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Abstract

The hyper2 package provides functionality to work with extensions of the Bradley-
Terry probability model such as Plackett-Luce likelihood including team strengths and
reified entities (monsters). The package allows one to use relatively natural R idiom to
manipulate such likelihood functions. Here, I present a generalization of hyper2 in which
multiple entities are constrained to have identical Bradley-Terry strengths. A new S3 class
‘hyper3’, along with associated methods, is motivated and introduced. Three datasets are
analyzed, each analysis furnishing new insight, and each highlighting different capabilities
of the package.
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1. Introduction
The hyper2 package (Hankin 2017a,b) furnishes computational support for generalized
Plackett-Luce (Plackett 1975) likelihood functions. The preferred interpretation is a race
(as in track and field athletics): Given six competitors 1 − 6, we ascribe to them nonnegative
strengths p1, . . . , p6; the probability that i beats j is pi/(pi +pj). It is conventional to normal-
ize so that the total strength is unity, and to identify a competitor with his strength. Given
an order statistic, say p1 ≻ p2 ≻ p3 ≻ p4, the Plackett-Luce likelihood function would be

p1
p1 + p2 + p3 + p4

· p2
p2 + p3 + p4

· p3
p3 + p4

· p4
p4

. (1)

Mollica and Tardella (2014) call this a forward ranking process on the grounds that the best
(preferred; fastest; chosen) entities are identified in the same sequence as their rank.
Computational support for Bradley-Terry likelihood functions is available in a range of lan-
guages. Hunter (2004), for example, presents results in MATLAB (although he works with a
nonlinear extension to account for ties); Allison and Christakis (1994) present related work
for ranking statistics in SAS and Maystre (2022) has released a Python package for Luce-type
choice datasets.
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However, the majority of software is written in the R computer language (R Core Team 2024),
which includes extensive functionality for working with such likelihood functions: Turner, Van
Etten, Firth, and Kosmidis (2020) discuss several implementations from a computational
perspective. The BradleyTerry package (Firth 2005) considers pairwise comparisons using
glm but cannot deal with ties or player-specific predictors; the BradleyTerry2 package (Turner
and Firth 2012) implements a flexible user interface and wider range of models to be fitted to
pairwise comparison datasets, specifically simple random effects. The PlackettLuce package
(Turner et al. 2020) generalizes this to likelihood functions of the form of Equation 1 and
applies the Poisson transformation of Baker (1994) to express the problem as a log-linear
model. The hyper2 package, in contrast, gives a consistent language interface to create
and manipulate likelihood functions over the simplex Sn = {(p1, . . . , pn) | pi ≥ 0,

∑
pi = 1}.

A further extension in the package generalizes this likelihood function to functions of p =
(p1, . . . , pn) with

L (p) =
∏
s∈O

(∑
i∈s

pi

)ns

(2)

where O is a set of observations and s a subset of {1, 2, . . . , n}; numbers ns are integers
which may be positive or negative. The hyper2 package has the ability to evaluate such
likelihood functions at any point in Sn, thereby admitting a wide range of non-standard nulls
such as order statistics on the pi (Hankin 2017a). It becomes possible to analyze a wider
range of likelihood functions than standard Plackett-Luce (Turner et al. 2020). For example,
results involving incomplete order statistics or teams are tractable. Further, the introduction
of reified entities (monsters) allows one to consider draws (Hankin 2017b), noncompetitive
tactics such as collusion (Hankin 2020), and the phenomenon of team cohesion wherein the
team becomes stronger than the sum of its parts (Hankin 2010). Recent versions of the
package include experimental functionality (cheering()) to investigate the relaxing of the
assumption of conditional independence of the forward-ranking process.
Here I present a different generalization. Consider a race in which there are six runners 1-6
but we happen to know that three of the runners (1, 2, 3) are clones of strength pa, two of
the runners (4, 5) have strength pb, and the final runner (6) is of strength pc. We normalize
so pa + pb + pc = 1. The runners race and the finishing order is:

a ≻ c ≻ b ≻ a ≻ a ≻ b

Thus the winner was a, second place for c, third for b, and so on. Alternatively we might
say that a came first, fourth, and fifth; b came third and sixth, and c came second. The
Plackett-Luce likelihood function for pa, pb, pc would be

pa

3pa + 2pb + pc
· pc

2pa + 2pb + pc
· pb

2pa + 2pb
· pa

2pa + pb
· pa

pa + pb
· pb

pb
, pa + pb + pc = 1. (3)

Here I consider such generalized Plackett-Luce likelihood functions, and give an exact analysis
of several simple cases. I then show how this class of likelihood functions may be applied to
a range of inference problems involving order statistics. Illustrative examples, drawn from
Formula 1 motor racing, and track-and-field athletics, are given.

