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Abstract

The sparse group lasso is a high-dimensional regression technique that is useful for
problems whose predictors have a naturally grouped structure and where sparsity is en-
couraged at both the group and individual predictor level. In this paper we discuss a new
R package for computing such regularized models. The intention is to provide highly opti-
mized solution routines enabling analysis of very large datasets, especially in the context
of sparse design matrices.
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1. Introduction

Regularized linear models are now ubiquitous tools for prediction and, increasingly, inference.
When solving such high-dimensional learning problems, adding regularization helps to reduce
the chances of overfitting and improve the model performance on unseen data. Sparsity induc-
ing ℓ1-type penalties such as the lasso (Tibshirani 1996) or the Dantzig selector (Candes and
Tao 2007) perform both variable selection and shrinkage, resulting in near-optimal statistical
properties. The group lasso (Yuan and Lin 2006) modifies the regularizer, replacing the ℓ1
penalty with a group-wise sum of ℓ2 norms. When covariates have natural groupings, such as
with genomics data or one-hot encoded factors, this group penalty is preferable, because the
resulting estimate will include or exclude entire groups of covariates. To simultaneously attain
sparsity at both group and individual feature levels, Simon, Friedman, Hastie, and Tibshirani
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(2013) proposed the sparse group-lasso, a convex combination of the ℓ1 lasso penalty and the
group lasso penalty.
While a number of packages exist for solving the sparse group lasso, our R (R Core Team 2024)
implementation in sparsegl (McDonald, Liang, Solón Heinsfeld, and Cohen 2024) is designed
to be fast, especially in the case of large, sparse covariate matrices. This package focuses on
finding the optimal solutions to sparse group-lasso penalized learning problems at a sequence
of regularization parameters, implements risk estimators in an effort to avoid cross validation
if necessary, leverages a fast, compiled Fortran implementation, avoids extraneous data copies,
and undertakes a number of additional computational efficiency improvements. In R, there
are already excellent implementations of sparse group lasso and group lasso, namely SGL
(Simon, Friedman, Hastie, and Tibshirani 2019), gglasso (Yang, Zou, and Bhatnagar 2024;
Yang and Zou 2015), and biglasso (Zeng, Wang, Peter, and Breheny 2024; Zeng and Breheny
2020). Of these, only SGL employs the additional ℓ1 sparsity-inducing penalty. However,
it has a number of drawbacks that result in much slower performance, even on small data.
One major reason is the omission of so-called “strong rules” (Tibshirani et al. 2012) that
help coordinate descent algorithms to avoid many of the groups which will turn out to have
zero coefficient estimates. The gglasso and biglasso packages are both computationally fast.
The former incorporates the strong rule, and the latter involves a hybrid safe-strong rule
along with scalable storage and a parallel implementation in C++ (Stroustrup 2013) and R
that allows for data that exceeds the size of installed random access memory. Unfortunately,
neither allows within-group sparsity (i.e., they perform group lasso, not sparse group lasso).
Thus, the estimated coefficients produced by these packages will have some active groups
and some inactive groups, but within an active group, generally all the coefficients will be
nonzero.
In Python (Van Rossum et al. 2011), asgl (Civieta, Aguilera-Morillo, and Lillo 2021) imple-
ments adaptive sparse group-lasso, which flexibly adjusts the weights in the penalization on
the groups of features. Additionally it incorporates quantile loss. As with the other pack-
ages mentioned above, it can also solve the special cases (lasso and group lasso). However,
for all optimization problems, it directly uses CVXPY (Diamond and Boyd 2016; Agrawal,
Verschueren, Diamond, and Boyd 2018), a general purpose optimizer, without strong rules or
other tricks to relate solutions to each other across values of the tuning parameter.1

Our contribution, then, is to provide a package that performs sparse group lasso and is faster
than existing implementations. In particular, sparsegl has the following benefits:

• Performs Gaussian and logistic regression using fast, compiled code.

• Allows arbitrary generalized linear models using R’s ‘family’ class, though with slightly
less efficiency.

• Allows for interval constraints and differential weights on the coefficients.

• Accommodates a sparse design matrix and returns the coefficient estimates in a sparse
matrix.

• Uses strong rules (and active set iteration) for fast computation along a sequence of
tuning parameters.

1A similar implementation could be achieved in R using CVXR (Fu, Narasimhan, and Boyd 2020; Fu,
Narasimhan, Kang, Diamond, and Miller 2024).
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Regression & Within group Sparse Strong Avoids Interval
classification sparsity matrices rules copies constraints

sparsegl ✓ ✓ ✓ ✓ ✓ ✓
gglasso ✓ ✓
SGL ✓ ✓

Table 1: This table summarizes the features available in sparsegl and related R packages.
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Figure 1: This figure shows the time required to compute sparse group lasso solutions across
a number of different problem sizes. In all cases, we use n = 500 observations and 100 values
of the tuning parameter λ. The median is taken across 5 replications for each method and
problem size. Note that both axes are on the log scale.

• Uses dotCall64 to interface with low-level Fortran functions and avoid unnecessary copy-
ing as well as allow for 64-bit integers (see Gerber, Moesinger, and Furrer 2017, 2018).

• Provides information criteria as risk estimators (AIC/BIC/GCV) in addition to cross
validation.

