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Abstract

One of the contemporary challenges in anomaly detection is the ability to detect,
and differentiate between, both point and collective anomalies within a data sequence or
time series. The anomaly package has been developed to provide users with a choice of
anomaly detection methods and, in particular, provides an implementation of the recently
proposed collective and point anomaly family of anomaly detection algorithms. This
article describes the methods implemented whilst also highlighting their application to
simulated data as well as real data examples contained in the package.
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1. Introduction

Within this article, we focus on the challenge of detecting anomalies within data sequences.
Anomaly detection has become an increasingly important area of research activity due to
its wide ranging application: from fault detection (Theissler 2017; Zhao, Liu, Hu, and Yan
2018), to fraud prevention (Ahmed, Mahmood, and Islam 2016), and system monitoring (Goh,
Adepu, Tan, and Lee 2017). In broad terms, anomalies are observations that do not conform
with the general or local pattern of the data and are commonly considered to fall into one of
three categories: global anomalies, contextual anomalies, or collective anomalies (Chandola,
Banerjee, and Kumar 2009). Global anomalies and contextual anomalies are defined as single
observations that are outliers with regards to the complete dataset and their local context
respectively. Conversely, collective anomalies are defined as sequences of observations that
are not anomalous when considered individually, but together form an anomalous pattern
(Fisch, Eckley, and Fearnhead 2022).
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2 Detection of Anomalous Structure in Time Series Data

In parallel with the methodological development of statistical anomaly detection for data se-
quences, a number of software implementations have been developed. For example, within R,
the anomalize package (Dancho and Vaughan 2023) provides an implementation of two point
anomaly approaches, based on the interquartile range and generalized extreme studentized
deviate test respectively, following the removal of any seasonal and trend components. Simi-
larly otsad (Iturria, Carrasco, Herrera, Charramendieta, and Intxausti 2019) also provides a
suite of approaches for the detection of point anomalies, whilst cbar (Seonghyun 2017) seeks
to identify contextual anomalies using a Bayesian framework. Conversely, tsoutliers (L6pez-
de-Lacalle 2024) seeks to detect innovative and additive outliers together within time series,
whilst oddstream (Talagala, Hyndman, and Smith-Miles 2019) implements an algorithm for
the detection of anomalous series within newly arrived collections of series and stray (Tala-
gala 2020) implements the HDoutliers algorithm for various settings including the detection of
anomalies in high-dimensional data. Whilst the aforementioned packages arguably represent
the current state of the statistical art at the time of writing, a number of other contribu-
tions have been made by researchers in other disciplines: see for example Python packages
including anomatools (Vercruyssen 2022), adtk (Arundo Analytics, Inc 2020) and PySAD
Vilmaz (2023), and Julia contributions including MultivariateAnomalies (Flach et al. 2017)
and AnomalyDetection (Skvara, Pevny, and Smidl 2018).

This paper describes the anomaly package (Fisch, Grose, Bardwell, Eckley, and Fearnhead
2024), available from the Comprehensive R Archive Network (CRAN) at https://CRAN.
R-project.org/package=anomaly, that implements a number of recently proposed methods
for anomaly detection. For univariate data there is the collective and point anomaly detection
method of Fisch et al. (2022), that can detect both collective and point anomalies. For
multivariate data there are three methods, a multivariate extension of CAPA (collective and
point anomaly; Fisch, Eckley, and Fearnhead 2021), the proportion adaptive segment selection
(PASS) method of Jeng, Cai, and Li (2012), and a Bayesian approach, Bayesian abnormal
region detector (BARD; Bardwell and Fearnhead 2017).

The multivariate CAPA method and PASS are similar in that, for a given segment they use a
likelihood-based approach to measure the evidence that it is anomalous for each component
of the multivariate data stream, and then merge this evidence across components. They
differ in how they merge this evidence, with PASS using higher criticism (Donoho and Jin
2004) and CAPA using a penalized likelihood approach. One disadvantage of the higher
criticism approach for merging evidence is that it can lose power when only one or a very small
number of components are anomalous. Furthermore, CAPA also allows for point anomalies in
otherwise normal segments of data, and can be more robust to detecting collective anomalies
when there are point anomalies in the data. CAPA can also allow for the anomalies segments
to be slightly misaligned across different components.

The BARD method considers a similar model to that of CAPA or PASS, but is Bayesian
and so its basic output are samples from the posterior distribution for where the collective
anomalies are, and which components are anomalous. It does not allow for point anomalies.
As with any Bayesian method, it requires the user to specify suitable priors, but the output
is more flexible, and can more directly allow for quantifying uncertainty about the anomalies.

The article begins by providing a brief introduction to anomaly detection before proceeding
to give a detailed treatment of each approach. In each case, the relevant methodology is
introduced, describing the associated package functionality where appropriate. The methods
are applied to a number of test datasets that are available with the package. These data


https://CRAN.R-project.org/package=anomaly
https://CRAN.R-project.org/package=anomaly

Journal of Statistical Software 3

sets comprise the machine temperature data introduced by Lavin and Ahmad (2015), and
a microarray genomics dataset. The examples also include details of how the effects of au-
tocorrelation can be accounted for through the adjustment of the method parameters or by
applying transforms to preprocess the data prior to analysis.

