
JSS Journal of Statistical Software
November 2024, Volume 111, Issue 2. doi: 10.18637/jss.v111.i02

jti and sparta: Time and Space Efficient Packages
for Model-Based Prediction in Large Bayesian

Networks

Mads Lindskou
Aalborg University

Torben Tvedebrink
Aalborg University

University of Copenhagen

Poul Svante Eriksen
Aalborg University

Søren Højsgaard
Aalborg University

Niels Morling
Aalborg University

University of Copenhagen

Abstract

A Bayesian network is a multivariate (potentially very high dimensional) probabilistic
model formed by combining lower-dimensional components. In Bayesian networks, the
computation of conditional probabilities is fundamental for model-based predictions. This
is usually done based on message passing algorithms that utilize conditional independence
structures. In this paper, we deal with a specific message passing algorithm that exploits a
second structure called a junction tree and hence is known as the junction tree algorithm
(JTA). In Bayesian networks for discrete variables with finite state spaces, there is a
fundamental problem in high dimensions: A discrete distribution is represented by a table
of values, and in high dimensions, such tables can become prohibitively large. In JTA, such
tables must be multiplied which can lead to even larger tables. The jti package meets this
challenge by using the package sparta by implementing methods that efficiently handle
multiplication and marginalization of sparse tables through JTA. The two packages are
written in the R programming language and are freely available from the Comprehensive
R Archive Network.

Keywords: Bayesian networks, junction trees, sparse tables, R, C++.

1. Introduction
This paper is concerned with Bayesian networks (BNs) for discrete variables with finite state
spaces (Pearl 1988; Lauritzen 1996; Maathuis, Drton, Lauritzen, and Wainwright 2018). For

https://doi.org/10.18637/jss.v111.i02
https://orcid.org/0000-0002-1033-697X
https://orcid.org/0000-0002-9292-8476
https://orcid.org/0000-0002-3269-9552
https://orcid.org/0000-0002-9463-5087

2 jti and sparta: Model Based Prediction in Large Bayesian Networks

such models, interest is typically in efficient computation of conditional probabilities of some
variables given information about the state of other variables.

The components of such models are multivariate probability mass functions which are typ-
ically represented by a multi-dimensional array. For high-dimensional distributions where
each variable may have a large state space, such an array can be prohibitive in terms of
memory. For example, an 80-dimensional random vector in which each variable has 10 levels
gives a state space with 1080 configurations. Such a distribution can not be stored directly
in a computer; in fact, 1080 is one of the estimates of the number of atoms in the universe.
However, if the array consists of only a few non-zero values, we need only store these values
along with information about their location. That is a sparse representation of a table. The
R (R Core Team 2024) package sparta (Lindskou 2024b), available from the Comprehensive R
Archive Network (CRAN) at https://CRAN.R-project.org/package=sparta, implements
efficient multiplication and marginalization of such sparse tables. The presentation of sparta
is one of the goals of this paper.

The other goal is to present the jti package which implements message passing via the junction
tree algorithm (JTA) for computing conditional probabilities in Bayesian networks. Specif-
ically, jti implements JTA for discrete variables using the Lauritzen-Spiegelhalter updating
scheme (Lauritzen and Spiegelhalter 1988). The jti uses sparta for the computations and the
two packages together thereby allow for handling very large Bayesian networks in R. Package
jti (Lindskou 2024a) is available from CRAN at https://CRAN.R-project.org/package=
jti. We mention that calculating conditional probabilities in Bayesian networks using JTA
is also referred to as “belief propagation”.

There are several other interesting suggestions in the literature for exploiting sparsity in tables.
Some interesting approaches include probability trees (PTs, Boutilier, Friedman, Goldszmidt,
and Koller 2013) and value-based potentials (VBPs Gómez-Olmedo, Cabañas, Cano, Moral,
and Retamero 2021), which we discuss further in Section 5.3.

In addition to jti, there are to our knowledge, three other packages for belief propagation in
R; gRain (Højsgaard 2012), BayesNetBP (Yu, Moharil, and Blair 2020) and RHugin (Konis
2017), where the latter is not on CRAN. The only R package on CRAN with an API for (dense)
table operations is gRbase (Dethlefsen and Højsgaard 2005), on which gRain depends. Some
R packages that rely on gRain and gRbase are geneNetBP (Moharil 2016) and bnspatial
(Masante 2020). The bnclassify package (Mihaljević, Bielza, and Larrañaga 2018) has an
internal lower C++ class implementation of dense conditional probability tables.

Although the paper is not concerned with learning the graph structure, we mention the pack-
ages bnlearn (Scutari 2010), gRain, sparsebn (Aragam, Gu, and Zhou 2019), deal (Boettcher
and Dethlefsen 2003) and bnstruct (Franzin, Sambo, and di Camillo 2017), which can all be
used to learn the DAG of a Bayesian network.

In Section 2, we introduce basic notation and terminology and in Section 3, we motivate the
use of sparse tables through JTA. Section 4 serves as a primer to our novel representation
of tables and their algebra given in Section 5. In Section 5, we also demonstrate the use of
sparta. Section 6 outlines how to use jti and provides a specific example of using BNs, with
a network which is well known from the literature. In Section 7, we show that the trade-
off between execution time and memory allocation using sparta is acceptable for small and
medium-sized tables and comparable to gRbase in high dimensional sparse tables. Finally, we

https://CRAN.R-project.org/package=sparta
https://CRAN.R-project.org/package=jti
https://CRAN.R-project.org/package=jti

Journal of Statistical Software 3

mention that sparta leverages the RcppArmadillo package (Eddelbuettel and Sanderson 2014)
by implementing compute-intensive procedures in C++ for better run-time performance.

2. Notation and terminology
Let p be a discrete probability mass function of a random vector X = (Xv | v ∈ V) where V
is a set of labels. The state space of Xv is denoted Iv and the state space of X is then given
by I = ×v∈V Iv. A realized value x = (xv)v∈V is called a cell. Given a subset A of V , the
A-marginal cell of x is the vector, xA = (xv)v∈A, with state space IA = ×v∈AIv. A Bayesian
network can be defined as a directed acyclic graph (DAG), see Figure 1, for which each node
represents a random variable. A directed graph is a pair (V,E), where V is a set of vertices,
and E is a set of directed edges. The graph is acyclic if it does not contain any directed
cycles, i.e., for no node is it possible to get back to that node if traversing the graph in the
directions of the nodes. A directed edge from a node, say a to b, indicates that the random
variable Xb depends on the random variable Xa. The DAG can either be estimated from
data, specified through expert knowledge or a combination of these. The joint probability of
a Bayesian network can be written as

p(x) =
∏
v∈V

p(xv | xpa(v)),

where xpa(v) denotes the parents of xv; i.e., the set of nodes with an arrow pointing towards xv

in the DAG. Also, xv is a child of the variables xpa(v). Notice, that p(xv | xpa(v)) has domain
Iv × Ipa(v). Hence, we can encode the conditional probabilities in a table, say ϕ(xv, xpa(v)), of
dimension |Iv| · |Ipa(v)|. Each entry in such tables is a parameter that must either be learned
from data or specified by prior knowledge. It is also common in the literature to refer to these
tables as potentials, and we shall use these terms interchangeably. In general, a potential
does not have an interpretation. Sometimes, we also use subscript notation to explicitly show
the set of variables on which a potential depends. That is, ϕA is a potential defined over the
variables XA. The product ϕA⊗ϕB of two generic tables over A and B is defined cell-wise as

(ϕA ⊗ ϕB)(xA∪B) := ϕA(xA)ϕB(xB).

a b

c d

e

(a)

a b

c d

e

(b)

a, b, dC1

a, c, dC2

c, d, eC3

(c)

Figure 1: (a) A DAG. (b) A moralized and triangulated version of (a). (c) A rooted junction
tree representation of (b) with root C1.