A comparison of features of this and related R packages is shown in Table 1. Figure 1 compares
the speed of the dense and sparse implementations in sparsegl with SGL across a number of
different problem sizes, finding speedups of 1.5 to 2.5 orders of magnitude.
In Section 2, we describe the algorithmic implementation in detail, paying particular attention
to the strong rule. In Section 3, we show how to use the package, running through an example
with simulated data. Section 4 demonstrates many of the unique features of sparsegl in two
applications. We summarize our contributions in Section 5.

2. Methodology, estimation and prediction
Given a sample of n observations of a univariate response yi and a corresponding vector of
features xi ∈ Rp, the standard linear regression setup has

yi = x⊤
i β + σϵi, i = 1, . . . , n, (1)

where ϵi is independent standard Gaussian noise and σ > 0. While ordinary least squares
estimates the coefficient vector β by solving minβ

1
2n

∑n
i=1(yi − x⊤

i β)2, this method tends to
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behave poorly if p ≫ n. In what follows, we will write y = (y1, . . . , yn) and let X be the
row-wise concatenation of x⊤

1 , . . . , x⊤
n .

The lasso adds an ℓ1 penalty to the optimization problem:

min
β

 1
2n

n∑
i=1

(yi − x⊤
i β)2 + λ

p∑
j=1
|βj |

 = min
β

{ 1
2n
∥y−Xβ∥22 + λ ∥β∥1

}
, (2)

where ∥·∥2 is the Euclidean (ℓ2) norm and ∥·∥1 is the ℓ1 norm. The benefit of this penalty is
that it tends to allow only a subset of coefficient estimates to be nonzero, hence performing
variable selection. Here, λ is a hyperparameter that trades fidelity to the data—small λ
emphasizes minimization of the squared-error—with desirable regularization that selects a
subset of variables and improves prediction accuracy.
A variant of this, the group lasso (Yuan and Lin 2006) is appropriate when there is a natural
grouping structure for the features. That is, we assume that both the design matrix X and
the corresponding vector of coefficients can be partitioned into interpretable non-overlapping
groups, and, by analogy with lasso regression, only a few of the groups are active, i.e., have
nonzero coefficients. The group lasso thus performs regularization that has the effect of
discarding groups of predictors rather than the predictors themselves:

min
β

 1
2n

∥∥y− G∑
g=1

X(g)β(g)∥∥2
2 + λ

G∑
g=1

√
wg∥β(g)∥2

 . (3)

Grouping may occur naturally—say with the inclusion of many categorical predictors, groups
of genes, or brain regions—or may be a design choice using additive models and basis ex-
pansions. Note that in Equation 3, the grouping structure is explicitly stated: The vector
of coefficients, β, is thought of as a concatenation of the coefficient subvectors of the vari-
ous groups β(g), and similarly the data matrix X is the concatenation of submatrices, each
submatrix X(g) being composed of the columns that correspond to that particular group.
Thus the first part of the equation, y−

∑G
g=1 X(g)β(g), is identical to the more simply-written

equation y−Xβ, but the notation serves to emphasize the partitioning.
However, the penalty,

∑G
g=1
√

wg∥β(g)∥2, is different from the corresponding part in Equa-
tion 2, using instead the sum of the (non-squared) ℓ2-norms of the coefficient vectors of the
various groups. It is the non-differentiability of this expression at 0 ∈ R|g| (with |g| meaning
the size of group g) that accounts for the group-discarding property of the solution, similar
to the way that the non-differentiability the absolute value at 0 is responsible for discarding
individual predictors in the lasso.
As with Equation 2, there is only a single tuning parameter λ, whose value determines the
strength of regularization. Within the second summation are the relative weights of the
groups, wg. These are often taken to be the size of the corresponding group. For simplicity,
this notation is suppressed below where the meaning is clear.
Finally, in a group-structured problem as above, it may be desirable to enforce sparsity not
only among the groups but also within the groups. The sparse group lasso (Simon et al. 2013)
does this by combining the penalties in Equations 2 and 3:

min
β

 1
2n
∥y−Xβ∥22 + (1− α)λ

G∑
g=1
∥β(g)∥2 + αλ

G∑
g=1
∥β(g)∥1

 . (4)
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There is now a second tuning parameter α, which controls the relative emphasis of intra-
versus inter-group sparsity in the coefficient estimates. In Equation 4, we have chosen to
write the group dependence explicitly in the ℓ1 component of the penalty, but note that∑G

g=1∥β(g)∥1 = ∥β∥1. Similar to the weights wg in the group component, sparsegl also allows
individual predictor weights in the ℓ1 component,

∑p
j=1 ωj |βj |, but we suppress this generality

for clarity, setting ωj = 1 for all j below.

