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Abstract

We describe the R package BEKKs, which implements the estimation and diagnostic
analysis of a prominent family of multivariate generalized autoregressive conditionally het-
eroskedastic (MGARCH) processes, the so-called BEKK models. Unlike existing software
packages, we make use of analytical derivatives implemented in efficient C++ code for non-
linear log-likelihood optimization. This allows fast parameter estimation even in higher
model dimensions N > 3. The baseline BEKK model is complemented with an asym-
metric parameterization that allows for a flexible modeling of conditional (co)variances.
Furthermore, we provide the user with the simplified scalar and diagonal BEKK models
to deal with high dimensionality of heteroskedastic time series. The package is designed
in an object-oriented way featuring a comprehensive toolbox of methods to investigate
and interpret, for instance, volatility impulse response functions, risk estimation and fore-
casting (VaR) and a backtesting algorithm to compare the forecasting performance of
alternative BEKK models. For illustrative purposes, we analyze a bivariate ETF return
series (S&P, US treasury bonds) and a four-dimensional system comprising, in addition, a
gold ETF and changes of a log oil price by means of the suggested package. We find that
the BEKKs package is more than 100 times faster for time series systems of dimension
N > 3 than other existing packages.

Keywords: BEKK model, multivariate GARCH, leverage effect, value-at-risk, impulse re-
sponse functions, R.

1. Introduction

Models for the volatility of time series have played an enormous role in empirical work,
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primarily in economics and finance. The association of volatility with the notion of risk
often shifts it to the focus of attention in many financial applications. Univariate volatility
models in discrete time have been developed at the end of the last century, the most prominent
being the stochastic volatility (SV) model of Taylor (1982), and the generalized autoregressive
conditional heteroskedasticity (GARCH) model of Engle (1982) and Bollerslev (1986). SV
models treat volatility as a latent factor, whereas in GARCH models it is observable when
conditioning on past information. While SV models offer a high degree of flexibility, estimation
and inference are challenging, see e.g., Shephard (2004) for selected readings on SV models.
GARCH models, at least in the univariate case, are by now thoroughly investigated and
understood, both from a theoretical and empirical point of view, see e.g., Hafner (2008) for
a review. There is a consensus that maximum likelihood provides a straightforward and
efficient method for estimation and inference. Many variants of the classical GARCH model
have been proposed to take into account empirical phenomena such as the prominent leverage
effect of stock return volatility. On the software side, there are many packages, and even with
a number of thousands of observations, estimation and inference are usually only a matter of
fractions of a second.
In the multivariate case, modelling volatility has been challenging from the beginning, due
to the fact that for N series, the number of volatilities and co-volatilities (i.e., covariances or
correlations) increases as O(N2), and the number of parameters often increases at a similar
rate. Balancing flexibility with feasibility has been the main challenge for modeling and
estimation. Multivariate GARCH (MGARCH) models have been introduced soon after the
univariate version, and the first MGARCH model is the so-called vec-model of Bollerslev,
Engle, and Wooldridge (1988), which allows a flexible modeling of conditional volatilities and
covariances, but does not guarantee a positive definite covariance matrix.
A restricted version of the vec-model is the so-called BEKK model of Engle and Kroner (1995),
based on an early working paper by Baba, Engle, Kraft, and Kroner (1983). It is slightly
less general than the vec-model but has the important advantage of ensuring positivity of the
conditional covariance matrix. Extensions of the classical BEKK model have been proposed,
for example to take into account the leverage effect as in Kroner and Ng (1998). Estimation
theory for the BEKK model has been developed over recent years and can be considered
established by now, with important references being Comte and Lieberman (2003) and Hafner
and Preminger (2009).
Another type of MGARCH models is the dynamic conditional correlation (DCC) model of
Engle (2002) generalizing the constant conditional correlation (CCC) model of Bollerslev
(1990), (see also Tse and Tsui 2002 for a similar specification). These models, and their ex-
tensions, separate the problem of modeling volatilities and correlations into two steps: a first,
with estimation of the volatilities, and a second for the correlations, based on standardized
observations using the volatilities of the first step. This has practical and computational
advantages, although some inconsistency arguments have been raised by Aielli (2013), who
suggested an extension of the model to circumvent this problem. A major drawback, to date,
of the DCC class of models is that the estimation theory is very complicated, and to best of
our knowledge has not been established as of today.
Because of the theoretical drawbacks of the DCC class of models, we concentrate in this paper
on the BEKK models, for which a sound and complete estimation theory is available. Caporin
and McAleer (2012) provide a comparison of the theoretical properties of the BEKK and DCC
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model classes, while their empirical properties are compared in Caporin and McAleer (2008).
The main conclusion is that BEKK can consistently estimate conditional correlations under
testable assumptions, which to date has not been shown for the DCC model, while empirically
the BEKK model has not been significantly outperformed by the DCC model. We therefore
refrain from covering both models here and focus on the BEKK model and its different
versions.

In the range of R packages, the widely-applied rugarch package of Ghalanos (2024) includes
the evaluation of univariate GARCH models and a broad toolbox to predict volatilities and
risks by means of estimated models. Moreover, the rmgarch package (Ghalanos 2022) provides
a similar functionality for multivariate time series using the CCC and DCC MGARCH models
but does not cover the estimation of flexible MGARCH models in BEKK form. The RATS
software (Estima 2024) comprises estimation tools for MGARCH models (including BEKK)
but is not provided as an open source tool for a broad user-base. Currently, there are three
R packages offering BEKK estimation. However, they have some limitations which we may
be addressed by the newly designed package. The MTS package (Tsay and Wood 2022)
allows only estimation up to three-dimensional processes, and relies on purely numerical
optimization. While the second competing package mgarchBEKK (Schmidbauer, Roesch, and
Tunalioglu 2022) can be applied to higher dimensional time series, it is also computationally
less efficient than BEKKs, since it relies on numerical optimization techniques. The third
competing package bmgarch (Rast and Martin 2023) utilizes Bayesian estimation algorithms
making it substantially slower and computationally costly, in particular, if the interest turns
towards systems that imply rich cross equation dependencies of conditional (co)variances.
Moreover, the competing packages do not offer risk evaluation by a backtesting procedure such
as our new BEKKs (Fülle, Lange, Hafner, and Herwartz 2024) package. Stepping outside the
R framework, full BEKK model implementations are missing for EViews (IHS Markit 2021)
(allows only diagonal BEKK), Stata (StataCorp 2021) and Python (Van Rossum et al. 2011).
Stata and EViews, however, provide the usership with DCC and CCC MGARCH models. A
DCC implementation is available in Python via the module mgarch (Srivastavas 2022).

Our objective in this paper is to first recall some theoretical properties of the BEKK model,
including estimation theory and analytical derivatives needed for iterative model evaluation
and the assessment of the asymptotic covariance matrix. Hafner and Herwartz (2008) em-
phasize as a core conclusion from their simulation studies that utilizing analytical derivatives
is extremely beneficial for both the estimation of MGARCH models and the provision of
reliable inferential outcomes as, for instance, t ratios. Using instead numerical derivatives
tends to become unreliable in higher dimensions, especially for the evaluation of the Hessian
matrix. Accordingly, model estimation and inferential analysis in the BEKKs package builds
upon the analytical first and second order derivatives as provided in Hafner and Herwartz
(2008). While BEKKs provides analytical derivatives in R, core optimization procedures have
been implemented in C++ to enable marked performance improvements in terms of com-
putation time and/or speed. To enhance the functionalities of BEKKs and going beyond
alternative packages (e.g., bmgarch, mgarchBEKK or MTS), we furthermore provide vari-
ous diagnostic checks for the estimated model such as portmanteau statistics of the squares
and cross-products of standardized residuals. Most notably, we provide a unique, flexible
asymmetric parametrization of volatility (spillovers) in the vein of Grier, Henry, Olekalns,
and Shields (2004). In empirical applications, volatility impulse response functions (VIRFs),
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as defined by Hafner and Herwartz (2006), have become increasingly popular, so that we
implement functions to directly obtain VIRFs based on an estimated BEKK model.
According to Engle (2001), MGARCH models are of particular interest when it comes to
estimate volatilities and risks of financial assets and portfolios. To this end, we provide the
usership with a forecasting tool for volatilities and risks assuming different distributions (for
instance, Gaussian, standardized Student’s t distribution and the empirical distribution of
model-implied residuals). In order to compare the risk forecasting by means of the value-
at-risk (VaR) (Jorion 1996, 2007), we provide a backtesting procedure and coverage tests
of Kupiec (1995) and Christoffersen (1998). The test statistics are imported from the GAS
package (Ardia, Boudt, and Catania 2019). We finish the paper with two examples of em-
pirical applications to demonstrate the functionality of the package and computation time in
comparison with competing packages.