4 jti and sparta: Model Based Prediction in Large Bayesian Networks

In other words, the product is defined over the union of the variables of each of the two
potentials. Division of two tables, ϕA ⊘ ϕB, is defined analogously. The marginal table, ϕ↓B

A ,
over the variables B ⊆ A is defined cell-wise as

ϕ↓B
A (xB) :=

∑
xA\B∈IA\B

ϕA(xB, xA\B).

Finally, for some B ⊆ A, fix x∗
B. The x∗

B slice of ϕA(x) is then given by

ϕ
x∗

B
A (xA\B) = ϕA(xA\B, x

∗
B).

3. Motivation through message passing in Bayesian networks
Consider the simple DAG given in Figure 1(a), from which the joint density can be read off:

p(xa, xb, xc, xd, xe) = p(xc)p(xa | xc)p(xb | xa, xd)p(xd | xc)p(xe | xc, xd). (1)

If, for example, interest is in the joint distribution of (xa, xd) we have to sum over xb, xc and
xe and exploiting the factorization we could calculate this as

p(xa, xd) =
∑
xc

p(xc)p(xa | xc)p(xd | xc)
∑
xe

p(xe | xc, xd)
∑
xb

p(xb | xa, xd).

The junction tree algorithm can be seen as an algorithm for automatically factorizing to cir-
cumvent the direct summation as described in what follows using a minimal example (a more
general and technical exposition of the algorithm can be found in e.g., Højsgaard, Edwards,
and Lauritzen 2012): First,

• moralize the DAG; i.e., connect nodes that share a common child node,

• remove directions in the DAG to obtain an undirected graph, and

• triangulate the resulting graph.

Moralization ensures that the corresponding parent and child nodes are put in the same
maximal clique. A clique is a subset of the nodes for which the induced subgraph is complete
(all vertices are neighbors), and it is maximal if it is not contained in any other clique. From
here, by clique, we always mean a maximal clique, and we refer to these as the cliques of the
graph.
An undirected graph is triangulated (or chordal) if it has no cycles of length greater than 3.
If such cycles are present, the fill edges must be added to produce a triangulated graph. A
triangulated graph is also called decomposable. Finding an optimal triangulation (in terms
of minimizing the number of fill edges) is a NP hard problem, but good heuristic methods
exists, see Flores and Gámez (2007). Finding a good triangulation can have a huge impact
on the performance of JTA. A moralized and triangulated version of the graph in Figure 1(a)
is shown Figure 1(b), where no fill edge was necessary to make the graph triangulated.
A triangulated graph can always be represented as a junction tree. A junction tree is a tree
where the nodes are given by the cliques of the triangulated graph with the property that for

Journal of Statistical Software 5

two cliques, C and C ′, the intersection C ∩ C ′ is contained in all clique nodes on the unique
path between C and C ′.
The cliques of the graph in Figure 1(b) are given as C3 = {c, d, e}, C2 = {a, c, d} and C1 =
{a, b, d} where we arbitrarily designate C1 as the root to obtain the rooted junction tree in
Figure 1(c). Now, assign each potential in Equation 1 to a clique potential for which the
variables conform, e.g.,

ϕC1(xa, xb, xd)← p(xb | xa, xd),
ϕC2(xa, xc, xd)← p(xc)p(xa | xc),
ϕC3(xc, xd, xe)← p(xd | xc)p(xe | xc, xd).

The clique potentials are now initialized (the network is also said to be initialized) and note
that the clique potentials generally do not have any probability interpretation at this stage.
We have obtained the clique potential representation

p(xa, xb, xc, xd, xe) = ϕC1(xa, xb, xd)ϕC2(xa, xc, xd)ϕC3(xa, xc, xd). (2)

The network is said to be compiled at this stage, i.e., when moralization and triangulization
have been performed, and the clique potential representation has been obtained. In complex
networks with large clique potentials, it might not be feasible to even initialize the clique
potentials due to lack of memory.
Next, the message passing scheme can now be applied to the junction tree. We describe
the Lauritzen-Spiegelhalter (LS) scheme which works as follows. Locate a leaf node, here we
choose C3, and find the intersection, S32 = C3 ∩C2 = {c, d}, with its parent clique C2. Then
calculate the marginal potential ϕS32(xc, xd) = ∑

xe
ϕC3(xc, xd, xe) and perform a so-called

inward message by setting

ϕC2(xa, xc, xd)← ϕC2(xa, xc, xd)ϕS32(xc, xd)

and update the leaf node as

ϕC3(xc, xd, xe)← ϕC3(xc, xd, xe)/ϕS32(xc, xd),

where 0/0 := 0. We say that C2 has collected its messages from all of its children. This
procedure must be repeated until the root, C1, has collected all its messages. Hence, we
perform another inwards message by setting ϕS21(xa, xd) = ∑

xc
ϕC2(xa, xc, xd) and update:

ϕC1(xa, xb, xd)← ϕC2(xa, xc, xd)ϕS21(xa, xd),
ϕC2(xa, xc, xd)← ϕC2(xa, xc, xd)/ϕS21(xa, xd).

The inward phase terminates when the root clique potential has been normalized:

ϕC1(xa, xb, xd)← ϕC1(xa, xb, xd)/
∑

xa,xb,xd

ϕC1(xa, xb, xd).

To summarize, we have now obtained the set chain representation

p(xa, xb, xc, xd, xe) = ϕC1(xa, xb, xd)ϕC2(xa, xc, xd)ϕC3(xc, xd, xe)
= p(xa, xb, xd)p(xa | xc, xd)p(xc, xd | xe),

6 jti and sparta: Model Based Prediction in Large Bayesian Networks

where the clique potentials are now conditional probability tables. Notice especially that
ϕC1(xa, xb, xd) = p(xa, xb, xd). In the so-called outward phase, we start by sending messages
from the root by performing an outward message by letting ϕS12(xa, xd) = ∑

xb
ϕC1(xa, xb, xd)

and update:

ϕC2(xa, xc, xd)← ϕC2(xa, xc, xd)ϕS12(xa, xd).

We say that C1 has distributed evidence to C2. Notice, that ϕC2 is now identical to the
probability distribution defined over the variables xa, xc, and xd. Finally, let ϕS23(xc, xd) =∑

xa
ϕC2(xa, xc, xd) and update ϕC3 :

ϕC3(xc, xd, xe)← ϕC3(xc, xd, xe)ϕS23(xc, xd).

As a consequence, we finally obtain the clique marginal representation

p(xa, xb, xc, xd, xe) = ϕC1(xa, xb, xd)ϕC2(xa, xc, xd)ϕC3(xc, xd, xe)
ϕS12(xa, xd)ϕS23(xc, xd)

= p(xa, xb, xd)p(xa, xc, xd)p(xc, xd, xe)
p(xa, xd)p(xc, xd) ,

where all clique and separator potentials are identical to the marginal probability distribution
over the variables involved. Hence, we can now find p(xa, xd) by locating a clique containing
xa and xd and sum out all other variables. If we choose C2, we get

p(xa, xd) =
∑
xc

ϕC2(xa, xc, xd).