2.1. The group-wise majorization-minimization algorithm

There is no closed-form solution to the optimization problem in Equation 4, so we require
a numerical procedure. Because the problem is convex, a variety of methods may be used.
The general framework for our algorithm is the same as the majorized block-wise coordinate
descent algorithm developed in (Yang and Zou 2015; Simon et al. 2013). What this means
is that, for a fixed value of λ, we loop over the groups and update only those coefficients
while holding all other groups constant. In particular, instead of using the exact Hessian to
determine the step size and direction in every update step, we update according to a simpler
expression that majorizes the objective.
For the rest of this section, we describe this majorization algorithm, focusing on a particular
group g and holding the coefficients for all other groups fixed. We note here that, because the
loss function in Equation 4 is differentiable and the penalty terms are convex and separable
(i.e., they can be decomposed into a sum of functions each only involving a single group),
this block coordinate descent algorithm is guaranteed to converge to a global optimum (Tseng
2001).
To begin with, we introduce some notation. Let

r(−g) = y−
∑
k ̸=g

X(k)β(k)

be the partial residual without group g where all the group fits besides that of group g are
subtracted from y. With all other groups held fixed, we aim to solve:

min
β(g)

1
2n
∥r(−g) −X(g)β(g)∥22 + (1− α)λ∥β(g)∥2 + αλ∥β(g)∥1. (5)

In what follows, we will suppress the (g) notation, with the understanding that we are really
referring to only the gth group of the coefficient vector and the partial residual r(−g). We will
also define, the unpenalized loss function

ℓ(β) = 1
2n
∥r−Xβ∥22,

so that our objective function for the gth group becomes ℓ(β) + (1−α)λ ∥β∥2 + αλ ∥β∥1, and
we are interested in finding an optimal value, β̂. This enables the procedure to generalize
easily to logistic loss or, in principle, other exponential families.
Any global minimum must satisfy a subgradient equation, similar to a first-derivative test
for an optimum, except that ∥·∥2 and ∥·∥1 are non-differentiable at 0. For Equation 5 above,
taking the subdifferential and setting equal to zero gives us the following first-order condition:

∇ℓ(β) = (1− α)λu + αλv, (6)
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where u is the subgradient of ∥β∥2 and v is the subgradient of ∥β∥1. The first is defined to
be β/ ∥β∥2 if β is a nonzero vector, and is any vector in the set {u : ∥u∥2 ≤ 1} otherwise; the
second, v, is defined coordinate-wise as vj = sign(βj) if vj ̸= 0, and is any value vj ∈ {vj :
|vj | ≤ 1} otherwise.
For the Gaussian case, the unpenalized loss ℓ(β) is a quadratic function in β, so it is equal to
its second order Taylor expansion about any point β0 in the parameter space. We thus start
with the following equality for any given β0 (recalling that β0 here is only for group g):

∀β, β0, ℓ(β) = ℓ(β0) + (β − β0)⊤∇ℓ(β0) + 1
2(β − β0)⊤H(β − β0),

where the gradient ∇ℓ is the first total derivative of ℓ (evaluated at β0) and H, the Hessian,
is the second total derivative. For ℓ(β) = 1

2n∥r−Xβ∥22, a short computation shows that the
Hessian is H = 1

nX⊤X.
For the large-scale problems motivating this work, the matrix X is large, so computing X⊤X,
storing it in memory, or inverting it, is computationally prohibitive. Instead, we replace this
matrix with a simpler one, t−1I, a diagonal matrix with the value of t selected to be such
that this dominates the Hessian (in the sense that t−1I − H is positive definite). For our
algorithm we choose the largest eigenvalue of the Hessian and use that for t−1. Note that
this eigenvalue must be computed for each group g ∈ G, but this computation is relatively
simple using the power method or other techniques as implemented with RSpectra (Qiu and
Mei 2024). This upper bound leads to the following inequality:

∀β, β0, ℓ(β) ≤ ℓ(β0) + (β − β0)⊤∇ℓ(β0) + 1
2t

(β − β0)⊤(β − β0). (7)

Replacing the loss function in the original minimization problem in Equation 5 with the
right-hand side of Equation 7 leads to a majorized version of the original problem

ℓ(β0) + (β − β0)⊤∇ℓ(β0) + 1
2t
∥β0 − β∥22 + (1− α)λ ∥β∥2 + αλ ∥β∥1 , (8)

which no longer involves operations with the Hessian matrix.
As before, the optimal value for Equation 8 is determined by its subgradient equation, similar
to that of Equation 6:

1
t

(
β −

(
β0 − t∇ℓ(β0)

))
+ (1− α)λu + αλv = 0,

with u and v as defined above. Solving this for β in terms of β0 results in the following
expression:

β̂ = U(β0) =
(

1− t(1− α)λ
∥S(β0 − t∇ℓ(β0), tαλ)∥2

)
+

S
(
β0 − t∇ℓ(β0), tαλ

)
, (9)

where (z)+ = max{z, 0} and S is the coordinate-wise soft threshold operator, on a vector γ
and scalar b,

(S(γ, b))j = sign(γj)(|γj | − b)+,

i.e., for each coordinate in the vector, it shrinks that coordinate in magnitude by the amount
b, and sets it to zero if the magnitude of that coordinate was smaller than b to begin with. It
is this soft-thresholding operation that encourages within-group sparsity.
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Algorithm 1 Sparse group lasso solution for fixed λ, regression version
1: Input: λ ≥ 0, α ∈ [0, 1], set of groups G, initial coefficients β, r = y−Xβ
2: while Not converged do
3: for g ∈ G do

4: Update β(g) =
(

1− t(1−α)λ
∥S
(

β(g)−t∇ℓ(β(g)), tαλ
)

∥2

)
+

S
(
β(g) − t∇ℓ(β(g)), tαλ

)
.