2. MGARCH

Let rt define an N -dimensional vector of returns of speculative assets with t ∈ {1, . . . , T}.
The information available at time t is Ωt = {r1, . . . , rt}. To describe conditional first and
second order properties of rt, MGARCH models align with the following representation:

rt = µt + et,

et = Ht(θ)1/2ξt, (1)

where µt = E[rt|Ωt−1] and Ht(θ) = COV[rt|Ωt−1]. Model parameters that formalize the
relation between Ht and the history of the process are collected in the parameter vector
θ ∈ Θ, with Θ indicating the respective parameter space. For notational convenience we
henceforth set Ht = Ht(θ). Moreover, H

1/2
t in Equation 1 denotes a decomposition matrix of

Ht such that Ht = H
1/2
t

(
H

1/2
t

)⊤
.1 The shocks ξt are assumed i.i.d. and ξt ∼ (0, IN ), where

IN is the N -dimensional identity matrix. While empirical return processes typically show
marked time variation in second order moments, the mean of the elements in rt is often a-
priori assumed to be time invariant such that centered vector residuals are subjected to model
estimation, i.e., et = rt − r̄, where r̄ denotes the unconditional mean of rt. Throughout, we
consider the process et to be weakly (or covariance) stationary.
Maximum likelihood (ML) estimation of MGARCH models requires a distributional assump-
tion. As the true distribution of model innovations ξt is unknown, it has become a widespread
approach to perform quasi ML (QML) estimation to maximize the Gaussian log-likelihood
for three reasons: First, the ad-hoc assumption of Gaussian model innovations deliberates
the analyst from the need to elicit a particular alternative and potentially false distribu-
tion. Second, as we argue below under the notion of QML-estimation, the consequences
of log-likelihood misspecification are yet well understood. Third, the maximization of the
Gaussian log-likelihood is numerically convenient in the present case as it only depends on
the MGARCH implied (co)variance profile and does not involve the estimation of further

1Throughout this work we use the spectral decomposition of Ht.
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distributional parameters. The Gaussian log-likelihood reads as

L (θ) =
T∑

t=1
lt (θ)

=
T∑

t=1

(
−N

2 log (2π) − 1
2 log (det Ht) − 1

2e⊤
t H−1

t et

)
,

conditional on an available sample (et)t=1,2,...T .
The score function and the Hessian have, respectively, the following representation

∂l(θ)
∂θi

= −0.5
T∑

t=1
trace

(
∂Ht

∂θi
H−1

t − ete
⊤
t H−1

t

∂Ht

∂θi
H−1

t

)
and

∂2l(θ)
∂θi∂θj

= 0.5
T∑

t=1
trace

(
∂2Ht

∂θi∂θj
H−1

t − ete
⊤
t H−1

t

∂2Ht

∂θi∂θj
H−1

t − ∂Ht

∂θi
H−1

t

∂Ht

∂θj
H−1

t

+ete
⊤
t H−1

t

∂Ht

∂θj
H−1

t

∂Ht

∂θi
H−1

t + ete
⊤
t H−1

t

∂Ht

∂θi
H−1

t

∂Ht

∂θj
H−1

t

)
.

Under conditions listed in Comte and Lieberman (2003) and Hafner and Preminger (2009),
the QML estimator θ̂ = arg maxΘ L (θ) is consistent and asymptotically normally distributed,
even in the case of non-normally distributed innovations, i.e., under misspecification of the
Gaussian likelihood. The asymptotic distribution of the QML estimator is given by

√
T (θ̂ − θ0) D−→ N

(
0, J −1IJ −1

)
, (2)

with
I = E

[
∂lt(θ)

∂θ

∣∣∣∣
θ0

∂lt(θ)
∂θ⊤

∣∣∣∣
θ0

]
, J = −E

[
∂2lt(θ)
∂θ∂θ⊤

∣∣∣∣∣
θ0

]
and where the expectation is taken with respect to the true model parameters. The matrix
I is the expectation of the outer product of the score vector evaluated at the true parameter
vector θ0, whereas J is the negative expectation of the Hessian evaluated at θ0. If the residual
process ξt is Gaussian, I = J and the asymptotic covariance matrix reduces to I−1 (Bollerslev
and Wooldridge 1992).
With respect to the functional form relating the dynamic covariance to the history Ωt−1 the so-
called vec specification of MGARCH models encompasses all linear specifications. Due to its
generality the vec specification provides an encompassing tool to compare dynamic features,
as e.g., impulse response functions, implied by alternatively restricted models (Hafner and
Herwartz 2006). It has practical drawbacks, however, due to the large number of parameters
and the difficulties of keeping Ht positive definite. For the sake of notational simplicity we
consider the vec model of order (1, 1) as given by

vech(Ht) = ω + Avech(et−1e⊤
t−1) + Gvech(Ht−1), (3)

where ω is a N(N + 1)/2 × 1 parameter vector and A and G are square parameter matrices
of dimension N(N + 1)/2.
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Alternative MGARCH models now differ in the functional form relating the elements of Ht

to the information set Ωt−1. In this work we focus on model representations that fit into the
class of so-called BEKK models. Henceforth, let KNN be the commutation matrix, LN the
elimination matrix, DN the duplication matrix, and its generalized inverse D+

N .

2.1. BEKK

In its most general form the so-called BEKK model (Engle and Kroner 1995) of order p, q, K
(BEKK(p, q, K)) reads as2

Ht =CC⊤ +
K∑

k=1

q∑
i=1

A⊤
iket−ie

⊤
t−iAik +

K∑
k=1

p∑
i=1

G⊤
ikHt−iGik,

with C, Aik, and Gik being N × N parameter matrices of which C is lower triangular. The
summation limit K determines the generality of the BEKK specification within the class
of positive definite covariance processes. A necessary and sufficient condition for covariance
stationarity is given by

ρ

( q∑
i=1

K∑
k=1

(Aik ⊗ Aik)⊤ +
p∑

i=1

K∑
k=1

(Gik ⊗ Gik)⊤
)

< 1,

with ρ(A) being the spectral radius of a matrix A.3 Model implied covariance paths are
positive definite under suitable initialization and the additional condition that

diag (C) ≥ 0 (4)

must hold. The most popular is the BEKK(1, 1, 1) representation. It is formulated using
one-period lags only and reads as

Ht = CC⊤ + A⊤et−1e⊤
t−1A + G⊤Ht−1G,

where θ = (vech(C)⊤, vec(A)⊤, vec(G)⊤)⊤.
Partial derivatives of the log-likelihood function obtain as

∂ vec (Ht)
∂ vech(C)⊤ = 2DN D+

N (C ⊗ IN )L⊤
N + (G ⊗ G)⊤ ∂ vec (Ht−1)

∂ vech(C)⊤ ,

∂ vec (Ht)
∂ vec(A)⊤ = 2DN D+

N (IN ⊗ A⊤et−1e⊤
t−1) + (G ⊗ G)⊤ ∂ vec (Ht−1)

∂ vec(A)⊤ ,

∂ vec (Ht)
∂ vec(G)⊤ = 2DN D+

N (IN ⊗ G⊤ vec (Ht−1)) + (G ⊗ G)⊤ ∂ vec (Ht−1)
∂ vec(G)⊤ .