1.1. Computational methodology

Existing hyper2 formalism as described by Hankin (2017a) cannot represent Equation 3,
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because Equation 2 uses sets as the indexing elements, and in this case we need multisets1.
The declarations

typedef map<string, long double> weightedplayervector;
typedef map<weightedplayervector, long double> hyper3;

show how the ‘map’ class of the Standard Template Library is used with
‘weightedplayervector’ objects mapping strings to long doubles (specifically, mapping player
names to their multiplicities), and objects of class ‘hyper3’ are maps from a
‘weightedplayervector’ object to long doubles. One advantage of this is efficiency: Search,
removal, and insertion operations have logarithmic complexity. As an example, the following
C++ pseudo code would create a log-likelihood function for the first term in Equation 3:

weightedplayervector n,d;
n["a"] = 1;
d["a"] = 3;
d["b"] = 2;
d["c"] = 1;

hyper3 L;
L[n] = 1;
L[d] = -1;

Above, we understand n and d to represent numerator and denominator respectively. Object
L is an object of class ‘hyper3’; it may be evaluated at points in probability space (that is, a
vector [a,b,c] of nonnegative values with unit sum) using standard R idiom wrapping C++
back end.

1.2. Package implementation

Functionality for working with generalized Plackett-Luce likelihoods is provided in the package
hyper2 (Hankin 2024), available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=hyper2. The package includes an S3 class ‘hyper3’
for this type of object; extraction and replacement methods use disordR discipline (Hankin
2022). Package idiom for creating such objects uses named vectors:

R> LL <- hyper3()
R> LL[c(a = 1)] <- 1
R> LL[c(a = 3, b = 2, c = 1)] <- -1
R> LL

log( (a=1)^1 * (a=3, b=2, c=1)^-1)

1Note that the version of hyper2 presented by Hankin (2017a) and reviewed by Turner et al. (2020) used
integer-valued sets together with a print method that used a complicated mapping system from integers
to competitor names. Current methodology (following commit 51a8b46) is to use sets of character strings
which represent the competitors directly; this allows for easier combination of observations including different
competitors.

https://CRAN.R-project.org/package=hyper2
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Above, we see object LL is a log-likelihood function of the players’ strengths, which may
be evaluated at specified points in probability space. A typical use-case would be to assess
H1: pa = 0.9, pb = 0.05, pc = 0.05 and H2: pa = 0.01, pb = 0.01, pc = 0.98, and we may evaluate
these hypotheses using generic function loglik():

R> loglik(c(a = 0.01, b = 0.01, c = 0.98), LL)

[1] -4.634729

R> loglik(c(a = 0.90, b = 0.05, c = 0.05), LL)

[1] -1.15268

Thus we prefer H1 over H2 with about 3.5 units of support, satisfying the standard two units
of support criterion (Edwards 1972), and we conclude that our observation [in this case, that
one of the three clones of player a beat the b twins and the singleton c] furnishes strong
support against H2 in favor of H1.
The package includes many helper functions to work with order statistics of this type. Func-
tion ordervec2supp3(), for example, can be used to generate a log-likelihood function for
Equation 1:

R> (H <- ordervec2supp3(c("a", "c", "b", "a", "a", "b")))

log( (a=1)^3 * (a=1, b=1)^-1 * (a=2, b=1)^-1 * (a=2, b=2)^-1 * (a=2,
b=2, c=1)^-1 * (a=3, b=2, c=1)^-1 * (b=1)^1 * (c=1)^1)

(the package gives extensive documentation at ordervec2supp.Rd). We may find a maximum
likelihood estimate for the players’ strengths, using generic function maxp(), dispatching to
a specialist hyper3 method:

R> (mH <- maxp(H))

a b c
0.21324090 0.08724824 0.69951086

(function maxp() uses standard optimization techniques to locate the evaluate; it has access
to first derivatives of the log-likelihood and as such has rapid convergence, if its objective
function is reasonably smooth).
The package provides a number of statistical tests on likelihood functions, modified from Han-
kin (2017a) to work with ‘hyper3’ objects. For example, we may assess the hypothesis that
all three players are of equal strength (viz H0: pa = pb = pc = 1

3):

R> equalp.test(H)
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Constrained support maximization

data: H
null hypothesis: a = b = c
null estimate:

a b c
0.3333333 0.3333333 0.3333333
(argmax, constrained optimization)
Support for null: -6.579251 + K

alternative hypothesis: sum p_i=1
alternative estimate:

a b c
0.21324090 0.08724824 0.69951086
(argmax, free optimization)
Support for alternative: -5.73209 + K

degrees of freedom: 2
support difference = 0.8471613
p-value: 0.42863

showing, perhaps unsurprisingly, that this small dataset is consistent with H0.

1.3. Package helper functions

Arithmetic operations are implemented for ‘hyper3’ objects in much the same way as for
‘hyper2’ objects: independent observations may be combined using the overloaded + operator;
an example is given below.
The original motivation for hyper3 was the analysis of Formula 1 motor racing, and the
package accordingly includes wrappers for ordervec2supp() such as ordertable2supp3()
and attemptstable2supp3() which facilitate the analysis of commonly encountered result
formats. Package documentation for order tables is given at ordertable.Rd and an example
is given below.

2. Exact analytical solutions
Here I consider some order statistics with nontrivial maximum likelihood Bradley-Terry
strengths. The simplest nontrivial case would be three competitors with strengths a, a, b
and finishing order a ≻ b ≻ a. The Plackett-Luce likelihood function would be

a

2a + b
· b

a + b
(4)

and in this case we know that a + b = 1 so this is equal to L = L(a) = a(1−a)
1+a . The score

would be given by

dL
da

= (1 + a)(1 − 2a) − a(1 − a)
(1 + a)2 = 1 − 2a − a2

(1 + a)2 (5)
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and this will be zero at
√

2 − 1; we also note that d2L/da2 = −4(1 + a)−3, manifestly strictly
negative for 0 ≤ a ≤ 1: the root is a maximum.

R> maxp(ordervec2supp3(c("a", "b", "a")))

a b
0.4142108 0.5857892

Above, we see close agreement with the theoretical value of (
√

2 − 1, 2 −
√

2) ≃ (0.414, 0.586).
Observe that the maximum likelihood estimate for a is strictly less than 0.5, even though the
finishing order is symmetric. Using L(a) = a(1−a)

1+a , we can show that log L(â) = log
(
3 − 2

√
2
)

≃
−1.76, where â =

√
2 − 1 is the maximum likelihood estimate for a. Defining S = log L as

the support [log-likelihood] we have

S = S(a) = log
(

a(1 − a)
1 + a

)
− log

(
3 − 2

√
2
)

(6)

as a standard support function which has a maximum value of zero when evaluated at â =√
2−1. For example, we can test the null that a = b = 1

2 , the statement that the competitors
have equal Bradley-Terry strengths:

R> a <- 1/2
R> (S_delta <- log(a * (1 - a)/(1 + a)) - log(3 - 2 * sqrt(2)))

[1] -0.0290123

Thus the additional support gained in moving from a = 1
2 to the evaluate of a =

√
2 − 1 is

0.029, rather small (as might be expected given that we have only one rather uninformative
observation, and also given that the maximum likelihood estimate (≃ 0.41) is quite close to
the null of 0.5). Nevertheless we can follow Edwards (1972) and apply Wilks’s theorem for a
p value:

R> pchisq(-2 * S_delta, df = 1, lower.tail = FALSE)

[1] 0.8096458

The p value is about 0.81, exceeding 0.05; thus we have no strong evidence to reject the null of
a = 1

2 . The observation is informative, in the sense that we can find a credible interval for a.
With an n-units of support criterion the analytical solution to S(p) = −n is given by defining
X = log(3−2

√
2)−n and solving p(1−p)/(1+p) = X, or p± =

(
1 − X ±

√
1 + 4X + X2

)
/2,

the two roots being the lower and upper limits of the credible interval; Figure 1.

