
JSS Journal of Statistical Software
May 2024, Volume 109, Issue 9. doi: 10.18637/jss.v109.i09

fHMM: Hidden Markov Models for Financial Time
Series in R

Lennart Oelschläger
Bielefeld University

Timo Adam
University of St Andrews

Rouven Michels
Bielefeld University

Abstract

Hidden Markov models constitute a versatile class of statistical models for time series
that are driven by hidden states. In financial applications, the hidden states can often
be linked to market regimes such as bearish and bullish markets or recessions and peri-
ods of economics growth. To give an example, when the market is in a nervous state,
corresponding stock returns often follow some distribution with relatively high variance,
whereas calm periods are often characterized by a different distribution with relatively
smaller variance. Hidden Markov models can be used to explicitly model the distribution
of the observations conditional on the hidden states and the transitions between states,
and thus help us to draw a comprehensive picture of market behavior. While various im-
plementations of hidden Markov models are available, a comprehensive R package that is
tailored to financial applications is still lacking. In this paper, we introduce the R package
fHMM, which provides various tools for applying hidden Markov models to financial time
series. It contains functions for fitting hidden Markov models to data, conducting simu-
lation experiments, and decoding the hidden state sequence. Furthermore, functions for
model checking, model selection, and state prediction are provided. In addition to basic
hidden Markov models, hierarchical hidden Markov models are implemented, which can
be used to jointly model multiple data streams that were observed at different temporal
resolutions. The aim of the fHMM package is to give R users with an interest in financial
applications access to hidden Markov models and their extensions.

Keywords: hidden Markov models, hierarchical hidden Markov models, regime switching,
financial time series, decoding market behavior, R.

1. Introduction
In recent years, hidden Markov models (HMMs) have emerged as a popular tool for modeling
time series that are subject to state-switching over time (Zucchini, MacDonald, and Langrock
2016). In their basic form, HMMs comprise an observed state-dependent process that is driven

https://doi.org/10.18637/jss.v109.i09
https://orcid.org/0000-0001-5421-9313
https://orcid.org/0000-0001-9079-3259
https://orcid.org/0000-0002-5433-6197

2 fHMM: Hidden Markov Models for Financial Time Series in R

by a hidden state process, the latter of which is typically modeled using a discrete-time, finite-
state Markov chain. In financial applications, the states of the hidden Markov chain can often
be linked to market regimes such as bearish and bullish markets or recessions and periods of
economics growths. To give an example, when the market is in a nervous state, corresponding
stock returns often follow some distribution with relatively high variance, whereas when the
market is in a calm state, another distribution with relatively smaller variance is active. By
their dependence structure, HMMs naturally account for such disparate patterns and thus
allow us to infer hidden market regimes and their underlying dynamics from financial time
series.
Over the last decades, HMMs have become increasingly popular in finance. In various studies,
they have been applied to model business cycles (Kim and Nelson 1998; Gregoir and Lenglart
2000), to derive stylized facts of stock returns (Bulla and Bulla 2006; Nystrup, Madsen, and
Lindström 2015), and to model energy prices conditional on market regimes (Langrock, Adam,
Leos-Barajas, Mews, Miller, and Papastamatiou 2018; Adam, Langrock, and Kneib 2019b;
Adam, Mayr, and Kneib 2022), to name but a few examples. Lihn (2017) used HMMs to
model volatility in the Standard and Poor’s 500 index to investigate the conjecture that stock
returns exhibit negative correlation with volatility. Nguyen (2018) used HMMs to predict
closing prices to derive an optimal trading strategy, which was shown to outperform the
conventional buy-and-hold strategy, whereas Bulla, Mergner, Bulla, Sesboüe, and Chesneau
(2011); Nystrup et al. (2015); Nystrup, Madsen, and Lindström (2018) have shown that HMMs
prove useful in asset allocation and portfolio optimization applications. All these examples
demonstrate that HMMs constitute a versatile class of statistical models for time series that
naturally accounts for the state-switching patterns often found in financial data.
In R (R Core Team 2024), various implementations of HMMs are available. For general
purposes, the packages hmm (Himmelmann 2022), depmixS4 (Visser and Speekenbrink 2010),
and msm (Jackson 2011) are frequently used. In addition, a wide range of special-purpose
packages is available, for example moveHMM (Michelot, Langrock, and Patterson 2016) and
momentuHMM (McClintock and Michelot 2018) for modeling ecological time series, hsmm
(Bulla, Bulla, and Nenadić 2010) and mhsmm (O’Connell and Højsgaard 2011) for hidden
semi-Markov models, hmm.discnp (Turner 2022) and countHMM (Adam 2019) for modeling
count data, and LMest (Bartolucci, Pandolfi, and Pennoni 2017) for longitudinal data. In
Python (Van Rossum et al. 2011), the library hmmlearn (Lebedex 2022) can be used. For
MATLAB (The MathWorks Inc. 2021), the Hidden Markov Model toolbox (Chen 2022) is
available. In Stata (StataCorp 2019), HMMs are implemented in the mswitch() function. For
Julia (Bezanson, Edelman, Karpinski, and Shah 2017), the packages HiddenMarkovModels.jl
(Dalle 2024) and MarkovModels.jl (Ondel, Lam-Yee-Mui, Kocour, Filippo, and Lukás Burget
2021) are available. While ldhmm (Lihn 2019) implements a symmetric lambda distribution
framework for the study of share returns, a comprehensive R package tailored to financial
applications is still lacking.
In this paper, we introduce the R package fHMM (Oelschläger, Adam, and Michels 2024),
available from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.
org/package=fHMM. The package aims at complementing the above mentioned collection
of implementations by making HMMs accessible to R users with an interest in financial
time series. The package functionality can be classified into functions for data preparation,
model estimation, and model evaluation, which are illustrated in the flowchart displayed in
Figure 1. Functions for data preparation include a convenient interface to Yahoo Finance

https://CRAN.R-project.org/package=fHMM
https://CRAN.R-project.org/package=fHMM

Journal of Statistical Software 3

Figure 1: Flowchart. The main functions of the fHMM package are visualized using rectan-
gles, while objects are illustrated as ovals.

(https://www.finance.yahoo.com) that allows users to download stock market data. The
model is estimated in a maximum likelihood framework, where the likelihood is evaluated
using the forward algorithm, which is implemented in C++ and parallelized for fast and effi-
cient computation. Functions for model evaluation include pseudo-residual analyses and the
computation of model selection criteria. In addition to basic HMMs, the package also imple-
ments hierarchical HMMs (HHMMs). HHMMs (Oelschläger and Adam 2021) constitute an
extension that improves the model’s capability of distinguishing between short- and long-term
trends in the data and allows us to jointly model multiple data streams that were collected at
different temporal resolutions, such as monthly trade volumes and daily stock returns (Adam
and Oelschläger 2020).
The paper is structured as follows: In Section 2, we introduce HMMs and HHMMs, where we
focus on their dependence structure and the underlying model assumptions. In Sections 3–8,

https://www.finance.yahoo.com

4 fHMM: Hidden Markov Models for Financial Time Series in R

we illustrate a typical fHMM workflow, explaining how to specify a model, how to download,
prepare, and simulate data, how to fit a model, how to decode the hidden states, how to use
a fitted model for state forecasting, how to check the goodness of fit, and how to perform
model selection. Each section begins with some theoretical background, which is followed by
illustrating examples using stock market data from the Deutscher Aktienindex (DAX), the
Standard & Poor’s 500 (SPX) and US unemployment rates, as well as simulated data. Each
of these sections is complemented by code chunks, which cannot only be used to replicate the
examples given in this paper but also serve as a starting point for R users with an interest in
financial time series who want to apply HMMs to their own data. Section 9 concludes and
gives an outlook of anticipated, future extensions of the fHMM package.