Explicit representations of second order derivatives have been provided in Hafner and Her-
wartz (2008). For convenience these derivatives are encountered in Appendix A.

2The acronym BEKK is named after an initial working paper version (Baba et al. 1983) of Engle and Kroner
(1995).

3Let λ1, . . . , λn be the eigenvalues of a (complex) matrix A ∈ Cn×n. Then, the spectral radius of A is
defined as ρ(A) = max {|λ1|, . . . , |λn|} .
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2.2. Asymmetric BEKK

Similar to the asymmetric DCC model of Cappiello, Engle, and Sheppard (2006), the asym-
metric BEKK(1, 1, 1) model proposed by Kroner and Ng (1998) is given by

Ht = CC⊤ + A⊤et−1e⊤
t−1A + B⊤ηt−1ηt−1B + G⊤Ht−1G, (5)

with ηt = I (et < 0) ⊙ et, where I(·) is the elementwise indicator function. Alternative spec-
ifications have been proposed by Grier et al. (2004), where the indicator function operates
jointly on all components of et. A general specification would be given by model in Equa-
tion 5 with ηt =

{∏N
j=1 I (et,j ∈ Ij)

}
et, where Ij ⊂ R, for example Ij = (−∞, 0]. Here, the

asymmetry term becomes active only if all N individual conditions hold.
We develop a condition for covariance stationarity for the asymmetric BEKK model that
holds for both the Kroner and Ng (1998) and Grier et al. (2004) versions. It is convenient to
observe that E[ηtη

⊤
t ] = E[ete

⊤
t ] ⊙ W = Σ ⊙ W for some symmetric positive definite matrix W ,

where Σ is the unconditional variance-covariance matrix of et. Then, note that

E[vec(ηtη
⊤
t )] = diag(vec(W ))vec(Σ),

where diag(a) is a diagonal matrix with vector a on the diagonal. Therefore, the vectorized
unconditional covariance of the asymmetric BEKK model is

vec(Σ) =
{

IN2 − (A ⊗ A)⊤ − (G ⊗ G)⊤ − (B ⊗ B)⊤diag(vec(W ))
}−1

vec(CC⊤),

provided that all eigenvalues of the matrix

(A ⊗ A)⊤ + (G ⊗ G)⊤ + (B ⊗ B)⊤diag(vec(W ))

are smaller than one in modulus. To estimate the matrix W , we replace expectations by
sample averages,

S1 := 1
T

T∑
t=1

ηtη
⊤
t = 1

T

T∑
t=1

ete
⊤
t ⊙ Ŵ =: S2 ⊙ Ŵ

and hence
Ŵ = S1 ÷ S2

where ÷ is elementwise division.
The score function of the model comprises an extension of the score function of the BEKK(1, 1, 1)
process, i.e,

∂ vec (Ht)
∂ vec(B)⊤ = 2DN D+

N (IN ⊗ B⊤ηt−1η⊤
t−1) + (G ⊗ G)⊤ ∂Ht−1

∂ vec(B)⊤ .

second order derivatives for the asymmetric BEKK are in Appendix A.

2.3. Restricted BEKK specifications

The estimation of MGARCH models relies on nonlinear optimization routines. Since the
number of BEKK model parameters increases for medium and higher dimensional return vec-
tors at rate O(N2) the literature yet provides a set of model representations developed to
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respect principles of model parsimony and avoid a curse of dimensionality. BEKK variants
that deserve attention in this regard are, for instance, the diagonal BEKK (dBEKK, Baba
et al. 1983) and the scalar BEKK (sBEKK, Ding and Engle 2001). Whereas the (asymmetric)
diagonal BEKK process consists of parameter matrices A, B and G restricted to diagonal ma-
trices, the scalar BEKK is obtained by substituting scalar parameters for parameter matrices
(i.e., introducing scalars a, b and g to replace A, B and G). The dBEKK and its first and
second order derivatives are therefore similar to the respective equations for the BEKK model
discussed above. However, the zeros obtained by setting the off-diagonal parameters to zero
need to be sliced out. The asymmetric sBEKK reads as

Ht = CC⊤ + aet−1e⊤
t−1 + bηt−1η⊤

t−1 + gHt−1,

with a, b, g ∈ R. To guarantee positive definiteness of the process, additionally to Equation 4,
the parameters must be positive, i.e., a, b, g ≥ 0. For covariance stationarity of the sBEKK,
respectively, asymmetric sBEKK process, all eigenvalues of

a · IN + b · W + g · IN

must be smaller than one in modulus.
The score functions read as

∂ vec(Ht)
∂ vech(C)⊤ = 2 · DN D+

N (C ⊗ IN )L⊤
N + g

∂ vec (Ht−1)
∂ vech(C)⊤

∂ vec(Ht)
∂a

= vec(et−1e⊤
t−1) + g

∂ vec(Ht−1)
∂a

∂ vec(Ht)
∂g

= vec(Ht−1) + g
∂ vec(Ht−1)

∂g

∂ vec(Ht)
∂b

= vec(ηt−1η⊤
t−1) + g

∂ vec(Ht−1)
∂b

.

The symmetric sBEKK obtains by setting b = 0. Second order derivatives for the scalar
BEKK are given in Appendix A.

2.4. Estimation
With the analytical derivatives at hand, we are able to use an estimation algorithm which
does not rely on numerical derivatives. For the package we use the so-called BHHH algorithm
(Berndt, Hall, Hall, and Hausman 1974), which does not require to evaluate the Hessian
matrix making the estimation process even faster and computationally less costly. The update
of the parameter estimate at the i-th iteration, conditional on starting values θ0, is given by

θi+1 = θi − λi

[
∂l(θi)
∂θi

∂l(θi)
∂θ⊤

i

]−1
∂l(θi)
∂θi

,

where λi is a flexible step size used for iteration i.

3. Methods and tools
In order to further interpret and use the BEKK models, we provide the following methods
within the package.
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3.1. Portmanteau test for remaining second order correlation
Let ζt = vech(ξtξ

⊤
t ) denote the N(N +1)/2 dimensional vector of cross products of MGARCH

implied model residuals. In case of a well specified MGARCH model, the random variables in
ζt should be free of serial correlation. We consider a Portmanteau test of the null hypothesis of
no remaining correlation as a general model diagnostic to assess the convenience of a specific
empirical model, i.e.,

H0 : E(ζtζ
⊤
t−i) = 0, i = 1, . . . , h.

The respective Portmanteau statistic joint with its approximate asymptotic distribution is

Qh = T
h∑

j=1
trace(Ĉ⊤

j Ĉ−1
0 Ĉ⊤

j Ĉ−1
0 ) ≈ χ2((h − 2)N2),

where Ĉi = T −1∑T
t=i+1 ζ̂tζ̂

⊤
t−i see Lütkepohl (2007, p. 577) and Li and McLeod (1981) for

VARMA models.

3.2. VIRFs
As it is typical in multivariate dynamic systems, the parametric model is too complex to
directly assess the marginal effects of particular variables on the covariance path Ht. Impulse
response functions illustrate the dynamic effects of isolated shocks occurring in one variable
at a particular point in time on a system of variables (see e.g., Lütkepohl 2007, Chap. 9).
Building on the concept of conditional moment profiles (Gallant, Rossi, and Tauchen 1993),
Hafner and Herwartz (2006) have defined so-called variance impulse response functions to
assess the marginal effects of shocks on the second order properties of observables et at
horizon ν as follows:

Vt+ν(ξ∗, Ωt−1) = E[vech(Ht+ν)|Ωt−1, ξt = ξ∗] − E[vech(Ht+ν)|Ωt−1]. (6)

In Equation 6, ξ∗ is a shock vector of interest such that Vt+ν(ξ∗, Ωt−1) provides a direct
comparison of two (future) covariance patterns in the spirit of conditional moment profiles
of Gallant et al. (1993). One pattern is determined under the shock scenario and the other
one describes a counterfactual “steady state”. The shock of interest ξ∗ might consist of
an isolated unit impulse with other elements being zero or it could be obtained from an
(estimated) empirical model ξ∗ = H

−1/2
t et, where H

1/2
t is a given covariance decomposition.