2. Background

The suite of methods described in this article focuses on collective anomalies. Informally,
collective anomalies are segments of data which are anomalous when compared against the
general structure of the full data. The modelling paradigm is to assume that there is a common
model for data outside the anomalous regions, for example that it is independent normally
distributed with a fixed mean and variance, and that collective anomalies correspond to
segments of the data that are inconsistent with this, for example due to having a different mean
or variance. One approach to modelling this type of anomaly is via epidemic changepoints
— a particular form of changepoints admitting one change away from the typical distribution
of the data and one back to it at a later time (Fisch et al. 2022). Formally, in the univariate
setting, data, {x;}, are said to follow a parametric epidemic changepoint model if {x;} obey
the parametric model f(z,0(t)) at all times and the parameter 6(t) satisfies

91 s1 <t<eq,

oy ={ (1)

Ok sk <t<eg,

0y otherwise.

Here (s1,€1),....,(sk,ex) denote the start and end points of K collective anomalies. The
typical (baseline) behavior of the data sequence is defined by the parameter 6. Conditionally
on the parameter 0(t), all observations z; are assumed to be independent, with relaxations of
this assumption being discussed in the following sections.

When extending to the multivariate setting, i.e., a p-dimensional multivariate time series, it
is common to assume that the series are independent, but that their periods of anomalous
behavior align. The copy number variations data set (Bleakley and Vert 2011) provides a good
example of such behavior. In the absence of a copy number variation, data from different
individuals can be assumed to be independent. However, when collective anomalies under
the form of copy number variations occur, they typically affect a subset of the test subjects.
Under such a model, it is well known that joint analysis can lead to significant improvements
in detection power over analyzing each component individually (Donoho and Jin 2004). The
subset multivariate epidemic changepoint model provides a natural model for this type of
behavior. It assumes that

Ogi) if sy <t<ejandie Jq,

00 (t) = 1<i<p. (2)

Og? ifsg <t<egandie€e Jg,

Béi) otherwise,

where, again, K is the number of collective anomalies with (sg,ex) denoting the start and
end of the k-th collective anomaly. The k-th collective anomaly only affects the subset Jg
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of time-series. If the i-th time-series is affected by the k-th collective anomaly, i.e., i € Jj
then 9,(;) denotes its parameter value; with 0(()1) denoting the parameter governing the typical
behavior of the i-th time-series.

3. The collective and point anomaly family

The collective and point anomaly (CAPA) family of algorithms (Fisch et al. 2022, 2021) differ
from many other anomaly detection methods in that they seek to simultaneously detect and
distinguish between both collective and point anomalies. CAPA assumes that the data {x;}
follow the model detailed in (1), when univariate or (2) when multivariate. Point anomalies are
incorporated within the model as epidemic changes of length 1. When analyzing multivariate
data, CAPA assumes that the collective anomalies don’t overlap, i.e., that ey < so,...,ex_1 <
sk, whilst allowing for the alignment of collective anomalies to be imperfect, i.e., allowing
the components to leave their typical state and return to it at slightly different times.

Whilst the CAPA procedure can allow for many different models for the data, the current
implementation assumes that the data is independent and normally distributed, and that
the data has been normalized so that the mean is 0 and variance is 1. Non-anomalous data
points are drawn from a normal distribution with a specific mean and variance (that the
CAPA algorithm will estimate). Collective anomalies correspond to regions where the mean
or mean and variance of the data are different.

CAPA infers the number, K, and locations (s, e1),...,(sk,ex) of collective anomalies as
well as the set O of point anomalies by maximizing the penalized saving function

K
> (S(sirei) = Blei— i) + > (S () — B), (3)
i=1 teo

with respect to (s1,€1),...,(sk,ex) and K, subject to constraints on the maximum and mini-

mum lengths of anomalies (see Fisch et al. 2022, for details). Here the saving statistic, S(s, e),
of a putative anomaly with start point, s, and end point, e, corresponds to the improvement
in model fit obtained by modelling the data in segment (s, e) as a collective anomaly. Given
this improvement will always be non-negative a penalty, 3(e; — s; + 1), potentially depending
on the length of the putative anomaly is used to prevent false positives being flagged. The
choice of the penalty is model dependent, and discussed in the following sections. Similarly,
S'(x¢) and B’ denote the improvement in model fit by assuming observation, z;, is a point
anomaly.

CAPA makes some important independence assumptions, and also assumes that the mean
and variance of the non-anomalous data is constant. As we see below, it can successfully
be applied to situations where these assumptions do not hold. There are two approaches to
do so. First we can transform the data so that the assumptions are more reasonable — this
could be to remove the effect of common factors that induce dependence across components
or applying a filter to remove autocorrelation from the noise. Alternatively we can inflate the
default penalties so that we still have good properties if there are no collective anomalies. We
give an example of this latter approach for the machine temperature data set below.

CAPA maximizes the penalized saving in (3) using an optimal partitioning algorithm (Jackson
et al. 2005). By default, the runtime of CAPA family algorithms scales quadratically in
the number of observations. In practice, the computational complexity can be reduced by
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applying a pruning technique developed by Killick, Fearnhead, and Eckley (2012) that is
used in the changepoint package (Killick and Eckley 2014). It is particularly effective when a
large number of anomalies is present — leading to a linear relationship between runtime and
data size when the number of anomalies is proportional to the size of the data. Another way
to reduce the runtime is to impose a maximum length, m, for anomalies, the runtime then
scaling linearly in both the number of observations and m.