2. Model definition
Hidden Markov models (HMMs) constitute a modeling framework for time series where a
sequence of observations is assumed to depend on a hidden state process. The peculiarity is
that, instead of the observation process, the state process cannot be directly observed. How-
ever, the hidden states comprise information about the environment the model is applied on.
The hidden state process and the observed state-dependent process are connected as follows:
we assume that for each point in time t = 1, . . . , T , a hidden process (St)t=1,...,T is in one of
N possible states. Then, depending on the active state St ∈ {1, . . . , N}, the observation Xt

from the state-dependent process (Xt)t=1,...,T is assumed to be generated by the corresponding
state-dependent distribution f (St). We assume (St)t to be Markovian, i.e., the active state
at time t only depends on the previous state at time t − 1. Henceforth, the state process is
identified by its initial distribution δ = (δi), δi = Pr(S1 = i), i = 1, . . . , N , and its transition
probability matrix (t.p.m.) Γ = (γij), γij = Pr(St = j | St−1 = i), i, j = 1, . . . , N, t = 2, . . . , T .
Furthermore, (Xt)t=1,...,T satisfies the conditional independence assumption, i.e., the obser-
vation Xt depends on St, but is independent from previous observations or states.
When modeling financial time series, the different states can serve as proxies for the current
market situation, e.g., calm and nervous. Even though these moods cannot be directly ob-
served, price changes or trading volumes (which can be assumed to depend on the current
mood of the market) are observable. Thereby, using a hidden Markov process, we can infer
which mood is active at any point in time and how the different moods alternate. Depending
on the current mood, a price change is generated by a different distribution. These distribu-
tions characterize the moods in terms of expected return and volatility. For example, we can
explicitly model price changes at time t by different normal distributions whose mean and
variance depend on the current state, St.
Following Zucchini et al. (2016), we assume that the initial distribution δ equals the stationary
distribution π, where π = πΓ, i.e., the stationary and henceforth the initial distribution is
determined by Γ.1 This is reasonable from a practical point of view: On the one hand, the
hidden state process has been evolving for some time before we start to observe it and hence
can be assumed to be stationary. On the other hand, setting δ = π reduces the number of
parameters that need to be estimated, which is convenient from a computational perspective.

1A note on the existence of a stationary distribution: If the Markov process is irreducible, it has a unique
distribution, which is the solution to the equation system π = πΓ. If, additionally, the Markov process is
aperiodic, its state distribution converges to the stationary distribution, see Norris (1997). Irreducibility and
aperiodicity are usually satisfied in practice.

Journal of Statistical Software 5

Figure 2: Dependence structure of an HHMM. The coarse-scale observations, Xt, depend on
the state of the coarse-scale Markov chain, St. The fine-scale observations, X∗

t,t∗ , depend on
the state of fine-scale Markov chain, S∗

t,t∗ , where the fine-scale HMM that is active depends
on the state of the coarse-scale Markov chain.

HHMMs constitute a flexible extension of basic HMMs that can be used to jointly model
multiple data observed on two different time scales (Oelschläger and Adam 2021). The two
time series, one on a coarser and one on a finer scale, differ in the number of observations,
e.g., monthly observations on the coarser scale and daily observations on the finer scale.
Following the concept of HMMs, we can model both state-dependent time series jointly.
First, we treat the time series on the coarser scale as stemming from an ordinary HMM,
which we refer to as the coarse-scale HMM: At each time point t of the coarse-scale time
space {1, . . . , T}, a hidden process (St)t selects one state from the coarse-scale state space
{1, . . . , N}. We refer to (St)t as the hidden coarse-scale state process. Depending on which
state is active at time t, one of N possible distributions f (1), . . . , f (N) realizes the observation
Xt. The process (Xt)t is called the observed coarse-scale state-dependent process. The
processes (St)t and (Xt)t have the same properties as before, namely (St)t is a first-order
Markov process and (Xt)t satisfies the conditional independence assumption. This dependence
structure is visualized in the upper part of Figure 2.
For the fine-scale time series, the observed data are split into T distinct chunks, each of
them having a correspondence to the t-th coarse-scale time point. The hierarchical struc-
ture arises naturally: For each chunk, we model the corresponding data points via the fine-
scale HMM that is selected by the hidden coarse-scale state St = i. Thus, each fine-scale
HMM consists of two stochastic processes: The hidden fine-scale process (S∗

t,t∗)t∗ selecting
states from {1, . . . , N∗}, the fine-scale state space, for each time point t∗ in {1, . . . , T ∗}, the
fine-scale time space, and the observed fine-scale process (X∗

t,t∗)t∗ , whose observations are
assumed to depend on one of N∗ possible distributions f∗(i,1), . . . , f∗(i,N∗), chosen depend-
ing on the active fine-scale state. By construction, each fine-scale HMM contains an own
t.p.m. Γ∗(i), initial distribution δ∗(i), stationary distribution π∗(i), and state-dependent distri-
butions f∗(i,1), . . . , f∗(i,N∗). Similar to the coarse-scale HMM, the hidden fine-scale process is
Markovian and satisfies the conditional independence assumption. In contrast, the observed

6 fHMM: Hidden Markov Models for Financial Time Series in R

fine-scale process has exclusive dependence on the active state of the hidden fine-scale process.
This dependence structure is visualized in Figure 2.

3. Model specification
In the fHMM package, models are specified by a named list of controls that is passed to the
set_controls() function. This usually constitutes the first step when using the package, see
Figure 1. The function checks the specifications and returns an ‘fHMM_controls’ object, which
stores all settings and thereby provides the information required for other functionalities. In
the following, we demonstrate three example specifications that should help the user to tailor
an (hierarchical) HMM to their need. The examples are continued in the following sections.
All possible specifications are documented in detail on the function’s help page, which can be
accessed from the R console via help(set_controls, package = "fHMM").

Example 1: DAX. We fit a 3-state HMM to the closing prices of the DAX (Janßen
and Rudolph 1992). Assume that the data are available in the global environment as a
data.frame called dax. Such data can be obtained directly from Yahoo Finance via the
convenience function download_data(), see Section 4.
The following code chunk sets the number states = 3 of hidden states. Any number greater
than or equal to 2 is possible. Next, sdds = "t" specifies state-dependent t distributions,
which provide a popular choice for modeling log-returns (Platen and Rendek 2008). Al-
ternatively, sdds = "gamma" specifies Gamma distributions, which are useful for modeling
trading volumes, see Adam and Oelschläger (2020). Additionally, normal, log-normal, and
Poisson distributions are available via sdds = "normal", sdds = "lognormal", and sdds =
"poisson", respectively. The data entry sets the data.frame (or, alternatively, the path
to a .csv-data file), the file’s column that contains the dates (date_column = "Date"), and
the data (date_column = "Close"). The specification logreturns = TRUE transforms the
data to log-returns. The entries from and to can be used to restrict the observation period.
Finally, details of the fitting process can be specified via the fit entry, see Section 5.