It is convenient to derive VIRFs from the vec form, see Equation 3, of the BEKK model,

vech(Ht) = C + Avech(et−1e⊤
t−1) + Gvech(Ht−1), (7)

where C = vech(CC⊤), A = D+
N (A ⊗ A)⊤DN , and G = D+

N (G ⊗ G)⊤DN . Referring to
model parameters in Equation 7 and conditional covariance decompositions H

1/2
t , VIRFs are

determined recursively as

Vt+1(ξ∗, Ωt−1) = Avech(H1/2
t ξ∗ξ∗⊤

H
1/2
t − Ht),

Vt+ν(ξ∗, Ωt−1) = {A + G} Vt+ν−1(ξ∗, Ωt−1), ν ≥ 2.

To determine confidence bands of the VIRFs, we use the Delta method. Accordingly, the
asymptotic distribution of the VIRF function is given by

√
T
[
V̂t+1(ξ∗, Ωt−1) − Vt+1(ξ∗, Ωt−1)

]
D→ N

(
0, ∇Vt+1(ξ∗, Ωt−1)⊤Σ∇Vt+1(ξ∗, Ωt−1)

)
, (8)
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where Σ = J −1IJ −1, see Equation 2, and V̂t+1(ξ∗, Ωt−1) denotes the VIRF using estimated
BEKK(1, 1, 1) parameters and the subsequent Ht process. In case of Gaussian error terms, Σ
reduces to I−1. The ∇ symbol stands for the first derivative operator.

3.3. VaR

In order to estimate risks of (speculative) portfolio returns, we support risk assessment within
the package. For this purpose, we use the common VaR as measure to estimate the risks. It
quantifies the loss of an asset or portfolio Z which is not exceeded with probability 1−α, i.e.,

VaRα (Z) = F −1
Z (α) = inf {z ∈ R : FZ (z) > α} ,

where FZ is the (estimated) CDF of Z. The most common distributional assumption for F is
to impose normality. However, Patton (2004) and Chen, Fan, and Patton (2004), for instance,
provide evidence against (conditional) normality of financial return series. We henceforth
provide two alternative distributions in the package. First, we allow the user to use a centered,
Student’s t distribution, where the degrees of freedom are estimated by means of a moment
estimator using the estimated BEKK residuals (Student 1908). Given the consistency of the
QML parameter estimates, this provides a consistent, albeit inefficient, estimate of the degrees
of freedom parameter. The second alternative is to use the empirical distribution function
(eCDF) of the BEKK residuals.
To determine the most effective forecasting model and respective distributional assumptions,
we provide a backtesting algorithm for VaR using a rolling window approach. In terms
of backtesting, we include the GAS package (Ardia et al. 2019) and provide the user with
common tests of unconditional and conditional coverage, such as given by Kupiec (1995) and
Christoffersen (1998).

4. Package overview
The starting point to use the BEKKs package is the function bekk_spec(), where the user can
specify the BEKK model type, the selection of initial values for log-likelihood optimization
and the asymmetric patterns to account for. The default is set to the full symmetric BEKK
model with fixed initial values for optimization. We will give a detailed description of the
main function below.

4.1. Function for specification

The bekk_spec() function returns a so-called S3 class object ‘bekkSpec’ which further can
be passed to the methods for estimation, forecasting and simulation. The function takes the
following arguments:

• model: A list with the following elements must be provided. First, type specifies
the BEKK(1, 1, 1) model type, i.e., one character string of full BEKK ("bekk"), di-
agonal BEKK ("dbekk") or scalar BEKK ("sbekk"). The second list element is en-
titled asymmetric and must be a logical specifying whether a symmetric (default)
(asymmetric = FALSE) or an asymmetric model (asymmetric = TRUE) shall be esti-
mated, i.e., all model types can be either fitted in their symmetric or asymmetric form.
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• init_values: Either specifying the method to obtain initial values for the BEKK opti-
mization by method bekk_fit() or a vector of BEKK parameters when the ‘bekkFit’
object is directly passed to simulate() for simulating a multivariate time series follow-
ing a BEKK(1, 1, 1) process. Initial values for ‘bekkFit’ during BHHH algorithm are
set by default, i.e, by setting init_values = NULL, to a recursive grid search to obtain
start values. Moreover, it can be either a numerical vector of suitable dimension such
that the user may provide an own initial guess, or a character vector i.e., “random” to
use a random starting value generator (set a seed in advance for reproducible results),
or “simple” for relying on a simple initial values generator based on typical values for
BEKK parameters found in the literature.4 If the object from this function is passed to
simulate, "init_values" are used as parameters for the data generating process.

• signs: A vector stacking 1 or −1 to identify the patterns for asymmetric volatility
effects. Using "1" indicates that positive values have an additional effect on volatility,
while "-1" states that negative values are considered to have an additional effect on
volatility. The positioning of the 1, respective, −1 indicates the time series for which the
asymmetric pattern is set. For example, a vector c(-1, 1, -1) in a three-dimensional
model indicates that the asymmetric term is added to the volatility if negative returns
of the first and third time series occur jointly with positive returns of the second time
series. The default case is to assign a vector of −1 to signs such that jointly negative
returns are assumed to exert an additional influence on conditional volatility by default.

• N: An integer specifying the dimension of the time series object. This is only needed
when a ‘bekkSpec’ object is used for simulating a MGARCH process by means of
bekk_spec().

It is worthwhile to mention that we have implemented the asymmetric model according to
Grier et al. (2004), where the asymmetric volatility term only enters the conditional volatility
if the condition imposed through signs is jointly fulfilled by the return vector et.

4.2. Function for estimation

Having set up ‘bekkSpec’ object, the function bekk_fit() is used to estimate the parameters
of the specified BEKK model for a given time series. The function returns a S3 class object
‘bekkFit’. The following variables are the input for the estimation procedure:

• spec: An object of class ‘bekkSpec’.

• data: A multivariate data object. Can be a numeric matrix or ‘ts’/‘xts’/‘zoo’ object.

• QML_t_ratios: A logical variable. If QML_t_ratios = TRUE, the t ratios and standard
errors of the BEKK parameter matrices are exactly calculated by means of second order
derivatives. If QML_t_ratios = FALSE, the t ratios and standard errors are calculated
conditionally on a correctly specified distribution of the BEKK residuals. For more
details, see Section 2.

• max_iter: An integer specifying the maximum number of BHHH algorithm iterations.
4The C matrix is assumed to be diagonal, where the diagonal is set to 0.05

∑T

t=1 diag(ete
⊤
t )/T and

diag(A) = 0.32 and diag(G) = 0.9 with the off-diagonal elements set to zero.
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• crit: Determines the precision of the BHHH algorithm.

4.3. Forecasting and simulation

Having specified and estimated a BEKK(1, 1, 1) model, the resulting object of class ‘bekkFit’
may be used for further analysis of the underlying time series data. First, the package allows
to simulate a time series by means of the method predict():

• object: A fitted BEKK(1, 1, 1) model of class ‘bekkFit’.

• n.ahead: Number of periods to forecast conditional volatility. Default is a one-step
ahead forecast.

• ci: Numeric point in [0, 1] defining the level for confidence bands of the conditional
volatility forecast. Default is a 95% level confidence band.