Each time we multiply, divide or marginalize potentials, a number of binary operations (addi-
tion, multiplication and division) are conducted under the machinery. For a network with 41
variables and a maximum size of the state space for each variable being 3, Lepar and Shenoy
(1998) recorded a total number of 2 371 178 binary operations. We do not intend to follow the
same analysis here. For sparse tables, however, the number of necessary binary operations is
potentially much smaller.

3.1. Evidence and slicing

Suppose it is known, before message passing, that XE = x∗
E for some labels E ⊂ V . We

refer to x∗
E as evidence. Evidence can be entered into the clique potential representation in

Equation 2 as follows. For each v ∈ E, choose an arbitrary clique, C, where v ∈ C, and set
entries in ϕC that are inconsistent with x∗

v equal to zero. The resulting clique potential is
then said to be sliced. After message passing, all queries are then conditional on XE = x∗

E .
Thus, entering evidence leads to more zero-cells, and in a sparse setup, the resulting clique
potentials will be even more sparse. After message passing, the clique potential ϕC(xC) is
now equal to the conditional probability p(xC\E | x∗

E).
It suffices to modify a single clique potential such that it is inconsistent with v ∈ E, for all
v as described above. However, for sparse tables, it is advantageous to enter evidence in all
clique potentials containing v since this leads to higher sparsity.
This is how evidence is handled in jti. In fact, this is one of the reasons why jti is able to
handle very complex networks by exploiting the evidence using sparse tables from sparta.

Journal of Statistical Software 7

Whenever a clique, say C, receives evidence on some variables, the size of the sparse potential
corresponding to C will be reduced. This will be illustrated in Section 5.1.
It is also possible to enter evidence into the factorization in Equation 1. This is the key to
handle complex networks that are otherwise infeasible due to lack of memory.

4. An intuitive way of representing sparse tables
Before describing our method for multiplication and marginalization of sparse tables, it is
illuminating to describe sparse tables in a standard R language setup. Consider two arrays f
and g:

R> dn <- function(x) setNames(lapply(x, paste0, 1:2), toupper(x))
R> d <- c(2, 2, 2)
R> f <- array(c(5, 4, 0, 7, 0, 9, 0, 0), d, dn(c("x", "y", "z")))
R> g <- array(c(7, 6, 0, 6, 0, 0, 9, 0), d, dn(c("y", "z", "w")))

with flat layouts

R> ftable(f, row.vars = "X")

Y y1 y2
Z z1 z2 z1 z2

X
x1 5 0 0 0
x2 4 9 7 0

R> ftable(g, row.vars = "W")

Y y1 y2
Z z1 z2 z1 z2

W
w1 7 0 6 6
w2 0 9 0 0

Converting f and g to data.frame objects and exclude the cases with a value of zero:

R> df <- as.data.frame.table(f, stringsAsFactors=FALSE)
R> df <- df[df$Freq != 0,]
R> dg <- as.data.frame.table(g, stringsAsFactors=FALSE)
R> dg <- dg[dg$Freq != 0,]

R> print(df, row.names = FALSE)

X Y Z Freq
x1 y1 z1 5
x2 y1 z1 4
x2 y2 z1 7
x2 y1 z2 9

R> print(dg, row.names = FALSE)

Y Z W Freq
y1 z1 w1 7
y2 z1 w1 6
y2 z2 w1 6
y1 z2 w2 9

This leaves us with two sparse tables, df and dg, respectively. To multiply df by dg, we
must, by definition, determine the cases that match on the variables Y and Z that they have
in common. For example, row 4 in df must be multiplied with row 4 in dg such that (y1,
z2, x2, w2) is an element in the product with the value 81. And since the tables are sparse,
no multiplication by zero will be performed. The multiplication can be performed with the
following small piece of R code (which will be used in Section 7 in connection with the
benchmarking exercise):

8 jti and sparta: Model Based Prediction in Large Bayesian Networks

R> sparse_prod <- function(df, dg) {
+ S <- setdiff(intersect(names(df), names(dg)), "Freq")
+ mrg <- merge(df, dg, by = S, suffixes = c("_df", "_dg"))
+ mrg <- within(mrg, val <- Freq_df * Freq_dg)
+ mrg[, setdiff(names(mrg), c("Freq_df", "Freq_dg"))]
+ }

The merge function performs, by default, what is also called an inner join or natural join in
SQL terminology, which is exactly how we defined table multiplication in Section 2. Multi-
plying df and dg yields

R> sparse_prod(df, dg)

Y Z X W val
1 y1 z1 x1 w1 35
2 y1 z1 x2 w1 28
3 y1 z2 x2 w2 81
4 y2 z1 x2 w1 42

Marginalization is even more straightforward. Marginalizing out X from df can for exam-
ple be done using the built-in R function aggregate (which is also used in Section 7 for
benchmarking):

R> aggregate(Freq ~ Y + Z, data = df, FUN = sum)

Y Z Freq
1 y1 z1 9
2 y2 z1 7
3 y1 z2 9

Thus, we have the necessary tools to implement JTA using sparse tables. So why should
we bother redefining sparse tables and algebras on these; because of execution time and
memory storage. In Section 7, we show the effect of the effort of going beyond the merge and
aggregate functions.

5. Sparse tables
Let T be a dense table with domain I = ×v∈V Iv. Define the level set L := ×v∈V Lv where
Lv = {1, 2, . . . , |Iv|} and let # : I → L be a bijection. We define the sparse table τ = (Φ, ϕ),
of T as the pair where Φ is a matrix with columns given by the set of vectors in the sparse
domain I := {#(x) | T (x) ̸= 0, x ∈ I}, consisting of non-zero cells and where ϕ is the
corresponding vector of values. Thus, a column in Φ represents a cell in I and is written a
tuple i = (i1, i2, . . . , i|V |; iv ∈ Lv) which explicitly determines the ordering of the labels and
hence the order of the rows in Φ. The order of the columns in Φ is not important as long as
it agrees with ϕ. We denote by Φ[j] the j′th column of Φ and by ϕj the corresponding j′th
value in ϕ. The sub-matrix ΦS defined over the set of labels, S ⊆ V , is the resulting matrix
when rows corresponding to labels in V \ S have been removed. Let T be the table f from
Section 4:

Journal of Statistical Software 9

Y y1 y2
Z z1 z2 z1 z2

X
x1 5 0 0 0
x2 4 9 7 0

The domain is given by
I = {x1, x2} × {y1, y2} × {z1, z2}

and # can be chosen as the map (xℓ1 , yℓ2 , zℓ3) 7→ (ℓ1, ℓ2, ℓ3) for ℓ1, ℓ2, ℓ3 ∈ {1, 2}. The non-
zero cells can be identified from the table and we have I = {(1, 1, 1), (2, 1, 1), (2, 2, 1), (2, 1, 2)}.
Hence,

Φ =

1 2 2 2
1 1 2 1
1 1 1 2

 ,
with values ϕ = (5, 4, 7, 9), corresponding to df in Section 4. Let G be another dense table
with domain J = ×u∈UJu and sparse representation γ = (Ψ, ψ) with sparse domain J . We
then aim at defining the sparse multiplication τ ⊗γ of T ⊗G. Let S = V ∩U be the separator
labels shared between the two sparse tables τ and γ. Next, define the map MS(Φ), which
transforms ΦS into a look-up table1 as follows: the keys are the unique columns of ΦS and
the value of MS(Φ) at key k is the set of column indices where column k can be found in ΦS

and hence also in Φ and is given by

MS(Φ)[k] = {j ∈ {1, 2, . . . , |I|} : Φ[j] = k}.