R> a <- seq(from = 0, by = 0.005, to = 1)
R> S <- function(a) log(a * (1 - a) / ((1 + a) * (3 - 2 * sqrt(2))))
R> plot(a, S(a), type = "b", xlab = expression(p[a]), ylab = "support")
R> abline(h = c(0, -2))
R> abline(v = c(0.02438102, 0.9524271), col = "red")
R> abline(v = sqrt(2) - 1)
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Figure 1: A support function for pa with observation a ≻ b ≻ a.

Fisher information
If we have two clones of a and a singleton b, then there are three possible rank statistics:
(i), a ≻ a ≻ b with probability 2a2

1+a ; (ii), a ≻ b ≻ a, with 2a(1−a)
(1+a) , (iii), b ≻ a ≻ a at 1−a

1+a .
Likelihood functions for these order statistics are given in Figure 2. It can be shown that the
Fisher information for such observations is

I(a) = 2 1 + a + a2

a(1 − a)(1 + a)2 (7)

which has a minimum of about 6.21 at at about a = 0.522. We can compare this with the
Fisher information matrix I, for the case of three distinct runners a, b, c, evaluated at its
minimum of pa = pb = pc = 1

3 . If we observe the complete order statistic, |I| = 1323
16 ≃ 82.7;

if we observe just the winner, |I| = 27, and if we observe just the loser we have |I| =
16875
256 ≃ 65.9. A brief discussion is given at https://github.com/RobinHankin/hyper2/

blob/master/inst/three_runners_plackett_luce.Rmd.

2.1. Nonfinishers
If we allow non-finishers—that is, a subset of competitors who are beaten by all the ranked
competitors (Turner et al. 2020, call this a top n ranking), there is another nontrivial order
statistic, viz a ≻ b ≻ {a, b} (thus one of the two a’s won, one of the b’s came second, and one
of each of a and b failed to finish). Now

L(a) = a

2a + 2b
· b

a + 2b
∝ a(1 − a)

2 − a
(8)

(see how the likelihood function is actually simpler than for the complete order statistic).
The evaluate would be 2 −

√
2 ≃ 0.586:

https://github.com/RobinHankin/hyper2/blob/master/inst/three_runners_plackett_luce.Rmd
https://github.com/RobinHankin/hyper2/blob/master/inst/three_runners_plackett_luce.Rmd
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Figure 2: Likelihood functions for observations a ≻ a ≻ b, a ≻ b ≻ a, b ≻ a ≻ a. Horizontal
dotted line represents two units of support

R> maxp(ordervec2supp3(c("a", "b"), nonfinishers = c("a", "b")))

a b
0.5857892 0.4142108

The Fisher information for such observations has a minimum of 68
9 ≃ 7.56 at a = 1

2 . An
inference problem for a dataset including nonfinishers will be given below in Section 4.

3. An alternative to the Mann-Whitney test
The ideas presented above can easily be extended to arbitrarily large numbers of competitors,
although the analytical expressions tend to be intractable and numerical methods must be
used. All results and datasets presented here are maintained under version control and avail-
able at https://github.com/RobinHankin/hyper2. Given an order statistic of the type
considered above, the Mann-Whitney-Wilcoxon test (Mann and Whitney 1947; Wilcoxon
1945) assesses a null of identity of underlying distributions (Ahmad 1996). Consider the
chorioamnion dataset (Hollander, Wolfe, and Chicken 2013), used in ?wilcox.test:

R> x <- c(0.80, 0.83, 1.89, 1.04, 1.45, 1.38, 1.91, 1.64, 0.73, 1.46)
R> y <- c(1.15, 0.88, 0.90, 0.74, 1.21)

Here we see a measure of permeability of the human placenta at term (x) and between 3 and
6 months’ gestational age (y). The order statistic is straightforward to calculate:

https://github.com/RobinHankin/hyper2


Journal of Statistical Software 9

R> names(x) <- rep("x", length(x))
R> names(y) <- rep("y", length(y))
R> (os <- names(sort(c(x, y))))