R> contr_dax <- list(states = 3, sdds = "t",
+ data = list(file = dax, date_column = "Date", data_column = "Close",
+ logreturns = TRUE, from = "2000-01-03", to = "2022-12-31"),
+ fit = list(runs = 100, iterlim = 300, gradtol = 1e-6, steptol = 1e-6))

Passing this list to the set_controls() function returns an ‘fHMM_controls’ object, which
contains the specifications. Any control that is not specified by the user is set to default
settings, which are documented inside the set_controls() function.

R> contr_dax <- set_controls(contr_dax)
R> class(contr_dax)

[1] "fHMM_controls" "list"

Example 2: Simulation. If the data entry is not specified, data are simulated according
to the model specification. Simulation typically serves to assess the properties of estimation

Journal of Statistical Software 7

algorithms either for research or in a bootstrap-like fashion, as can be seen for example in
Oelschläger (2019). The following code chunk specifies a 2-state HMM with state-dependent
Gamma distributions, where the expected values2 for state 1 and 2 are fixed to 1 and 2,
respectively. The model is fitted to 200 data points (horizon = 200) simulated according
to this specification based on runs = 50 randomly initialized numerical optimization runs of
the model’s likelihood function.

R> contr_sim <- list(states = 2, sdds = "gamma(mu = 1|2)", horizon = 200,
+ fit = list(runs = 50))
R> contr_sim <- set_controls(contr_sim)

Printing the ‘fHMM_controls’ object summarizes the model specification:

R> print(contr_sim)

fHMM controls:
* hierarchy: FALSE
* data type: simulated
* number of states: 2
* sdds: gamma(mu = 1|2)
* number of runs: 50

Example 3: Multiple data streams. Hierarchical HMMs enable joint modeling of mul-
tiple data streams that were collected at different temporal resolutions. As an illustration,
we apply the model to 50 years of monthly US unemployment rates (OECD 2023) and S&P
500 closing prices. Both data sets (unemp and spx) are contained in the fHMM package; the
data are visualized in Section 4. The following is an example specification:

R> contr_hhmm <- list(hierarchy = TRUE, states = c(3, 2),
+ sdds = c("t", "t"), period = "m",
+ data = list(file = list(unemp, spx),
+ data_column = c("rate_diff", "Close"),
+ date_column = c("date", "Date"),
+ from = "1970-01-01", to = "2020-01-01",
+ logreturns = c(FALSE, TRUE)),
+ fit = list(runs = 50, iterlim = 1000, gradtol = 1e-6, steptol = 1e-6))
R> contr_hhmm <- set_controls(contr_hhmm)

When setting hierarchy = TRUE, specifications for both layers must be made. In particular,
states = c(3, 2) specifies 3 coarse-scale and 2 fine-scale states, respectively, while sdds =
c("t", "t") selects state-dependent t distributions for both layers. Via period = "m", we
specify a monthly fine-scale time horizon. Here, we can choose between "w", "q", and "y" for
weekly, quarterly, and yearly time horizons, respectively.3 As coarse-scale observations, we

2Expected value and standard deviation of a Gamma distribution are obtained by means of a parameter
transformation.

3If the coarse-scale data had a finer temporal resolution than defined by period, the data can be merged
by specifying a function via the merge entry.

8 fHMM: Hidden Markov Models for Financial Time Series in R

select column rate_diff of data.frame unemp, which contains relative differences in unem-
ployment rate. As fine-scale observations, we select daily closing prices of the S&P 500 index.
The data streams are synchronized via the date columns specified in date_column. The ob-
servation period is restricted to 50 years via from = "1970-01-01" and to = "2020-01-01".
With logreturns = c(FALSE, TRUE), we ensure that only the fine-scale data are transformed
to log-returns.

4. Data management
Empirical data for modeling must be provided as a data.frame in set_controls(), see
the previous section. Alternatively, the path to a comma-separated values (.csv) file can be
specified. The package includes the convenience function download_data() for downloading
daily stock market data directly from Yahoo Finance in the required format. The function
call is download_data(symbol, from, to, file), where

• symbol is the stock’s symbol that has to match the official symbol on Yahoo Finance,

• from and to define the desired time interval (in the format "YYYY-MM-DD"),

• and file optionally specifies a file path to save the data.

For example, the 21st century data of the DAX can be downloaded via the following line:

R> dax <- download_data(symbol = "^GDAXI", from = "2000-01-01",
+ to = "2022-12-31")
R> head(dax)

Date Open High Low Close Adj.Close Volume
1 2000-01-03 6961.72 7159.33 6720.87 6750.76 6750.76 43072500
2 2000-01-04 6747.24 6755.36 6510.46 6586.95 6586.95 46678400
3 2000-01-05 6585.85 6585.85 6388.91 6502.07 6502.07 52682800
4 2000-01-06 6501.45 6539.31 6402.63 6474.92 6474.92 41180600
5 2000-01-07 6489.94 6791.53 6470.14 6780.96 6780.96 56058900
6 2000-01-10 6785.47 6975.26 6785.47 6925.52 6925.52 42006200

Example 1: DAX (continued). Based on the specification from the previous section,
the prepare_data() function prepares and returns the model data as an ‘fHMM_data’ object.
This object can then be passed to the fit_model() function for model fitting in the next
step, see Section 5. The summary() method provides an overview of the data.

R> data_dax <- prepare_data(contr_dax)
R> summary(data_dax)

Summary of fHMM empirical data
* number of observations: 5882
* data source: data.frame
* date column: Date
* log returns: TRUE

Journal of Statistical Software 9

Year
2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022

2200

9240

16300

C
lo

se

Lo
g−

re
tu

rn
s

−0.13

0

0.11

1 2 3

1: 9/11 terrorist attack 2: Bankruptcy of Lehman Brothers 3: First COVID−19 case in Germany

DAX time series

Figure 3: Time series of daily DAX prices and log-returns marked with historical events with
a potential influence.

The data can be visualized in Figure 3 using the plot() method. To facilitate interpretation,
historical events with a potential influence on the time series can be highlighted as follows:

R> events_dax <- fHMM_events(list(
+ dates = c("2001-09-11", "2008-09-15", "2020-01-27"),
+ labels = c("9/11 terrorist attack", "Bankruptcy of Lehman Brothers",
+ "First COVID-19 case in Germany")))
R> plot(data_dax, events = events_dax)

We see that the considered events were followed by periods of dropping prices (top chart)
and increased volatility in log-returns (bottom chart). Section 6 complements this plot by
the decoded market regimes based on the fitted HMM.

Example 2: Simulation (continued). As mentioned in the previous section, if the data
argument in the model’s controls is unspecified, data are simulated according to the model
specification. True model parameters can be selected by defining an ‘fHMM_parameters’ object
and passing it to prepare_data(), for example:

R> pars <- fHMM_parameters(controls = contr_sim,
+ Gamma = matrix(c(0.9, 0.2, 0.1, 0.8), nrow = 2), sigma = c(0.1, 0.5))
R> data_sim <- prepare_data(contr_sim, true_parameters = pars, seed = 1)

The plot of the simulated time series is shown in Figure 4 and is produced by the code below.
It shows the state persistence (induced by γ11 = 0.9 and γ22 = 0.8) and the different standard

10 fHMM: Hidden Markov Models for Financial Time Series in R

Index

S
im

ul
at

ed
 d

at
a

1 200

0

3.2
Time series

Figure 4: Simulated time series from Example 2.

