
JSS Journal of Statistical Software
August 2024, Volume 110, Issue 2. doi: 10.18637/jss.v110.i02

An Extendable Python Implementation of Robust
Optimization Monte Carlo

Vasilis Gkolemis
ATHENA RC

Michael Gutmann
University of Edinburgh

Henri Pesonen
University of Oslo

Abstract

Performing inference in statistical models with an intractable likelihood is challenging,
therefore, most likelihood-free inference (LFI) methods encounter accuracy and efficiency
limitations. In this paper, we present the implementation of the LFI method robust
optimization Monte Carlo (ROMC) in the Python package elfi. ROMC is a novel and
efficient (highly-parallelizable) LFI framework that provides accurate weighted samples
from the posterior. Our implementation can be used in two ways. First, a scientist may
use it as an out-of-the-box LFI algorithm; we provide an easy-to-use API harmonized with
the principles of elfi, enabling effortless comparisons with the rest of the methods included
in the package. Additionally, we have carefully split ROMC into isolated components for
supporting extensibility. A researcher may experiment with novel method(s) for solving
part(s) of ROMC without reimplementing everything from scratch. In both scenarios, the
ROMC parts can run in a fully-parallelized manner, exploiting all CPU cores. We also
provide helpful functionalities for (i) inspecting the inference process and (ii) evaluating
the obtained samples. Finally, we test the robustness of our implementation on some
typical LFI examples.

Keywords: Bayesian inference, implicit models, likelihood-free, Python, elfi.

1. Introduction
Simulator-based models are particularly captivating due to the modeling freedom they pro-
vide. In essence, any data generating mechanism that can be written as a finite set of algo-
rithmic steps can be programmed as a simulator-based model. Hence, these models are often
used to model physical phenomena in the natural sciences such as, e.g., genetics, epidemiol-
ogy or neuroscience (Gutmann and Corander 2016; Lintusaari, Gutmann, Dutta, Kaski, and
Corander 2017; Sisson, Fan, and Beaumont 2018; Cranmer, Brehmer, and Louppe 2020). In
simulator-based models, it is feasible to generate samples using the simulator but is infeasible

https://doi.org/10.18637/jss.v110.i02
https://orcid.org/0000-0002-2636-0245
https://orcid.org/0000-0002-5329-9910
https://orcid.org/0000-0003-4500-2926

2 An Extendable ROMC Implementation in Python

to evaluate the likelihood function. The intractability of the likelihood makes the so-called
likelihood-free inference (LFI), i.e., the approximation of the posterior distribution without
using the likelihood function, particularly challenging.
Optimization Monte Carlo (OMC), proposed by Meeds and Welling (2015), is a novel LFI
approach. The central idea is to convert the stochastic data-generating mechanism into a
set of deterministic optimization processes. Afterwards, Forneron and Ng (2016) described
a similar method under the name ‘reverse sampler’. In their work, Ikonomov and Gutmann
(2019) identified some critical limitations of OMC, so they proposed robust OMC (ROMC)
an improved version of OMC with appropriate modifications.
In this paper, we present the implementation of ROMC at the Python (Python Core Team
2024) package elfi (engine for likelihood-free inference, Lintusaari et al. 2018). The implemen-
tation has been designed to facilitate extensibility. ROMC is an LFI framework; it defines
a sequence of algorithmic steps for approximating the posterior without enforcing a specific
algorithm for each step. Therefore, a researcher may use ROMC as the backbone method and
apply novel algorithms to each separate step. For being a ready-to-use LFI method, Ikonomov
and Gutmann (2019) propose a particular (default) algorithm for each step, but this choice is
by no means restrictive. We have designed our software for facilitating such experimentation.
To the best of our knowledge, this is the first implementation of the ROMC inference method
to a generic LFI framework. We organize the illustration and the evaluation of our imple-
mentation in three steps. First, for securing that our implementation is accurate, we test it
against an artificial example with a tractable likelihood. The artificial example also serves as
a step-by-step guide for showcasing the various functionalities of our implementation. Sec-
ond, we use the second-order moving average (MA2) example (Marin, Pudlo, Robert, and
Ryder 2012) from the elfi package, using as ground truth the samples obtained with rejection
ABC (Lintusaari et al. 2017) using a very high number of samples. Finally, we present the
execution times of ROMC, measuring the speed-up achieved by the parallel version of the
implementation.
The code of the implementation is available at the official elfi repository (https://github.
com/elfi-dev/elfi). Apart from the examples presented in the paper, there are five Google
Colab (Bisong 2019) notebooks available online, with end-to-end examples illustrating how
to: (i) use ROMC on a synthetic 1D example (Gkolemis Vasilis 2023a) (ii) use ROMC on a
synthetic 2D example (Gkolemis Vasilis 2023b) (iii) use ROMC on the moving average ex-
ample (Gkolemis Vasilis 2023c) (iv) extend ROMC with a neural network as a surrogate
model (Gkolemis Vasilis 2023e) (v) extend ROMC with a custom proposal region mod-
ule (Gkolemis Vasilis 2023d).

2. Background
We first give a short introduction to simulator-based models, we then focus on OMC and
its robust version, ROMC, and we, finally, introduce elfi, the Python package used for the
implementation.

2.1. Simulator-based models and likelihood-free inference
An implicit or simulator-based model is a parameterized stochastic data generating mecha-
nism, where we can sample data points but we cannot evaluate the likelihood. Formally, a

https://github.com/elfi-dev/elfi
https://github.com/elfi-dev/elfi

Journal of Statistical Software 3

simulator-based model is a parameterized family of probability density functions {p(y|θ)}θ
whose closed-form is either unknown or computationally intractable. In these cases, we can
only access the simulator mr(θ), i.e., the black-box mechanism (computer code) that gen-
erates samples y in a stochastic manner from a set of parameters θ ∈ RD. We denote the
process of obtaining samples from the simulator with mr(θ) → y. As shown by Meeds and
Welling (2015), it is feasible to isolate the randomness of the simulator by introducing a set of
nuisance random variables denoted by u ∼ p(u). Therefore, for a specific tuple (θ, u) the sim-
ulator becomes a deterministic mapping g, such that y = g(θ, u). In terms of computer code,
the randomness of a random process is governed by the global seed. There are some differ-
ences on how each scientific package handles the randomness; for example, at numpy (Harris
et al. 2020) the pseudo-random number generation is based on a global state, whereas, at
jax (Bradbury et al. 2018) random functions consume a key that is passed as a parameter.
However, in all cases, setting the initial seed to a specific integer converts the simulation to a
deterministic piece of code.
The modeling freedom of simulator-based models comes at the price of difficulties in inferring
the parameters of interest. Denoting the observed data as y0, the main difficulty lies at the
intractability of the likelihood function L(θ) = p(y0|θ). To better see the sources of the
intractability, and to address them, we go back to the basic characterization of the likelihood
as the (rescaled) probability of generating data y that is similar to the observed data y0,
using parameters θ. Formally, the likelihood L(θ) is:

L(θ) = lim
ϵ→0

cϵ

∫
y∈Bd,ϵ(y0)

p(y|θ)dy = lim
ϵ→0

cϵ Pr(g(θ, u) ∈ Bd,ϵ(y0) | θ) (1)

where cϵ is a proportionality factor that depends on ϵ and Bd,ϵ(y0) is an ϵ region around
y0 that is defined through a distance function d, i.e., Bd,ϵ(y0) := {y : d(y, y0) ≤ ϵ}. In
cases where the output y belongs to a high dimensional space, it is common to extract
summary statistics Φ before applying the distance d. In these cases, the ϵ-region is defined as
Bd,ϵ(y0) := {y : d(Φ(y), Φ(y0)) ≤ ϵ}. In our notation, the summary statistics are sometimes
omitted for simplicity. Equation 1 highlights the main source of intractability; computing
Pr(g(θ, u) ∈ Bd,ϵ(y0)|θ) as the fraction of samples that lie inside the ϵ region around y0 is
computationally infeasible in the limit where ϵ→ 0. Hence, the constraint is relaxed to ϵ > 0,
which leads to the approximate likelihood:

Ld,ϵ(θ) = Pr(y ∈ Bd,ϵ(y0) | θ), where ϵ > 0. (2)

and, in turn, to the approximate posterior:

pd,ϵ(θ|y0) ∝ Ld,ϵ(θ)p(θ) (3)

Equations 2 and 3 is by no means the only strategy to deal with the intractability of the like-
lihood function in Equation 1. Other strategies include modeling the (stochastic) relationship
between θ and y, and its reverse, or framing likelihood-free inference as a ratio estimation
problem, see for example Blum and François (2010); Wood (2006); Papamakarios and Mur-
ray (2016); Papamakarios, Sterratt, and Murray (2019); Chen and Gutmann (2019); Thomas,
Dutta, Corander, Kaski, and Gutmann (2022); Hermans, Begy, and Louppe (2020). However,
both OMC and robust OMC, which we introduce next, are based on the approximation in
Equation 2.

