
JSS Journal of Statistical Software
May 2024, Volume 109, Issue 7. doi: 10.18637/jss.v109.i07

cpop: Detecting Changes in Piecewise-Linear
Signals

Paul Fearnhead
Lancaster Universtity

Daniel Grose
Lancaster University

Abstract

Changepoint detection is an important problem with a wide range of applications.
There are many different types of changes that one may wish to detect, and a wide
range of algorithms and software for detecting them. However there are relatively few
approaches for detecting changes-in-slope in the mean of a signal plus noise model. We
describe the R package cpop, available on the Comprehensive R Archive Network (CRAN).
This package implements CPOP, a dynamic programming algorithm, to find the optimal
set of changes that minimizes an L0 penalized cost, with the cost being a weighted residual
sum of squares. The package has extended the CPOP algorithm so it can analyse data
that is unevenly spaced, allow for heterogeneous noise variance, and allows for a grid of
potential change locations to be different from the locations of the data points. There is
also an implementation that uses the CROPS algorithm to detect all segmentations that
are optimal as you vary the L0 penalty for adding a change across a continuous range of
values.

Keywords: changepoints, change-in-slope, dynamic programming, piecewise linear models,
structural breaks.

1. Introduction
The detection of change in sequences of data is important across many applications, for
example changes in volatility in finance (Andreou and Ghysels 2002), changes in genomic
data that represent copy number variation (Niu and Zhang 2012), changes in calcium imaging
data that correspond to neurons firing (Jewell, Hocking, Fearnhead, and Witten 2020) or
changes in climate data (Reeves, Chen, Wang, Lund, and Lu 2007), amongst many others.
Depending on the application, interest can be in detecting changes in different features of the
data, and there has been a corresponding wide range of methods that have been developed.
See Aminikhanghahi and Cook (2017), Truong, Oudre, and Vayatis (2020), Fearnhead and

https://doi.org/10.18637/jss.v109.i07
https://orcid.org/0000-0002-9386-2341
https://orcid.org/0000-0003-2364-7715

2 cpop: Detecting Changes in Piecewise-Linear Signals

Rigaill (2020) and Shi, Gallagher, Lund, and Killick (2022) for recent reviews of changepoint
methods and their applications.
For some applications we have data on a piece-wise linear mean function, and we wish to
detect the times at which the slope of the mean changes. This is the change-in-slope problem:
see the top-left plot of Figure 1 for example simulated data. This is a particularly challenging
problem for the following reasons. First, a simple approach to detecting changes in slope is
to take first differences of the data, as this transforms a change-in-slope into a change-in-
mean, and then apply one of the many methods for detecting changes in mean. However
this removes much of the information in the data about the location of changes and such an
approach can perform poorly. This can be seen by comparing the raw data in the top-left
plot of Figure 1 with the first differenced data in the top-right plot of Figure 1. By eye it is
easy to see the rough location of the changes in slope in the former, but almost impossible
to see any changes in mean in the latter. Running the pruned exact linear time (PELT)
change-in-mean algorithm Killick, Fearnhead, and Eckley (2012) on the first differenced data
leads to poor estimates of the location of any changes. Second, the most common approach to
detecting multiple changepoints is to use binary segmentation (Scott and Knott 1974) or one
of its variants (Fryzlewicz 2014; Kovács, Li, Bühlmann, and Munk 2023). These repeatedly
apply a test for a single change-in-slope. However Baranowski, Chen, and Fryzlewicz (2019)
shows that such binary segmentation methods do not work for the change-in-slope problem as
if you fit a single change-in-slope to data simulated with multiple changes, it will often detect
the change at a location near the middle of a segment between changes. Third, dynamic
programming algorithms that minimize an L0 penalized cost, such as optimal partitioning
(Jackson, Scargle, Barnes, Arabhi, Alt, Gioumousis, Gwin, Sangtrakulcharoen, Tan, and Tsai
2005) or PELT (Killick et al. 2012) cannot be applied to the change-in-slope problem due
to dependencies in the model across changepoints from the continuity of the mean at each
change.
Despite these challenges, there are three methods developed specifically for detecting changes-
in-slope: Trend-filtering (Kim, Koh, Boyd, and Gorinevsky 2009; Tibshirani 2014) which
minimizes the residual sum of squares of fit to the data plus an L1 penalty on the changes-
in-slope; narrowest over threshold (NOT, Baranowski et al. 2019) that repeatedly performs
a test for a single change-in-slope on subsets of the data and combines the results using the
narrowest-over-threshold procedure; and continuous-piecewise-linear pruned optimal parti-
tioning (CPOP, Fearnhead, Maidstone, and Letchford 2019) which uses a novel variant of
dynamic programming to minimize the residual sum of squares plus an L0 penalty, i.e., a
constant penalty for adding each change. The difference between the L1 penalty of trend-
filtering and the L0 penalty of CPOP is important in practice: as the former allows one to
fit a single change in slope with multiple changes of the same sign. This can lead to either
over-fitting the number of changes, or, if a large enough penalty is used to detect the changes
accurately, over-smoothing the mean function: see the middle row of plots in Figure 1 for an
example. The main difference between CPOP and NOT is that the former fits all changes
simultaneously. See Fearnhead et al. (2019) for an empirical comparison of the three methods.
A related problem to detecting changes-in-slope is that of fitting piecewise polynomial func-
tions. Yu, Chatterjee, and Xu (2022) present a method for detecting such changes by min-
imizing a measure of fit to the data with an L0 penalty, which is the same as used by
CPOP. However they do not require the fitted polynomial functions to be continuous at the
change-points, which means that it is simple to minimize this criteria using standard dynamic