Year
1970 1974 1978 1982 1986 1990 1994 1998 2002 2006 2010 2014 2018

62

1610

3150

C
lo

se

F
in

e−
sc

al
e

da
ta

−0.23

0

0.11

−0.35

0

0.72

−0.35

0.72

C
oa

rs
e−

sc
al

e
da

ta

S&P 500 and differences in US unemployement rate

Figure 5: S&P 500 daily closing prices from 1970 to 2020 (top panel) and their correspond-
ing log-returns (middle panel). The bottom panel shows the monthly differences in the US
unemployment rate.

deviations (σ1 = 0.1 and σ2 = 0.5) of the state-dependent Gamma distributions. Remember
that the expected values were fixed to µ1 = 1 and µ2 = 2.

R> plot(data_sim)

Journal of Statistical Software 11

Example 3: Multiple data streams (continued). Data preparation for the HHMM
application can be done analogously:

R> data_hhmm <- prepare_data(contr_hhmm)

The following code produces Figure 5, which displays the S&P 500 closing prices from 1970
to 2020 in the top chart and the corresponding log-returns in the middle chart. The bottom
chart shows the monthly changes in the US unemployment rate.

R> plot(data_hhmm)

In the following section, we will utilize the hierarchical HMM to investigate the relationship
between these two economic indicators.

5. Model estimation
The fHMM package implements the maximum likelihood method for model estimation. In
the following, the likelihood function of an HHMM is derived, the non-hierarchical case can be
deduced. We also discuss challenges related to the numerical maximization and subsequently
estimate the three running example models.
Note that an HHMM can be treated as an HMM with two conditionally independent data
streams; the coarse-scale observations on the one hand and the corresponding chunk of fine-
scale observations connected to a fine-scale HMM on the other hand. To derive the likelihood
of an HHMM, we start by computing the likelihood of each chunk of fine-scale observations
being generated by each fine-scale HMM.
To fit the i-th fine-scale HMM, with model parameters θ∗(i) = (δ∗(i), Γ∗(i), (f∗(i,k))k) to the
t-th chunk of fine-scale observations, which is denoted by (Xt,t∗)t∗ , we consider the fine-scale
forward probabilities

α
∗(i)
k,t∗ = f∗(i)(X∗

t,1, . . . , X∗
t,t∗ , S∗

t,t∗ = k),

where t∗ = 1, . . . , T ∗ and k = 1, . . . , N∗. Using the fine-scale forward probabilities, the
fine-scale likelihoods can be obtained from the law of total probability as

LHMM(θ∗(i) | (X∗
t,t∗)t∗) =

N∗∑
k=1

α
∗(i)
k,T ∗ .

The forward probabilities can be calculated recursively as

α
∗(i)
k,1 = δ

∗(i)
k f∗(i,k)(X∗

t,1),

α
∗(i)
k,t∗ = f∗(i,k)(X∗

t,t∗)
N∗∑
j=1

γ
∗(i)
jk α

∗(i)
j,t∗−1, t∗ = 2, . . . , T ∗.

The transition from the likelihood function of an HMM to the likelihood function of an HHMM
is straightforward: Consider the coarse-scale forward probabilities

αi,t = f(X1, . . . , Xt, (X∗
1,t∗)t∗ , . . . , (X∗

t,t∗)t∗ , St = i),

12 fHMM: Hidden Markov Models for Financial Time Series in R

where t = 1, . . . , T and i = 1, . . . , N . The likelihood function of the HHMM results as

LHHMM(θ, (θ∗(i))i | (Xt)t, ((X∗
t,t∗)t∗)t) =

N∑
i=1

αi,T .

The coarse-scale forward probabilities can be calculated similarly:

αi,1 = δiLHMM(θ∗(i) | (X∗
1,t∗)t∗)f (i)(X1),

αi,t = LHMM(θ∗(i) | (X∗
t,t∗)t∗)f (i)(Xt)

N∑
j=1

γjiαj,t−1, t = 2, . . . , T.

To account for parameter constraints associated with the transition probabilities (and po-
tentially the parameters of the state-dependent distributions), we use parameter transforma-
tions. To ensure that the entries of the t.p.m.s fulfill non-negativity and the unity condition,
we estimate unconstrained values (ηij)i ̸=j for the non-diagonal entries of Γ and derive the
probabilities using the multinomial logit link

γij = exp(ηij)
1 + ∑

k ̸=i exp(ηik) , i ̸= j

rather than estimating the probabilities (γij)i,j directly. The diagonal entries result from the
unity condition as

γii = 1 −
∑
j ̸=i

γij .

Furthermore, variances are strictly positive, which can be achieved by applying an exponential
transformation to the unconstrained estimator.
Two more technical difficulties arise: First, we often face numerical under- or overflow, which
can be addressed by maximizing the logarithm of the likelihood and incorporating constants
in a conducive way, see Oelschläger and Adam (2021) for the details. Second, as the likelihood
is maximized with respect to a relatively large number of parameters, the obtained maximum
can be a local rather than the global one. To avoid this problem, it is recommended to run
the maximization multiple times from different, possibly randomly selected starting points,
and to choose the model that corresponds to the highest likelihood (Zucchini et al. 2016). For
efficient initialization, the fHMM package uses data clustering in combination with the first
and second data moments as a basis for the initial guesses.

Example 1: DAX (continued). In Section 4, we defined the ‘fHMM_data’ object data_dax.
This object can be directly passed to the fit_model() function that numerically maximizes
the model’s (log-) likelihood function as described above:4

R> dax_model_3t <- fit_model(data_dax, seed = 2, ncluster = 10)

The coef() method returns a data.frame of the estimated model coefficients along with
1−alpha confidence intervals (alpha = 0.05 being the default) obtained via the inverse
Fisher information (lb stands for lower- and ub for upper-bound of the intervals, respec-
tively):

4For faster computation, the optimization runs can be parallelized by setting the function’s ncluster
argument to a value greater than 1. The seed argument controls for the randomly generated initial values.

Journal of Statistical Software 13

R> coef(dax_model_3t, alpha = 0.05)

lb estimate ub
Gamma_2.1 2.717964e-03 4.997848e-03 9.133754e-03
Gamma_3.1 9.152749e-13 9.066110e-13 8.928059e-13
Gamma_1.2 1.011260e-02 1.850867e-02 3.363877e-02
Gamma_3.2 1.508443e-02 2.440749e-02 3.926302e-02
Gamma_1.3 2.510224e-13 2.488932e-13 2.450564e-13
Gamma_2.3 1.189853e-02 1.894514e-02 2.997985e-02
mu_1 -3.866569e-03 -1.786859e-03 2.928515e-04
mu_2 -7.968575e-04 -2.621635e-04 2.725305e-04
mu_3 9.636588e-04 1.271135e-03 1.578610e-03
sigma_1 2.354319e-02 2.588088e-02 2.845070e-02
sigma_2 1.225935e-02 1.300551e-02 1.379708e-02
sigma_3 5.392043e-03 5.835334e-03 6.315069e-03
df_1 5.539083e+00 1.083040e+01 2.117634e+01
df_2 6.985181e+00 4.762837e+01 3.247534e+02
df_3 3.974572e+00 5.250206e+00 6.935252e+00

The t.p.m. associated with the hidden state process was estimated as

Γ̂ =

0.981 0.019 0.000
0.005 0.976 0.019
0.000 0.024 0.976

 ,

which implies the stationary distribution (0.132, 0.489, 0.379). The stationary state probabil-
ities can be regarded as the long-term proportion of time that the state process spends in the
different states. State 1 corresponds to the highest marginal volatility (σ̂1 = 25.9 · 10−3) and
lowest marginal expected return (µ̂1 = −1.8 · 10−3), while state 3 corresponds to the lowest
marginal volatility (σ̂3 = 5.8 · 10−3) and highest marginal expected return (µ̂3 = 1.3 · 10−3).
The estimated degrees of freedom for state 2 are found to be very large, leading to the
conclusion that the state-dependent t distribution approaches a normal distribution. The
distributions for states 1 and 3 appear to require heavier tails. Adding plot_type = "sdds"
to the plot() method visualizes the estimated distributions for the different states.
It is well known that likelihood optimization of mixture models is highly sensitive to the
initial values supplied to the numerical optimizer (Shireman, Steinley, and Brusco 2017). To
demonstrate the effect of local optima in the HMM likelihood, we can visualize the optimiza-
tion results by adding plot_type = "ll", which plots the differences in log-likelihood value
over multiple optimization runs (the best run is marked in red). The following code produces
the output in Figure 6.