5: Update r = r−X(g)β(g).
6: end for
7: end while
8: return β

An examination of Equation 9 shows that it is possible for the entire group to be set to zero
(made inactive) due to the (hard) threshold operator (·)+ in the first part of the expression.
It is also possible for individual components of β(b) to be zeroed out by the coordinate-wise
(soft) threshold operator S. Therefore, performing this update step tends to enforce coefficient
sparsity at both the group- and individual-level.
Above, we have focused on the Gaussian linear model with ℓ(β) = 1

2n∥r −Xβ∥22, ∇ℓ(β) =
− 1

nX⊤(r − Xβ), and H ⪯ t−1I. In the case of logistic regression, we use exactly the
same procedure but with ℓ(β) = 1

n

∑
i log(1 + exp{−rix⊤

i β}), ∇ℓ(β) = − 1
n

∑
i yix⊤

i (1 +
exp{−rix⊤

i β})−1, and H(β) ⪯ 4t−1I. This procedure is explicitly stated in Algorithm 1. For
other exponential families (for example, Poisson, Gamma, or Probit regression), we provide
functionality to pass an R ‘family’ object. These will generally be much slower than the
built-in families described above because they require iteratively reweighted least squares as
an outer loop combined with inner majorization-minimization iterations as described here.
While the procedure described so far solves Equation 4 for fixed choices of λ and α, the
data analyst does not typically know these ahead of time. Rather, we would like to solve
the problem for a collection of values of λ (and perhaps α as well). It turns out that the
structure of this optimization problem allows for some heuristics that can perform this se-
quential optimization with a minimum of additional computational resources, in some cases,
solving Equation 4 faster for a sequence of values λm ∈ {λ1, . . . , λM} than for a single choice
(Tibshirani et al. 2012). We describe our implementation of this procedure next.

2.2. Sequential strong rule, KKT conditions, and active set iteration

For any fixed value of λ, many groups of coefficient estimates will end up being equal to
zero. If, somehow, we knew which groups, we could completely avoid visiting them in the
block-wise coordinate descent updates, and therefore avoid calculating Equation 9 for those
groups. This would significantly speed up computations.
Re-examining Equation 6, we can see that the first order condition implies that, for each
group g, any solution must satisfy

∥S(∇ℓ(βg), λα)∥2 ≤ (1− α)λ. (10)

This is because, as u is the subgradient of ∥βg∥2, ∥u∥2 ≤ 1. Furthermore, if ∥u∥2 < 1, then
β̂j = 0. In the previous section, we used the sufficiency of the Karush-Kuhn-Tucker (KKT)
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Algorithm 2 Sequential strong rule and Majorization Minimization in sparsegl
1: Input: X, y, G, and {λ1, . . . , λM}. Output: β̂.
2: Initialize: A = S = ∅, β̂ = 0.
3: for m = 1 to M do
4: Update S ← S

⋃{
g ∈ Sc : ∥S(∇ℓ(β̂g), tαλm)∥2 > t(1− α)λm

}
.

5: Apply Algorithm 1 with G = A (MM gradient update).
6: Update A ← A

⋃{
g ∈ S

⋂
Ac : ∥S(∇ℓ(β̂g), tαλm)∥2 > t(1− α)λm

}
.

7: If there were any violations, go to to Line 5.
8: Update A ← A

⋃{
g ∈ Sc⋂Ac : ∥S(∇ℓ(β̂g), tαλm)∥2 > t(1− α)λm

}
.

9: If there were any violations, go to to Line 5.
10: Set S = S

⋃
A.

11: end for

stationarity condition to derive a solution, while Equation 10 is the necessary version. So given
a potential solution, it is easy to check its validity. Unfortunately, this is not constructive.
The sequential strong rule (Tibshirani et al. 2012) begins from Equation 10 and makes use of
the fact that we are solving for a sequence of parameters {λ1 > λ2 > · · · > λM} rather than
a single value. At each λm, we rely on the fact that we have already solved the problem at
λm−1 and use this information to quickly discard many groups of predictors. Without loss of
generality, for the rest of this section, assume that the problem has been solved for λm−1.
Define cg(λ) = S(∇ℓ(βg), λα). Now, we make the assumption that cg(λ) is (1−α)-Lipschitz,
i.e., that

∀λ, λ′ ∥cg(λ)− cg(λ′)∥2 ≤ (1− α)|λ− λ′|.

This Lipschitz assumption appears unintuitive, and in fact, is not always true, but it turns
out to be useful.
By Equation 10, if we knew that ∥cg(λm)∥2 < (1− α)λm then we could safely ignore it. But
we already have the solution at λm−1. By the triangle inequality (first) and the Lipschitz
assumption (second),

∥cg(λm)∥2 ≤ ∥cg(λm)− cg(λm−1)∥2 + ∥cg(λm−1)∥2 ≤ (1− α)(λm−1 − λm) + ∥cg(λm−1)∥2.

We want to be able to assert that (1− α)(λm−1 − λm) + ∥cg(λm−1)∥2 ≤ (1− α)λm, allowing
us to ignore group g, and this assertion holds precisely when

∥cg(λm−1)∥2 ≤ (1− α)(2λm − λm−1).