The anomaly package contain a single function, capa, for accessing both the univariate and
multivariate methods. It has the following arguments.

e x: A numeric matrix with n rows and p columns containing the data which is to be
inspected. The time series data classes ‘ts’, ‘xts’, and ‘zoo’ are also supported.

e beta: A numeric vector of length p, giving the marginal penalties. If § is missing
and p = 1 then 8 = 3log(n) when the type is "mean" or "robustmean" and =
4log(n) otherwise. If p > 1, type = "meanvar" or type = "mean" and max_lag > 0
it defaults to the penalty regime 2’ described in Fisch et al. (2022). If p > 1, type
= "mean"/"meanvar" and max_lag = 0 it defaults to the pointwise minimum of the
penalty regimes 1, 2, and 3 in Fisch et al. (2022).

e beta_tilde: A numeric constant indicating the penalty for adding an additional point
anomaly. It defaults to 3log(np), where n and p are the data dimensions.

e type: A string indicating which type of deviations from the baseline are considered.
Can be "meanvar" for collective anomalies characterized by joint changes in mean and
variance (the default), "mean" for collective anomalies characterized by changes in mean
only, or "robustmean" (only allowed when p = 1) for collective anomalies characterized
by changes in mean only which can be polluted by outliers.

e min_seg_len: An integer indicating the minimum length of epidemic changes. It must
be at least 2 and defaults to 10.

e max_seg_len: An integer indicating the maximum length of epidemic changes. It must
be at least min_seg_len and defaults to Inf. The computational cost of the CAPA
algorithm can be reduced by decreasing the value of max_seg_len.

e max_lag: A non-negative integer indicating the maximum start or end lag. Only useful
for multivariate data. Default value is 0.

When the x argument to capa is one dimensional (i.e., a vector or n X 1 array or matrix) the
univariate method is used and the max_lag argument is ignored, otherwise, the multivariate
method is employed. The capa function returns an S4 object of type ‘capa.class’ for which
the generic methods plot and summary have been provided.

3.1. Univariate CAPA

The anomaly package supports univariate CAPA via the capa function for detecting segments
characterized by an anomalous mean or anomalous mean and variance. When investigating
segments for an anomalous mean against a typical Gaussian background of mean 0 and
variance 1. If we let f(x;pu, o) denote the density function for a normal random variable with
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mean 4 and variance o2 evaluated at z, then the savings for a collective anomaly are equal to
the improvement in log-likelihood by fitting a segment as anomalous. When only the mean
of an anomalous segment changes,

mf}XZ {log f(wt; p, 1) —log f(24;0,1)} .
t=s

While the saving for a point anomaly is set to be the saving for a collective anomaly of
length 1. This gives

S(s,e) =(e—s+1)(Tge)®? and  5'(z) = 2?

where Z,.. denotes the mean of observations zg,...,z.. Conversely, when investigating seg-
ments for an anomalous mean and/or variance, savings is

e
max > {log f(w1; p, o) — log f(24;0,1)},
’ t=s

with the saving for a point anomaly being that for a change in variance only in a segment of
size 1. This gives

~ Dizs (@ _@46)2 / 2 ’ 2
S(s,e):;xt—(e—s—kl) 1+ log 72—s+1. , S'(x)==x —1—log(675 +ar:>
Note that the data, x, requires standardization using robust estimates for the typical mean
(the median) and the typical variance (the median absolute deviation) obtained on the com-
plete data series so that the above cost functions can be used. See (Fisch et al. 2021) for
further details.

The argument max_seg_len sets the maximum length of a collective anomaly. It can be used
to prevent the detection of weak but long anomalies which typically arise as a result of model
misspecification and also to reduce the run time of the CAPA algorithm. It defaults to a
value equal to the length of the data series. Care is needed, as if a value is set that is smaller
than the size of the actual anomalous regions, then CAPA is likely to fit multiple collective
anomalies to such a region.

By default, 5 = 3log(n) and 8 = 4log(n) are used for changes in mean and changes in mean
and variance respectively, and 3’ = 3logn for all models, as they have been shown to control
the number of false positives when all observations are independent and identically distributed
(ii.d.) Gaussian (Fisch et al. 2022, 2021). These default parameters have a tendency to
return many false positives on structured, i.e., non independent, data. In this case, beta and
beta_tilde should be inflated whilst keeping their ratio constant. When looking for changes
in mean, using

~ 1 D
5= 5 =37 log(n)

where p is a robust estimate for the AR(1) autocorrelation often yields good false positive
control. For changes in mean and variance,

145 = 14p
B =47—Llog(n), B=37—"log(n).
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The specific factor is justified theoretically in Lavielle and Moulines (2000).

Alternatively, the data x; can be directly transformed using

—
o= e (25). (@)

14+p o

where [ is the median, and & is a robust estimator of the standard deviation of the data =z,
such as based on the inter-quartile range, or the median absolute deviation from the median.
This transform should only be used when looking for mean anomalies.

Stmulated data

To demonstrate univariate capa a data series of 5000 normally distributed observations with
3 collective anomalies and four point anomalies is analysed. The data can be reproduced
using the code provided below, which also runs the analyses and summarizes the results.