Journal of Statistical Software 3

0.0

2.5

5.0

0 100 200 300 400
Time

D
at

a

−2.5

0.0

2.5

5.0

0 100 200 300 400
Time

F
irs

t D
iff

er
en

ce
s

0.0

2.5

5.0

0 100 200 300 400
Time

D
at

a

0.0

2.5

5.0

0 100 200 300 400
Time

D
at

a

0.0

2.5

5.0

0 100 200 300 400
Time

D
at

a

0.0

2.5

5.0

0 100 200 300 400
Time

D
at

a

Figure 1: Example data simulated from a change-in-slope model (top left), and results from
applying a change-in-mean algorithm to the first differences (top right) or from using trend-
filtering (middle row), fitting a piece-wise linear function without imposing continuity (bottom
left) and from CPOP (bottom right). In each case the true mean function (solid line) and
change locations (vertical dashed lines) are shown in blue or light-blue (to aid visualization),
and the estimates in red. For trend filtering we chose the L1 penalty value based on cross-
validation (middle left) or so that it obtained the correct number of changes (middle right). In
the former case we over-estimate the number of changes, while in the latter we obtain a poor
estimate of the mean. When we do not impose continuity we see we lose some accuracy in
estimating the number and location of changes, and in estimating the mean function (compare
bottom left and bottom right).