R> par(mfrow = c(1, 2))
R> plot(dax_model_3t, plot_type = c("ll", "sdds"))

Example 2: Simulation (continued). Fitting an HMM to the simulated data is analogue.
The summary() method gives an overview of the estimated model.

14 fHMM: Hidden Markov Models for Financial Time Series in R

0 20 40 60 80 100

Relative log-likelihoods

Estimation run

-590

-197

-158

-22

-0.05 0.00 0.05

0

10

20

30

40

50

60

State-dependent distributions

Figure 6: Differences in log-likelihood value over multiple optimization runs (left panel) and
estimated distributions for the different states (right panel) for the DAX example.

R> sim_model_2gamma <- fit_model(data_sim, seed = 1)
R> summary(sim_model_2gamma)

Summary of fHMM model

simulated hierarchy LL AIC BIC
1 TRUE FALSE 13.04795 -18.09589 -4.902621

State-dependent distributions:
gamma(mu = 1|2)

Estimates:
lb estimate ub true

Gamma_2.1 0.07855 0.14334 0.2472 0.2
Gamma_1.2 0.03909 0.07325 0.1331 0.1
sigma_1 0.09163 0.10423 0.1186 0.1
sigma_2 0.35833 0.43239 0.5217 0.5

In simulated settings, we can assess the accuracy of the estimates by comparing them to
the true model coefficients (column true), providing an evaluation of the model’s ability to

Journal of Statistical Software 15

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8

0

1

2

3

4

State−dependent distributions

Coarse−scale state 1
Coarse−scale state 2
Coarse−scale state 3

−0.10 −0.05 0.00 0.05 0.10

0

5

10

15

20

Conditional on coarse−scale state 1

Fine−scale state 1
Fine−scale state 2

−0.10 −0.05 0.00 0.05 0.10

0

10

20

30

40

Conditional on coarse−scale state 2

Fine−scale state 1
Fine−scale state 2

−0.10 −0.05 0.00 0.05 0.10

0

20

40

60

80

Conditional on coarse−scale state 3

Fine−scale state 1
Fine−scale state 2

Figure 7: Estimated state-dependent distributions at both the coarse-scale and fine-scale layer
for the multiple data streams example.

reproduce the true parameters. We see that in this example, the true parameters are relatively
close to the estimates and lie within the 95% confidence intervals.

Example 3: Multiple data streams (continued). The HHMM is fitted via:

R> unemp_spx_model_3_2 <- fit_model(data_hhmm, seed = 1, ncluster = 25)

The estimated model is saved in the fHMM package and can be accessed via:

R> data("unemp_spx_model_3_2", package = "fHMM")

The estimates can be obtained through the coef() method as previously demonstrated. To
maintain brevity, the output is omitted in this instance. We can visualize in Figure 7 the
estimated state-dependent distributions at both the coarse-scale and fine-scale layer as follows:

R> plot(unemp_spx_model_3_2, plot_type = "sdds")

Coarse-scale state 1 (which is colored in red) captures periods of rising unemployment, which
are linked to increased market volatility (as indicated by the conditional fine-scale distribu-
tions that are characterized by increased standard deviations). In contrast, when coarse-scale

16 fHMM: Hidden Markov Models for Financial Time Series in R

Year
1970 1974 1978 1982 1986 1990 1994 1998 2002 2006 2010 2014 2018

62

1610

3150

C
lo

se

F
in

e−
sc

al
e

da
ta

−0.23

0

0.11

1 2 3

1: 1980s recession 2: Dot−com bubble 3: Global financial crisis 2008

Coarse−scale state 1
Coarse−scale state 2
Coarse−scale state 3

Fine−scale state 1
Fine−scale state 1
Fine−scale state 1

Fine−scale state 2
Fine−scale state 2
Fine−scale state 2

−0.35

0

0.72

−0.35

0.72

C
oa

rs
e−

sc
al

e
da

ta

Decoded time series

Figure 8: Decoded time series of S&P 500 daily closing prices from 1970 to 2020 (top panel)
and their corresponding log-returns (middle panel). The bottom panel shows the decoded
monthly changes in the US unemployment rate.

state 3 (which is colored in green) is active, then the unemployment rate tends to decrease,
and the S&P 500 exhibits less volatility. These conclusions are confirmed by the decoded time
series of daily closing prices in Figure 8, which are displayed in the top chart. The mathe-
matical details behind decoding the hidden states are presented in the following section.

R> unemp_spx_model_3_2 <- decode_states(unemp_spx_model_3_2)
R> events_spx <- fHMM_events(list(
+ dates = c("1980-01-01", "2000-03-01", "2008-01-01"),
+ labels = c("1980s recession", "Dot-com bubble",
+ "Global financial crisis 2008")))
R> plot(unemp_spx_model_3_2, events = events_spx)

The 1980s recession impacted the S&P 500 and US unemployment rate, causing a decline
in the index and a rise in unemployment. The late 1990s saw the S&P 500 rise due to tech
growth, but eventually declined from 2000 to 2002 with relatively stable unemployment. The
2008 financial crisis resulted in a significant decline in the stock market and a peak in US
unemployment in late 2009.

Journal of Statistical Software 17

6. State decoding and prediction
For financial markets, it is of special interest to infer the hidden states in order to gain insight
about the actual market situation and for prediction. The Viterbi algorithm (Forney 1973) is
a recursive scheme that enables to find the most likely trajectory of hidden states under the
estimated HMM. To this end, we follow Zucchini et al. (2016) and define

ζ1i = Pr(S1 = i, X1 = x1) = δipi(x1)
ζti = max

s1,...,st−1
Pr(St−1 = st−1, St = i, Xt = xt)

for i = 1, . . . , N (the index for the states) and t = 2, . . . , T (the index of time). Then, the
trajectory of most likely states i1, . . . , iT can be calculated recursively backwards from

iT = argmax
i=1,...,N

ζT i

it = argmax
i=1,...,N

(ζtiγi,it+1), t = T − 1, . . . , 1.

Transferring the state decoding to HHMMs is straightforward via decoding the coarse-scale
states first and afterwards, by using this information, decoding the fine-scale state process,
see Adam et al. (2019a).
In the following, we introduce the decode_states() function for state decoding and the
predict() method for forecasting. As all of the functionalities of the fHMM package pre-
sented in the remainder of this paper are completely analogue for the hierarchical and the
simulated case, respectively, we will focus our attention on example 1 and invite the reader
to apply the methods to example 2 and 3 on their own.