Applying this logic to Equation 8 gives the sequential strong rule for the sparse group lasso:

∥S
(
∇ℓ(βg), tαλm−1

)
∥2 ≤ t(1− α)(2λm − λm−1). (11)

For more details in related settings, see Tibshirani et al. (2012). If Equation 11 holds, then
we ignore group g when solving the problem at λm. That is to say, when we move from λm−1
to λm, we first check this condition using the previously computed solution for β̂(λm−1), and
then perform block-wise coordinate descent, using only those groups that failed this inequality.
This discarding rule is fast, because it uses the previously computed solution combined with
a simple inequality, and, in practice, it tends to accurately discard large numbers of groups.
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However, we should reiterate that it is possible for the strong rule to fail. The Lipschitz
assumption is not a guarantee. Because of this, it is critical that, after discarding some of
the groups and running the algorithm on the others, the KKT condition is checked on all
discarded groups. If there are no violations, then we have the solution.
To minimize gradient computations for groups that will eventually be determined to be inac-
tive, we actually keep track of two sets: The strong set S and the active set A. The active set
collects all groups that have ever had non-zero coefficients at previous values of λ. We first
iterate over previously active groups, then check the strong set to see if we missed any, and
finally check all the remaining groups. When the number of groups is very large, this avoids
onerous computations for as many groups as possible. The complete algorithm including this
active set iteration is shown in Algorithm 2.

2.3. Risk estimation

For many regularized prediction methods, tuning parameter selection is largely performed
with cross validation. However, cross validation can be computationally expensive when
the data set is large enough that the initial fit is slow. For this reason, sparsegl provides
information criteria as well as cross validation routines.
In the Gaussian linear regression model given by Equation 1, if σ is unknown then a general
form for a family of information criteria is given by

info(Cn, g) = log
( 1

n
∥y−Xβ̂∥22

)
+ Cn g(df), (12)

where Cn depends only on n, g : [0,∞)→ R is a fixed function, and the degrees of freedom (df)
measures the complexity of the estimation procedure. The choices Cn = 2/n or Cn = log(n)/n
with g(x) = x are commonly referred to as AIC (Akaike 1973) and BIC (Schwarz 1978),
respectively. Additionally, generalized cross validation (Golub, Heath, and Wahba 1979,
GCV) is defined as

GCV =
1
n∥y−Xβ̂∥22
(1− df/n)2 .

Written on the log scale, GCV takes the form of Equation 12 with g(x) = log(1 − x/n) and
Cn = −2.
The key components for all three information criteria are the negative log likelihood and the
degrees of freedom. The first is simply a function of the in-sample (training) error. On the
other hand, the degrees of freedom, while simple in the unregularized linear model (it is the
number of parameters), is less obvious for the sparse group lasso. In general, the degrees of
freedom for any predictor ŷ of y is defined as (Efron 1986)

df(ŷ) = 1
σ2

n∑
i=1

Cov(yi, ŷi).

In the case of any linear predictor, ŷ = Ay for some matrix A, it is easy to see that df = tr(A).
Vaiter et al. (2012) gives an explicit formula for the group lasso (without intra-group sparsity),
but only minor modifications are required for the sparse group lasso. We give a simplified
version of their result here.
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Proposition 1 (Vaiter et al. 2012). Suppose that for a fixed λ > 0, the active set of β̂ is A
and that XA is the set of columns associated to A. Assume that XA has full column rank.
Then,

df = tr
(

XA
(
X⊤

AXA + λK
)−1

X⊤
A

)
.

Here, K ∈ RA×A is a block diagonal matrix with each block corresponding to a group g having
at least 1 nonzero β̂. For such a group g, denote β̂g|A the subvector of nonzero coefficient
estimates. Then

Kg = 1
∥β̂g|A∥2

I−
β̂g|Aβ̂

⊤
g|A

∥β̂g|A∥22

 .

As long as the number of nonzero coefficients |A| is reasonably small, the degrees of freedom
can be efficiently calculated for each value of λ. However, this calculation is generally cubic in
|A|. In these cases, an approximation may be desired. We have found, in practice, that λK ≈
0 is reasonably accurate, suggesting that df ≈ |A| is also reasonable. This approximation is
exact for the lasso with α = 1 (Zou, Hastie, and Tibshirani 2007).

3. Example usage
This section provides a simple illustration of using the sparsegl package (McDonald et al.
2024) to fit the regularization path for sparse group-lasso penalized learning problems. We
first examine the linear regression model when the response variable is continuous and then
briefly go over the logistic regression case. The package is available from the Comprehensive
R Archive Network (CRAN) at https://CRAN.R-project.org/package=sparsegl and can
be installed and loaded in the usual manner:2

R> install.packages("sparsegl")
R> library("sparsegl")

We first create a small simulated dataset along with a vector indicating the grouping structure.