4 cpop: Detecting Changes in Piecewise-Linear Signals

programming recursions (Auger and Lawrence 1989; Jackson et al. 2005; Killick et al. 2012;
Maidstone, Hocking, Rigaill, and Fearnhead 2017). However, ignoring the continuity con-
straint when it is appropriate can lead to a loss of information and reduce accuracy when
estimating the number and location of the changes or the underlying mean function. For ex-
ample, see the results of this method for fitting a piecewise linear function to the data in the
bottom left figure of Figure 1. The trend-filtering methodology mentioned above can be used
to detect changes in higher order piecewise polynomial functions with continuity constraints,
and constraints on the continuity of derivatives. See also Fearnhead and Liu (2011) for a
Bayesian approach to detect changes in such models.
The purpose of this paper is to describe the cpop package (Grose and Fearnhead 2024), which
is written in R (R Core Team 2024) and available from CRAN at https://CRAN.R-project.
org/package=cpop, and implements the CPOP algorithm. The latest version of the package
was developed in response to an applied challenge, see Section 5, where the data was unevenly
spaced and the noise was not homoscedastic, aspects that previous implementations of change-
in-slope algorithms could not handle. How the CPOP algorithm is extended to deal with
these features is described in Section 2, together with allowing the locations of the changes
in slope to not coincide with the observations. This latter aspect can be helpful in reducing
the computational cost of the CPOP algorithm for high frequency data by, e.g., searching
for segmentations that only allow changes at a smaller grid of possible locations. Section 3
describes the basic functionality of the package, with the extensions to allow for unevenly
spaced, heteroscedastic data described, and to specify the grid of potential change locations,
in Section 4. This latter section also shows how to impose a minimum segment length and
how to implement CPOP within the changepoints for a range of penalties (CROPS) algorithm
(Haynes, Eckley, and Fearnhead 2017a) to obtain all segmentations as we vary the value of
L0 penalty. An application of CPOP to analyse decay of spectra from ocean models is shown
in Section 5.

1.1. Software for changepoint detection

Currently most software for changepoint detection is available in R (the main exception being
the ruptures Python package of Truong, Oudre, and Vayatis 2018, which has similar func-
tionality to the changepoint described below). There are both many different types of change
that one may wish to detect, and many different approaches to detecting multiple changes.
Consequently there are a wide range of change algorithms with associated packages in R.
For example the changepoint package (Killick and Eckley 2014) implements dynamic pro-
gramming algorithms, such as PELT, for detecting changes in mean, variance or mean and
variance. Other dynamic programming algorithms include fpop and gfpop (Runge, Hock-
ing, Romano, Afghah, Fearnhead, and Rigaill 2023) that implements the functional optimal
partitioning algorithm (Maidstone et al. 2017) for detecting changes in mean, with the latter
package allowing for flexibility as to how the mean changes (such as monotonically increasing)
and for different loss functions for measuring fit to data. The breakfast package (Anastasiou,
Chen, Cho, and Fryzlewicz 2022) implements a range of methods based on recursively apply-
ing a test to detect a single change, for example wild binary segmentation (Fryzlewicz 2014)
and IsolateDetect (Anastasiou and Fryzlewicz 2022); whilst mosum (Meier, Kirch, and Cho
2021) implements the MOSUM procedure. Packages stepR (Pein, Hotz, and Sieling 2023)
and FDRseg implement the multiscale approaches of Frick, Munk, and Sieling (2014), Pein,
Sieling, and Munk (2017) and Li, Munk, and Sieling (2016).

https://CRAN.R-project.org/package=cpop
https://CRAN.R-project.org/package=cpop

Journal of Statistical Software 5

Separately there are packages that perform non-parametric change detection, for example
ecp (James and Matteson 2015) implements the method of Matteson and James (2014), while
changepoint.np implements the method of Haynes, Fearnhead, and Eckley (2017b). There are
also methods for analyzing multiple dimensional data streams, such as InspectChangepoint
(Wang and Samworth 2018), and changepoint.geo (Grundy, Killick, and Mihaylov 2020);
Bayesian methods, such as bcp (Erdman and Emerson 2008); and methods that implement
online procedures such as CPM (Ross 2015) and FoCUS (Romano, Eckley, Fearnhead, and
Rigaill 2023). The changepoints package (Xu, Padilla, Wang, and Li 2022) implements a range
of changepoint methods for univariate data, including change in mean and (discontinuous)
change in polynomial regression, and multivariate data.
However, as mentioned above, there are more limited methods for specifically detecting
changes-in-slope. The trend filtering algorithm can be implemented using the trendfilter
function from the genlasso (Arnold and Tibshirani 2022) package, and the NOT algorithm can
be implemented using the not package (Baranowski, Chen, and Fryzlewicz 2023) or is avail-
able within breakfast. However current implementations of these do not allow for unevenly
spaced, heterogeneous observations or minimum segment lengths, which are all features that
can be included within the latest release of the cpop package that is described in this arti-
cle. (Though there is flexibility within the genlasso package for implementing general lasso
algorithms, and these can be constructed to fit a trend-filtering model to unevenly spaced
data).