For the simulation, the function simulate() can be used. The input object is either a
‘bekkFit’ or a ‘bekkSpec’ object. The length of the resulting series is set by nsim. The
function then returns a simulated time series. For replication, a seed should be set in advance.

4.4. Estimating and backtesting portfolio risks

In order to estimate and forecast risks of a given time series by means of the BEKK(1, 1, 1)
model, we supply the user with a toolbox of methods for risks assessment by means of the
VaR under different distributions. To estimate and forecast the VaR, the VaR function takes
the following arguments:

• x: An object of class ‘bekkFit’ from the function bekk_fit() or an object of class
‘bekkForecast’ from the function predict() for which the VaR shall be calculated.

• p: A numerical value that determines the confidence level for the estimated risk (i.e.,
1 minus the so-called VaR coverage level). The default value is set at 0.99 in accordance
with the Basel Regulation (The Basel Committee on Banking Supervision 2011).

• portfolio_weights: A vector determining the portfolio weights to calculate the port-
folio VaR. If set to NULL, univariate VaRs are calculated for each series.

• distribution: A character string determining the assumed distribution of the resid-
uals. Implemented are "normal", "empirical" and "t". The default is set to the
empirical distribution of the residuals. When using "t", a Student t distribution is
used for the marginal residuals’ distribution. The degrees of freedom are estimated by
a moment estimation using the empirical kurtosis of the marginal residuals.

To compare the risk forecasting performance of different models, the method backtesting()
applies a rolling window approach for an estimated BEKK(1, 1, 1) model. For this purpose,
the data is divided into an in-sample and an out-of-sample period. Then, the method de-
termines the VaR for each out-of-sample time instance. The user can specify the length,
the forecasting horizon, distribution and define the number of cores for parallel computation.
More specifically, the function takes the following input additionally to the inputs of the VaR
method listed above:
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• window_length: An integer specifying the length of the rolling window to which the
model is fitted.

• n.ahead: Number of periods to forecast conditional volatility. Default is a one-period
ahead forecast.

• nc: Number of cores to be used for parallel computation.

The function returns a series of estimated VaR values, the number of hits (i.e., time instances
where the true loss was larger than the estimated VaR) and gives a series of test statistics for
conditional and unconditional coverage.

4.5. Estimating volatility impulse response functions
The package allows for the estimation of volatility impulse response functions. For instance,
we allow the user to specify the time instance, quantile of shock, and series where the shock oc-
curs for which the VIRFs are calculated. The corresponding function virf takes the following
input.

• x: An object of class ‘bekkFit’.

• time: Time instance for which the VIRF is determined.

• q: A number specifying the quantile to be considered for a shock on which basis VIRFs
are generated.

• n.ahead: Number of periods to forecast conditional volatility. Default is a 10-period
ahead forecast.

• index_series: An integer defining the number of series for which a shock is assumed.

• ci: A number defining the confidence level for the confidence bands.

• time_shock: Logical indicating if the estimated residuals at time instance specified by
time shall be used as a shock.

5. Empirical illustration
To illustrate the functions and methods of the BEKKs package, we first illustrate the estima-
tion of a dynamic covariance model. Subsequently, we describe the estimation of the VaR of
a portfolio putting some more weight (60%) on the high yield assets (i.e., US equities) while
less risky long-term US Treasury bonds account for 40% of the portfolio value. For these
purposes we consider a symmetric BEKK model. Second, we add gold and crude oil to the
system of considered assets. Apart from describing the second order moment structure by
means of an asymmetric BEKK model, we estimate the VaR of an portfolio, with is composed
of 60% stocks, 20% bonds, 10% gold and 10% crude oil.

5.1. Bivariate symmetric BEKK
The first step of the analysis is to load the BEKKs package into the workspace. Further-
more, the quantmod package (Ryan and Ulrich 2024) enables to download financial market
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Method class Methods
for class

Description

bekk_spec ‘bekkSpec’ print Defines type of BEKK model,
how to estimate initial values
and asymmetric patterns to
account for.

bekk_fit ‘bekkFit’ plot,
summary,
print,
logLik,
residuals

Estimates a BEKK model of
type defined by bekk_spec()
for a given time series.

predict ‘bekkForecast’ Forecasting volatility of time
series using estimated param-
eters of class ‘bekkFit’.

simulate ‘bekkSim’ Simulating time series using
estimates from bekk_fit() or
predefined parameters of es-
timates from ‘bekkSpec’ ob-
jects.

VaR ‘VaR’ plot,
summary,
print

Estimates (forecasts) the
VaR for given ‘bekkFit’
(‘bekkForecast’) objects.

backtest ‘backtest’ plot,
summary,
print

A function for backtesting a
model of class ‘bekkFit’ in
terms of VaR-forcasting accu-
racy by means of rolling win-
dows.

virf ‘virf’ plot Estimates volatility impulse
responses and confidence
bands of a ‘bekkFit’ object
for a specified shock.

portmanteau.test ‘portmanteau.test’ print Performing a Portmanteau
test on remaining ARCH ef-
fects in the residuals of an ob-
ject of class ‘bekkFit’.

Table 1: Package design of BEKKs.

data directly from Yahoo! Finance and ggfortify (Tang, Horikoshi, and Li 2016) allows for
straightforward time series plotting.

R> library("BEKKs")
R> library("quantmod")
R> library("ggfortify")

Our hypothetical portfolio in this section consists of 60% of the SPDR S&P 500 Trust ETF,
which trades on the NYSE under the symbol SPY. This fund is the largest exchange-traded
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Figure 1: Daily percentage changes in S&P 500 ETF (SPY) and iShares 20+ Year Treasury
Bond ETF (TLT).

fund in the world and has been designed to track the S&P 500 stock market index. The
remaining 40% of our portfolio consists of the iShares 20+ Year Treasury Bond ETF (symbol:
TLT). The fund invests in US dollar-denominated fixed-income US government bonds with
a remaining maturity of at least twenty years and thus tracks the Barclays US 20+ Year
Treasury Bond Index.
The following code downloads the daily prices of the two assets from Yahoo! Finance for
the period May 1, 2006 until March 10, 2022 and converts the adjusted5 closing prices into
percentage changes.

R> assets <- c("SPY", "TLT")
R> getSymbols(assets, from = "2006-05-01", to = "2022-03-10",
+ src = "yahoo")
R> s_data <- na.omit(ROC(merge(Ad(SPY), Ad(TLT)), type = "discrete")) * 100
R> colnames(s_data) <- assets
R> autoplot(s_data) + theme_bw()

Figure 1 shows the daily returns in SPY and TLT. The next step is to use the BEKKs package
to estimate the conditional standard deviations and correlations of the two assets. To do so,
we specify a symmetric BEKK model by generating an object of class ‘bekkSpec’ with the
default input of bekk_spec() and pass the object jointly with the data to the bekk_fit()
method.