Example 1: DAX (continued). The hidden states of the 3-state HMM for the DAX can
be decoded via the decode_states() function, which updates an ‘fHMM_model’ object. The
state sequence is saved as argument dax_model_3t$decoding:

R> dax_model_3t <- decode_states(dax_model_3t)
R> table(dax_model_3t$decoding)

1 2 3
704 2926 2252

The decoded time series can then be visualized (see Figure 9) by using the plot() method:5

R> plot(dax_model_3t, events = events_dax)

Figure 9 displays that the first state can be interpreted as a bearish market, indicated by
negative log-returns on average and a high volatility. In contrast, the third state is a proxy
for a bull market, characterized by mostly positive log-returns and low volatility. The in-
termediate, second state serves as a transition state with balanced log-returns and moderate
volatility (see, e.g., Lihn 2017).

5Notice that the model is invariant to permutations of the state labels. The fHMM package pro-
vides the option to switch labels after state decoding via the reorder_states() function. For example,
reorder_states(dax_model_3t, state_order = 3:1) reverses the order.

18 fHMM: Hidden Markov Models for Financial Time Series in R

Year
2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022

2200

9240

16300

C
lo

se

Lo
g−

re
tu

rn
s

−0.13

0

0.11

1 2 3

1: 9/11 terrorist attack 2: Bankruptcy of Lehman Brothers 3: First COVID−19 case in Germany

State 1
State 2
State 3

Decoded time series

Figure 9: Decoded time series of the daily DAX prices and of the corresponding log-returns.

After decoded the hidden states, we use the estimated transition probabilities to compute
the state probabilities of the subsequent observations. Based on these probabilities and in
combination with the estimated state-dependent distributions, the subsequent observations
can be predicted, compare Zucchini et al. (2016):

R> predict(dax_model_3t, ahead = 5)

state_1 state_2 state_3 lb estimate ub
1 0.00000 0.02441 0.97559 -0.01065 0.00123 0.01312
2 0.00012 0.04773 0.95224 -0.01093 0.00120 0.01332
3 0.00036 0.06974 0.92990 -0.01120 0.00116 0.01352
4 0.00070 0.09077 0.90835 -0.01145 0.00113 0.01371
5 0.00114 0.11079 0.88807 -0.01171 0.00110 0.01390

Columns 1 to 3 show the state probabilities for the next ahead = 5 trading days. The values
in columns 4 to 6 (the bounds of the 95% confidence intervals and the point predictions) are
log-returns, which obviously can be transformed to index values or relative returns.

7. Model checking
Checking whether a fitted model describes the data well is an essential part of any model-
ing process. In the HMM setting, this is typically done by analyzing the so-called pseudo-
residuals (Zucchini et al. 2016). Since the observations are modeled by different distributions
(depending on the active state), they have to be transformed on a common scale, which can
be done as follows: If the observation Xt has the invertible distribution function FXt , then
Zt = Φ−1(FXt(Xt)) is standard normally distributed, where Φ denotes the cumulative dis-
tribution function of the standard normal distribution. The observations are modeled well if

Journal of Statistical Software 19

0 1000 2000 3000 4000 5000 6000

−4

−2

0

2

4

Residual plot

Index

P
se

ud
o−

re
si

du
al

s

Histogram with normal density

Pseudo−residuals

D
en

si
ty

−4 −2 0 2 4

0.0

0.1

0.2

0.3

0.4

−4 −2 0 2 4

−4

−2

0

2

4

Normal Q−Q plot

Normal quantiles

Q
ua

nt
ile

s
of

 p
se

ud
o−

re
si

du
al

s

0 10 20 30

0.0

0.2

0.4

0.6

0.8

1.0

Lag

A
ut

oc
or

re
la

tio
n

of
 p

se
ud

o−
re

si
du

al
s Autocorrelation plot

Figure 10: Diagnostic plots for the residuals in the DAX example.

the pseudo-residuals (Zt)t are approximately standard normally distributed and exhibit no
autocorrelation. In the hierarchical case, we first decode the coarse-scale state process using
the Viterbi algorithm. Subsequently, we assign each coarse-scale observation its distribution
function under the fitted model and perform the transformation described above. Using the
Viterbi-decoded coarse-scale states, we then treat the fine-scale observations analogously.

Example 1: DAX (continued). Via the compute_residuals() function, pseudo-residuals
can be computed (provided that the states have been decoded beforehand). The function up-
dates the dax_model_3t object in the following line:

R> dax_model_3t <- compute_residuals(dax_model_3t)

The normality and independence of the pseudo-residuals can be verified visually (see Fig-
ure 10):

R> plot(dax_model_3t, plot_type = "pr")

Alternatively, the residuals can be extracted from the model object via the residuals()
method for normality tests, for example a Jarque-Bera test (Jarque and Bera 1987). Here,
the test is unable to reject the null hypothesis that the data are normally distributed.

R> res <- residuals(dax_model_3t)
R> tseries::jarque.bera.test(res)

20 fHMM: Hidden Markov Models for Financial Time Series in R

Jarque Bera Test

data: res
X-squared = 2.2705, df = 2, p-value = 0.3213

8. Model selection
Model selection involves the choice of a family for the state-dependent distributions and the
selection of the number of states. Common model selection tools are information criteria,
such as the Akaike information criterion (AIC, Akaike 1974) or the Bayesian information
criterion (BIC, Schwarz 1978). They are defined as

AIC = −2 log L(H)HMM + 2p;
BIC = −2 log L(H)HMM + log(T)p,

where p denotes the number of model parameters and T is the number of observations.6
Both criteria aim at finding a compromise between model fit and model complexity, where a
model with a lower value is to be preferred. For an in-depth discussion of pitfalls, practical
challenges, and pragmatic solutions regarding model selection, we refer to Pohle, Langrock,
Van Beest, and Schmidt (2017).

Example 1: DAX (continued). We compare our 3-state HMM with state-dependent t
distributions fitted to the DAX data to an HMM with 2 states and normal state-dependent
distributions. We assume that the competing model was estimated using the same data and
can be accessed as object dax_model_2n. The compare_models() function takes (arbitrarily
many) ‘fHMM_model’ objects as input and returns the number of parameters, the log-likelihood
value, the AIC, and the BIC. In this example, both AIC and BIC clearly prefer the more
complex model:

R> compare_models(dax_model_2n, dax_model_3t)

parameters loglikelihood AIC BIC
dax_model_2n 6 17403.86 -34795.71 -34755.64
dax_model_3t 15 17650.30 -35270.61 -35170.41

9. Conclusions
The fHMM package aims at making HMMs accessible to R users with an interest in financial
time series. It contains functions to download, prepare, and simulate data, to fit models, to
decode the hidden states, to use a fitted model for state forecasting, to check the goodness
of fit, and to perform model selection. The fHMM package has a user-friendly design: All
model specifications are centralized in a list of controls, four different package objects can be

6In the hierarchical case, T equals the sum of coarse-scale and fine-scale observations.

Journal of Statistical Software 21

seamlessly passed between functions, and its usage follows a clear workflow (see Figure 1). In
this paper, we illustrated a typical workflow using three illustrating examples (applications to
stock market data from the DAX and S&P 500 as well as a model fitted to simulated data) that
serves as a starting point for R users who want to apply HMMs and their extensions to their
own data. Current limitations of the fHMM package include (1) the confined set of available
state-dependent distributions for the observations, (2) the restriction to a discrete state space,
(3) the restriction to a discretized time dimension, (4) the limitation of a maximum number of
two hierarchies in HHMMs, and (5) the need to specify the number of hidden states in advance
of the model estimation. We aim to address these limitations in future package versions and
welcome suggestions from the community for additional features to be implemented.