2. Detecting changes in slope
Assume we have data points (x1, y1), . . . , (xn, yn), ordered so that x1 < x2 < · · · < xn. In
many applications xi will be a time-stamp of when response yi is obtained, whilst in, say,
genomic applications, xi may correspond to a location along the genome at which observation
yi is taken. We wish to model the response, y, as a signal plus noise where the signal is
modeled as a continuous piecewise linear function of x. That is

yi = f(xi) + ϵi, (1)

where f(x) is a continuous piecewise linear function, and ϵi is noise. If the function f(x)
has K changes in slope in the open interval (x1, xn), and these occur at x-values τ1, . . . , τK ,
and we define τ0 and τK+1 to be arbitrary values such that τ0 ≤ x1 and τK+1 ≥ xn then
we can uniquely define f(x) on [x1, xn] by specifying the values f(τi) for i = 0, . . . , K + 1.
The function f(x) can then be obtained via straight-line interpolation between the points
(τi, f(τi)).
Our interest is in estimating the number of changes in slope, K, their locations, τ1, . . . , τK ,
and the underlying signal. The latter is equivalent to estimating f(τi) for i = 0, . . . , K + 1.
To simplify notation we will denote these values by α0, . . . , αK+1, so αi = f(τi) for i =
0, . . . , K + 1. Also, for this and other quantities we will use the shorthand αi:j for integers
i ≤ j to be the ordered set of values, αi, . . . , αj .

2.1. An L0 penalized criteria

To estimate the number and locations of the changes-in-slope, and the underlying signal, we
will first introduce a grid of x-values, g1:N with these ordered so that gi < gj if and only if

6 cpop: Detecting Changes in Piecewise-Linear Signals

i < j. Our estimate for f(x) will be restricted to piecewise-linear functions whose slope is only
allowed to change at these grid-points. We will define our estimator of f(x) as the function
that minimizes a penalized cost that is a sum of the fit of the function to data, measured in
terms of a weighted residual sum of squares, plus a penalty for each change-in-slope. That is
we solve the following minimization problem

min
K,τ1:K∈g1:N ,α0:K+1

n∑

i=1

1
σ2

i

(
yi − αj(i) − (αj(i)+1 − αj(i))

xi − τj(i)
τj(i)+1 − τj(i)

)2

+ Kβ

 , (2)

where β > 0 is a user chosen penalty for adding a changepoint, j(i) is such that τj(i) ≤ xi <
τj(i)+1, and σ2

1:n are user specified constants that are estimates of the variances of the noise
ϵ1:n. The cost that we are minimizing consists of two terms. The first is the measure of fit
to the data, and is a residual sum of squares, but with the residuals weighted by the inverse
of the variance of the noise for that observation. The expression in this term that depends
on α0:K+1 and τ0:K+1 is just an expression for f(xi) given that f(x) is defined as the linear
interpolation between the points (τi, αi) for i = 0, . . . , K + 1. The second term is the penalty
for the number of changes-in-slope, with a penalty of β for each change.
This approach for estimating changes-in-slope was first proposed in Fearnhead et al. (2019),
but they assumed that the locations of the data points were evenly spaced, so xi = i, the
grid-points were equal to the locations of the data points, so N = n and g1:N = x1:n, and
that the noise was homogeneous so σ2