R> objBEKK1 <- bekk_spec()

5Adjusted closing prices are the closing prices after adjusting for all relevant splits and dividend distribu-
tions.
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R> m1 <- bekk_fit(objBEKK1, s_data, QML_t_ratios = FALSE, max_iter = 50)
R> summary(m1)

BEKK estimation results
-----------------------
Log-likelihood: -9905.655
BEKK model stationary: TRUE
Number of BHHH iterations: 16
AIC: 19830.31
BIC: 19840.19
Estimated parameter matrices:

C
[,1] [,2]

[1,] 0.17060406 0.0000000
[2,] -0.04284237 0.0931289

A
[,1] [,2]

[1,] 0.36084828 -0.03193617
[2,] -0.02705291 0.24183921

G
[,1] [,2]

[1,] 0.918128943 0.01215393
[2,] 0.001007041 0.96584175

Standard errors of parameter matrices:

C
[,1] [,2]

[1,] 0.007205855 0.000000000
[2,] 0.011133739 0.009159382

A
[,1] [,2]

[1,] 0.01141225 0.007473649
[2,] 0.01218979 0.009893556

G
[,1] [,2]

[1,] 0.005048616 0.003120268
[2,] 0.004851338 0.003243111

To test the residuals for normality, we use the R package tseries for Jarque-Bera tests
(Trapletti and Hornik 2024).
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R> library("tseries")
R> jarque.bera.test(residuals(m1)[,1])
R> jarque.bera.test(residuals(m1)[,2])

Jarque Bera Test

data: residuals(m1)[, 1]
X-squared = 1246, df = 2, p-value < 2.2e-16

Jarque Bera Test

data: residuals(m1)[, 2]
X-squared = 246.97, df = 2, p-value < 2.2e-16

R> portmanteau.test(m1, lags = 5)
R> portmanteau.test(m1, lags = 15)
R> portmanteau.test(m1, lags = 30)

Portmanteau Test (Lags = 5)

data: Residuals of estimated BEKK process
statistic = 0.71517, df = 12, p-value = 1

Portmanteau Test (Lags = 15)

data: Residuals of estimated BEKK process
statistic = 1.9165, df = 52, p-value = 1

Portmanteau Test (Lags = 30)

data: Residuals of estimated BEKK process
statistic = 3.6395, df = 112, p-value = 1

For notational convenience with existing packages, the model-implied residuals ξt are defined
as e_t inside the package. Testing the model-implied residuals ξt for normality obtains a
strong rejection of the null hypothesis. We have therefore chosen the option QML_t_ratios =
TRUE (Bollerslev and Wooldridge 1992). In case that model residuals align with the normal
distribution it is recommended to use ML t ratios by setting QML_t_ratios = FALSE. To
indicate that the employed MGARCH model captures the dynamic second order properties
of the data, a Portmanteau test for residual correlation of ξt as given in Section 3.1 obtains
for h = 5, 15 and h = 30 test statistics (p values) of about 0.715 (1), 1.917 (1) and 3.640
(1), respectively. Accordingly, we do not find evidence for remaining ARCH effects in the
residuals. Hence, there is no need for a BEKK model of higher order.

R> objBEKK1.1 <- bekk_spec()
R> m1.1 <- bekk_fit(objBEKK1.1, s_data, QML_t_ratios = TRUE, max_iter = 50)
R> summary(m1.1)
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BEKK estimation results
-----------------------
Log-likelihood: -9905.655
BEKK model stationary: TRUE
Number of BHHH iterations: 16
AIC: 19830.31
BIC: 19840.19
Estimated parameter matrices:

C
[,1] [,2]

[1,] 0.17060406 0.0000000
[2,] -0.04284237 0.0931289

A
[,1] [,2]

[1,] 0.36084828 -0.03193617
[2,] -0.02705291 0.24183921

G
[,1] [,2]

[1,] 0.918128943 0.01215393
[2,] 0.001007041 0.96584175

Standard errors of parameter matrices:

C
[,1] [,2]

[1,] 0.01827122 0.000000
[2,] 0.02841909 0.015247

A
[,1] [,2]

[1,] 0.02715270 0.02058446
[2,] 0.04202871 0.02459968

G
[,1] [,2]

[1,] 0.01094254 0.008801889
[2,] 0.01465061 0.007976558

The following command will generate the plot in Figure 2, which shows that the two ETFs
are negatively correlated for the majority of time instances. Moreover, the S&P 500 ETF
exhibits a larger standard deviation compared with the bond ETF throughout.

R> plot(m1.1)

The next step is to calculate the VaR of the two assets combined according to a predetermined
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Figure 2: Estimated standard deviation and correlation of two-dimensional symmetric BEKK
model.

60/40 weighting, which is a widely-used portfolio setup for stocks and bonds. The method
VaR() is designed to either process an object of class ‘bekkFit’ or ‘bekkForecast’ and com-
putes the VaR which is not exceeded with confidence of 99% by default, which corresponds
to a 1% VaR coverage.

R> m1.1_var <- VaR(m1.1, p = 0.99, portfolio_weights = c(0.6, 0.4),
+ distribution = "empirical")
R> plot(m1.1_var)

The resulting plot in Figure 3 depicts the estimated VaR using the empirical distribution of
the model-implied residuals of the considered portfolio with two strongly outlying estimates,
i.e., (i) a VaR up to about −7% on the occasion of the financial crisis in 2008/09 and (ii) a
VaR of about −6% occurring at the date of the COVID outbreak in March 2020.6

5.2. Large four-dimensional asymmetric model

In the second part of the empirical application, we augment our portfolio with two additional
assets, i.e., (i) the SPDR Gold Shares ETF, the largest fund backed by physical bullion

6In the present illustration the VaR describes a critical negative return. In practice, VaR is often communi-
cated in the form of a minimum positive loss for a given portfolio as implied by the negative return considered
here. Hence, both measures are related in a one-to-one manner.
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Figure 3: Estimated VaR of two-dimensional portfolio consisting of 40% treasury bond ETF
and 60% S&P 500 ETF.

tracking the price of a tenth of an ounce of gold (symbol: GLD), and (ii) the US Oil fund
tracking the price of West Texas Intermediate (WTI) crude oil by investing in oil future
contracts that are traded on regulated futures exchanges (symbol: USO). In this section, we
consider a portfolio which is weighting the S&P 500 ETF by 60%, 20% iShares 20+ Year
Treasury Bond ETF and 10% for each gold and crude oil.
In analogy to the illustration above, we first download the data from Yahoo! Finance and
convert the adjusted closing prices into percentage changes.

R> assets <- c("SPY", "TLT", "GLD", "USO")
R> getSymbols(assets, from = "2006-05-01", to = "2022-03-10",
+ src = "yahoo")
R> s_data_4dim <- na.omit(ROC(merge(Ad(SPY), Ad(TLT), Ad(GLD), Ad(USO)),
+ type = "discrete")) * 100
R> colnames(s_data_4dim) <- assets

In order to assess the performance of the new BEKKs package in higher dimensions (here
N = 4), we compare the estimation time with competing packages.7 As competing packages
we take mgarchBEKK and bmgarch, since they support estimation of dimension N > 3
unlike MTS. The estimation time of BEKKs is 11.06 seconds, where mgarchBEKK takes
1118 and bmgarch 20372 seconds. Thus, we find that the new package is more than 100 times
faster than the mgarchBEKK and more than 1000 times faster than the estimation using the
bmgarch package.

R> library("mgarchBEKK")
R> library("bmgarch")
R> spec <- bekk_spec()
R> system.time(bekk_fit(spec, s_data_4dim, max_iter = 150))

7The details of the used hardware may be found in the section Computational details at the end of this
paper.
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User System elapsed
10.88 0.07 11.06

R> system.time(BEKK(as.matrix(s_data_4dim)))

H IS SINGULAR!...
H IS SINGULAR!...
H IS SINGULAR!...

User System elapsed
1117.61 0.22 1118.74

R> system.time(bmgarch(s_data_4dim, parameterization = "BEKK"))

User System elapsed
20371 0.07 20372

In contrast to the illustration above, we take an agnostic approach to model selection and
fit all possible model specifications from the BEKKs package to the data. To do so, we
explicitly define the alternative model type (BEKK, diagonal BEKK, or scalar BEKK) and
asymmetry in the bekk_spec() function and fit for each specification a separate model. More
specifically, we set up a pattern of negative stock and oil returns along with positive bond
and gold returns to have an additional effect on volatility, i.e., we set signs = c(-1, 1, 1,
-1). This pattern is often seen in times of crisis, when investors seek for safe-havens and oil is
depreciating due to weaker economic prospects. We compare the results with the widely-used
pattern of jointly negative returns having an additional effect on volatility. We then compare
the AIC and BIC of each model.