Let K denote the mutual keys of MS(Φ) and MS(Ψ). The number of columns in the matrix
of the resulting product τ ⊗ γ is then given as

N :=
∑
k∈K
|MS(Φ)[k]| · |MS(Ψ)[k]|.

This observation is crucial, since the memory storage of the sparse product can then be
computed in advance. If (Π, π) is the sparse product of τ and γ, we can therefore initialize
Π as a matrix with |V | + |U \ V | rows and N columns and π as an N−dimensional vector.
Finally, π is given by the values ϕj · ψj′ for j ∈ MS(Φ)[k] and j′ ∈ MS(Ψ)[k] for all k ∈ K.
The procedure is formalized in Algorithm 1. The number of binary operations is smaller
than the equivalent dense table multiplication since every multiplication with zero is avoided.
Moreover, since we only loop over the mutual keys, K, the execution time will depend on the
table having the least unique keys over the separator labels. Trivially, division of two sparse
tables can be obtained by substituting line 11 of Algorithm 1 with πl = ϕj/ϕ

′
j .

Now, let G be the table g from Section 4 where the domain is given by

J = {w1, w2} × {y1, y2} × {z1, z2}.

Choose the map (wℓ1 , yℓ2 , zℓ3) 7→ (ℓ1, ℓ2, ℓ3) for ℓ1, ℓ2, ℓ3 ∈ {1, 2}. In summary, we have the
tables

Φ =

1 2 2 2
1 1 2 1
1 1 1 2

 , Ψ =

1 2 2 1
1 1 2 2
1 1 1 2

 ,
1A lookup table is a list arranged as key-value pairs. In R one can think of a look-up table as a named list

in which the names are the keys and the values are the elements of the list.

10 jti and sparta: Model Based Prediction in Large Bayesian Networks

Algorithm 1 Multiplication of sparse tables.
1: procedure (τ = (Φ, ϕ): sparse table, γ = (Ψ, ψ): sparse table)
2: S := V ∩ U
3: K: Mutual keys of MS(Φ) and MS(Ψ)
4: N := ∑

k∈K |MS(Φ)[k]| · |MS(Ψ)[k]|
5: Initialize the matrix Π with |V |+ |U \ V | rows and N columns
6: Initialize the vector π of dimension N
7: l := 1
8: for k ∈ K do
9: for j ∈MS(Φ)[k] and j′ ∈MS(Ψ)[k] do

10: Π[l] := (Φ[j],ΨU\V [j′])
11: πl := ϕj · ψj′

12: l = l + 1
13: end for
14: end for
15: return (Π, π)
16: end procedure

and ϕ = (5, 4, 7, 9) and ψ = (7, 6, 6, 9). The separator labels are given by S = {y, z}, and the
lookup tables of Φ and Ψ are given by

MS(Φ) = {(1, 1) := {1, 2}, (2, 1) := {3}, (1, 2) := {4}}
MS(Ψ) = {(1, 1) := {1}, (2, 1) := {2}, (1, 2) := {4}, (2, 2) := {3}}.

Above, y corresponds to row two, and z corresponds to row three in Φ. So, for example,
MS(Φ)[(1, 1)] = {1, 2} means that the key (1, 1) has the value {1, 2}, which in turn means
that (1, 1) is found in columns 1 and 2 in Φ. Therefore, all values ϕj for j ∈ MS(Φ)[(1, 1)]
must be multiplied with all values ψj for j ∈MS(Ψ)[(1, 1)], etc. Hence,

Π =


1 2 2 2
1 1 2 1
1 1 1 2
1 1 1 2

 ,
and

π = (ϕ1 · ψ1, ϕ2 · ψ1, ϕ3 · ψ2, ϕ4 · ψ4) = (35, 28, 42, 81),

as expected from the result in Section 4 using sparse_prod. Notice, that we save any com-
putation with ψ3 since (2, 2) is not a key in MS(Φ).
We mention that, addition and subtraction of sparse tables are more demanding since we
have to reconstruct zero-cells if one of the tables has a non-zero cell -value while the other
table has a zero-cell in the corresponding separator cell. Fortunately, these operations are not
needed in JTA.
The marginal sparse table τ↓A = (Φ↓A, ϕ↓A) of τ , corresponding to T ↓A, can be calculated
using the map MA(Φ) and, for each key k ∈ MA(Φ), sum the corresponding values in ϕ.
However, for massive tables, the memory footprint of MA(Φ) is unnecessarily large. Instead,
we construct the lookup-table HA(Φ) where the keys are the unique columns of ΦA, as was

Journal of Statistical Software 11

Algorithm 2 Marginalization of sparse tables.
1: procedure (τ = (Φ, ϕ): sparse table, A: Set of labels)
2: Construct HA(Φ)
3: N = |HA(Φ)|
4: Initialize the matrix Φ↓A with |A| rows and N columns
5: Initialize the vector ϕ↓A of dimension N
6: Let K be the keys of HA(Φ)
7: l := 1
8: for k ∈ K do
9: (j, v) := HA(Φ)[k]

10: Φ↓A[l] := ΦA[j] ▷ deduced by picking elements from Φ[j]
11: ϕ↓A

l := v
12: l = l + 1
13: end for
14: return (Φ↓A, ϕ↓A)
15: end procedure

the case in MA(Φ). However, the values are themselves pairs where the first element is an
index to any of the column indices where the corresponding key can be found in ΦA. The
second element is the final cell value in the marginalized table corresponding to the key. The
pair corresponding to the key k is therefore on the form

HA(Φ)[k] = (j, v), v =
∑

ℓ:ΦA[ℓ]=k

ϕℓ and ΦA[j] = k.

The value v can easily be computed iteratively. The point here is, that we never have to store
ΦA since we can deduce all information from Φ on the fly given the row indices corresponding
to A in Φ. The number of columns in the final matrix Φ↓A, and hence the number of elements
in ϕ↓A, is given by |HA(Φ)|. The procedure is formalized in Algorithm 2. Consider again the
sparse table τ of T and let A = {y, z}. Then, the resulting sparse marginal table has two
rows corresponding to y and z. The construction of HA(Φ) is as follows. The first column in
Φ is extracted, and the entry corresponding to x is deleted. Call the resulting vector (key)
k1. Now, set HA(Φ)[k1] = (j = 1, v = 5) since ϕ1 = 5. Extract now, the second column of Φ
and let k2 be the resulting key when removing the entry corresponding to x. Since k1 = k2
and ϕ2 = 4 we update HA(Φ)[k1] = (j = 2, v = 9). Proceeding this way gives

HA(Φ) = {(1, 1) := (j = 2, v = 9), (2, 1) := (j = 3, v = 7), (1, 2) := (j = 4, v = 9)}}.