4 An Extendable ROMC Implementation in Python

2.2. Optimization Monte Carlo (OMC)

Our description of OMC (Meeds and Welling 2015) follows Ikonomov and Gutmann (2019).
We define the indicator function (boxcar kernel) that equals one only if x lies in Bd,ϵ(y):

⊮Bd,ϵ(y)(x) =
{

1 if x ∈ Bd,ϵ(y)
0 otherwise

We, then, rewrite the approximate likelihood function Ld,ϵ(θ) of Equation 2 as:

Ld,ϵ(θ) = Pr(y ∈ Bd,ϵ(y0)|θ) =
∫

u
⊮Bd,ϵ(y0)(g(θ, u))du

which can be approximated using samples from the simulator:

Ld,ϵ(θ) ≈ 1
N

N∑
i=1

⊮Bd,ϵ(y0)(g(θ, ui)) where ui ∼ p(u). (4)

In Equation 4, for each ui, there is a region Ci
ϵ in the parameter space θ where the indicator

function returns one, i.e., Ci
ϵ = {θ : g(θ, ui) ∈ Bd,ϵ(y0)}. Therefore, we can rewrite the

approximate likelihood and posterior as:

Ld,ϵ(θ) ≈ 1
N

N∑
i=1

⊮Ci
ϵ
(θ)

pd,ϵ(θ|y0) ∝ p(θ)
N∑
i

⊮Ci
ϵ
(θ). (5)

As argued by Ikonomov and Gutmann (2019), these derivations provide a unique perspective
for likelihood-free inference by shifting the focus onto the geometry of the acceptance regions
Ci

ϵ. Indeed, the task of approximating the likelihood and the posterior becomes a task of
characterizing the sets Ci

ϵ. OMC by Meeds and Welling (2015) assumes that the distance d is
the Euclidean distance ∥·∥2 between summary statistics Φ of the observed and generated data,
and that the Ci

ϵ can be well approximated by infinitesimally small ellipses. These assumptions
lead to an approximation of the posterior in terms of weighted samples θ∗

i that achieve the
smallest distance between observed and simulated data for each realization ui ∼ p(u), i.e.,

θ∗
i = argmin

θ
∥Φ(y0)− Φ(g(θ, ui))∥2, ui ∼ p(u).

The weighting for each θ∗
i is proportional to the prior density at θ∗

i and inversely proportional
to the determinant of the Jacobian matrix of the summary statistics at θ∗

i . For further details
on OMC we refer the reader to Meeds and Welling (2015); Ikonomov and Gutmann (2019).

2.3. Robust optimization Monte Carlo (ROMC)

Ikonomov and Gutmann (2019) showed that considering infinitesimally small ellipses can lead
to highly overconfident posteriors. We refer the reader to their paper for the technical details
and conditions for this issue to occur. Intuitively, it happens because the weights in OMC are
only computed from information at θ∗

i , and using only local information can be misleading.

Journal of Statistical Software 5

For example, if the curvature of ∥Φ(y0) − Φ(g(θ, ui))∥2 at θ∗
i is nearly flat, it may wrongly

indicate that Ci
ϵ is much larger than it actually is. In our software package we implement the

robust generalization of OMC by Ikonomov and Gutmann (2019) that resolves this issue.
ROMC approximates the acceptance regions Ci

ϵ with D-dimensional bounding boxes Ĉi
ϵ. A

uniform distribution, qi(θ), is defined on top of each bounding box and serves as a proposal
distribution for generating posterior samples θij ∼ qi. The samples get an (importance)
weight wij that compensate for using the proposal distributions qi(θ) instead of the prior p(θ):

wij = ⊮Ci
ϵ
(θij)p(θij)

q(θij) . (6)

Given the weighted samples, any expectation Ep(θ|y0)[h(θ)] of some function h(θ), can be
approximated as

Ep(θ|y0)[h(θ)] ≈
∑

ij wijh(θij)∑
ij wij

(7)

The approximation of the acceptance regions contains two compulsory and one optional step:
(i) solving the optimization problems as in OMC, (ii) constructing bounding boxes around
Ci

ϵ and, optionally, (iii) refining the approximation via a surrogate model of the distance.

(i) Solving the deterministic optimization problems

For each set of nuisance variables ui, i = {1, 2, . . . , n1}, we search for a point θ∗
i such that

d(g(θ∗
i , ui), y0) ≤ ϵ. In principle, d(·) can refer to any valid distance function. For the rest of

the paper we consider d(·) as the squared Euclidean distance, as in Ikonomov and Gutmann
(2019). For simplicity, we use di(θ) to refer to d(g(θ, ui), y0). We search for θ∗

i solving:

θ∗
i =argmin

θ
di(θ) (8)

and we accept the solution only if it satisfies the constraint di(θ∗
i) ≤ ϵ. If di(θ) is differentiable,

Equation 8 can be solved using any gradient-based optimizer. The gradients ∇θdi(θ) can be
either provided in closed form or approximated by finite differences. If di is not differentiable,
Bayesian optimization (Shahriari, Swersky, Wang, Adams, and De Freitas 2015) can be used
instead. In this scenario, apart from obtaining an optimal θ∗

i , we can also automatically
build a surrogate model d̂i(θ) of the distance function di(θ). The surrogate model d̂i can
then substitute the actual distance function in downstream steps of the algorithms, with
possible computational gains especially in cases where evaluating the actual distance di(θ) is
expensive.

(ii) Estimating the acceptance regions

Each acceptance region Ci
ϵ is approximated by a bounding box Ĉi

ϵ. The acceptance regions
Ci

ϵ can contain any number of disjoint subsets in the D-dimensional space and any of these
subsets can take any arbitrary shape. We should make three important remarks. First, since
the bounding boxes are built around θ∗

i , we focus only on the connected subset of Ci
ϵ that

contains θ∗
i , which we denote as Ci

ϵ,θ∗
i
. Second, we want to ensure that the bounding box Ĉi

ϵ

is big enough to contain on its interior all the volume of Ci
ϵ,θ∗

i
. Third, we want Ĉi

ϵ to be as
tight as possible to Ci

ϵ,θ∗
i

to ensure high acceptance rate on the importance sampling step that

6 An Extendable ROMC Implementation in Python

follows. Therefore, the bounding boxes are built in two steps. First, we compute their axes
vm, for m = {1, . . . , D} based on the (estimated) curvature of the distance at θ∗

i , and, second,
we apply a line-search method along each axis to determine the size of the bounding box.
We refer the reader to Algorithm 2 for the details. After the bounding boxes construction, a
uniform distribution qi is defined on each bounding box, and is used as the proposal region
for importance sampling.