R> set.seed(1010)
R> n <- 100
R> p <- 200
R> X <- matrix(rnorm(n*p), nrow = n, ncol = p)
R> beta <- c(rep(5, 5), c(5, -5, 2, 0, 0), rep(-5, 5), c(2, -3, 8, 0, 0),
+ rep(0, (p - 20)))
R> groups <- rep(1:(p / 5), each = 5)
R> eps <- rnorm(n, mean = 0, sd = 1)
R> y <- X %*% beta + eps
R> pr <- 1 / (1 + exp(-X %*% beta))
R> y0 <- rbinom(n, 1, pr)

The sparsegl package is mainly used with calls to two functions:
2The development version of the package is hosted at https://github.com/dajmcdon/sparsegl with ac-

companying documentation at https://dajmcdon.github.io/sparsegl.

https://CRAN.R-project.org/package=sparsegl
https://github.com/dajmcdon/sparsegl
https://dajmcdon.github.io/sparsegl
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Figure 2: The left panel plots the estimated coefficients against the sparse group penalty;
while the right plots the ℓ2-norm of each group against λ.

• sparsegl(): Fits sparse group regularized regression and classification models;

• cv.sparsegl(): Repeatedly calls sparsegl() for the purposes of tuning parameter
selection via cross validation.

The interface is intended to closely mimic that available in other R packages for regularized
linear models, most notably glmnet (Friedman et al. 2023). To perform the regularization
path fitting at a sequence of regularization parameters, sparsegl() takes as required inputs,
only x, the design matrix, and y, the response vector. Other optional arguments are the
grouping vector group, the family (either "gaussian" or "binomial"), a penalty vector for
group weights other than the size, the relative weight of lasso penalty, desired lower or upper
bounds for coefficient estimates, and other optional configurations.

R> fit <- sparsegl(X, y, group = groups)

We include a number of S3 methods for sparsegl typical for linear models: plot(), coef(),
predict() and print(). The plot() function displays either the coefficients or the group
norms on the y-axis against either {λm}Mm=1 or the scaled penalty on the x-axis.3 The resulting
plots are shown in Figure 2.

R> plot(fit, y_axis = "coef", x_axis = "penalty", add_legend = FALSE)
R> plot(fit, y_axis = "group", x_axis = "lambda", add_legend = FALSE)

The coef() and predict() methods give the coefficients or predicted values for a new design
matrix X̃ at the requested λ’s, potentially allowing for λ values different from those used at
the fitting stage.

R> coef(fit, s = c(0.02, 0.03))[c(1, 3, 25, 29), ]

4 x 2 sparse Matrix of class "dgCMatrix"
3We have chosen to implement plotting throughout the package using ggplot2 (Wickham et al. 2024b).
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s1 s2
(Intercept) -0.05189536 -0.1718156
V2 4.71082485 4.6339817
V24 . .
V28 . .

R> predict(fit, newx = tail(X), s = fit$lambda[2:3])

s1 s2
[95,] -3.894658 -2.966973
[96,] -3.906349 -2.945468
[97,] -4.119689 -4.241786
[98,] -4.184564 -4.555082
[99,] -4.175593 -4.382721

[100,] -4.071804 -4.091689

R> print(fit)

Call: sparsegl(x = X, y = y, group = groups)

Summary of Lambda sequence:
lambda index nnzero active_grps

Max. 0.62948 1 0 0
3rd Qu. 0.19676 26 20 4
Median 0.06443 50 19 4
1st Qu. 0.02014 75 25 5
Min. 0.00629 100 111 23

The cv.sparsegl() function implements K-fold cross validation and has a similar signature
to sparsegl(). It allows the user to choose the number of splits and the loss function
for measuring prediction or classification accuracy on the held-out sets. Here, the S3 plot()
method displays the cross-validation curve with upper and lower confidence bounds calculated
as ±1 standard error across the folds for each λ in the regularization path (Figure 3).

R> cv_fit <- cv.sparsegl(X, y, groups, nfolds = 15)
R> plot(cv_fit)

The coef() and predict() methods work similarly to those above. The only difference
being that they can additionally accept the strings lambda.min or lambda.1se, respectively
the λ that minimizes the average cross validation error and the largest λ such that the cross-
validated prediction error is within one standard error of the minimum.

R> coef(cv_fit, s = "lambda.1se")[c(1, 3, 25, 29), ]

(Intercept) V2 V24 V28
0.004435981 4.740139458 0.000000000 0.000000000
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Figure 3: The cross validation estimate of out-of-sample prediction mean-squared error is
displayed against the sequence of λ values.
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Figure 4: The cross validation estimate of out-of-sample error is displayed against the sequence
of λ values. For logistic regression, misclassification error may be used.

R> predict(cv_fit, newx = tail(X), s = "lambda.min") |> c()

[1] 11.364725 39.985246 4.635314 -34.832413 -6.602096 -16.138344

For logistic regression, only a different family is required. Cross validation can be imple-
mented with misclassification or deviance loss (Figure 4).

R> fit_logit <- sparsegl(X, y0, groups, family = "binomial")
R> cv_fit_logit <- cv.sparsegl(X, y0, groups, family = "binomial",
+ pred.loss = "misclass")
R> plot(cv_fit_logit, log_axis = "none")

In some cases, when computations are at a premium, cross validation my be too demanding
for the purposes of risk estimation. For this reason, sparsegl provides an estimate_risk()
function. It can be used to compute any of AIC (Akaike 1973), BIC (Schwarz 1978), and GCV
(Golub et al. 1979). All three are computed by combining the log-likelihood with a penalty
term for model flexibility. In addition to a fitted sparsegl model, estimate_risk() also
needs the original design matrix. Because the exact degrees-of-freedom can be computation-
ally expensive, setting approx_df = TRUE uses the number of non-zero coefficient estimates,
which can be reasonably accurate.