Thus
Φ↓A =

[
1 2 1
1 1 2

]
,

and ψ↓A = (9, 7, 9). For B ⊂ V , the i∗B− slice of a sparse table τ = (Φ, ϕ) is obtained by
removing columns, k, in Φ for which k does not agree with i∗B. We leave out the formal
procedure for slicing.
Finally, we mention that Algorithm 1 is generic and applies in every situation. However, if
the domain of one of the tables is a subset of the domain in the other table, multiplication can

12 jti and sparta: Model Based Prediction in Large Bayesian Networks

be performed much faster since we do not have to create new cells. This is always the case
in JTA since the domain of the message is a subset of the domain in the potential receiving
this message. We leave out the formal algorithm and just mention, that this algorithm also
exploits the lookup table M whereafter it locates the cells to keep in the larger table without
constructing new cells.

5.1. How to use sparta
The sparta package can be installed from within an R session by typing
install.packages("sparta"). To demonstrate the use of sparta, we revisit the example
from Section 4 of the two (dense) tables f and g with mutual variables, Y and Z:

R> ftable(f, row.vars = "X")

Y y1 y2
Z z1 z2 z1 z2

X
x1 5 0 0 0
x2 4 9 7 0

R> ftable(g, row.vars = "W")

Y y1 y2
Z z1 z2 z1 z2

W
w1 7 0 6 6
w2 0 9 0 0

We can convert these to their equivalent sparta versions as

R> library("sparta")
R> sf <- as_sparta(f)
R> sg <- as_sparta(g)

Printing the object by the default printing method yields

R> print.default(sf)

[,1] [,2] [,3] [,4]
X 1 2 2 2
Y 1 1 2 1
Z 1 1 1 2
attr(,"vals")
[1] 5 4 7 9
attr(,"dim_names")
attr(,"dim_names")$X
[1] "x1" "x2"

attr(,"dim_names")$Y
[1] "y1" "y2"

attr(,"dim_names")$Z
[1] "z1" "z2"

attr(,"class")
[1] "sparta" "matrix"

Journal of Statistical Software 13

The columns are the cells in the sparse matrix, and the vals attribute are the corresponding
values which can be extracted with the vals function. Furthermore, the domain resides in
the dim_names attribute, which can also be extracted using the dim_names function. From
the output, we see that (x2, y2, z1) has a value of 7. Using the sparta print method prettifies
things:

R> print(sf)

X Y Z val
1 1 1 1 5
2 2 1 1 4
3 2 2 1 7
4 2 1 2 9

where row i corresponds to column i in the sparse matrix. We settled for this print method
because printing column wise leads to unwanted formatting when the values are decimal
numbers. Consider the cell (2,1,1). The corresponding named cell is then

R> get_cell_name(sf, sf[, 2L])

X Y Z
"x2" "y1" "z1"

where sf[, 2L] is the second column (row in the output) of sf, which is (2, 1, 1). The product
of sf and sg is

R> mfg <- mult(sf, sg)
R> mfg

X Y Z W val
1 2 1 2 2 81
2 2 2 1 1 42
3 1 1 1 1 35
4 2 1 1 1 28

The equivalent dense table has 24 = 16 entries. However, mfg stores 20 values after all, 16 of
which are information about the cells. That is, there is some overhead storing the information
about the cells, see Section 5.2. Converting sf into a conditional probability table (CPT)
with conditioning variable Z:

R> sf_cpt <- as_cpt(sf, y = "Z")
R> sf_cpt

X Y Z val
1 1 1 1 0.312
2 2 1 1 0.250
3 2 2 1 0.438
4 2 1 2 1.000

14 jti and sparta: Model Based Prediction in Large Bayesian Networks

Variables: 4 Variables: 6 Variables: 8

0 1 2 3 0 1 2 3 0 1 2 3

0

2

4

6

8

Memory (Gb) storage of a dense table

M
em

or
y

(G
b)

 s
to

ra
ge

 o
f a

 s
pa

rt
a

ta
bl

e

Sparsity

0.5

0.6

0.7

0.8

0.9

0.95

Figure 2: The black identity line indicates the number of gigabytes needed to store the dense
table with x elements. The colored lines indicate the number of gigabytes required to store
the equivalent sparta object with the respective number of variables and sparsity.

Slicing sf on X = x1

R> slice(sf, s = c(X = "x1"), drop = TRUE)

Y Z val
1 1 1 5

reduces sf to a single non-zero element, whereas the equivalent dense case would result in
a (Y,Z) table with one non-zero element and three zero-elements. This slice function is
used in jti when the evidence X = x1 is entered into the clique potential corresponding to sf.
Marginalizing out Y in sg yields

R> marg(sg, y = "Y")

Z W val
1 2 2 9
2 2 1 6
3 1 1 13

This is in correspondence with the example in Section 5. Finally, we mention that a sparse
table can be created using the constructor sparta_struct, which is necessary if the corre-
sponding dense table is too large to have in memory.

5.2. When to use sparta
As shown in Section 5.1, there is an overhead of storing the information in a sparta object.
A dense array with x elements takes up 8x bytes plus some negligible memory of storing the
variable names etc. On the contrary, a sparta object with y < x elements takes up y(4k + 8)
bytes, where k is the number of variables (these can be stored as integers and hence only
requires 4 bytes each). In Figure 2, we have plotted this relation for k = 4, 6 and 8, and
different levels of sparsity. That is, a sparsity of 1/2 implies that y = x/2. The black identity

Journal of Statistical Software 15

line indicates the number of gigabytes needed to store the dense table with x elements. The
size of the state spaces of the variables is implicitly reflected by the memory is needed to store
the dense table. The more memory needed, the larger state space of the variables. However,
more variables and a larger state space of the variables will intuitively result in a more sparse
table, making sparta efficient even for several variables.
The take away message from Figure 2 is that when the state space of the variables and the
sparsity increases the benefit of storing the tables using sparta will outweigh the overhead of
storing the additional information.
In connection to JTA, sparta is favorable when cliques with many variables imply a high
degree of sparsity. In particular, this is often the case for tables in a Bayesian network
representing a genetic pedigree. In this case, cliques tend to be small, but the state space of
the variables can be arbitrarily large due to the large amount of DNA information for each
member of the pedigree.

5.3. Probability trees and value based potentials

This section is devoted to discussing differences between sparta and probability trees (PTs,
Boutilier et al. 2013) and value based potentials (VBPs, Gómez-Olmedo et al. 2021). Firstly,
PTs are potentials that are represented as trees where context specific information (CSI)
(conditional independencies that only hold in specific contexts) can be exploited by collaps-
ing nodes in the tree. This, however calls for methods to learn these CSIs, which can be
computationally demanding. Moreover, PTs can be pruned, further resulting in an approx-
imation of the potential by collapsing leaf nodes (in the same branch though) for which all
values are close to the mean value of that branch. Finally, PTs can not disregard zero-cells
in any way, which, by construction, is the power of sparta. We are not aware of any open
source code that implements PTs.
Very recently, and almost parallel to this paper, VBPs were introduced to overcome the
limitations of PTs (Gómez-Olmedo et al. 2021). VBPs is an acronym for four new potentials
that can be either value driven or index driven. We shall only focus on the new potentials
called index driven with map (IDM) since these have the most resemblance with sparta, and
also because they seem to perform best overall according to the benchmarks provided in
Gómez-Olmedo et al. (2021).
To introduce IDMs, we first consider a dense table, dt, over the variables Z, Y , and X where
all cells are represented by a vector of integers and assign to each cell a unique index:

R> dt <- cbind(
+ expand.grid(Z = 1:2, Y = 1:2, X = 1:2),
+ Freq = c(.4, .1, .7, .1, .6, 0, 0, .9),
+ idx = 1:2^3
+)
R> print(dt, row.names = FALSE)

Z Y X Freq idx
1 1 1 0.4 1
2 1 1 0.1 2
1 2 1 0.7 3

16 jti and sparta: Model Based Prediction in Large Bayesian Networks

2 2 1 0.1 4
1 1 2 0.6 5
2 1 2 0.0 6
1 2 2 0.0 7
2 2 2 0.9 8

Since indices are unique, the table can be represented by the vector

R> structure(dt$Freq, names = dt$idx)

1 2 3 4 5 6 7 8
0.4 0.1 0.7 0.1 0.6 0.0 0.0 0.9

where the names are the indices. The correspondence between indices and cells is as follows
(Gómez-Olmedo et al. 2021): First assign to variable ℓ the weight wℓ = wℓ+1 · |Iℓ+1|· for
ℓ < |V | and w|V | = 1 where |V | is the number of variables. The ordering is given from first
to last, i.e., Z is the first, Y is the second, and X is the third variable in the case of dt.
The index of a given cell, i, is then given by

idx(i) =
|V |∑
ℓ=1

(iℓ − 1) · wℓ. (3)

Thus, the index of cell (z1, y2, x2) is (1− 1) · 4 + (2− 1) · 2 + (2− 1) · 1 = 4 as expected. Given
an index, ℓ, the k′th component of the corresponding cell is given by

⌊k/wl⌋ modulo |Iℓ|, (4)

where Iℓ is the state space of the ℓ′th variable. Thus, it is a fairly cheap operation to convert
between the index and the cell, which is the backbone when manipulating IDMs. The IDM,
IDMϕ, of the potential ϕ is a representation of ϕ consisting of a lookup table D and an
array A. A holds all unique values of ϕ, excluding zero. The keys in D are the indices in ϕ
excluding indices corresponding to zero-cells and the values are indices from A corresponding
to the cell value. We can now form the IDM of dt:

R> dt_no_zeroes <- subset(dt, Freq != 0)
R> unique_values <- unique(dt_no_zeroes$Freq)
R> A <- structure(unique_values, names = seq_along(unique_values))
R> D <- structure(sapply(dt_no_zeroes$Freq, function(k) {
+ match(k, A)
+ }), names = dt_no_zeroes$idx)
R> (IDM <- list(A = A, D = D))

$A
1 2 3 4 5

0.4 0.1 0.7 0.6 0.9

$D
1 2 3 4 5 8
1 2 3 2 4 5

Journal of Statistical Software 17

First, notice that A and D are not true lookup tables with constant lookup, but ordinary R
vectors. At first, it may seem redundant to form the A instead of just forming the structure

R> (B <- structure(dt_no_zeroes$Freq, names = dt_no_zeroes$idx))

1 2 3 4 5 8
0.4 0.1 0.7 0.1 0.6 0.9

This is because for IDMs, repeated values, like 0.1, take up a single float in the memory
as opposed to B that must store a float for each repetition of the same value. For tables
with many repeated values, this can potentially save a lot of memory. The question is now
whether or not IDMs can be multiplied and marginalized within reasonable time. There are
no benchmarks of multiplication and marginalization in Gómez-Olmedo et al. (2021). Still,
we can with reasonable confidence state that multiplication of IDMs becomes increasingly
slower than with sparta as the state space of the product increases. We state this for two
reasons. Firstly, we did actually consider a variant of IDMs for which multiplication turned
out to be extremely slow for large tables. Secondly, when IDMs are multiplied one must loop
over the entire dense state space of the resulting table. In more detail, suppose we want to
find the product IDMϕZ

= IDMϕX
⊗ IDMϕY

. Let zl be the ℓ′th cell in IDMϕZ
. Then for all

ℓ = 1, 2, . . . , |IZ |, one must use Equation 4 to construct the cell zl, project this cell onto A,
use Equation 3 to convert to and index in IDMϕA

and lookup the value and test if this is
zero. If not, also project zℓ onto B, multiply the values and append the scalar product and ℓ
to IDMϕC

. Imagine |IC | being huge, then multiplication of IDMs is cumbersome.
Based on this, we do not intend to benchmark IDMs against sparta, but we summarize the
discussion by saying that neither IDMs nor sparta is, generally, better than the other. It
depends on the problem at hand. IDMs are most often more memory efficient than sparta
but for larges tables with high degrees of sparsity, sparta is faster. For very large networks,
it may even make sense to encode a Bayesian network to hold both IDMs and sparta tables
such that the IDM potentials ensure that it is even possible to compile the network. This
calls for methods to combine IDMs and sparta tables which we leave for future research.

6. A usecase of jti
The jti package can be installed from within an R session by install.packages("jti").
In jti, there are two ways of specifying a Bayesian network, either by a list of CPTs or
a dataset together with a DAG. In the latter case, the CPTs are found using maximum
likelihood estimates. Here, we describe how to use jti with the classic Bayesian network
asia (Lauritzen and Spiegelhalter 1988) where the corresponding CPTs are part of jti. The
network represents a simplified model to help diagnose patients arriving at a respiratory
clinic. A history of smoking has a direct influence on whether or not a patient has bronchitis
and whether or not a patient has lung cancer. Both lung cancer and bronchitis can result
in dyspnea. An x-ray result depends on the presence of either tuberculosis or lung cancer.
Finally, a visit to Asia influences the probability of having tuberculosis. The DAG is depicted
in Figure 3.
We use the version of asia called asia2, both shipped with jti, which is a list of CPTs shipped
with jti. The first step is to call cpt_list for some initial checks and conversion to sparta
tables:

18 jti and sparta: Model Based Prediction in Large Bayesian Networks

A

T

E

S

L

B

X

D

Figure 3: The DAG for the asia network with variables asia (A), tuberculosis (T), either
(E), x-ray (X), lung (L), dysp (D), smoke (S) and bronc (B).

R> cl <- cpt_list(asia2)
R> cl

List of CPTs

P(asia)
P(tub | asia)
P(smoke)
P(lung | smoke)
P(bronc | smoke)
P(either | lung, tub)
P(xray | either)
P(dysp | bronc, either)

<bn_, cpt_list, list>

From the output, we see the inferred CPTs correspond to Figure 3, giving rise to a factorization
in the same way as in Equation 1. The network is now ready for compilation which involves
moralization and triangulation. In jti there are four choices for triangulation which are all
based on the elimination game algorithm, see Flores and Gámez (2007). One of the most
well-known heuristics is min_fill which tries to minimize the number of fill edges. Evidence
can be entered either at compile stage or just before message passing begins. It is always
advisable to enter evidence at compile stage since we know from Section 3.1 that this reduces
the number of non-zero elements in the CPTs and hence the memory footprint and execution
time. A good strategy might be to locate one or more of the largest cliques and enter evidence
on the nodes contained in these. We can investigate the cliques and their state spaces prior
to compilation by triangulating the graph as follows:

R> tri <- triangulate(cl, tri = "min_fill")

The tri object is a list containing the triangulated graph, new_graph as a matrix, a list of
fill_edges, the cliques, and the size of the dense statespace of each clique. Now, let

Journal of Statistical Software 19

A
T

E
L
T

B
E
L

B
L
S

B
D
E

E
X

Figure 4: A junction tree for the asia network.