(iii) Refining the estimate via a local surrogate model (optional)

For computing the weight wij at Equation 6, we need to check whether the samples θij ,
drawn from the bounding boxes, are inside the acceptance region Ci

ϵ. This can be considered
to be a safety-mechanism that corrects for any inaccuracies in the construction of Ĉi

ϵ above.
However, this check involves evaluating the distance function di(θij), which can be expensive
if the model is complex. Ikonomov and Gutmann (2019) proposed fitting a surrogate model
d̃i(θ) of the distance function di(θ), on data points that lie inside Ĉi

ϵ. In principle, any
regression model can be used as surrogate model. Ikonomov and Gutmann (2019) used a
simple quadratic model because it has ellipsoidal isocontours, which facilitates replacing the
bounding box approximation of Ci

ϵ with a tighter-fitting ellipsoidal approximation.
The training data for the quadratic model is obtained by sampling θij ∼ qi and accessing the
distances di(θij). The generation of the training data adds an extra computational cost, but
leads to a significant speed-up when evaluating the weights wij . Moreover, the extra cost is
largely eliminated if Bayesian optimization with a Gaussian process (GP) surrogate model
d̂i(θ) was used to obtain θ∗

i in the first step. In this case, we can use d̂i(θ) instead of di(θ)
to generate the training data. This essentially replaces the global GP model with a simpler
local quadratic model which is typically more robust.

2.4. Engine for likelihood-free inference (elfi)

Engine for likelihood-free inference1 (elfi, Lintusaari et al. 2018) is a Python package for
LFI. We selected to implemented ROMC in elfi since it provides convenient modules for all
the fundamental components of a probabilistic model (e.g. prior, simulator, summaries etc.).
Furthermore, elfi already supports some recently proposed likelihood-free inference methods.
elfi handles the probabilistic model as a directed acyclic graph (DAG). This functionality is
based on the package NetworkX (Hagberg, Swart, and Chult 2008), which supports general-
purpose graphs. In most cases, the structure of a likelihood-free model follows the pattern
of Figure 1; some edges connect the prior distributions to the simulator, the simulator is
connected to the summary statistics that, in turn, lead to the output node. Samples can be
obtained from all nodes through sequential (ancestral) sampling. elfi automatically considers
as parameters of interest, i.e., those we try to infer a posterior distribution, the ones included
in the elfi.Prior class.
All inference methods of elfi are implemented following two conventions. First, their con-
structor follows the signature elfi.<Class name>(<output node>, *arg), where <output
node> is the output node of the simulator-based model and *arg are the parameters of the
method. Second, they provide a method elfi.<Class name>.sample(*args) for drawing
samples from the approximate posterior.

1Extended documentation can be found at https://elfi.readthedocs.io/.

https://elfi.readthedocs.io/

Journal of Statistical Software 7

Figure 1: Example for creating an elfi model. Image taken from Lintusaari et al. (2018)

3. Overview of the implementation
In this section, we express ROMC as an algorithm and then we present the general imple-
mentation principles.

3.1. Algorithmic view of ROMC

For designing an extendable implementation, we firstly define ROMC as a sequence of algo-
rithmic steps. At a high level, ROMC can be split into the training and the inference part; the
training part covers the steps for estimating the proposal regions and the inference part cal-
culates the weighted samples. In Algorithm 1, that defines ROMC as an algorithm, steps 2-11
(before the horizontal line) refer to the training part and steps 13-18 to the inference part.

Training part

At the training (fitting) part, the goal is the estimation of the proposal regions Ĉi
ϵ, which

expands to three mandatory tasks; (a) sample the nuisance variables ui ∼ p(u) for defining
the deterministic distance functions di(θ) (steps 3–5), (b) solve the optimization problems for
obtaining θ∗

i , d∗
i and keep the solutions inside the threshold ϵ (steps 6–9), and (c) estimate

the bounding boxes Ĉi
ϵ to define uniform distributions qi on them (step 10). Optionally, a

surrogate model d̃i can be fitted for a faster inference phase (step 11).
If di(θ) is differentiable, using a gradient-based method is advised for obtaining θ∗

i faster. In
this case, the gradients ∇θdi gradients are approximated automatically with finite-differences,
if they are not provided in closed-form by the user. Finite-differences approximation requires
two evaluations of di for each parameter θm, m ∈ {1, . . . , D}, which scales well only in low-

8 An Extendable ROMC Implementation in Python

Algorithm 1 ROMC. Requires the prior p(θ), the simulator Mr(θ), number of optimization
problems n1, number of samples per region n2, acceptance limit ϵ

1: procedure ROMC
2: for i← 1 to n1 do
3: ui ∼ p(u) ▷ Draw nuisance variables
4: Convert Mr(θ) to g(θ, u = ui) ▷ Define deterministic simulator
5: di(θ) = d(g(θ, u = ui), y0) ▷ Define distance function
6: θ∗

i = argminθdi, d∗
i = di(θ∗

i) ▷ Solve optimization problem
7: if d∗

i > ϵ then
8: Go to 2 ▷ Filter solution
9: end if

10: Estimate Ĉi
ϵ and define qi ▷ Estimate proposal area

11: (Optional) Fit d̃i on Ĉi
ϵ ▷ Fit surrogate model

12:
13: for j ← 1 to n2 do
14: θij ∼ qi, compute wij as in Algorithm 3 ▷ Sample
15: end for
16: end for
17: Ep(θ|y0)[h(θ)] as in Eq. (7) ▷ Estimate an expectation
18: pd,ϵ(θ) as in Eq. (5) ▷ Evaluate the unnormalized posterior
19: end procedure

dimensional problems. If di(θ) is not differentiable, Bayesian optimization can be used as an
alternative. In this scenario, the training part becomes slower due to fitting of the surrogate
model and the blind optimization steps.

After obtaining the optimal points θ∗
i , we estimate the proposal regions. Algorithm 2 describes

the line search approach for finding the region boundaries. The axes of each bounding box
vm, m = {1, . . . , D} are defined as the directions with the highest curvature at θ∗

i computed
by the eigenvalues of the Hessian matrix Hi of di at θi (step 1). Depending on the algorithm
used in the optimization step, we either use the real distance di or the Gaussian process
approximation d̂i. When the distance function is the Euclidean distance (default choice), the
Hessian matrix can be also computed as Hi = JT

i Ji, where Ji is the Jacobian matrix of the
summary statistics Φ(g(θ, ui)) at θ∗

i . This approximation has the computational advantage
of using only first-order derivatives. After defining the axes, we search for the bounding box
limits with a line step algorithm (steps 2–21). The key idea is to take long steps η_start
until crossing the boundary and then take small steps backwards to find the exact boundary
position.

Inference part

The inference part includes one or more of the following three tasks; (a) sample from the
posterior distribution θi ∼ pd,ϵ(θ|y0) (Equation 6), (b) compute an expectation Eθ|y0 [h(θ)]
(Equation 7) and/or (c) evaluate the unnormalized posterior pd,ϵ(θ|y0) (Equation 5). Sam-
pling is performed by getting n2 samples from each proposal distribution qi. For each sample

Journal of Statistical Software 9

Algorithm 2 Approximation Ci
ϵ with a bounding box Ĉi

ϵ; Requires: a model of distance di(θ),
an optimal point θ∗

i , a number of refinements K, a step size η_start, maximum iterations M
and a curvature matrix Hi (JT

i Ji or GP Hessian)
1: Compute eigenvectors vm of Hi (m = 1, . . . , D)
2: for m← 1 to D do
3: θ̃ ← θ∗

i

4: k ← 0
5: η ← η_start ▷ Initialize η
6: repeat
7: j ← 0
8: repeat
9: θ̃ ← θ̃ + η vm ▷ Large step size η.