R> library("anomaly")

R> set.seed(0)

R> x <- rnorm(5000)

R> x[401:500] <- rnorm(100, 4, 1)

R> x[1601:1800] <- rnorm(200, 0, 0.01)

R> x[3201:3500] <- rnorm(300, 0, 10)

R> x[c (1000, 2000, 3000, 4000)] <- rnorm(4, 0, 100)
R> x <- (x - median(x)) / mad(x)

R> res <- capa(x)

R> summary(res)

Univariate CAPA detecting changes in mean and variance.
observations = 5000

minimum segment length
maximum segment length

10
5000

Point anomalies detected : 4
location variate strength

1 1000 1 43.07885
2 2000 1 117.84647
3 3000 1 37.49265
4 4000 1 62.67104

Collective anomalies detected : 3
start end variate start.lag end.lag mean.change variance.change

1 401 500 1 0 0 14.597971638 4.990295e-04
2 1601 1800 1 0 0 0.001502774 9.869876e+01
3 3201 3500 1 0 0 0.036926415 7.764414e+00

R> plot(res)
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Figure 1: Visualization of data, collective and point anomalies detected by CAPA for the
simulated univariate data. (a) detecting changes in mean and variance. (b) detecting changes
in mean only. The blue regions correspond to the predicted anomalous segments and the red
dots indicate point anomalies.

The summary method displays information regarding the analysis and details regarding the
location and nature of the detected anomalies. The formatting demonstrates that capa cor-
rectly determines the presence of the anomalies in the simulated data. The plot function
generates a ‘ggplot’ object (Wickham 2016) which is shown in Figure la. The location of
the collective anomalies are highlighted by vertical blue bands and the data point anomalies
are shown in red. By default, CAPA detects both changes in mean and variance. The option
type = "mean" can be used to detect changes in mean only.

R> res <- capa(x, type = "mean")
R> collective_anomalies(res)

start end mean.change test.statistic
1 401 500 14.92774 1492.774

R> head(point_anomalies(res))

location strength
1000 43.07885
2000 117.84647
3000 37.49265
3201 11.44038
3202 16.52037
3203 10.58874

Ok WN -

In this case, capa correctly identifies the collective change in mean and the point anomalies.
However, as a consequence of CAPA now looking for changes in mean only, and assuming
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constant variance, the analysis results in changes in variance being classified as groups of point
anomalies, see Figure 1b. The above example also demonstrates the collective_anomalies
function, which is used to produce a data frame containing the location and change in mean
for collective anomalies, and the point_anomalies function which provides the location and
strength of the point anomalies.

As previously noted, the CAPA algorithm assumes that the data has been standardized.
When this is not the case, false anomalous regions may be identified, as is the case in the
following example.

R> res <- capa(l + 2 * x, type = "mean")
R> nrow(collective_anomalies(res))

47

Real data: Machine temperature

To demonstrate the application of capa to real univariate data, a data stream from the
Numenta Anomaly Benchmark corpus (Ahmad, Lavin, Purdy, and Agha 2017) consisting of
temperature sensor data of an internal component of a large industrial machine is analysed.
The dataset is included, with permission, in the anomaly package on the condition that
derived work be kindly requested to acknowledge (Ahmad et al. 2017).

The machine temperature data consists of 22695 observations recorded at 5 minute intervals
and contains three known anomalies as identified by an engineer working on the machine
(Figure 2a). The first anomaly corresponds to a planned shutdown of the machine and the
third anomaly to a catastrophic failure of the machine. The second anomaly, which can be
difficult to detect, corresponds to the onset of a problem which led to the eventual system
failure (Lavin and Ahmad 2015). Using capa with default parameters for the (normalized)
data results in the detection of 97 collective anomalies.

R> data("machinetemp", package = "anomaly")

R> attach(machinetemp)

R> x <- (temperature - median(temperature)) / mad(temperature)
R> res <- capa(x, type = "mean")

R> canoms <- collective_anomalies(res)

R> dim(canoms) [1]

(1] 97

One potential source of this over sensitivity is the presence of autocorrelation in the data. A
robust estimate for the AR(1) autocorrelation p can be obtained using the covMcd method
from the robustbase package.

R> library("robustbase")

R> n <- length(x)

R> x.lagged <- matrix(c(x[1:(n - 1)1, x[2:n]), n - 1, 2)
R> rho_hat <- covMcd(x.lagged, cor = TRUE)$cor[1, 2]

which gives an estimate for p of 0.987.



10 Detection of Anomalous Structure in Time Series Data

m——e o @ e oI ey

temperature
value

0 5000 10000 15000 20000 0 5000 10000 15000 20000
t t

(a) (b)

Figure 2: Time series of machine temperature data. (a) The highlighted data points show
the locations of the anomalies identified by an engineer working on the machine. (b) The
anomalies identified by capa. The second, third and fourth anomalies correspond well with
the known anomalies. The first anomaly may be a false positive or an anomaly not recorded
by the engineer.

As mentioned above, the default penalties have a tendency to return many false positives on
structured, i.e., non independent, data. Instead we can inflate the penalties based on our
estimates of the autocorrelation.