Computational details
The results presented in this paper were obtained using R 4.4.0 with the fHMM 1.3.1 package.
R itself and all packages used are available from the Comprehensive R Archive Network
(CRAN) at https://CRAN.R-project.org/.

Acknowledgments
We appreciate the editor and anonymous reviewer’s insightful feedback on our software im-
plementation and article, and we are particularly thankful to the reviewer who suggested the
application in Example 3.

References

Adam T (2019). countHMM: Penalized Estimation of Flexible Hidden Markov Models for
Time Series of Counts. R package version 0.1.0, URL https://CRAN.R-project.org/
package=countHMM.

Adam T, Griffiths CA, Leos-Barajas V, Meese EN, Lowe CG, Blackwell PG, Righton D,
Langrock R (2019a). “Joint Modelling of Multi-Scale Animal Movement Data Using Hi-
erarchical Hidden Markov Models.” Methods in Ecology and Evolution, 10(9), 1536–1550.
doi:10.1111/2041-210x.13241.

Adam T, Langrock R, Kneib T (2019b). “Model-Based Clustering of Time Series Data: A
Flexible Approach Using Nonparametric State-Switching Quantile Regression Models.” In
Book of Short Papers of the 12th Scientific Meeting on Classification and Data Analysis,
pp. 8–11.

Adam T, Mayr A, Kneib T (2022). “Gradient Boosting in Markov-Switching Generalized
Additive Models for Location, Scale, and Shape.” Econometrics and Statistics, 22, 3–16.

Adam T, Oelschläger L (2020). “Hidden Markov Models For Multi-Scale Time Series: An
Application to Stock Market Data.” In Proceedings of the 35th International Workshop on
Statistical Modelling, volume 1, pp. 2–7.

https://CRAN.R-project.org/
https://CRAN.R-project.org/package=countHMM
https://CRAN.R-project.org/package=countHMM
https://doi.org/10.1111/2041-210x.13241

22 fHMM: Hidden Markov Models for Financial Time Series in R

Akaike H (1974). “A New Look at the Statistical Model Identification.” IEEE Transactions
on Automatic Control, 19. doi:10.1109/tac.1974.1100705.

Bartolucci F, Pandolfi S, Pennoni F (2017). “LMest: An R Package for Latent Markov
Models for Longitudinal Categorical Data.” Journal of Statistical Software, 81(4), 1–38.
doi:10.18637/jss.v081.i04.

Bezanson J, Edelman A, Karpinski S, Shah VB (2017). “Julia: A Fresh Approach to Numerical
Computing.” SIAM Review, 59(1), 65–98. doi:10.1137/141000671.

Bulla J, Bulla I (2006). “Stylized Facts of Financial Time Series and Hidden Semi-Markov
Models.” Computational Statistics & Data Analysis, 51(4), 2192–2209. doi:10.1016/j.
csda.2006.07.021.

Bulla J, Bulla I, Nenadić O (2010). “hsmm – An R Package for Analyzing Hidden Semi-
Markov Models.” Computational Statistics & Data Analysis, 54(3), 611–619. doi:10.
1016/j.csda.2008.08.025.

Bulla J, Mergner S, Bulla I, Sesboüe A, Chesneau C (2011). “Markov-Switching Asset Al-
location: Do Profitable Strategies Exist?” Journal of Asset Management, 12, 310–321.
doi:10.1057/jam.2010.27.

Chen M (2022). Hidden Markov Model Toolbox (HMM). MATLAB Central File Ex-
change. Retrieved July 6, 2022., URL https://www.mathworks.com/matlabcentral/
fileexchange/55866-hidden-markov-model-toolbox-hmm.

Dalle G (2024). “HiddenMarkovModels.jl: Generic, Fast and Reliable State Space Modeling.”
Journal of Open Source Software, 9(96). doi:10.21105/joss.06436.

Forney GD (1973). “The Viterbi Algorithm.” Proceedings of the IEEE, 61(3), 268–278.
doi:10.1109/proc.1973.9030.

Gregoir S, Lenglart F (2000). “Measuring the Probability of a Business Cycle Turning Point
by Using a Multivariate Qualitative Hidden Markov Model.” Journal of Forecasting, 19(2),
81–102. doi:10.1002/(sici)1099-131x(200003)19:2<81::aid-for734>3.0.co;2-l.

Himmelmann L (2022). HMM: Hidden Markov Models. R package version 1.0.1, URL http:
//CRAN.R-project.org/package=HMM.

Jackson C (2011). “Multi-State Models for Panel Data: The msm Package for R.” Journal of
Statistical Software, 38(8), 1–28. doi:10.18637/jss.v038.i08.

Janßen B, Rudolph B (1992). Der Deutsche Aktienindex DAX. Knapp Verlag.

Jarque CM, Bera AK (1987). “A Test For Normality of Observations and Regression Resid-
uals.” International Statistical Review, 55, 163–172. doi:10.2307/1403192.

Kim CJ, Nelson CR (1998). “Business Cycle Turning Points, a New Coincident Index, and
Tests of Duration Dependence Based on a Dynamic Factor Model with Regime Switching.”
Review of Economics and Statistics, 80(2), 188–201. doi:10.1162/003465398557447.

https://doi.org/10.1109/tac.1974.1100705
https://doi.org/10.18637/jss.v081.i04
https://doi.org/10.1137/141000671
https://doi.org/10.1016/j.csda.2006.07.021
https://doi.org/10.1016/j.csda.2006.07.021
https://doi.org/10.1016/j.csda.2008.08.025
https://doi.org/10.1016/j.csda.2008.08.025
https://doi.org/10.1057/jam.2010.27
https://www.mathworks.com/matlabcentral/fileexchange/55866-hidden-markov-model-toolbox-hmm
https://www.mathworks.com/matlabcentral/fileexchange/55866-hidden-markov-model-toolbox-hmm
https://doi.org/10.21105/joss.06436
https://doi.org/10.1109/proc.1973.9030
https://doi.org/10.1002/(sici)1099-131x(200003)19:2<81::aid-for734>3.0.co;2-l
http://CRAN.R-project.org/package=HMM
http://CRAN.R-project.org/package=HMM
https://doi.org/10.18637/jss.v038.i08
https://doi.org/10.2307/1403192
https://doi.org/10.1162/003465398557447

Journal of Statistical Software 23

Langrock R, Adam T, Leos-Barajas V, Mews S, Miller DL, Papastamatiou YP (2018). “Spline-
Based Nonparametric Inference in General State-Switching Models.” Statistica Neerlandica,
72(3), 179–200. doi:10.1111/stan.12133.

Lebedex S (2022). hmmlearn: Hidden Markov Models in Python, with scikit-Learn Like API.
Python library, version 0.2.7, URL https://hmmlearn.readthedocs.io/.

Lihn SHT (2017). “Hidden Markov Model for Financial Time Series and Its Application to
S&P 500 Index.” Paper 2979516, SSRN. URL https://papers.ssrn.com/sol3/papers.
cfm?abstract_id=2979516.

Lihn SHT (2019). ldhmm: Hidden Markov Model for Financial Time-Series Based on Lambda
Distribution. R package version 0.5.1, URL https://CRAN.R-project.org/package=
ldhmm.