R> objBEKK2 <- bekk_spec(model = list(type = "bekk", asymmetric = TRUE))
R> m2 <- bekk_fit(objBEKK2, s_data_4dim, QML_t_ratios = TRUE,
+ max_iter = 150)
R> objBEKK2.1 <- bekk_spec(model = list(type = "bekk", asymmetric = TRUE),
+ signs = c(-1, 1, 1, -1))
R> m2.1 <- bekk_fit(objBEKK2.1, s_data_4dim, QML_t_ratios = TRUE,
+ max_iter = 150)
R> summary(m2.1)

Asymmetric BEKK estimation results
----------------------------------
Log-likelihood: -23270.14
BEKK model stationary: TRUE
Number of BHHH iterations: 46
AIC: 46646.29
BIC: 46671.21
Estimated parameter matrices:

C
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[,1] [,2] [,3] [,4]
[1,] 0.143220212 0.00000000 0.00000000 0.0000000
[2,] -0.018282995 0.08976385 0.00000000 0.0000000
[3,] -0.007197599 0.05198730 0.08337374 0.0000000
[4,] 0.036104166 0.06193355 0.03522780 0.2420883

A
[,1] [,2] [,3] [,4]

[1,] 0.305433822 -0.058274085 -0.023726806 -0.001634063
[2,] 0.020688588 0.169650389 -0.009010672 -0.036481854
[3,] 0.032359126 -0.010582467 0.189038919 0.024637101
[4,] 0.004239984 -0.007096682 0.001770778 0.242476169

B
[,1] [,2] [,3] [,4]

[1,] 0.199025005 0.05561223 0.03376652 -0.38415482
[2,] -0.082643329 0.14513009 0.15694756 -0.36076297
[3,] -0.150412606 0.09004088 0.01537866 -0.02505958
[4,] 0.008738239 0.02696692 0.02805908 0.30453009

G
[,1] [,2] [,3] [,4]

[1,] 0.9320597218 0.016462890 0.004344744 0.0007670556
[2,] -0.0103557485 0.977540050 -0.005435353 0.0025012306
[3,] 0.0009720747 0.001546335 0.978516092 0.0022435923
[4,] -0.0015203745 -0.001164771 -0.001046889 0.9567943453

Standard errors of parameter matrices:

C
[,1] [,2] [,3] [,4]

[1,] 0.02125217 0.00000000 0.00000000 0.00000000
[2,] 0.02977004 0.01669054 0.00000000 0.00000000
[3,] 0.02794263 0.03327243 0.02129155 0.00000000
[4,] 0.06154286 0.06220006 0.12320291 0.05171927

A
[,1] [,2] [,3] [,4]

[1,] 0.04670133 0.016563520 0.03391756 0.09305551
[2,] 0.06636472 0.024081310 0.06658100 0.07387436
[3,] 0.03009048 0.014687145 0.03563707 0.02537361
[4,] 0.01343847 0.006927696 0.01001872 0.04471055

B
[,1] [,2] [,3] [,4]

[1,] 0.15638471 0.08469091 0.23136129 0.26563482



Journal of Statistical Software 23

[2,] 0.30550451 0.17982124 0.20675802 0.23479504
[3,] 0.08976606 0.12952582 0.38409450 0.23360952
[4,] 0.10278793 0.03145999 0.06577739 0.07582492

G
[,1] [,2] [,3] [,4]

[1,] 0.016161058 0.006232534 0.007524096 0.035420382
[2,] 0.015241503 0.006522420 0.010491911 0.021164555
[3,] 0.009629733 0.002977816 0.006423934 0.007477714
[4,] 0.005173787 0.001977315 0.002675551 0.013824837

R> objBEKK2.2 <- bekk_spec(model = list(type = "bekk", asymmetric = FALSE))
R> m2.2 <- bekk_fit(objBEKK2.2, s_data_4dim, QML_t_ratios = TRUE,
+ max_iter = 150)
R> objBEKK2.3 <- bekk_spec(model = list(type = "dbekk", asymmetric = FALSE))
R> m2.3 <- bekk_fit(objBEKK2.3, s_data_4dim, QML_t_ratios = TRUE,
+ max_iter = 150)
R> objBEKK2.4 <- bekk_spec(model = list(type = "dbekk", asymmetric = TRUE))
R> m2.4 <- bekk_fit(objBEKK2.4, s_data_4dim, QML_t_ratios = TRUE,
+ max_iter = 150)
R> objBEKK2.5 <- bekk_spec(model = list(type = "sbekk", asymmetric = FALSE))
R> m2.5 <- bekk_fit(objBEKK2.5, s_data_4dim, QML_t_ratios = TRUE,
+ max_iter = 150)
R> objBEKK2.6 <- bekk_spec(model = list(type = "sbekk", asymmetric = TRUE))
R> m2.6 <- bekk_fit(objBEKK2.6, s_data_4dim, QML_t_ratios = TRUE,
+ max_iter = 150)
R> logLik(m2, m2.1, m2.2, m2.3, m2.4, m2.5, m2.6)

df LLV AIC BIC
1 58 -23344.76 46795.51 46820.43
2 58 -23270.14 46646.29 46671.21
3 42 -23383.73 46841.46 46866.39
4 18 -23430.92 46875.84 46952.76
5 22 -23413.24 46842.48 46921.40
6 12 -23483.40 46980.80 47051.72
7 13 -23483.80 46983.60 47053.52

AIC as well as BIC show support for the asymmetric BEKK model with signs = c(-1, 1,
1, -1) as optimal choice given the data. This implies that higher volatility is seen in times of
jointly negative stock and oil returns along with positive gold and bond returns. Accordingly,
we find evidence for flight-to-safety (movements from stocks and oil towards gold and bonds)
in times of higher uncertainty in financial markets. This underlines the practical importance
of accounting for different asymmetric patterns as outlined in Grier et al. (2004). The code
below provides a brief summary of the chosen model including a graphical display of model-
implied second order moments in Figure 4.

R> plot(m2.1)
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Figure 4: Estimated standard deviations and correlations of best-fitting four-dimensional
asymmetric BEKK model with signs = c(-1, 1, 1, -1).

Based on this model we can calculate the VaR for a weighted portfolio by:

R> m2.1_var <- VaR(m2.1, p = 0.99,
+ portfolio_weights = c(0.6, 0.2, 0.1, 0.1),
+ distribution = "t")

and graphically display the VaR by (see Figure 5):

R> plot(m2.1_var)

To compare the one-day-ahead VaR-forecasting performance of those models, we apply a
backtest procedure for the 99% coverage level. For the in-sample, we choose a window length
of 10 years which equals roughly 2600 trading days. We assume a Student’s t distribution for
the marginal distributions of the BEKK-implied residuals.

R> m2.1_backtest <- backtest(m2.1, window_length = 2600, p = 0.99,
+ portfolio_weights = c(0.6, 0.2, 0.1, 0.1), n.ahead = 1, nc = 8,
+ distribution = "t")
R> summary(m2.1_backtest)

Asymmetric BEKK backtesting results
-----------------------------------
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Figure 5: Estimated daily 1% VaR implied by the best fitting BEKK model of the four-
dimensional portfolio with weights 60/20/10/10 % assuming Student’s t distribution for the
residuals.

Value-at-risk confidence level: 0.99
Window length: 2600
Portfolio weights: 0.6 0.2 0.1 0.1
-----------------------------------
Hit rate: 0.017

Unconditional coverage test of Kupiec:

Test: 4.9996666
p-value: 0.0253522

conditional coverage test of Christoffersen:

Test: 12.789464881
p-value: 0.001670333

R> m2.6_backtest <- backtest(m2.6, window_length = 2600, p = 0.99,
+ portfolio_weights = c(0.6, 0.2, 0.1, 0.1), n.ahead = 1, nc = 8,
+ distribution = "t")
R> summary(m2.6_backtest)

Asymmetric scalar BEKK backtesting results
------------------------------------------
Value-at-risk confidence level: 0.99



26 BEKKs: Conditional Volatility of Multivariate Time Series in R

−5

0

5

2018 2020 2022

P
or

tfo
lio

 r
et

ur
ns

/V
aR

Estimated VaR Returns

Portfolio Backtest

Figure 6: Backtesting results of the four-dimensional portfolio with weights 60/20/10/10 %
for the best-fitting asymmetric BEKK model.