R> inflated_penalty <- 3 * (1 + rho_hat) / (1 - rho_hat) * log(n)
R> res <- capa(x, type = "mean", beta = inflated_penalty,

+ beta_tilde = inflated_penalty)

R> summary (res)

Univariate CAPA detecting changes in mean.
observations = 22695

minimum segment length
maximum segment length

10
22695

Point anomalies detected : O

Collective anomalies detected : 4
start end variate start.lag end.lag mean.change test.statistic

1 1612 2327 1 0 0 9.148952 6550.650
2 3773 4002 1 0 0 25.648888 5899.244
3 16023 17204 1 0 0 8.191733 9682.628
4 19166 19775 1 0 0 39.426847 24050.377

R> plot(res)
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The new predicted collective anomalies are shown in Figure 2b. The second, third and fourth
collective anomalies detected using the modified penalty values correspond well with the
known anomalies. The first anomaly on the other hand does not have a corresponding label
which means that it is either a false positive or an anomaly corresponding to an event which
has not been detected or recorded. Note that the test statistic for the first anomaly is stronger
than for the second, but has smaller change in mean. This is inherent in the definition for the
value of the test statistic used when inferring changes in mean, which is the change in mean
multiplied by the length (duration) of the anomaly.

3.2. Multivariate CAPA

The capa function also has provision for analyzing multivariate data series using a multi-
variate version of the CAPA algorithm (Fisch et al. 2021). The algorithm assumes that the
p components of the time series are independent of one another in all aspects except the
locations of collective anomalies, which can affect any subset of the components. As with
the univariate case, the current implementation of CAPA assumes non-anomalous data is
independent normally distributed with a component specific mean and variance. Anomalous
regions are then regions with a different mean, or a different mean and variance. The saving
for a collective anomaly starting at s and ending at e involves aggregating the savings across
components

k
S(s,e) = m]?x; (S(i)(s, e) — 61-)

Here, S(1)(s,e) > - -+ > S (s, €) corresponds to the order statistics of the savings S1(s,e), ...,
Sp(s,e), with S;(s,e) denoting the improvement in the individual components, as defined in
Section 2. The §; denote the typically decreasing marginal penalties or thresholds control-
ling false positives. Crucially, CAPA allows for the alignment of collective anomalies across
components to be imperfect. In other words, certain components can lag by entering the
anomalous state later and/or returning to their typical state earlier than others.

The (multivariate specific) max_lag argument in the capa function is used to set a limit on
how much a collective anomaly in one variate can lag (or lead) a collective anomaly in another
variate, whilst still being part of the same multivariate anomaly. The run time scales linearly
with max_lag, though this dependence tends to be weak for small values of max_lag. The
run time also scales linearly (up to logarithmic factors) with the number of components p.
The default penalties are specific to i.i.d. data and tend to return many false positives when
some of the p series contain, for example, auto-correlated structure. Extending the argument
of Lavielle and Moulines (2000) to the multivariate setting, using

P 1+p 1+ pi ,
8=2 61 log(np) (1 =2 61 log(np(w+1)) B; =2 '?z log(p(w+1)) 2<i<p
1= 1—p1 1—p;

can achieve good false positive control. Here, p; is the i-th largest of the robust estimates for
the AR(1) autocorrelation coefficients of the p series and w the value of the maximum lag.

Stmulated data 1

To demonstrate multivariate CAPA, a simulated data set, sim.data, consisting of 500 obser-
vations on 200 variates which are N(0,1) distributed is used. The data is provided by the
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Figure 3: CAPA results for Simulated data 1 in Section 3.2. The variates are displayed in
order from the top down and the location and extent of the anomalous regions are indicated
by the blue areas. (a) Using a penalty which maximizes power for the detection of collective
anomalies but does not control false positives in the components. (b) Using a penalty which
controls false positives in the components (at a loss of power).

anomaly package and contains three multivariate anomalies of length 15 located at ¢ = 100,
t = 200, and ¢ = 300 for which the mean changes from 0 to 2. The anomalies affect variates 1
to 8, 1 to 12 and 1 to 16 respectively. Figure 3a shows a tile plot of the data and the anomaly
locations as estimated by the following analysis.

R> data("simulated", package = "anomaly")
R> res <- capa(sim.data, type = "mean", min_seg_len = 2)
R> plot(res, subset = 1:20)

Clearly the overall positions of the anomalies have been located correctly however, many
false positive anomalous segments have been fitted across most of the variates. This issue
arises because the default penalty used by capa is tuned towards detection accuracy at the
expense of false positive control in the number of components fitted as anomalous. False
positive control can be recovered, at a loss of power against anomalies weakly affecting a lot
of components, by using regime 2 from Fisch et al. (2021):

R> beta <- 2 * log(ncol(sim.data):1)

R> betal[1] <- beta[1] + 3 * log(nrow(sim.data))

R> res <- capa(sim.data, type = "mean", min_seg_len = 2, beta = beta)
R> plot(res, subset = 1:20)

As is apparent from Figure 3b, CAPA now controls false positives. Unfortunately, in general,
optimal power and false positive control in the number of variates cannot both be achieved,
as shown by Cai, Jeng, and Jin (2011).



Journal of Statistical Software 13

value
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Figure 4: CAPA output on simulated data in Section 3.2. Collective anomalies are colored
in blue, with lags displayed in light blue.