10: j ← j + 1
11: until d(g(θ̃, u = ui), y0) > ϵ or j ≥M ▷ Check distance or maximum iterations
12: θ̃ ← θ̃ − η vm

13: η ← η/2 ▷ More accurate region boundary
14: k ← k + 1
15: until k = K
16: if θ̃ = θ∗

i then ▷ Check if no step has been done
17: θ̃ ← θ̃ + η_start

2K
vm ▷ Then, make the minimum step

18: end if
19: Set θ̃ as the positive end point along vm

20: Run steps 3 - 18 for vm = −vm and set θ̃ as the negative end point along vm

21: end for
22: Fit a rectangular box around the region end points and define qi as uniform distribution

Algorithm 3 Sampling. Requires a function of distance di, the prior distribution p(θ), the
proposal distribution qi

1: θij ∼ qi∀i ▷ Sample parameters
2: for i← 1 to n1 do
3: for j ← 1 to n2 do
4: if di(θij) ≤ ϵ then ▷ Accept sample
5: wij = p(θij)

q(θij) ▷ Compute weight
6: Store (wij , θij) ▷ Store weighted sample
7: end if
8: end for
9: end for

θij , the distance function2 is evaluated for checking if it lies inside the acceptance region.
Algorithm 3 defines the steps for computing a weighted sample. After we obtain weighted
samples, computing the expectation is straightforward using Equation 7. Finally, evaluating
the unnormalized posterior at a specific point θ requires access to the distance functions di

and the prior distribution p(θ). Following Equation 5, we simply count for how many deter-

2As before, a surrogate model d̂ can be utilized as the distance function if it is available.

10 An Extendable ROMC Implementation in Python

_sample_nuisance()

_define_objectives()

grads?

_solve_gradients() _solve_bo()

_filter_solutions()

_build_boxes()

fit?

_fit_models()

_define_posterior()

so
lv

e_
p
ro

bl
em

s(
)

es
ti

m
a
te

_
re

g
io

n
s(

)

f
it

_
p
os

te
ri

or
()

distance_hist()

compute_eps()

visualize_region()

sample()

compute_expectation()

eval_unnorm_posterior()

eval_posterior()

compute_ess() compute_divergence()

Implementation Design

define di(θ)∀i

Solve θ∗
i , d∗

i ,∀i

Filter solutions

Construct qi∀i

Fit d̃i∀i

Define pd,ϵ|y0(θ)

Draw {wij , θij}

Algorithm

Figure 2: Overview of the ROMC implementation. On the left side, we depict ROMC as a
sequence of algotirhmic steps. On the right side, we present the functions that form our im-
plementation; the green rectangles (starting with underscore) are the internal functionalities
and the blue rectangles the publicly exposed API. This side-by-side illustration highlights
that our implementation follows strictly the algorithmic view of ROMC.

ministic distance functions it holds that di(θ) < ϵ. It is worth noticing that for evaluating the
unnormalized posterior, there is no need for solving the optimization problems and building
the proposal regions.

3.2. General implementation principles

The overview of our implementation is illustrated in Figure 2. Following Python naming
principles, the methods starting with an underscore (green rectangles) represent internal
(private) functions, whereas the rest (blue rectangles) are the methods exposed at the API.
In Figure 2, it can be observed that the implementation follows Algorithm 1. The training part
includes all the steps until the computation of the proposal regions, i.e., sampling the nuisance
variables, defining the optimization problems, solving them, constructing the regions and
fitting local surrogate models. The inference part comprises of evaluating the unnormalized
posterior (and the normalized when is possible), sampling and computing an expectation. We

Journal of Statistical Software 11

also provide some utilities for inspecting the training process, such as plotting the histogram
of the final distances or visualizing the constructed bounding boxes. Finally, in the evaluation
part, we provide two methods for evaluating the inference; (a) computing the effective sample
size (ESS) of the samples and (b) measuring the divergence between the approximate posterior
the ground-truth, if the latter is available.3

Parallel version of ROMC

As discussed, ROMC has the significant advantage of being fully parallelisable. We exploit
this fact by implementing a parallel version of the major fitting components; (a) solving
the optimization problems, (b) constructing bounding box regions. We parallelize these pro-
cesses using the built-in Python package multiprocessing (McKerns, Strand, Sullivan, Fang,
and Aivazis 2012). The specific package enables concurrency, using sub-processes instead of
threads, for side-stepping the global interpreter (GIL). For activating the parallel version of the
algorithm, the user simply has to set elfi.ROMC(<output_node>, parallelize = True).

Simple one-dimensional example

For illustrating the functionalities we will use the following running example introduced by
Ikonomov and Gutmann (2019),

p(θ) = U(θ;−2.5, 2.5) (9)

p(y|θ) =
{

θ4 + u if θ ∈ [−0.5, 0.5]
|θ| − c + u otherwise (10)

u ∼ N (0, 1) (11)

The prior is a uniform distribution in the range [−2.5, 2.5] and the likelihood is defined at
Equation 10. The constant c is 0.5− 0.54 ensures that the PDF is continuous. There is only
one observation y0 = 0. The inference in this particular example can be performed quite easily
without using a likelihood-free inference approach. We can exploit this fact for validating the
accuracy of our implementation. At the following code snippet, we code the model at elfi:

>>> import elfi
>>> import scipy.stats as ss
>>> import numpy as np
>>> def simulator(t1, batch_size = 1, random_state = None):
... c = 0.5 - 0.5**4
... if t1 < -0.5:
... y = ss.norm(loc = -t1-c, scale = 1).rvs(random_state = random_state)
... elif t1 <= 0.5:
... y = ss.norm(loc = t1**4, scale = 1).rvs(random_state = random_state)
... else:
... y = ss.norm(loc = t1-c, scale = 1).rvs(random_state = random_state)
... return y

3Normally, the ground-truth posterior is not available; However, this functionality is useful in cases where
the posterior can be computed numerically or with an alternative method, e.g., rejection sampling, and we
want to measure the discrepancy between the two approximations.

12 An Extendable ROMC Implementation in Python

>>> y = 0
>>> t1 = elfi.Prior('uniform', -2.5, 5)
>>> sim = elfi.Simulator(simulator, t1, observed = y)
>>> d = elfi.Distance('euclidean', sim)
>>> bounds = [(-2.5, 2.5)]
>>> parallelize = False
>>> romc = elfi.ROMC(d, bounds = bounds, parallelize = parallelize)

4. Implemented functionalities
At this section, we analyze the functionalities of the training, the inference and the evaluation
part. Extended documentation for each method can be found in elfi’s official documentation
(https://elfi.readthedocs.io/en/latest/). Finally, we describe how a user may extend
ROMC with its custom modules.

4.1. Training part

In this section, we describe the six functions of the training part:

romc.solve_problems(n1, use_bo = False, optimizer_args = None)

This method (a) draws integers for setting the seed, (b) defines the optimization problems
and (c) solves them using either a gradient-based optimizer (default choice) or Bayesian
optimization (BO), if use_bo = True. The tasks are completed sequentially, as shown in
Figure 2. The optimization problems are defined after drawing n1 integer numbers from a
discrete uniform distribution ui ∼ U{1, 232 − 1}, where each integer ui is the seed passed
to elfi’s random simulator. The user can pass a Dict with custom parameters to the opti-
mizer through optimizer_args. For example, in the gradient-based case, the user may pass
optimizer_args = {"method": "L-BFGS-B", "jac": jac}, to select the "L-BFGS-B" op-
timizer and use the callable jac to compute the gradients in closed-form.

romc.distance_hist(**kwargs)

This function helps the user decide which threshold ϵ to use by plotting a histogram of the
distances at the optimal point di(θ∗

i) : {i = 1, 2, . . . , n1} or d̂∗
i in case use_bo = True. The

function forwards the keyword arguments to the underlying pyplot.hist() of the matplotlib
package (Hunter 2007). In this way the user may customize some properties of the histogram,
e.g., the number of bins.

romc.estimate_regions(eps_filter, use_surrogate = None, fit_models = False)

This method estimates the proposal regions around the optimal points, following Algorithm 2.
The choice about the distance function follows the previous optimization step; if a gradient-
based optimizer has been used, then estimating the proposal region is based on the real dis-
tance di. If BO is used, then the surrogate distance d̂ is chosen. Setting use_surrogate=False
enforces the use of the real distance d even after BO. Finally, the parameter fit_models se-
lects whether to fit local surrogate models d̃ after estimating the proposal regions.

https://elfi.readthedocs.io/en/latest/

Journal of Statistical Software 13

The training part includes three more functions. The function romc.fit_posterior(args*)
which is a syntactic sugar for applying .solve_problems() and .estimate_regions() in
a single step. The function romc.visualize_region(i) plots the bounding box around
the optimal point of the i-th optimization problem, when the parameter space is up to
2D. Finally, romc.compute_eps(quantile) returns the appropriate distance value d∗

i=κ

where κ = ⌊quantile · n⌋ from the collection {d∗
i }, i = {1, . . . , n} where n is the num-

ber of accepted solutions. It can be used to automate the selection of the threshold ϵ,
e.g., eps=romc.compute_eps(quantile = 0.9).