Window length: 2600
Portfolio weights: 0.6 0.2 0.1 0.1
------------------------------------------
Hit rate: 0.019

Unconditional coverage test of Kupiec:

Test: 8.434235788
p-value: 0.003682216

conditional coverage test of Christoffersen:

Test: 11.250187561
p-value: 0.003606225

We find that the asymmetric BEKK model leads to better one-period-ahead forecasts than
the asymmetric scalar BEKK model. For the 1% conditional VaR, we find 17 violations of the
estimated risk level out of 1000 forecasts. This is also underlined by the p values of the test
for unconditional and conditional coverage which are somewhat larger for the full asymmetric
BEKK model. In Figure 6, we display the estimated one-day-ahead VaR forecasts joint with
realized portfolio returns by:

R> plot(m2.1_backtest)
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Figure 7: VIRFs for a shock in the S&P 500 index. 90% Confidence bands are displayed as
grey shaded area.

The asymmetric BEKK model with t distribution provides a solid risk forecasting perfor-
mance. In particular, it performs accurately during the COVID crisis in March 2020. To
demonstrate the estimation of VIRFs within the BEKKs package, we estimate the VIRFs for
the day of the Lehman default (September 15, 2008) assuming a shock in the S&P 500 index
which is equal to the lowest 1% of the estimated residuals of the S&P 500 series.

R> m2.2_virf <- virf(m2.2, time = "2008-09-15", q = 0.01, index_series = 1,
+ n.ahead = 260, ci = 0.9, time_shock = FALSE)

The influences on second order moments are displayed for a time horizon of roughly one year,
i.e., 260 trading days. Along with the VIRFs, we plot 90% confidence intervals as implied by
the Delta method (see Equation 8) in Figure 7 by:

R> plot(m2.2_virf)

The shock results in an increased volatility of the S&P 500 index. Whereas the volatility
of so-called safe-havens (here: gold and US Treasury bonds) is less affected by the shock
originating in the stock market. This underlines the stability associated with these assets.
Moreover, the covariance between the safe-havens and stocks is initially reduced by the shock
which might end up in a negative correlation being in line with the safe-haven characteristic
in times of turmoil.
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6. Conclusion
We have introduced the R package BEKKs that allows for fast estimation, simulation and
forecasting of conditional volatilities and risks of multivariate time series of speculative re-
turns. We explained the main functions of the package by performing an investigation of a
multivariate time series consisting of stocks, commodities and bonds. An evaluation of that
four dimensional time series using competing packages demonstrates that the BEKKs pack-
age is substantially faster. Yet, we have concentrated on BEKK models of order (1, 1), since
these models are by far the most applied. Moreover, potential likelihood gains of higher order
BEKK models, say for instance BEKK(2, 2), are in conflict with an even more increased curse
of dimensionality. Accordingly, we leave such extensions as a topic for future work. Moreover,
including the package into existing tools such as PerformanceAnalytics (Peterson and Carl
2020) could help to offer manifold portfolio analysis using the flexibility of full BEKK models
to an even broader usership.

Computational details
The results in this paper were obtained using R version 4.1.1 (R Core Team 2024) with the
packages BEKKs version 1.4.5 (Fülle et al. 2024), bmgarch version 1.1.0 (Rast and Martin
2023) and mgarchBEKK version 0.0.2 (Schmidbauer et al. 2022).
Computations were performed on Windows 10 x86 64-w64-mingw32/x64 (64-bit) with pro-
cessor Intel Core i7-8850H CPU @ 2.60GHz, 2592 MHz, 6 core(s), 12 logical(s).
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A. Second order derivatives

A.1. Symmetric BEKK
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vec(Ht−1)
∂ vech(C)⊤

)⊤
⊗ IN2

)
C1
[
KNN ⊗ vec

(
G⊤
)

+ vec
(
G⊤
)

⊗ KNN

]
+
[
IN∗ ⊗ (G ⊗ G)⊤

] ∂2Ht−1
∂ vech(C)⊤∂ vec(G)⊤

∂2 vec (Ht)
∂ vech(C)⊤∂ vech(C)⊤ =2

(
LN ⊗ DN D+

N

)
C1 [IN2 ⊗ vec (IN )] L⊤

N

+
[
IN∗ ⊗ (G ⊗ G)⊤

] ∂2 vec (Ht)
∂ vech(C)⊤∂ vech(C)⊤
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with
C1 = IN ⊗ KNN ⊗ IN

C2 = 2
(
IN2 ⊗ DN D+

N

)
C3 = C2C1

A.2. Additional derivatives for the asymmetric BEKK

∂2 vec (Ht)
∂ vec(B)⊤∂ vec(B)⊤ = C3

[
vec (IN ) ⊗

(
ηt−1η⊤

t−1 ⊗ IN

)
KNN

]
+
[
IN2 ⊗ (G ⊗ G)⊤

] ∂2 vec (Ht)
∂2 vec(B)⊤

∂2 vec (Ht)
∂ vec(B)⊤∂ vec(G)⊤ =

((
∂Ht−1

∂ vec(B)⊤

)⊤
⊗ IN2

)
C1
[
KNN ⊗ vec

(
G⊤
)

+ vec
(
G⊤
)

⊗ KNN

]
+
[
IN2 ⊗ (G ⊗ G)⊤

] ∂2Ht−1
∂ vec(B)⊤∂ vec(G)⊤

∂2 vec (Ht)
∂ vec(B)⊤∂ vech(C)⊤ = 0

∂2 vec (Ht)
∂ vec(G)⊤∂ vec(B)⊤ = C3

[
vec (IN ) ⊗

(
IN ⊗ G⊤

) ∂Ht−1
∂ vec(B)⊤

]
+
[
IN2 ⊗ (G ⊗ G)⊤

] ∂2 vec (Ht)
∂ vec(G)⊤∂ vec(B)⊤

∂2 vec (Ht)
∂ vech(C)⊤∂ vec(B)⊤ = 0

∂2 vec (Ht)
∂ vech(B)⊤∂ vec(A)⊤ = 0

∂2 vec (Ht)
∂ vech(A)⊤∂ vec(B)⊤ = 0

A.3. Symmetric Scalar BEKK

∂2 vec(Ht)
∂a2 = g

∂2 vec(Ht−1)
∂a2

∂2 vec(Ht)
∂g2 = 2∂ vec(Ht−1)

∂g
+ g

∂2 vec(Ht−1)
∂g2

∂2 vec(Ht)
∂a∂g

= g
∂2 vec(Ht−1)

∂a∂g
+ ∂ vec(Ht−1)

∂a

∂2 vec(Ht)
∂ vech(C)⊤∂a

= 0

∂2 vec(Ht)
∂ vech(C)⊤∂g

= g
∂ vec(Ht−1)

∂ vech(C)⊤∂g
+ ∂ vec(Ht−1)

∂ vech(C)⊤

∂2 vec (Ht)
∂ vech(C)⊤∂ vech(C)⊤ = 2

(
LN ⊗ DN D+

N

)
C1 [IN2 ⊗ vec (IN )] L⊤

N + g
∂2 vec (Ht−1)

∂ vech(C)⊤∂ vech(C)⊤ .
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A.4. Additional derivatives for the asymmetric scalar BEKK

∂2 vec(Ht)
∂b2 = g

∂ vec(Ht−1)
∂b2

∂2 vec(Ht)
∂ vech(C)⊤∂b

= 0

∂2 vec(Ht)
∂a∂b

= 0

∂2 vec(Ht)
∂g∂b

= ∂ vec(Ht−1)
∂b

+ g
∂2 vec(Ht−1)

∂g∂b
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