Stmulated data 2

As mentioned previously, a maximum lag can be used when it is suspected that the collective
anomalies do not perfectly align. This requires minor modifications to the argument structure

R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>

set.seed(0)
x1 <- rnorm(500)
x2 <- rnorm(500)
x3 <- rnorm(500)
x4 <- rnorm(500)

x1[151:
x2[171:
x3[161:
x1[351:
x3[351:
x4[371:

200]
200]
190]
390]
400]
400]

x1[151:
x2[171:
x3[161:
x1[371:
x3[351:
x4[371:

200]
200]
190]
390]
400]
400]

+ +

+
W N W N

+

2

x4[451] <- x4[451] * max(1, abs(1 / x4[451])) * 6
x4[100] <- x4[100] * max(1, abs(1 / x4[100])) * 6
x2[050] <- x2[050] * max(1, abs(1 / x2[050])) * 6
x1 <- (x1 - median(x1)) / mad(x1)
x2 <- (x2 - median(x2)) / mad(x2)
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R> x3 <- (x3 - median(x3)) / mad(x3)

R> x4 <- (x4 - median(x4)) / mad(x4)

R> x <- cbind(x1, x2, x3, x4)

R> res <- capa(x, max_lag = 20, type = "mean")
R> plot(res)

The output of this analysis can be found in Figure 4.

4. Proportion adaptive segment selection (PASS)

The anomaly package includes a scalable implementation of the proportion adaptive segment
selection (PASS) algorithm by Jeng et al. (2012). PASS is an algorithm designed to efficiently
scan long multi-variate sequences of data using a test statistic that detects multivariate col-
lective anomalies in mean and/or variance. For each candidate collective anomaly, with a
given start point and end point, s and e say, PASS tests each component individually for a
mean anomaly thus obtaining p values ¢1, ..., gp. These component specific p values are then
ordered q(1) < --+ < q(p) and combined into a test-statistic, ¢, for the segment (s,e) that
combines information across the p values using higher criticism (Donoho and Jin 2004):

i
p 40
q= Hg@é \/ﬁp— (5)
A0=t=P @) (1 = a@))
for an integer ag > 1. To fit a multiple collective anomalies, an algorithm similar to circular
binary segmentation (Olshen, Venkatraman, Lucito, and Wigler 2004), is used.

PASS inherits most of its hyper parameters and properties from higher criticism. In particular,
it is often suggested to set ag > 1, i.e., to disregard some of the lowest p values when using
higher criticism to stabilize the procedure. However, this can lead to anomalies affecting
fewer than «g components escaping detection. Furthermore, their approach requires selecting
a suitable threshold value X, which is typically increased with the data dimension n and
p. Low values of ag can also make inflation of \ advisable; guidance on which is given in
Jeng et al. (2012, Section 3.1). The method has been implemented in compiled code by
following steps 1 to 8 in Jeng et al. (2012, Section 2.2) and has computational complexity
O(max_seg_len-nplog(p)).

The anomaly package provides the function pass which accepts the following arguments.

e x: A numeric matrix with n rows and p columns containing the data which is to be
inspected. The time series data classes ‘ts’, ‘xts’, and ‘zoo’ are also supported.

o alpha: An integer value greater then 0 corresponding to g in Jeng et al. (2012). This
value is used to stabilize the higher criticism based test statistic used by PASS leading
to a better finite sample family-wise error rate. Anomalies affecting fewer than alpha
components will be more likely to escape detection. The default value is 2.

e lambda: A positive real value setting the threshold value for the family-wise Type 1
error. The default value is (1.1log(n x max_seg_len) + 2log(log(p)))/+/log(log(p)).



Journal of Statistical Software 15

e max_seg_len: A positive integer corresponding to the maximum segment length. This
parameter corresponds to the maximum interval length, L, in Jeng et al. (2012). The
default value is 10.

o min_seg_len: A positive integer (max_seg_len > min_seg_len > 0) corresponding to
the minimum segment length. The default value is 1.

4.1. PASS: Simulated example

The following code demonstrates how the pass method provided by anomaly is used. In this
example the data, sim.data, is the same as that used in the capa example in Section 3.2.

R> library("anomaly")

R> data("simulated", package = "anomaly")

R> res <- pass(sim.data, max_seg_len = 20, alpha = 3)
R> collective_anomalies(res)

start end xstar
1 200 214 1519317784
2 100 114 42907782
3 300 315 22296743

The results show the start and end of each anomaly along with xstar denoting the value of
the higher criticism test statistic for the segment, that is the value of ¢ as defined by (5).
Larger values indicate more evidence for a collective anomaly, and the segments are listed in
decreasing order of xstar. The results are consistent with those provided by capa in that the
three anomalies are all detected. However, unlike MVCAPA, PASS does not indicate which
series are anomalous.

5. Bayesian abnormal region detector (BARD)

The Bayesian abnormal region detector (BARD, Bardwell and Fearnhead 2017) is a fully
Bayesian method for estimating abnormal regions in multivariate data. It assumes that data
has been normalized so that data for each variate in a normal region has mean 0 and variance
1, and that abnormal regions correspond to a change in mean. Specifically, the model is a
special case of (2), where the parameter, 6 (t) is the mean of variate i at time point ¢, and
we model that, conditional on the parameters, the data are independent Gaussian.