[1] "x" "y" "x" "x" "y" "y" "x" "y" "y" "x" "x" "x" "x" "x" "x"

Then object os is converted to a ‘hyper3’ object, again with ordervec2supp3(), which may
be assessed using the method of support:

R> Hxy <- ordervec2supp3(os)
R> equalp.test(Hxy)

Constrained support maximization

data: Hxy
null hypothesis: x = y
null estimate:

x y
0.5 0.5
(argmax, constrained optimization)
Support for null: -27.89927 + K

alternative hypothesis: sum p_i=1
alternative estimate:

x y
0.2401539 0.7598461
(argmax, free optimization)
Support for alternative: -26.48443 + K

degrees of freedom: 1
support difference = 1.414837
p-value: 0.09253716

Above, we use generic function equalp.test() to test the null that the permeability of the
two groups both have Bradley-Terry strength of 0.5. We see a p value of about 0.09; compare
0.25 from wilcox.test(). However, observe that the hyper3 likelihood approach gives more
information than Wilcoxon’s analysis: Firstly, we see that the maximum likelihood estimate
for the Bradley-Terry strength of x is about 0.24, considerably less than the null of 0.5; further,
we may plot a support curve for this dataset, given in Figure 3.

3.1. A generalization of the Mann-Whitney test

The ideas presented above may be extended to more than two types of competitors. Consider
the following table, drawn from the men’s javelin, 2020 Olympics:

R> javelin_table
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Figure 3: A support function for the Bradley-Terry strength pa of permeability at term.
The evaluate of 0.24 is shown; and the two-units-of support credible interval, which does not
exclude H0: pa = 0.5 (dotted line), is also shown.

throw1 throw2 throw3 throw4 throw5 throw6
Chopra 87.03 87.58 76.79 X X 84.24
Vadlejch 83.98 X X 82.86 86.67 X
Vesely 79.73 80.30 85.44 X 84.98 X
Weber 85.30 77.90 78.00 83.10 85.15 75.72
Nadeem 82.40 X 84.62 82.91 81.98 X
Katkavets 82.49 81.03 83.71 79.24 X X
Mardare 81.16 81.73 82.84 81.90 83.30 81.09
Etelatalo 78.43 76.59 83.28 79.20 79.99 83.05

Thus Chopra threw 87.03m on his first throw, 87.58m on his second, and so on. No-throws,
ignored here, are indicated with an X. We may convert this to a named vector with elements
being the throw distances, and names being the competitors, using attemptstable2supp3():

R> javelin_vector <- attemptstable2supp3(javelin_table,
+ decreasing = TRUE, give.supp = FALSE)
R> javelin_vector

Chopra Chopra Vadlejch Vesely Weber Weber
87.58 87.03 86.67 85.44 85.30 85.15

Vesely Nadeem Chopra Vadlejch Katkavets Mardare
84.98 84.62 84.24 83.98 83.71 83.30

Etelatalo Weber Etelatalo Nadeem Vadlejch Mardare
83.28 83.10 83.05 82.91 82.86 82.84
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Figure 4: Maximum likelihood estimate for javelin throwers’ Bradley-Terry strengths.

Katkavets Nadeem Nadeem Mardare Mardare Mardare
82.49 82.40 81.98 81.90 81.73 81.16

Mardare Katkavets Vesely Etelatalo Vesely Katkavets
81.09 81.03 80.30 79.99 79.73 79.24

Etelatalo Etelatalo Weber Weber Chopra Etelatalo
79.20 78.43 78.00 77.90 76.79 76.59
Weber Vadlejch Nadeem Vadlejch Chopra Vesely
75.72 NA NA NA NA NA

Chopra Katkavets Vadlejch Vesely Nadeem Katkavets
NA NA NA NA NA NA

Above we see that Chopra threw the longest and second-longest throws of 87.58m and 87.03
respectively; Vadlejch threw the third-longest throw of 86.67m, and so on (NA entries corre-
spond to no-throws.) The attempts table may be converted to a ‘hyper3’ object, again using
function attemptstable2supp3() but this time passing give.supp = TRUE:

R> javelin <- ordervec2supp3(
+ v = names(javelin_vector)[!is.na(javelin_vector)])

Above, object javelin is a hyper3 likelihood function, so one has access to the standard
likelihood-based methods, such as finding and displaying the maximum likelihood estimate,
shown in Figure 4. From this, we see that Vadlejch has the highest estimated Bradley-Terry
strength, but further analysis with equalp.test() reveals that there is no strong evidence in
the dataset to reject the hypothesis of equal competitive strength (p = 0.26), or that Vadlejch
has a strength higher than the null value of 1

8 (p = 0.1).