R> er <- estimate_risk(fit, X)

In this simulation, the λ that minimizes AIC is 0.013 while the CV minimizer is 0.01. The
estimated risk curves are plotted against λ in Figure 5.
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Figure 5: For Gaussian loss, AIC, BIC, and GCV (solid lines) along with their minima
(vertical dashed lines) can be estimated.

Additional documentation and examples are provided on the package website at https:
//dajmcdon.github.io/sparsegl.

4. Applications
We examine two applications for which sparse group lasso is a natural estimator. The first
uses data regarding COVID-19 and trustworthiness of information sources, which is included
in the package. The second uses a very large though sparse data set from neuroimaging.
Finally, we briefly investigate the accuracy of sparsegl relative to gglasso and CVXR.

4.1. Geographic distribution of trust in experts

Two typical uses for sparse group lasso are (1) additive models where continuous predictors
are expanded in a basis and (2) discrete factors as predictors. Here we demonstrate an
example using both at the same time. We examine data from The Delphi Group at Carnegie
Mellon University U.S. COVID-19 Trends and Impact Survey (CTIS, https://cmu-delphi.
github.io/delphi-epidata/symptom-survey/contingency-tables.html), in partnership
with Facebook. In particular, we examine the publicly available contingency table reports,
which break down survey responses by age, race/ethnicity, gender, and other demographic
variables of interest. The necessary data to reproduce this analysis is included in sparsegl as
trust_experts.
In particular, we will focus on the “estimated percentage of respondents who trust . . . to
provide accurate news and information about COVID-19.” This survey item is reported for
a variety of different potential sources of information—personal doctors/nurses, scientists,
the Centers for Disease Control (CDC), government health officials, politicians, journalists,
friends, and religious leaders. In this analysis, we average the first 4, characterize the combi-
nation as “experts”, and use this as the response variable in a linear model.
We regress “trust in experts” on 5 factor predictors representing month of report, state of
residence, age group, race/ethnicity, and self-reported gender identity. We also include two
continuous predictors: “estimated percentage of people with Covid-like illness” and “estimated
percentage of people reporting Covid-like illness in their local community, including their
household” to control for the amount of exposure that respondents may have been having to
the pandemic. Both continuous predictors are incorporated with a B-spline basis expansion
and 10 degrees-of-freedom. The result is largely similar to a generalized additive model as
implemented with mgcv (Wood 2017, 2023). The design matrix can be created using the
following code:

https://dajmcdon.github.io/sparsegl
https://dajmcdon.github.io/sparsegl
https://cmu-delphi.github.io/delphi-epidata/symptom-survey/contingency-tables.html
https://cmu-delphi.github.io/delphi-epidata/symptom-survey/contingency-tables.html
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Figure 6: This figure displays estimates for each state’s level of trust in experts’ advice about
Covid-19. The value displayed represents the change relative the U.S.-wide average.

R> library("dplyr")
R> library("splines")
R> data("trust_experts", package = "sparsegl")
R> trust_experts <- mutate(trust_experts, across(
+ where(is.factor),
+ ~ `attr<-`(.x, "contrasts", contr.sum(nlevels(.x), contrasts = FALSE))
+ ))
R> x <- Matrix::sparse.model.matrix(
+ trust_experts ~ 0 + region + age + gender + raceethnicity + period +
+ bs(cli, df = 10) + bs(hh_cmnty_cli, df = 10),
+ data = trust_experts, drop.unused.levels = TRUE)

After omitting both structural and otherwise missing data, the final model is estimated with
9759 observations on 101 predictors. As shown in the code, we did not use contrasts, fully
expanding each factor in a one-hot encoding. This allows all estimated coefficients to be
interpreted as deviations from the grand mean conditional on continuous predictors, which is
natural. Such a formulation (along with the group penalty) is closely related to Bayesian linear
models with separate Gaussian priors centered at 0 for each level of the factor. Other contrasts
could be used by modifying the above, but the interpretation is more complicated. Encoded
as a sparse matrix, this requires about 2.1 MB of random-access memory (RAM) to store,
as opposed to 8.5 MB if it were dense. We estimated the model using cv.sparsegl() and
default arguments. Finally, we chose λ to be the largest lambda within one standard error of
the CV minimum (lambda.1se), resulting in a sparser model. Figure 6 displays the estimated
coefficients for the state-of-residence predictors. Even controlling for age, race, gender, and
the amount of circulating Covid-like illness, the United States displays strong geographic
disparities when it comes to citizens’ trust in scientists and other health authorities.
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Voxel DWI
Signal (Y) Streamlines as predictors (X)≈

Streamline grouping

Di�usion-weighted
Imaging

Tractography

Each voxel is measured
at multiple angles

Streamlines are non-zero only for 
the voxels it passes through

Figure 7: This graphic illustrates how the streamlines and voxels are converted from a
diffusion-weighted image to a linear model. Each voxel is measured on 90 angles, so it occu-
pies 90 rows in the data. When a streamline (column of X) passes through a voxel, the values
within that voxel are given by a physical model based on the direction of passage. Otherwise,
if the streamline does not cross the voxel, the respective rows are zero.