As it is a Bayesian approach, BARD differs from CAPA and PASS in two aspects. First,
the user has to specify prior distributions for aspects of the model such as the mean in
abnormal segments, and the length of normal and abnormal segments. Second, the output
of the algorithm will be draws from a posterior distribution, which can be used to produce a
single estimate of the location of the abnormal segments or give some measure of uncertainty
about where the abnormal segments are. Like PASS, BARD only gives information about
where the abnormal segments are located and not which variates are abnormal within each
segment.
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The parametric form of the prior distributions assumed by BARD are as follows. Segment
lengths are assumed to have a negative binomial distribution, with parameters (ky,py) for
normal segments and (ka,pa) for abnormal segments, where a negative binomial random
variable with parameters (k,p) has probability mass function

z+k—1
x

P(X =z) = ( ) (1—p)*p",

with E(X) = 22) and VAR(X) = 2022,

For an abnormal segment we need to further define a prior for the segment mean, p, and this
is assumed to uniform on a range for |u|, with the sign of the mean being equally likely to be
positive or negative. We also need to specify the average proportion of variates affected by
an abnormal segment, and the probability that an abnormal segment is followed by a further
abnormal segment.

The BARD algorithm proceeds in two stages. First it calculates an approximation to the
joint posterior distribution for the number and location of the abnormal segments. The
approximation comes first from using numerical integration to calculate marginal likelihoods,
and second from using probabilistic pruning (also known as resampling) within a particle filter
to ensure the algorithm’s complexity is linear in the number of time points. These parts of the
algorithm can be controlled by the user, but empirical evidence in Bardwell and Fearnhead
(2017) suggest that the approximation error when using the default choices is small.

The second step of BARD is to draw a number of independent samples from the posterior.
The individual draws can either be plotted to give a sense of the uncertainty around where the
abnormal segments are, or can be summarized by a single point estimate of their location. The
anomaly package provides functions to do both of these. The approach taken to summarize
the posterior by a single point estimate is to consider marginally each time-point, ¢, and the
proportion of draws which place ¢t within an abnormal segment. Our point-estimate flags
point ¢ as within an abnormal segment if and only if this proportion of draws is above some
user-chosen threshold. See Figure 5 for an example.

The anomaly package provides the function bard which accepts the following arguments.

e x: A numeric matrix with n rows and p columns containing the data which is to be
inspected. The time series data classes ‘ts’, ‘xts’, and ‘zoo’ are also supported.

e p_N: Hyper-parameter of the negative binomial distribution for the length of non-
anomalous segments (probability of success). Defaults to n%rl

e p_A: Hyper-parameter of the negative binomial distribution for the length of anomalous
segments (probability of success). Defaults to 2.

e k_N: Hyper-parameter of the negative binomial distribution for the length of non-
anomalous segments (size). Defaults to 1.

e k_A: Hyper-parameter of the negative binomial distribution for the length of anomalous

segments (size). Defaults to ff};aa

e pi_N: Probability that an anomalous segment is followed by a non-anomalous segment.
Defaults to 0.9.
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e paffected: Proportion of the variates believed to be affected by any given anomalous
segment. Defaults to 5%. This parameter is relatively robust to being misspecified and
is studied empirically in Section 5.1 of Bardwell and Fearnhead (2017).

e lower: The lower limit of the the prior uniform distribution for the mean of an anoma-
lous segment p. Defaults to 2 %.

e upper: The upper limit of the prior uniform distribution for the mean of an anomalous
segment p. Defaults to the largest value of x.

e alpha: Threshold used to control the resampling in the approximation of the posterior
distribution at each time step. A sensible default is 1 x 107%. Decreasing alpha in-
creases the accuracy of the posterior distribution but also increases the computational
complexity of the algorithm.

e h: The step size in the numerical integration used to find the marginal likelihood. The
quadrature points are located from lower to upper in steps of h. Defaults to 0.25.
Decreasing this parameter increases the accuracy of the calculation for the marginal
likelihood but increases computational complexity.

5.1. BARD: Simulated example

The following code demonstrates how the bard method provided by anomaly can be used. In
this example the data, sim.data, is the same as that used in Section 4, with PASS.

R> library("anomaly")
R> data("simulated", package = "anomaly")
R> bard.res <- bard(sim.data)

The priors (p_N, k_N, p_A and k_A) for the two length of stay distributions for normal and
abnormal segments were chosen to be quite vague but with abnormal segments being much
smaller than their normal counterparts. The mean (standard deviation) for normal segments
is 190 (62) whereas for abnormal segments it is 10 (4). With no particular knowledge of the
process in question we took the probability that an abnormal segment (pi_N) is followed by a
normal segment as 90%. This was relatively arbitrary and assigned a high prior probability to
the classic epidemic changepoint model but still allows for two abnormal segments to follow
each other (albeit in different variates). The proportion of variates assumed to be affected
by an abnormal segment (paffected) was taken to be 5% of the total number of variates.
This proportion is small enough to be able to locate rare anomalies. The prior for the mean
i ~ U(lower, upper) was taken to be in the range of 0.5 to 1.5. The lower limit of 0.5
gives the minimum change in mean we are interested in detecting. To calculate the marginal
likelihood of abnormal segments numerical integration was used with a step size (h) set at
0.25. In the example, the default value for the threshold parameter a of 1 x 10~ has been
used.