R> (mj <- maxp(javelin))
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Figure 5: Profile likelihood for log-contrast log (pVad/pVes). Null of pVad = pVes indicated with
a dotted line, and two-units-of-support limit indicated with horizontal lines; thus the null is
not rejected.

Chopra Etelatalo Katkavets Mardare Nadeem Vadlejch
0.0930 0.0482 0.0929 0.1173 0.1730 0.3206
Vesely Weber
0.1140 0.0409

R> dotchart(mj, pch = 16, xlab = "Estimated Bradley-Terry strength")

A particularly attractive feature of this analysis is that the Bradley-Terry strengths have
direct operational significance: If two competitors, say Vadlejch and Vesely, were to throw
a javelin, then we would estimate the probability that Vadlejch would throw further than
Vesely at pVad/ (pVad + pVes) ≃ 0.74. Indeed, from a training or selection perspective we might
follow Hankin (2017a) and observe that log-contrasts (O’Hagan and Forster 2004) appear to
have approximately Gaussian likelihood functions for observations of the type considered here.
Profile log-likelihood curves for log-contrasts are easily produced by the package, Figure 5.
We see that the credible range for log (pVad/pVes) includes zero and we have no strong evidence
for these athletes having different (Bradley-Terry) strengths.

4. Formula 1 motor racing
Formula 1 motor racing is an important and prestigious motor sport (Codling 2017; Jenkins
2010). In Formula 1 Grand Prix, the constructors’ championship takes place between man-
ufacturers of racing cars (compare the drivers’ championship, which is between drivers). In
this analysis, the constructor is the object of inference. Each constructor typically fields two
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cars, each of which separately accumulates ranking-based points at each venue. Here we use
a generalized Plackett-Luce model to assess the constructors’ performance. The following
table, included in the hyper2 package as a dataset, shows rankings for the first 9 venues of
the 2021 season:

R> constructor_2021_table[, 1:9]

Constructor BHR EMI POR ESP MON AZE FRA STY
1 Merc 1 2 1 1 7 12 2 2
2 Merc 3 Ret 3 3 Ret 15 4 3
3 RBRH 2 1 2 2 1 1 1 1
4 RBRH 5 11 4 5 4 18 3 4
5 Ferrari 6 4 6 4 2 4 11 6
6 Ferrari 8 5 11 7 DNSP 8 16 7
7 MM 4 3 5 6 3 5 5 5
8 MM 7 6 9 8 12 9 6 13
9 AR 13 9 7 9 9 6 8 9
10 AR Ret 10 8 17 13 Ret 14 14
11 ATH 9 7 10 10 6 3 7 10
12 ATH 17 12 15 Ret 16 7 13 Ret
13 AMM 10 8 13 11 5 2 9 8
14 AMM 15 15 14 13 8 Ret 10 12
15 WM 14 Ret 16 14 14 16 12 17
16 WM 18 Ret 18 16 15 17 18 Ret
17 ARRF 11 13 12 12 10 10 15 11
18 ARRF 12 14 Ret 15 11 11 17 15
19 HF 16 16 17 18 17 13 19 16
20 HF Ret 17 19 19 18 14 20 18

Above, we see that Mercedes (“Merc”) came first and third at Bahrain (BHR); and came
second and retired at Emilia Romagna (EMI); full details of the notation and conventions are
given in the package at constructor.Rd. The identity of the driver is viewed as inadmissible
information and indeed may change during a season. Alternatively, we may regard the driver
and the constructor as a joint entity, with the constructor’s ability to attract and retain a
skilled driver being part of the object of inference. The associated generalized Plackett-Luce
‘hyper3’ object is easily constructed using package idiom, in this case ordertable2supp3(),
and we may use this to assess the Plackett-Luce strengths of the constructors:

R> const2020 <- ordertable2supp3(constructor_2020_table)
R> const2021 <- ordertable2supp3(constructor_2021_table)
R> maxp(const2020, n = 1)

ARRF ATH Ferrari HF Merc MR R
0.04530 0.06807 0.06063 0.02623 0.37783 0.10026 0.09767

RBRH RPBWTM WM
0.12072 0.08055 0.02273

R> maxp(const2021, n = 1)
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AMM AR ARRF ATH Ferrari HF Merc
0.05942 0.07543 0.06238 0.05611 0.16939 0.02023 0.19395

MM RBRH WM
0.14126 0.18334 0.03848

Above, we see the strength of Mercedes falling from about 0.38 in 2020 to less than 0.20 in
2021 and it is natural to wonder whether this can be ascribed to random variation. Observe
that testing such a hypothesis is complicated by the fact that constructors field multiple cars,
and also that constructors come and go, with two 2020 teams dropping out between years
and two joining. We may test this statistically by defining a combined likelihood function for
both years, keeping track of the year:

R> H <- (psubs(constructor_2020, "Merc", "Merc2020") +
+ psubs(constructor_2021, "Merc", "Merc2021"))

Above, we use generic function psubs() to change the name of Mercedes from Merc to
Merc2020 and Merc2021 respectively. Note the use of “+” to represent addition of log-
likelihoods, corresponding to the assumption of conditional independence of results. The
null would be simply that the strengths of Merc2020 and of Merc2021 are identical. Package
idiom would be to use generic function samep.test():

R> samep.test(H, c("Merc2020", "Merc2021"))

Constrained support maximization

data: H
null hypothesis: Merc2020 = Merc2021
null estimate:

AMM AR ARRF ATH Ferrari HF
0.04239 0.05413 0.04677 0.04374 0.07568 0.02323

Merc2020 Merc2021 MM MR R RBRH
0.13903 0.13903 0.09016 0.07944 0.07475 0.10024
RPBWTM WM

0.06235 0.02905
(argmax, constrained optimization)
Support for null: -1189 + K

alternative hypothesis: sum p_i=1
alternative estimate:

AMM AR ARRF ATH Ferrari HF
0.03766 0.04824 0.04333 0.04060 0.07036 0.02132

Merc2020 Merc2021 MM MR R RBRH
0.23135 0.09216 0.07893 0.07973 0.07455 0.09322
RPBWTM WM

0.06177 0.02679
(argmax, free optimization)
Support for alternative: -1184 + K
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degrees of freedom: 1
support difference = 4.722
p-value: 0.002119

Above, we see strong evidence for a real decrease in the strength of the Mercedes team from
2020 to 2021, with p = 0.002.

5. Conclusions and further work
Plackett-Luce likelihood functions for rank datasets have been generalized to impose identity
of Bradley-Terry strengths for certain groups; the preferred interpretation is a running race
in which the competitors are split into equivalence classes of clones. Implementing this in R
is accomplished via a C++ back-end making use of the STL ‘map’ class which offers efficiency
advantages, especially for large objects.
New likelihood functions for simple cases with three or four competitors were presented, and
extending to larger numbers furnishes a generalization of the Mann-Whitney-Wilcoxon test
that offers a specific alternative (Bradley-Terry strength) with a clear operational definition.
Further generalizations allow the analysis of more than two groups, here applied to Olympic
javelin throw distances. Generalized Plackett-Luce likelihood functions were used to assess
the Grand Prix constructors’ championship and a reasonable null. Specifically, the hypothesis
that the strength of the Mercedes team remained unchanged between 2020 and 2021 was tested
and rejected.
Draws are not considered in the present work but in principle may be accommodated, ei-
ther using likelihoods comprising sums of Plackett-Luce probabilities (Hankin 2017a); or the
introduction of a reified draw entity (Hankin 2010).
Further work might include a systematic comparison between hyper3 approach and the Mann-
Whitney-Wilcoxon test, including the characterization of the power function of both tests.
The package could easily be extended to allow non-integer multiplicities, which might prove
useful in the context of reified Bradley Terry techniques (Hankin 2020).
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