McClintock BT, Michelot T (2018). “momentuHMM: R Package for Generalized Hidden
Markov Models of Animal Movement.” Methods in Ecology and Evolution, 9(6), 1518–
1530. doi:10.1111/2041-210x.12995.

Michelot T, Langrock R, Patterson TA (2016). “moveHMM: An R Package for the Statistical
Modelling of Animal Movement Data Using Hidden Markov Models.” Methods in Ecology
and Evolution, 7(11), 1308–1315. doi:10.1111/2041-210x.12578.

Nguyen N (2018). “Hidden Markov Model for Stock Trading.” International Journal of
Financial Studies, 6(2). doi:10.3390/ijfs6020036.

Norris JR (1997). Markov Chains. Cambridge University Press. doi:10.1017/
cbo9780511810633.

Nystrup P, Madsen H, Lindström E (2015). “Stylised Facts of Financial Time Series and
Hidden Markov Models in Continuous Time.” Quantitative Finance, 15(9), 1531–1541.
doi:10.1080/14697688.2015.1004801.

Nystrup P, Madsen H, Lindström E (2018). “Dynamic Portfolio Optimization across Hidden
Market Regimes.” Quantitative Finance, 18(1), 83–95. doi:10.1080/14697688.2017.
1342857.

O’Connell J, Højsgaard S (2011). “Hidden Semi Markov Models for Multiple Observation
Sequences: The mhsmm Package for R.” Journal of Statistical Software, 39, 1–22. doi:
10.18637/jss.v039.i04.

OECD (2023). “Unemployment Rate.” doi:10.1787/52570002-en. Accessed on 2023-01-18.

Oelschläger L (2019). Detection of Bearish and Bullish Markets in the DAX Using Hierarchical
Hidden Markov Models. Master’s thesis, Bielefeld University.

Oelschläger L, Adam T (2021). “Detecting Bearish and Bullish Markets in Financial Time
Series Using Hierarchical Hidden Markov Models.” Statistical Modelling, 23(2), 107–126.
doi:10.1177/1471082x211034048.

Oelschläger L, Adam T, Michels R (2024). fHMM: Fitting Hidden Markov Models to Financial
Data. R package version 1.3.1, URL https://CRAN.R-project.org/package=fHMM.

https://doi.org/10.1111/stan.12133
https://hmmlearn.readthedocs.io/
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2979516
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2979516
https://CRAN.R-project.org/package=ldhmm
https://CRAN.R-project.org/package=ldhmm
https://doi.org/10.1111/2041-210x.12995
https://doi.org/10.1111/2041-210x.12578
https://doi.org/10.3390/ijfs6020036
https://doi.org/10.1017/cbo9780511810633
https://doi.org/10.1017/cbo9780511810633
https://doi.org/10.1080/14697688.2015.1004801
https://doi.org/10.1080/14697688.2017.1342857
https://doi.org/10.1080/14697688.2017.1342857
https://doi.org/10.18637/jss.v039.i04
https://doi.org/10.18637/jss.v039.i04
https://doi.org/10.1787/52570002-en
https://doi.org/10.1177/1471082x211034048
https://CRAN.R-project.org/package=fHMM

24 fHMM: Hidden Markov Models for Financial Time Series in R

Ondel L, Lam-Yee-Mui LM, Kocour M, Filippo C, Lukás Burget C (2021). “GPU-Accelerated
Forward-Backward Algorithm with Application to Lattic-Free MMI.” In IEEE International
Conference on Acoustics, Speech, and Signal Processing. Singapore. URL https://hal.
archives-ouvertes.fr/hal-03434552.

Platen E, Rendek R (2008). “Empirical Evidence on Student t Log-Returns of Diversi-
fied World Stock Indices.” Journal of Statistical Theory and Practice, 2. doi:10.1080/
15598608.2008.10411873.

Pohle J, Langrock R, Van Beest FM, Schmidt NM (2017). “Selecting the Number of States in
Hidden Markov Models: Pragmatic Solutions Illustrated Using Animal Movement.” Journal
of Agricultural, Biological and Environmental Statistics, 22(3), 270–293. doi:10.1007/
s13253-017-0283-8.

R Core Team (2024). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Schwarz G (1978). “Estimating the Dimension of a Model.” The Annals of Statistics, 6.
doi:10.1214/aos/1176344136.

Shireman E, Steinley D, Brusco MJ (2017). “Examining the Effect of Initialization Strategies
on the Performance of Gaussian Mixture Modeling.” Behavior Research Methods, 49(1),
282–293. doi:10.3758/s13428-015-0697-6.

StataCorp (2019). Stata: Statistical Software: Release 16. StataCorp LLC, College Station.
URL https://www.stata.com/.

The MathWorks Inc (2021). MATLAB – The Language of Technical Computing, Version
R2021a. Natick. URL https://www.mathworks.com/products/matlab/.

Turner R (2022). hmm.discnp: Hidden Markov Models with Discrete Non-Parametric Ob-
servation Distributions. R package version 3.0-9, URL http://CRAN.R-project.org/
package=hmm.discnp.

Van Rossum G, et al. (2011). Python Programming Language. URL https://www.python.
org/.

Visser I, Speekenbrink M (2010). “depmixS4: An R Package for Hidden Markov Models.”
Journal of Statistical Software, 36, 1–21. doi:10.18637/jss.v036.i07.

Zucchini W, MacDonald IL, Langrock R (2016). Hidden Markov Models for Time Series: An
Introduction Using R. 2nd edition. Chapman & Hall/CRC. doi:10.1201/b20790.

Affiliation:
Lennart Oelschläger, Rouven Michels
Department of Business Administration and Economics
Bielefeld University
Postfach 10 01 31, Germany
E-mail: lennart.oelschlaeger@uni-bielefeld.de, r.michels@uni-bielefeld.de

https://hal.archives-ouvertes.fr/hal-03434552
https://hal.archives-ouvertes.fr/hal-03434552
https://doi.org/10.1080/15598608.2008.10411873
https://doi.org/10.1080/15598608.2008.10411873
https://doi.org/10.1007/s13253-017-0283-8
https://doi.org/10.1007/s13253-017-0283-8
https://www.R-project.org/
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.3758/s13428-015-0697-6
https://www.stata.com/
https://www.mathworks.com/products/matlab/
http://CRAN.R-project.org/package=hmm.discnp
http://CRAN.R-project.org/package=hmm.discnp
https://www.python.org/
https://www.python.org/
https://doi.org/10.18637/jss.v036.i07
https://doi.org/10.1201/b20790
mailto:lennart.oelschlaeger@uni-bielefeld.de
mailto:r.michels@uni-bielefeld.de

Journal of Statistical Software 25

Timo Adam
School of Mathematics and Statistics
University of St Andrews
The Observatory, Buchanan Gardens, St Andrews KY16 9LZ, United Kingdom
E-mail: ta59@st-andrews.ac.uk

Journal of Statistical Software https://www.jstatsoft.org/
published by the Foundation for Open Access Statistics https://www.foastat.org/

May 2024, Volume 109, Issue 9 Submitted: 2022-05-06
doi:10.18637/jss.v109.i09 Accepted: 2023-10-12

mailto:ta59@st-andrews.ac.uk
https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v109.i09

	Introduction
	Model definition
	Model specification
	Data management
	Model estimation
	State decoding and prediction
	Model checking
	Model selection
	Conclusions