Example: Training part

In the following snippet, we put together the routines to code the training part of the running
example. First, the number n1 of optimization problems, the seed for solving the optimization
problems, and use_bo for not using Bayesian optimization are set.

>>> n1 = 500
>>> seed = 21
>>> use_bo = False

Training step by step, using a plot to decide which eps to use.

>>> romc.solve_problems(n1 = n1, seed = seed, use_bo = use_bo)
>>> romc.theta_hist(bins = 100)

Building the bounding boxes with threshold eps and inspecting the bounding box visually.

>>> eps = 0.75
>>> romc.estimate_regions(eps = eps)
>>> romc.visualize_region(i = 1)

The equivalent one-line command is:

>>> romc.fit_posterior(n1 = n1, eps = eps, use_bo = use_bo, seed = seed)

4.2. Inference part

In this section, we describe the four functions of the inference part:

romc.sample(n2)

This is the basic functionality of the inference, drawing n2 samples for each bounding box
region, giving a total of k · n2 samples, where k < n1 is the number of the optimal points
remained after filtering. The samples are drawn from a uniform distribution qi defined over
the corresponding bounding box and the weight wi is computed as in Algorithm 3.
The inference part includes three more function. The function romc.compute_expectation(h)
computes the expectation Ep(θ|y0)[h(θ)] as in Equation 7. The argument h can be any Python
Callable. The method romc.eval_unnorm_posterior(theta, eps_cutoff = False)
computes the unnormalized posterior approximation as in Equation 3. The method

14 An Extendable ROMC Implementation in Python

−3 −2 −1 0 1 2 3

θ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

d
en

si
ty

Ground-truth PDFs

Prior: p(θ))

Likelihood: p(y0|θ))
Posterior: p(θ|y0)

−3 −2 −1 0 1 2 3

θ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

d
en

si
ty

Approximate Posterior

samples histogram

Prior

Likelihood

ROMC Posterior

True Posterior

Figure 3: Histogram of distances and visualization of a specific region.

romc.eval_posterior(theta, eps_cutoff = False) evaluates the normalized posterior es-
timating the partition function Z =

∫
pd,ϵ(θ|y0)dθ using Riemann’s integral approximation.

The approximation is computationally feasible only in a low-dimensional parametric space.

Example: Inference part

In the following code snippet, we use the inference utilities to (a) get weighted samples from
the approximate posterior, (b) compute an expectation and (c) evaluate the approximate
posterior. We also use some of elfi’s built-in tools to get a summary of the obtained samples.
For romc.compute_expectation(), we demonstrate its use to compute the samples mean
and the samples variance. Finally, we evaluate romc.eval_posterior() at multiple points
to plot the approximate posterior of Figure 3. We observe that the approximation is quite
close to the ground-truth.

>>> seed = 21
>>> n2 = 50
>>> romc.sample(n2 = n2, seed = seed)

Visualize the region, adding the samples now.

>>> romc.visualize_region(i = 1)

Using built-in elfi tools, the marginals can be visualized and the samples summarized.

>>> weights = romc.result.weights
>>> romc.result.plot_marginals(weights = weights, bins = 100,
... range = (-3, 3))
>>> romc.result.summary()

Method: ROMC
Number of samples: 19300

Journal of Statistical Software 15

Parameter Mean 2.5% 97.5%
theta: -0.012 -1.985 1.987

Expected value and variance can be computed.

>>> exp_val = romc.compute_expectation(h = lambda x: np.squeeze(x))
>>> print("Expected value : %.3f" % exp_val)

Expected value: -0.012

>>> exp_var = romc.compute_expectation(h = lambda x: np.squeeze(x)**2)
>>> print("Expected variance: %.3f" % exp_var)

Expected variance: 1.120

Evaluating the posterior:

>>> print("%.3f" % romc.eval_unnorm_posterior(theta = np.array([[0]])))

58.800

>>> print("%.3f" % romc.eval_posterior(theta = np.array([[0]])))

0.289

4.3. Evaluation part

The method romc.compute_ess() computes the ESS as (
∑

i wi)2/
∑

i w2
i , which is a useful

quantity to measure how many samples actually contribute to an expectation. For example,
in an extreme case of a big population of samples where only one has big weight, the ESS is
much smaller than the samples population.
The method romc.compute_divergence(gt_posterior, bounds, step, distance) esti-
mate the divergence between the ROMC approximation and the ground truth posterior.
Since the estimation is performed using Riemann’s approximation, the method can only work
in low dimensional spaces. The method can be used for evaluation in synthetic examples
where the ground truth is accessible. In a real-case scenarios, where it is not expected to have
access to the ground-truth posterior, the user may set the approximate posterior obtained
with any other inference approach for comparing the two methods. The argument step de-
fines the step used in the Riemann’s approximation and the argument distance can be either
"Jensen-Shannon" or "KL-divergence".

>>> res = romc.compute_divergence(wrapper, distance = "Jensen-Shannon")
>>> print("Jensen-Shannon divergence: %.3f" % res)

Jensen-Shannon divergence: 0.035

16 An Extendable ROMC Implementation in Python

>>> nof_samples = len(romc.result.weights)
>>> ess = romc.compute_ess()
>>> print("Nof Samples: %d, ESS: %.3f" % (nof_samples, ess))

Nof Samples: 19300, ESS: 16196.214

4.4. Extend the implementation with custom modules

ROMC is a generic LFI framework as it describes a sequence of steps for approximating
the posterior distribution without explicitly enforcing a specific algorithm for each step. For
completeness, Ikonomov and Gutmann (2019) propose a method for each step but, in gen-
eral, a user can experiment with alternative methods. Considering that, we designed the
implementation to support flexibility.
We have specified four critical parts where a user may intervene using custom methods;
(a) gradient-based optimization, (b) Bayesian optimization, (c) proposal region construc-
tion and (d) surrogate model fitting. Each of these parts corresponds to an internal func-
tion inside the romc.OptimisationProblem class; (a) solve_gradients(), (b) solve_bo(),
(c) build_region() and (d) fit_local_surrogate(), respectively. To replace any of these
parts, the user must create a custom class that inherits OptimisatioProblem and overwrite
the appropriate function(s).
To illustrate this in practice, suppose a user wants to fit deep neural networks instead of, the
default, quadratic models as local surrogates d̃i. Therefore, the user must create a new class
that inherits OptimisationProblem and overwrite the fit_local_surrogate(**kwargs)
function with one that fits neural networks as local surrogates. We illustrate that in the
following snippet using the neural_network.MLPRegressor class of the scikit-learn pack-
age (Pedregosa et al. 2011). The reader can find the end-to-end example in Gkolemis Vasilis
(2023e) as an online Colab notebook.

class CustomOptim(OptimisationProblem):
def __init__(self, **kwargs):

super(CustomOptim, self).__init__(**kwargs)

def fit_local_surrogate(self, **kwargs):
nof_samples = 500
objective = self.objective # the distance function

helper function
def local_surrogate(theta, model_scikit):

assert theta.ndim == 1
theta = np.expand_dims(theta, 0)
return float(model_scikit.predict(theta))

create local surrogate model as a function of theta
def create_local_surrogate(model):

return partial(local_surrogate, model_scikit = model)