The bard function returns an S4 class that includes the posterior distribution of the abnormal
segments given the observed data. To obtain samples from the posterior, and, from these,
posterior estimates for the location collective anomalies the sampler function is used.
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R> sampler.res <- sampler(bard.res, gamma = 1/3, num_draws = 1000)
R> show(sampler.res)

BARD sampler detecting changes in mean

observations = 500

variates = 200

Collective anomalies detected : 3
start end LogMargLike

3 199 213 319.8889

4 299 313 311.7028

2 99 113 177.8095

R> plot(sampler.res, marginals = TRUE)

A number of samples (num_draws) are taken from the posterior, and from these estimates of
the location of the collective anomalies are obtained based on the asymmetric loss (Bardwell
and Fearnhead 2017) using the parameter gamma. This loss will estimate a location ¢ as
part of a collective anomaly if the proportion of posterior samples that have ¢ in a collective
anomaly is greater than 1/(1+-y). The show function reports the resulting estimated collective
anomalies, together with a measure of the evidence (LogMargLike) for the collective anomaly
in terms of the log marginal likelihood for the region being a collective anomaly rather than a
part of a normal region. Larger values imply a stronger anomaly, which is dependent on the
length, change magnitude and number of affected variates of each collective anomaly. The
example shows that the location and relative strength of the three abnormal segments are
broadly consistent with those obtained using capa and pass.

As with capa and pass, the plot function can be used to visualize the data. However, the
argument marginals can be used to display additional information as shown in Figure 5. The
top plot shows different realizations from the posterior distribution. The values are either 0
or 1 indicating if the time point in the realization is part of a collective anomaly or not. The
marginal probability of each time point being a collective anomaly is shown in the bottom
plot. This is the fraction of sampled realizations that were found to be anomalous at each
time. The dashed horizontal line is the threshold, for our choice of gamma = 1/3, for which a
collective anomaly is inferred.

6. CAPA and PASS: Microarray data

This example examines microarray data for 20 individuals with a bladder tumor from the
ACGH data set which is available in the ecp package (James and Matteson 2014).

R> library("ecp")
R> data("ACGH", package = "ecp")
R> acgh <- ACGH[[1]]1[, 1:20]

The data is highly autocorrelated so we transform each individual variate using (4) for both
capa and pass to avoid false positives.
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t
Figure 5: Plot of a sample of 1000 draws from the posterior distribution (top), each realization
is shown in a separate row with light blue regions indicating the time points in that realization
have been inferred as part of a collective anomaly. The marginal probability of a collective
anomaly (bottom), with the user defined threshold (for v = 1/3) for flagging a region as a
collective anomaly (horizontal dashed line).

R> ac_corrected <- function(X) {

+ n <- length(X)

+ rcor <- covMcd(matrix(c(X[2:n], X[1:(n-1)]), ncol = 2), cor = TRUE)
+ psi <- rcor$cor[1, 2]

+ correction_factor <- sqrt((1 - psi) / (1 + psi))

+ return(correction_factor * (X - median(X)) / mad(X))

+ }

R> acgh <- acgh [> data.frame() [|> sapply(ac_corrected)

The acgh data is analysed using max_seg_len = 200 to ensure that detected anomalies can
cover the whole length of a single chromosome and, for capa, the maximum lag was set to 50
to prevent adjacent anomalies overlapping.

R> res.capa <- capa(acgh, type = "mean", max_lag = 50, max_seg_len = 200)
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Figure 6: Locations of the 10 strongest anomalies for capa (blue) and pass (red).

R> res.pass <- pass(acgh, max_seg_len = 200, alpha = 3)

Both methods find that most of the region is anomalous (at least relative to the mean-0 model)
so, for clarity of explanation, only the locations of the strongest 10 collective anomalies for
each method are considered. These are shown in Figure 6 which demonstrates that the two
sets of predicted anomalies are well alligned. Note however, only CAPA can distinguish
between individuals that are affected by a specific anomaly or not.

7. Discussion

The detection of anomalous points and regions within data sequences and time series is
becoming an increasingly important in many fields, from astrophysics to digital networking.
The anomaly package implements a number of recently proposed, computationally efficient
statistical approaches, accessible via a simple, easy to use R interface. Package anomaly
provides a first implementation of the CAPA family of anomaly detection methods that can be
used to detect both point anomalies in otherwise normal segments of data, as well as detecting
collective anomalies. It also provides implementations of the BARD and PASS methods.
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Distinctive plot classes have also been developed, allowing for the clear differentiation of
anomaly types in both univariate and multivariate settings.

Each of the introduced methods are founded on independence assumptions though as de-
scribed, in practice, they may be adapted to handle some (moderate) autocorrelation. Ex-
tension of these approaches to more general, time-dependent settings is the subject of current
research. We hope to make such methods available within the package in due course, together
with recently developed methods that allow for cross-dependence between series Tveten, Eck-
ley, and Fearnhead (2022).

Each of the introduced methods also assumes that non-anomalous data is drawn from an
underlying data generating process where the mean and variance are constant. In practice,
trend and seasonality may be present within time series of interest. In such settings one
might consider detrending/deseasonalising the data prior to running, e.g., CAPA. We advise
care with such pre-processing, to ensure that anomalies of interest are not distorted by the
process.
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