114 [62,]-595.6199337 [63,] 203.4132505 [64,] 25.6476906
[65,] -30.6974072 [66,] -21.2616803 [67,] 28.8204712 [68,] -121.1971133
[69,] -17.8872580 [70,] -11.4710720 [71,] -286.3945365 [72,] -3.7945771
[73,] 486.3441530 [74,] -17.3449996 [75,] 28.7225813 [76,] -16.7057597
[77,] 124.9659172 [78,] -11.6795149 [79,] 46.4608038 [80,] -60.0376607
[81,] 5.6434747 [82,] 359.8954805 [83,] -79.8715945 [84,] -609.4955011
[85,] -57.9114451 [86,] -1.9436684 [87,] -2.1260928 [88,] -14.3492663
[89,] -5.8945399

E. Description of variables in the four internal datasets

Variable Unit Description
OPEX Thousand Euro Controllable operational expenditure
CAPEX Thousand Euro Total capital expenditure
TOTEX Thousand Euro Total expenditure
Energy Gigawatt Hours Weighted amount of energy transmitted
Length Kilometer Length of the network
Customers Person Customers connected to the network
PerUndGr Percentage Proportion of underground cabling

Table 5: Finnish electricity distribution firms.

Variable Unit Description
CPNK Billion Euro2010 Net capital stock
HRSN Billion hours Hours worked by total engaged
VALK Billion Euro2010 Value added
GHG Million tons of CO2 equivalents Total GHG emissions

Table 6: GHG abatement cost of OECD countries.

Variable Unit Description
firm Quantity Firm ID
output Quantity Index Output quantity
capital Quantity Index Capital input
labour Quantity Index Labour input

Table 7: Data provided with Tim Coelli’s Frontier 4.1.

Journal of Statistical Software 43

Variable Unit Description
YEARDUM Year Time period
FMERCODE Quantity Farmer code
PROD Tonnes Tonnes of freshly threshed rice
AREA Hactares Area planted
LABOR Mandays Labour used
NPK Kilogram Fertiliser used
OTHER Laspeyres index Other inputs used
PRICE Pesos/kilogram Output price
AREAP Pesos/hectare Rental price of land
LABORP Pesos/day Labour price
NPKP Pesos/kilogram Fertiliser price
OTHERP Implicit price index Price of other inputs
AGE Years Age of the household head
EDYRS Years Education of the household head
HHSIZE Quantity Household size
NADULT Quantity Number of adults in the household
BANRAT Percentage Percentage of area classified as upland fields

Table 8: Rice production in the Philippines.

Affiliation:
Sheng Dai
School of Economics
Zhongnan University of Economics and Law
430073 Wuhan, China
Email: sheng.dai@zuel.edu.cn

Yu-Hsueh Fang, Chia-Yen Lee
Department of Information Management
National Taiwan University
Taipei City 106, Taiwan
Email: d11725001@ntu.edu.tw, chiayenlee@ntu.edu.tw

Timo Kuosmanen
Department of Economics
Turku School of Economics
University of Turku
FI-20014 Turun yliopisto, Finland
E-mail: timo.kuosmanen@utu.fi

Journal of Statistical Software https://www.jstatsoft.org/
published by the Foundation for Open Access Statistics https://www.foastat.org/
November 2024, Volume 111, Issue 6 Submitted: 2021-09-25
doi:10.18637/jss.v111.i06 Accepted: 2024-04-20

mailto:sheng.dai@zuel.edu.cn
mailto:d11725001@ntu.edu.tw
mailto:chiayenlee@ntu.edu.tw
mailto:timo.kuosmanen@utu.fi
https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v111.i06

	Introduction
	Setup
	Installation
	Solvers
	Remote solver
	Local solver

	Data structures and dataset
	Data structures
	Internal data
	External data

	Shape-constrained nonparametric regression
	Convex nonparametric least squares
	Additive CNLS model
	Multiplicative CNLS model

	Convex quantile and expectile regression
	Convex quantile regression
	Convex expectile regression

	Contextual variables
	CNLS with z variables
	CER with z variables

	Multiple outputs
	CNLS with multiple outputs
	CQR and CER with multiple outputs

	Relaxing convexity
	Isotonic CNLS
	Isotonic CQR and CER

	Corrected CNLS

	Stochastic nonparametric envelopment of data
	Estimating the expected inefficiency
	Method of moments
	Quasi-likelihood estimation
	Kernel deconvolution estimation

	Estimating the StoNED frontier
	Estimating firm-specific inefficiencies

	CNLS-G algorithm
	Solving CNLS model
	Solving CER model
	Calculating the expected inefficiency

	Graphical illustration of estimated functions
	One-input and one-output
	Two-input and one-output

	Conclusions
	List of acronyms
	CNLS residuals according to pyStoNED
	CNLS residuals according to GAMS
	CNLS residuals according to R/Benchmarking
	Description of variables in the four internal datasets