Journal of Statistical Software 17

local_surrogates = []
for i in range(len(self.regions)):

prepare dataset
x = self.regions[i].sample(nof_samples)
y = np.array([objective(ii) for ii in x])

train Neural Network
mlp = MLPRegressor(hidden_layer_sizes = (10,10), solver = 'adam')
model = Pipeline([('linear', mlp)])
model = model.fit(x, y)
local_surrogates.append(create_local_surrogate(model))

self.local_surrogates = local_surrogates
self.state["local_surrogates"] = True

In a similar way, the user can replace any of the other three functions. In each case, the
custom function must update some class-level variables that hold the state of the train-
ing phase. In the following sections, we present which are these variables in each function.
Furthermore, when implementing custom functions, the user may use two helping classes;
(a) RomcOpimisationResult, that stores the result of the optimization and (b) NDimBoundingBox,
that stores the bounding box. We present their definitions in the following snippets and we
illustrate how to use them in the next sections. Both classes can be imported from the module
elfi.methods.inference.romc.

class RomcOpimisationResult:
def __init__(self, x_min, f_min, hess_appr):

Parameters

x_min: np.ndarray (D,), minimum
f_min: float, distance at x_min
hess_appr: np.ndarray (D,D), Hessian approximation at x_min

class NDimBoundingBox:
def __init__(self, rotation, center, limits):

Parameters

rotation: np.ndarray (D,D), rotation matrix for the bounding box
center: np.ndarray (D,) center of the bounding box
limits: np.ndarray (D,2), the limits of the bounding box

(a) Extending gradient-based optimization

For replacing the default gradient-based optimization method, the user must overwrite the
function solve_gradients(). Using the objective function di (self.objective), the custom
method must store the result of the optimization as a RomcOptimisationResult instance.
In the following snippet, after the comment # state variables, we present the class-level
variables that must be set by the method.

18 An Extendable ROMC Implementation in Python

def solve_gradients(self, **kwargs):
useful variables
self.objective: Callable, the distance function

code custom solution here
result = RomcOptimisationResult(x = .., y = .., jac = .., hess_inv = ..)
success: bool = ... # whether optimization was successful

state variables
self.state["attempted"] = True
if success:

self.result = result
self.state["solved"] = True
return True

else:
return False

(b) Extending Bayesian optimization

For replacing the default Bayesian optimization function, the procedure is similar to the
gradient-based case. As presented in the following snippet, the additional class-level variables
that must be set are; (a) self.surrogate = custom_surrogate, where custom_surrogate
is a Callable and (b) self.state["has_fit_surrogate"] = True if the optimization is
successful.

def solve_bo(self, **kwargs):
useful variables
self.objective: Callable, the distance function

code custom solution here
result = RomcOptimisationResult(x = .., y = .., jac = .., hess_inv = ..)
custom_surrogate = ... # store a Callable here
success: bool = ... # whether optimization was successful

state variables
self.state["attempted"] = True
if success:

self.result = result
self.surrogate = custom_surrogate
self.state["solved"] = True
self.state["has_fit_surrogate"] = True
return True

else:
return False

Journal of Statistical Software 19

(c) Extending the proposal region construction
For replacing the construction of the proposal region the user must overwrite the build_region
method. Using the objective function di (self.objective) the method must estimate a list
of bounding boxes as a List with NDimBoundingBox instances and set the state variables
presented below. An end-to-end example for using a custom region construction module can
be found in Gkolemis Vasilis (2023d).

def build_region(self, **kwargs):
useful variables
self.objective: Callable, the distance function

custom build_region method
eps: float = ... # epsilon used in region estimation
bounding_box: List[NDimBoundingBox] = ...
success: bool = ... # whether region built successfully

state variables
self.eps_region = eps
if success:

construct region
self.regions = bounding_box
self.state["region"] = True
return True

else:
return False

(d) Extending the surrogate model fitting
For replacing the surrogate model fitting the user must overwrite the fit_local_surrogate
method. Using the objective function di (self.objective) and the estimated bounding boxes
(self.regions), the method must create a list of local surrogates, one for each region, as a
List with Callables and set the state variables as presented in the following snippet.

def fit_local_surrogate(self, **kwargs):
useful variables
self.objective: Callable, the distance function
self.regions: List[NDimBoundingBox], the bounding boxes

custom local surrogates
local_surrogates: List[Callable] = ... # the surrogate models
success: bool = ... # whether surrogates fit successfully

state variables
if success:

self.local_surrogates = custom_surrogates
self.state["local_surrogates"] = True
return True

20 An Extendable ROMC Implementation in Python

else:
return False

5. Use-case illustration
In this section, we test the implementation using the second-order moving average (MA2)
example, which is one of the standard models of elfi. We perform the inference using three
different versions of ROMC; (i) with a gradient-based optimizer, (ii) with Bayesian optimiza-
tion and (iii) fitting a Neural Network as a surrogate model. The later illustrates how to
extend the implementation, replacing part of ROMC with a user-defined component. Finally,
we measure the execution speed-up using the parallel version of ROMC.

Model definition

MA2 is a probabilistic model for time series analysis. The observation at time t is given by,

yt = wt + θ1wt−1 + θ2wt−2, t = 1, . . . , T

θ1, θ2 ∈ R, wk ∼ N (0, 1), k ∈ Z

The random variable wk ∼ N (0, 1) is white noise and the two parameters of interest, θ1, θ2,
model the dependence from the previous observations. The parameter T is the number of
sequential observations which is set to T = 100. For securing that the inference problem is
identifiable, i.e., the likelihood has only one mode, we use the prior proposed by Marin et al.
(2012),

p(θ) = p(θ1)p(θ2|θ1) = U(θ1;−2, 2)U(θ2; θ1 − 1, θ1 + 1)

The observation vector y0 = (y1, . . . , y100) is generated with θ∗ = (0.6, 0.2). The dimensional-
ity of the output y is high, therefore we use summary statistics. Considering that the output
vector represents a time-series signal, we select the autocovariances with lag = 1 and lag = 2,
as shown in Equations 12 and 13. The distance between the observation and the simulator
output is measured with the squared Euclidean distance, as shown in Equation 15.

s1(y) = 1
T − 1

T∑
t=2

ytyt−1 (12)

s2(y) = 1
T − 2

T∑
t=3

ytyt−2 (13)

s(y) = (s1(y), s2(y)) (14)
d = ∥s(y)− s(y0)∥22 (15)

Inference

To demonstrate the full capabilities of our ROMC implementation, we perform inference
using three different methods: (i) a gradient-based optimizer, (ii) Bayesian optimization, and
(iii) fitting a neural network (NN) as a surrogate model. The use of a NN as a surrogate model
serves as an example of the extensibility of our implementation, as described in Chapter 4.4.

Journal of Statistical Software 21

µθ1 σθ1 µθ2 σθ2

Rejection ABC 0.516 0.142 0.070 0.172
ROMC (gradient-based) 0.501 0.142 0.033 0.169
ROMC (Bayesian optimization) 0.513 0.169 0.090 0.174
ROMC (neural network) 0.491 0.138 0.040 0.172

Table 1: Comparison of the samples obtained from the estimated posterior with (a) rejection
sampling and (b) the different versions of ROMC. We observe that the obtained samples share
similar statistics along all methods.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
theta 1

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

th
et

a
2

Seed = 4282876140, f = model's objective
samples
-v1, f(-v1)=0.01
v1, f(v1)=0.01
-v2, f(-v2)=0.01
v2, f(v2)=0.01

0.00

0.06

0.12

0.18

0.24

0.30

0.36

0.42

0.48

0.54

0.0 0.2 0.4 0.6 0.8 1.0 1.2
theta 1

0.4

0.2

0.0

0.2

0.4

0.6

th
et

a
2

Seed = 4282876140, f = model's objective
samples
-v1, f(-v1)=0.03
v1, f(v1)=0.03
-v2, f(-v2)=0.03
v2, f(v2)=0.03

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Figure 4: The acceptance region in a specific optimization problem. In the left figure the re-
gion obtained with gradient-based optimizer and in the right one with Bayesian optimization.