for example tub = yes be the evidence indicating that a given person has tuberculosis. The
compiled network is then constructed as

R> cp <- compile(cl, evidence = c(tub = "yes"), tri = "min_fill")
R> cp

Compiled network (cpts initialized)

Nodes: 8
Cliques: 6
- max: 3
- min: 2
- avg: 2.67

Evidence:
- tub: yes

<bn_, charge, list>

The cliques can be extracted from the compiled object with get_cliques(cp). The compiled
object can now be entered into the message passing procedure as:

R> j <- jt(cp)

The junction tree can be visualized by plotting the object as plot(j), see Figure 4. Finally,
we can calculate the probability of a given person having a positive x-ray result, xray = yes,
given that the person has tuberculosis as

R> query_belief(j, nodes = "xray")

$xray
xray
yes no

0.98 0.02

20 jti and sparta: Model Based Prediction in Large Bayesian Networks

Thus, given that a person has tuberculosis, the probability of observing a positive x-ray result
is 0.98. The probability of observing a positive x-ray result given that tub = "no" can be
calculated accordingly and equals 0.1012. Joint queries can be calculated by specifying type
= "joint" in query_belief.

7. Time and memory trade-off in sparta
We investigate the trade-off between memory allocation and execution time for multiplication
and marginalization on sparta objects. If sparta objects do not perform reasonably well for
small and medium sized tables, their practical usage is limited in real usecases.
Thus, we compare three functions for multiplication and three functions for marginalization:
(1) The mult and marg functions from sparta, (2) the tabMult and tabMarg functions from
gRbase and (3) the sparse_prod and aggregate functions from Section 4. In the latter case,
we refer to base R as the package.
We randomly generate pairs of tables such that the number of cells in the product of the two
tables does not exceed 106. We varied the sparsity of the product of the tables; 0% sparsity
(dense tables), (1, 75]% sparsity, and (75, 99]% sparsity. For each pair of tables, we multiply
them together and record the memory usage (in megabytes) of the product and the execution
time (in seconds). As gRbase is the standard and most mature package for Bayesian networks
in R, the performance comparisons are relative to that of gRbase. Hence, in Figure 5, gRbase
performs better for tables with relative scores above one (indicated by horizontal dashed
lines), whereas values below one show cases where the alternative approaches are better. The
comparisons are plotted for different ranges of table sizes (panels) and sparsity of the resulting
table (first axis).

Multiplication (size): The first row of Figure 5 describes the size of the table resulting
from multiplying two tables. The base R package consistently produces tables of smaller sizes
than sparta for very small tables with 100 (102) cells. For tables with more than 100 cells,
sparta consistently produces smaller tables except for a single case. Increasing the degree of
sparsity leads to reduced object sizes for both base R and sparta, and for tables with more
than 75% sparsity, sparta outperforms both base R and gRbase except in the first two panels
with small tables.

Multiplication (time): The second row of Figure 5 describes the computing time for
multiplying two tables. Clearly, sparta outperforms base R by orders of magnitude. For
larger tables (the two rightmost columns), there is also a clear effect of the degree of sparsity
on the computing time.

Marginalization (time): The third row of Figure 5 describes the computing time for
marginalizing out all variables in a table. When the degree of sparsity increases, the computing
time decreases. In the comparison between gRbase and sparta, we see that the marginalization
implementation of sparta is competitive with gRbase, especially for tables with 10 000 (104)
or fewer cells. Efficient marginalization is not only relevant for propagation, but also for
querying probabilities in a junction tree that has been fully propagated.

Journal of Statistical Software 21

No. of cells : [0, 102] No. of cells : (102, 104] No. of cells : (104, 106]

M
ultiplication (size)

M
ultiplication (tim

e)
M

arginalization (tim
e)

0% (0%−75%] >75% 0% (0%−75%] >75% 0% (0%−75%] >75%

 0.3

 1.0

 3.0

10.0

 1

 10

 100

1000

 1

 10

 100

1000

Sparsity of resulting table

P
er

fo
rm

an
ce

 r
el

at
iv

e
to

 g
R

ba
se

Package: base R sparta

Figure 5: Comparison of base R (sparse_prod and aggregate) and sparta (mult and marg)
to gRbase (tabMult and tabMarg) in terms of memory usage and timing. The top row shows
the relative memory usage for multiplication, whereas the two lower rows show the relative
timing for multiplication and marginalization, respectively.

8. Summary

We have presented a novel method for the multiplication and marginalization of sparse tables.
The method is implemented in the R package sparta. However, the method is generic, and
we have provided detailed pseudo algorithms facilitating the extension to other languages. In
addition, we have presented the companion package jti to illustrate some of the advantages
of sparta in connection with the junction tree algorithm. We hope to explore the benefit of
the C API for working with external pointers to reduce memory usage for sparta objects in
the future. We also described IDM potentials which are very memory efficient but less time
efficient. We intend to explore how IDMs and sparta can be combined in the future.
The memory footprint of the clique potentials can become prohibitively large when the sizes
of the cliques are large. This may not be true in general for sparse tables. As a matter of
fact, it may be optimal to have large cliques if they are very sparse and/or if it is common to
observe evidence variables in such cliques.

22 jti and sparta: Model Based Prediction in Large Bayesian Networks

The benchmark study indicates that our proposed method for table multiplication and marginal-
ization performs well for small, medium, and large tables. However, our real interest is in
the performance on massive tables, which is impossible to benchmark in this paper due to
the increased running time and memory usage of gRbase and base R. For pedigree networks
e.g., the CPTs can be huge. Thus, it is possible to construct sparse tables without represent-
ing the dense arrays. Finally, we mention that the benchmark did not consider tables where
the domain of one of the tables is contained in the domain in the second table. As discussed
in Section 5, these are the typical cases in JTA and the performance of function mult from
sparta, in these cases, is considerably faster.

Computational details
Detailed examples, source code, and information about installation of packages jti and sparta
can be found at https://github.com/mlindsk/jti and https://github.com/mlindsk/
sparta. jti has a GNU general public license, whereas sparta has a MIT license.
All computations were carried out on a 64-bit Linux computer with Ubuntu 20.04.2 and Intel
Core i7-6600U CPU 2.60GHz LTS. The machine has approximately 6Gb of free memory for
use in calculations.

Acknowledgments
We are thankful for the constructive comments from the anonymous reviewers. The paper
has been greatly improved by these.

References

Aragam B, Gu J, Zhou Q (2019). “Learning Large-Scale Bayesian Networks with the sparsebn
Package.” Journal of Statistical Software, 91(11), 1–38. doi:10.18637/jss.v091.i11.

Boettcher SG, Dethlefsen C (2003). “deal: A Package for Learning Bayesian Networks.”
Journal of Statistical Software, 8(20), 1–40. doi:10.18637/jss.v008.i20.

Boutilier C, Friedman N, Goldszmidt M, Koller D (2013). “Context-Specific Independence in
Bayesian Networks.” arXiv 1302.3562, arXiv.org E-Print Archive. doi:10.48550/arxiv.
1302.3562.

Dethlefsen C, Højsgaard S (2005). “A Common Platform for Graphical Models in R: The
gRbase Package.” Journal of Statistical Software, 14(17), 1–12. doi:10.18637/jss.v014.
i17.

Eddelbuettel D, Sanderson C (2014). “RcppArmadillo: Accelerating R with High-Performance
C++ Linear Algebra.” Computational Statistics & Data Analysis, 71, 1054–1063. doi:
10.1016/j.csda.2013.02.005.