4.2. Estimating white matter connectivity

Pestilli et al. (2014) formulated an optimization model that takes as input a set of brain
connections generated using tractography algorithms and predicts the MRI diffusion signal
via a linear model (Pestilli et al. 2014; Daducci, Dal Palù, Lemkaddem, and Thiran 2015). The
Pestilli et al. (2014) model had no regularization, but Aminmansour et al. (2019) extended the
problem to include group-regularization (this is an approach recently followed up by Schiavi
et al. 2020). In this study, we re-implemented the Aminmansour et al. (2019) formulation
using sparsegl to illustrate the feasibility and efficiency of the DWI modeling.
The neurological model predicts the DWI signal using the tractogram, apportioning the image
signal at each voxel to the streamlines according to the measured gradient field. This pre-
processing is shown pictorially Figure 7. We estimate streamline weights using sparse group
lasso, allowing the amount of regularization applied to each group to be proportional to their
cardinality. For our study, we used one subject from the Human Connectome Project (Van
Essen et al. 2012). The full brain tractogram has 3M streamlines, though we used only the
streamlines identified as being part of the Arcuate Fasciculus for illustration.4

Aminmansour et al. (2019) used an algorithm based on Orthogonal Matching Pursuit to esti-
mate a related model. The data used in that study measures diffusion in 11,823 voxels using
96 magnetic field angles and attempts to reconstruct the image using the ENCODE method
(Caiafa, Sporns, Saykin, and Pestilli 2017), resulting in 1057 orientations and 868 fascicles.
This results in a linear regression problem with n ≈ 1M and p = 868. In comparison, our
data contains 77,630 voxels measured on 90 angles, with a tractography of 10,244 streamlines.

4The processed data used to estimate the sparse group lasso is available at https://doi.org/10.6084/m9.
figshare.20314917.

https://doi.org/10.6084/m9.figshare.20314917
https://doi.org/10.6084/m9.figshare.20314917
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Figure 8: The group norm of the 12 groups based on neuroanatomical structure is plotted
against the magnitude of the penalty.

The resulting linear model has n ≈ 6.9M and p ≈ 88K, around 700× the size of the previous
analysis. The design matrix would occupy over 500 GB if it were dense, but since it is only
about 0.02% non-sparse, it requires 1.8 GB of memory when stored in CSC format.
Estimating the group lasso using sparsegl with 12 groups and 100 values of λ required a little
over one minute and about 6 GB of peak memory usage on an Intel i7-11700K PC with 64 GB
of RAM. The previous method required nearly a day for a single value of λ. Figure 8 displays
the group norms of the 12 groups against the magnitude of the penalty.

4.3. Accuracy on synthetic problems

A small-scale simulated comparison illustrates that sparsegl is highly accurate in many regimes
of interest. We generate synthetic data from a linear model and examine the objective function
for the estimated model across a range of λ. Specifically, we first generate the predictors X
by simulating each element xij i.i.d. standard Gaussian. We generate n = 100 observations
and p = {50, 100, 150} predictors. We use 10 groups in all cases, with

β = (1, . . . , 1,︸ ︷︷ ︸
group 1

0, . . . , 0︸ ︷︷ ︸
group 2

, 1, . . . , 1︸ ︷︷ ︸
group 3

, . . . , 0, . . . , 0︸ ︷︷ ︸
group 10

).

The groups are all of size p/10. The expected signal is then equal to p/2. We simulate the
response from Equation 1 with σ chosen to produce expected signal-to-noise ratios (SNR)
of {0.1, 1, 10}. We note that this design produces group sparsity, even-numbered groups
have no effect on the response, but it does not produce within-group sparsity. Figure 9 shows
the results for the nine combinations of these conditions across 20 values of λ determined
automatically by sparsegl and reused for the other packages. Note that gglasso is optimizing
a different objective function than CVXR or sparsegl which both use α = 0.2. Despite
this discrepancy, the objective values for gglasso and sparsegl are generally quite close, with
gglasso tending to be slightly higher, as expected, but by no more than 0.75%. On the other
hand CVXR is often much less accurate, especially for large values of λ. This divergence is
due to its inability to recover exact 0 solutions, tending to instead produce estimates nearly,
but not exactly, equal to zero. When p = n = 100, CVXR is actually slightly more accurate,
especially for large or small λ. Inspecting the estimated β̂ in this setting, it seems to have
slightly less bias on the non-zero groups, producing estimates with slightly larger magnitude.
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Figure 9: This figure shows the % change in the objective function for gglasso and CVXR
relative to sparsegl. The x-axis is scaled to make the λ range comparable across conditions.

5. Discussion

We developed this package for solving sparse group lasso optimization problems using group ℓ2
and ℓ1 penalties with an eye toward computational efficiency for very large, potentially sparse
design matrices. This efficiency is achieved through a customized Fortran implementation,
avoidance of deep copy behavior, and the use of sequential strong rules for the regularization
parameter. We also provide heuristics for tuning parameter selection without the need for
refitting inherent in cross-validation and enable some simple extensions such as differential
weights in the ℓ1 penalty and boundary constraints on the coefficients.
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