For the NN, we employ the MLPRegressor class from the scikit-learn package (Pedregosa
et al. 2011). The NN (d̃i) substitutes the actual distance function (di) inside the proposal
regions. Therefore, all inference actions, namely, sampling, expectation computation, and
posterior evaluation are based on d̃i. We use a NN with two hidden layers of 10 neurons
each and train it using 500 examples from each proposal region. To compare the results of
ROMC inference with a traditional ABC algorithm, we also include rejection sampling in our
analysis.
In Figure 4, we illustrate the acceptance region of the same deterministic simulator, in the
gradient-based and the Bayesian optimization case. The acceptance regions are quite similar
even though the different optimization schemes lead to different optimal points.
In Figure 5, we demonstrate the histograms of the marginal posteriors, for each approach;
(a) rejection ABC, (b) ROMC with gradient-based optimization (c) ROMC with Bayesian
optimization and (d) ROMC with the NN extension. We observe a significant agreement
between the different approaches. At Table 1 we present the empirical mean µ and standard
deviation σ for each inference approach and finally, in Figure 6, we illustrate the unnormalized
posterior for the three different variations of the ROMC method. The results show that all
ROMC variations provide consistent results between them which are in agreement with the
rejection ABC algorithm.

22 An Extendable ROMC Implementation in Python

0.4 0.6 0.8 1.0 1.2
1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

de
ns

ity

Rejection ABC - 1

= 0.516
= 0.142

0.4 0.6 0.8 1.0 1.2
1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

de
ns

ity

ROMC (gradient-based) - 1

= 0.501
= 0.142

0.4 0.6 0.8 1.0 1.2
1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

de
ns

ity

ROMC (BO) - 1

= 0.513
= 0.169

0.4 0.6 0.8 1.0 1.2
1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

de
ns

ity

ROMC (Neural Network) - 1

= 0.491
= 0.138

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

de
ns

ity

Rejection ABC - 2

= 0.070
= 0.172

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
2

0.0

0.5

1.0

1.5

2.0

2.5

3.0
de

ns
ity

ROMC (gradient-based) - 2

= 0.033
= 0.169

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

de
ns

ity

ROMC (BO) - 2

= 0.090
= 0.174

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

de
ns

ity

ROMC (Neural Network) - 2

= 0.040
= 0.172

Figure 5: Histogram of the marginal posterior distributions using three different inference
approaches; (a) in the first row, the samples are obtained using rejection ABC sampling
(b) in the second row, using ROMC with a gradient-based optimizer and (c) in the third row,
using ROMC with Bayesian optimization approach. The vertical (red) line represents the
samples mean µ and the horizontal (black) the standard deviation σ.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1

1.0

0.5

0.0

0.5

1.0

2

ROMC (gradient-based)

0.00

0.75

1.50

2.25

3.00

3.75

4.50

5.25

6.00

6.75

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1

1.0

0.5

0.0

0.5

1.0

2

ROMC (BO)

0

1

2

3

4

5

6

7

8

9

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1

1.0

0.5

0.0

0.5

1.0

2
ROMC (Neural Network)

0.00

0.75

1.50

2.25

3.00

3.75

4.50

5.25

6.00

Figure 6: The unnormalized posterior distribution using the ROMC method with (a) a
gradient-based optimization (b) Bayesian optimization (c) gradient-based with a neural net-
work as a surrogate model.

0 25 50 75 100 125 150 175 200

n1

0

10

20

30

40

50

ti
m

e
(s

ec
)

Optimisation problems

sequential

parallel

0 25 50 75 100 125 150 175 200

n1

0

5

10

15

20

25

30

ti
m

e
(s

ec
)

Proposal Regions

sequential

parallel

Figure 7: Comparison between parallel and sequential execution of ROMC. We observe that
the parallel version runs almost 5 times faster.

Journal of Statistical Software 23

Parallelize the implementation

As stated above, ROMC is an approach that can be executed in a fully-parallelized manner,
exploiting all CPU cores. In our implementation, we support a parallel version of the the
training part, namely, for solving the optimization problems and for estimating the proposal
regions. The parallel version of the algorithm is built on top of the built-in Python package
multiprocess for using all the available CPU cores. In Figure 7 we observe the execution
times for performing the inference on the MA2 model; the parallel version performs both
tasks almost five times faster than the sequential. The result is reasonable given that the
experiments have run in a single machine with the Intel Core i7-8750H Processor, which has
six separate cores.

6. Summary and discussion
In this paper, we presented the implementation of the LFI method ROMC at the Python pack-
age elfi. We highlighted two different use-cases. First, we illustrated how a user may exploit
the provided API to solve an LFI problem. Second, we focus on the scenario where a researcher
wants to intervene and alter parts of the method to experiment with new approaches. Since
(Robust) optimization Monte Carlo is a novel approach for statistical inference and, to the
best of our knowledge, this is the first open-source implementation on a generic package, we
believe that the later is the biggest contribution.
There are still open challenges for enabling ROMC to solve high-dimensional LFI problems
efficiently. The first is enabling the execution of ROMC execution into a distributed environ-
ment, i.e., a cluster of computers. ROMC can be characterized as an embarrassingly parallel
workload; each optimization problem is an entirely independent task. Therefore, supporting
inference into a cluster of computers can radically speed up the inference. The second is
the implementation of the method on a framework that supports automatic differentiation.
Automatic differentiation is necessary for efficiently solving optimization problems, especially
in high-dimensional parametric models.

Computational details
The results in this paper were obtained using Python 3.9, elfi 0.8.6 on an Ubuntu 20.04 lts
operating system, at a single machine with Intel Core i7-8750H processor.

Acknowledgments
HP was funded by European Research Council grant 742158 (SCARABEE, Scalable inference
algorithms for Bayesian evolutionary epidemiology).

References

Bisong E (2019). Google Colaboratory, chapter 7, pp. 59–64. Apress, Berkeley. doi:10.
1007/978-1-4842-4470-8_7.

https://doi.org/10.1007/978-1-4842-4470-8_7
https://doi.org/10.1007/978-1-4842-4470-8_7

24 An Extendable ROMC Implementation in Python

Blum MGB, François O (2010). “Non-Linear Regression Models for Approximate
Bayesian Computation.” Statistics and Computing, 20(1), 63–73. doi:10.1007/
s11222-009-9116-0.

Bradbury J, Frostig R, Hawkins P, Johnson MJ, Leary C, Maclaurin D, Necula G, Paszke A,
VanderPlas J, Wanderman-Milne S, Zhang Q (2018). jax: Composable Transformations of
Python + numpy Programs. Version 0.2, URL http://github.com/google/jax.

Chen Y, Gutmann MU (2019). “Adaptive Gaussian Copula ABC.” In The 22nd International
Conference on Artificial Intelligence and Statistics, pp. 1584–1592. PMLR. URL https:
//proceedings.mlr.press/v89/chen19d.html.

Cranmer K, Brehmer J, Louppe G (2020). “The Frontier of Simulation-Based Inference.”
Proceedings of the National Academy of Sciences of the United States of America, 117(48),
30055–30062. doi:10.1073/pnas.1912789117.

Forneron JJ, Ng S (2016). “A Likelihood-Free Reverse Sampler of The Posterior Distribution.”
In Essays in Honor of Aman Ullah. Emerald Group Publishing Limited.

Gkolemis Vasilis (2023a). “ROMC on a Synthetic 1D Example.” https://colab.research.
google.com/drive/1lGRp0XrNfZ64NN0ASB_tYEKowXwlveDC?usp=sharing, Verified: 2024-
05-28.

Gkolemis Vasilis (2023b). “ROMC on a Synthetic 2D Example.” https://colab.research.
google.com/drive/1Fof_WmCi1YizzSI_63aEsbLXsno5gSZ3?usp=sharing. Verified: 2024-
05-28.

Gkolemis Vasilis (2023c). “ROMC on the Moving Average Example.” https://colab.
research.google.com/drive/1nkdACQ370SSc0KB1bHv4sBRaxMlMqoNH?usp=sharing,
Verified: 2024-05-28.