Flores MJ, Gámez JA (2007). “A Review on Distinct Methods and Approaches to Perform
Triangulation for Bayesian Networks.” In P Lucas, JA Gámez, A Salmerón (eds.), Advances

https://github.com/mlindsk/jti
https://github.com/mlindsk/sparta
https://github.com/mlindsk/sparta
https://doi.org/10.18637/jss.v091.i11
https://doi.org/10.18637/jss.v008.i20
https://doi.org/10.48550/arxiv.1302.3562
https://doi.org/10.48550/arxiv.1302.3562
https://doi.org/10.18637/jss.v014.i17
https://doi.org/10.18637/jss.v014.i17
https://doi.org/10.1016/j.csda.2013.02.005
https://doi.org/10.1016/j.csda.2013.02.005

Journal of Statistical Software 23

in Probabilistic Graphical Models, pp. 127–152. Springer-Verlag, Berlin, Heidelberg. doi:
10.1007/978-3-540-68996-6_6.

Franzin A, Sambo F, di Camillo B (2017). “bnstruct: An R Package for Bayesian Network
Structure Learning in the Presence of Missing Data.” Bioinformatics, 33(8), 1250–1252.
doi:10.1093/bioinformatics/btw807.

Gómez-Olmedo M, Cabañas R, Cano A, Moral S, Retamero OP (2021). “Value-Based Po-
tentials: Exploiting Quantitative Information Regularity Patterns in Probabilistic Graph-
ical Models.” International Journal of Intelligent Systems, 36(11), 6913–6943. doi:
10.1002/int.22573.

Højsgaard S (2012). “Graphical Independence Networks with the gRain Package for R.”
Journal of Statistical Software, 46(10), 1–26. doi:10.18637/jss.v046.i10.

Højsgaard S, Edwards D, Lauritzen S (2012). Graphical Models with R. Use R!, 1st edition.
Springer-Verlag. doi:10.1007/978-1-4614-2299-0.

Konis K (2017). RHugin. R package version 8.4, URL https://rhugin.R-Forge.R-project.
org/.

Lauritzen SL (1996). Graphical Models, volume 17 of Oxford Statistical Science Series. Claren-
don Press.

Lauritzen SL, Spiegelhalter DJ (1988). “Local Computations with Probabilities on Graphical
Structures and Their Application to Expert Systems.” Journal of the Royal Statistical
Society B, 50(2), 157–194. doi:10.1111/j.2517-6161.1988.tb01721.x.

Lepar V, Shenoy PP (1998). “A Comparison of Lauritzen-Spiegelhalter, Hugin, and Shenoy-
Shafer Architectures for Computing Marginals of Probability Distributions.” In Proceedings
of the Fourteenth Conference on Uncertainty in Artificial Intelligence, pp. 328–337. Morgan
Kaufmann Publishers. doi:10.5555/2074094.2074133.

Lindskou M (2024a). jti: Junction Tree Inference. doi:10.32614/CRAN.package.jti.
R package version 1.0.0.

Lindskou M (2024b). sparta: Sparse Tables. doi:10.32614/CRAN.package.sparta. R pack-
age version 1.0.1.

Maathuis M, Drton M, Lauritzen S, Wainwright M (2018). Handbook of Graphical Models.
1st edition. Chapman & Hall/CRC, Boca Raton. doi:10.1201/9780429463976.

Masante D (2020). bnspatial: Spatial Implementation of Bayesian Networks and Mapping.
R package version 1.1.1, URL https://CRAN.R-project.org/package=bnspatial.

Mihaljević B, Bielza C, Larrañaga P (2018). “bnclassify: Learning Bayesian Network Classi-
fiers.” The R Journal, 10(2), 455–468. doi:10.32614/rj-2018-073.

Moharil J (2016). geneNetBP: Belief Propagation in Genotype-Phenotype Networks. R pack-
age version 2.0.1, URL https://CRAN.R-project.org/package=geneNetBP.

Pearl J (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence. Morgan Kaufmann Publishers, San Francisco. doi:10.5555/534975.

https://doi.org/10.1007/978-3-540-68996-6_6
https://doi.org/10.1007/978-3-540-68996-6_6
https://doi.org/10.1093/bioinformatics/btw807
https://doi.org/10.1002/int.22573
https://doi.org/10.1002/int.22573
https://doi.org/10.18637/jss.v046.i10
https://doi.org/10.1007/978-1-4614-2299-0
https://rhugin.R-Forge.R-project.org/
https://rhugin.R-Forge.R-project.org/
https://doi.org/10.1111/j.2517-6161.1988.tb01721.x
https://doi.org/10.5555/2074094.2074133
https://doi.org/10.32614/CRAN.package.jti
https://doi.org/10.32614/CRAN.package.sparta
https://doi.org/10.1201/9780429463976
https://CRAN.R-project.org/package=bnspatial
https://doi.org/10.32614/rj-2018-073
https://CRAN.R-project.org/package=geneNetBP
https://doi.org/10.5555/534975

24 jti and sparta: Model Based Prediction in Large Bayesian Networks

R Core Team (2024). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Scutari M (2010). “Learning Bayesian Networks with the bnlearn R Package.” Journal of
Statistical Software, 35(3), 1–22. doi:10.18637/jss.v035.i03.

Yu H, Moharil J, Blair R (2020). “BayesNetBP: An R Package for Probabilistic Reasoning
in Bayesian Networks.” Journal of Statistical Software, 94(3), 1–31. doi:10.18637/jss.
v094.i03.

Affiliation:
Mads Lindskou, Torben Tvedebrink, Poul Svante Eriksen, Søren Højsgaard
Department of Mathematical Sciences
Aalborg University
Skjernvej 4A, DK-9220 Aalborg Øst, Denmark
E-mail: mads@math.aau.dk, tvede@math.aau.dk, svante@math.aau.dk,

sorenh@math.aau.dk
URL: https://github.com/mlindsk

Niels Morling
Department of Mathematical Sciences
Aalborg University
Skjernvej 4A, DK-9220 Aalborg Øst
and
Section of Forensic Genetics
Department of Forensic Medicine
Faculty of Health and Medical Sciences
University of Copenhagen
11 Frederik V’s Vej, DK-2100 Copenhagen, Denmark
E-mail: niels.morling@sund.ku.dk

Journal of Statistical Software https://www.jstatsoft.org/
published by the Foundation for Open Access Statistics https://www.foastat.org/

November 2024, Volume 111, Issue 2 Submitted: 2021-07-07
doi:10.18637/jss.v111.i02 Accepted: 2023-10-11

https://www.R-project.org/
https://doi.org/10.18637/jss.v035.i03
https://doi.org/10.18637/jss.v094.i03
https://doi.org/10.18637/jss.v094.i03
mailto:mads@math.aau.dk
mailto:tvede@math.aau.dk
mailto:svante@math.aau.dk
mailto:sorenh@math.aau.dk
https://github.com/mlindsk
mailto:niels.morling@sund.ku.dk
https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v111.i02

	Introduction
	Notation and terminology
	Motivation through message passing in Bayesian networks
	Evidence and slicing

	An intuitive way of representing sparse tables
	Sparse tables
	How to use sparta
	When to use sparta
	Probability trees and value based potentials

	A usecase of jti
	Time and memory trade-off in sparta
	Summary