Gkolemis Vasilis (2023d). “ROMC with a Custom Proposal Region Module.” https://colab.
research.google.com/drive/1RzB-V1QueP1y1nyzv_VOqR1nVz3DUH3v?usp=sharing,
Verified: 2024-05-28.

Gkolemis Vasilis (2023e). “ROMC with a Neural Network as a Surrogate Model.”
https://colab.research.google.com/drive/1_jHVxPSH3XcNOORZJpLU0SPzs0PF8CQ5?
usp=sharing, Verified: 2024-05-28.

Gutmann MU, Corander J (2016). “Bayesian Optimization for Likelihood-Free Inference of
Simulator-Based Statistical Models.” Journal of Machine Learning Research, 17(125), 1–47.

Hagberg A, Swart P, Chult DS (2008). “Exploring Network Structure, Dynamics, And Func-
tion Using Networkx.” Technical report, Los Alamos National Lab.(LANL), Los Alamos,
NM (United States).

Harris CR, Millman KJ, Van Der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser
E, Taylor J, Berg S, Smith NJ, et al. (2020). “Array Programming with numpy.” Nature,
585(7825), 357–362. doi:10.1038/s41586-020-2649-2.

https://doi.org/10.1007/s11222-009-9116-0
https://doi.org/10.1007/s11222-009-9116-0
http://github.com/google/jax
https://proceedings.mlr.press/v89/chen19d.html
https://proceedings.mlr.press/v89/chen19d.html
https://doi.org/10.1073/pnas.1912789117
https://colab.research.google.com/drive/1lGRp0XrNfZ64NN0ASB_tYEKowXwlveDC?usp=sharing
https://colab.research.google.com/drive/1lGRp0XrNfZ64NN0ASB_tYEKowXwlveDC?usp=sharing
https://colab.research.google.com/drive/1Fof_WmCi1YizzSI_63aEsbLXsno5gSZ3?usp=sharing
https://colab.research.google.com/drive/1Fof_WmCi1YizzSI_63aEsbLXsno5gSZ3?usp=sharing
https://colab.research.google.com/drive/1nkdACQ370SSc0KB1bHv4sBRaxMlMqoNH?usp=sharing
https://colab.research.google.com/drive/1nkdACQ370SSc0KB1bHv4sBRaxMlMqoNH?usp=sharing
https://colab.research.google.com/drive/1RzB-V1QueP1y1nyzv_VOqR1nVz3DUH3v?usp=sharing
https://colab.research.google.com/drive/1RzB-V1QueP1y1nyzv_VOqR1nVz3DUH3v?usp=sharing
https://colab.research.google.com/drive/1_jHVxPSH3XcNOORZJpLU0SPzs0PF8CQ5?usp=sharing
https://colab.research.google.com/drive/1_jHVxPSH3XcNOORZJpLU0SPzs0PF8CQ5?usp=sharing
https://doi.org/10.1038/s41586-020-2649-2

Journal of Statistical Software 25

Hermans J, Begy V, Louppe G (2020). “Likelihood-Free MCMC with Amortized Approxi-
mate Ratio Estimators.” In International Conference on Machine Learning, pp. 4239–4248.
PMLR.

Hunter JD (2007). “Matplotlib: A 2D Graphics Environment.” Computing in Science &
Engineering, 9(3), 90–95. doi:10.1109/mcse.2007.55.

Ikonomov B, Gutmann MU (2019). “Robust Optimisation Monte Carlo.” Proceedings of
the Twenty Third International Conference on Artificial Intelligence and Statistics, 108,
2819–2829. doi:10.24963/ijcai.2019/457.

Lintusaari J, Gutmann MU, Dutta R, Kaski S, Corander J (2017). “Fundamentals and Recent
Developments in Approximate Bayesian Computation.” Systematic Biology, 66(1), e66–e82.
doi:10.1093/sysbio/syw077.

Lintusaari J, Vuollekoski H, Kangasraasio A, Skytén K, Jarvenpaa M, Marttinen P, Gutmann
MU, Vehtari A, Corander J, Kaski S (2018). “elfi: Engine for Likelihood-Free Inference.”
Journal of Machine Learning Research, 19(16), 1–7.

Marin JM, Pudlo P, Robert CP, Ryder RJ (2012). “Approximate Bayesian Com-
putational Methods.” Statistics and Computing, 22(6), 1167–1180. doi:10.1007/
s11222-011-9288-2.

McKerns MM, Strand L, Sullivan T, Fang A, Aivazis MAG (2012). “Building a Framework
for Predictive Science.” arXiv 1202.1056, arXiv.org E-Print Archive.

Meeds T, Welling M (2015). “Optimization Monte Carlo: Efficient and Embarrassingly Par-
allel Likelihood-Free Inference.” Advances in Neural Information Processing Systems, 28.
doi:10.1186/s12859-015-0658-1.

Papamakarios G, Murray I (2016). “Fast ε-Free Inference of Simulation Models with Bayesian
Conditional Density Estimation.” Advances in Neural Information Processing Systems, 29.
doi:10.1515/9781400873739-007.

Papamakarios G, Sterratt D, Murray I (2019). “Sequential Neural Likelihood: Fast
Likelihood-Free Inference with Autoregressive Flows.” In The 22nd International Con-
ference on Artificial Intelligence and Statistics, pp. 837–848. PMLR.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Pretten-
hofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot
M, Duchesnay É (2011). “scikit-learn: Machine Learning in Python.” Journal of Machine
Learning Research, 12(85), 2825–2830.

Python Core Team (2024). Python: A Dynamic, Open Source Programming Language. Python
Software Foundation. URL https://www.python.org/.

Shahriari B, Swersky K, Wang Z, Adams RP, De Freitas N (2015). “Taking The Human
out of The Loop: A Review of Bayesian Optimization.” Proceedings of the IEEE, 104(1),
148–175. doi:10.1109/jproc.2015.2494218.

Sisson SA, Fan Y, Beaumont M (2018). Handbook of Approximate Bayesian Computation.
Chapman & Hall/CRC. doi:10.1201/9781315117195.

https://doi.org/10.1109/mcse.2007.55
https://doi.org/10.24963/ijcai.2019/457
https://doi.org/10.1093/sysbio/syw077
https://doi.org/10.1007/s11222-011-9288-2
https://doi.org/10.1007/s11222-011-9288-2
https://doi.org/10.1186/s12859-015-0658-1
https://doi.org/10.1515/9781400873739-007
https://www.python.org/
https://doi.org/10.1109/jproc.2015.2494218
https://doi.org/10.1201/9781315117195

26 An Extendable ROMC Implementation in Python

Thomas O, Dutta R, Corander J, Kaski S, Gutmann MU (2022). “Likelihood-Free Inference
by Ratio Estimation.” Bayesian Analysis, 17(1), 1–31. doi:10.1214/20-ba1238.

Wood SN (2006). Generalized Additive Models: An Introduction with R. Chapman &
Hall/CRC.

Affiliation:
Vasilis Gkolemis
Information Management Systems Institute (IMSI)
ATHENA Research and Innovation Center
Athens, Greece
E-mail: vgkolemis@athenarc.gr
URL: https://givasile.github.io/

Journal of Statistical Software https://www.jstatsoft.org/
published by the Foundation for Open Access Statistics https://www.foastat.org/
August 2024, Volume 110, Issue 2 Submitted: 2022-02-20
doi:10.18637/jss.v110.i02 Accepted: 2023-09-27

https://doi.org/10.1214/20-ba1238
mailto:vgkolemis@athenarc.gr
https://givasile.github.io/
https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v110.i02

	Introduction
	Background
	Simulator-based models and likelihood-free inference
	Optimization Monte Carlo (OMC)
	Robust optimization Monte Carlo (ROMC)
	Engine for likelihood-free inference (elfi)

	Overview of the implementation
	Algorithmic view of ROMC
	General implementation principles

	Implemented functionalities
	Training part
	Inference part
	Evaluation part
	Extend the implementation with custom modules

	Use-case illustration
	Summary and discussion