i = σ2, for some constant σ2, for all i.
Before we describe how to extend the approach in Fearnhead et al. (2019) to this more
general estimator, we first give some comments on this and related approaches to estimating
changes-in-slope. This approach is a common one for estimating changes (Jackson et al.
2005; Killick et al. 2012) and the cost is often termed an L0 penalized cost. This is to
contrast it with L1 penalized costs, such as implemented in trend-filtering (Kim et al. 2009;
Tibshirani 2014) which are of similar form, except that the cost for adding a change-in-slope
is linear in the size of the change-in-slope. The advantage of using an L1 penalized cost
is that solving the resulting minimization problem is simpler – however such an approach
tends to over-estimate the number of changes, as shown in the introduction. An alternative
approach to estimating changes-in-slope is to perform tests for a change-in-slope on data
from randomly chosen intervals of x-values and to combine the results of these tests using
the narrowest-over-threshold procedure of Baranowski et al. (2019). The current formulation
and implementation of these alternative methods also make the simplifying assumptions of
evenly spaced locations for the data, change-in-slope only at data point locations, and that
the noise variance is constant.
The choice of β in (2) is important for accurate estimates, with lower values of β leading to
larger estimates of K, the number of changes. If the noise is approximately Gaussian and
independent, and the estimate of the noise variance is good, then β = 2 log n is an appropriate
choice (Fearnhead et al. 2019). In general these assumptions will not hold, and often larger
values of β are required to compensate for positively auto-correlated noise. Where possible
we recommend evaluating sets of estimated changepoints obtained for a range of β values,
and these can be obtained in a computationally efficient manner using the CROPS algorithm
of Haynes et al. (2017a).

Journal of Statistical Software 7

2.2. Dynamic programming recursion

Solving (2) is non-trivial as it involves minimizing a non-convex function. Furthermore, stan-
dard dynamic programming algorithms for change points (Maidstone et al. 2017), e.g., those
that recurse based on conditioning on the location of the most recent changepoint, cannot be
used because of the dependence across changepoints due to the continuity constraint. Thus we
follow Fearnhead et al. (2019) and develop a dynamic programming recursion that conditions
both on the location of the changepoints and the value of the mean at that changepoint.
Remember that we are allowing changepoints only at grid-points, g1:N . We introduce a set of
functions, each associated with a grid-point, Ft(α) for t = 1, . . . , N , defined as the minimum
value of the penalized cost for data up to and including grid-point gt conditional on the signal
at gt being α, i.e., f(gt) = α. To define this formally, define a set of segment cost functions

Cs,t(α′, α) =
nt∑

i=ns+1

(
yi − α′ − (α − α′)xi − gs

gt − gs

)2
,

which is the cost of fitting a linear signal to data points between the s-th and t-th grid-points,
i.e., (xi, yi) with gs < xi ≤ gt, with the signal taking the value α′ at gs and α at gt. In the
summation we use the notation ns to denote the index of the last data-point located at or
before gs. If nt = ns, that is there are no data-points between gs and gt then this cost is
set to 0.
Using this definition, the L0 penalized criteria (2) can be written as

min
K,i1:K∈1:N,α0:K+1

{
K∑

k=0
Cik,ik+1(αk, αk+1) + Kβ

}
. (3)

Furthermore, we can define the function Fl(α) for l = 1, . . . , N as

Fl(α) = min
K,i1:K∈1:l−1,α0:K

{
K−1∑
k=0

Cik,ik+1(αk, αk+1) + Kβ + CiK ,l(αK , α)
}

,

which is of the form of (3) but with τK+1 = gl and αK+1 = α, as for Fl(α) we are analyzing
only data up to gl and we are fixing αK+1 = f(gl) = α.
Using the same argument as in Fearnhead et al. (2019) we can then derive a recursion for
Fl(α). For l = 1, . . . , N ,

Fl(α) = min
k∈0:(l−1)

{
min

α′

[
Fk(α′) + Ck,l(α′, α) + β

]}
,

with F0(α) = −β. The idea of this recursion is that we condition on the location of the
most recent changepoint, gk, and the value of the signal at that changepoint, α′. Condi-
tional on this information the optimal segmentation prior to the most recent changepoint is
independent of the data since that changepoint, and the minimum of the penalized cost is
Fk(α′) + Cl−1,l(α′, α) + β: the sum of the minimum cost for the data prior to gk, plus the
segment cost for the data from gk to gl plus the penalty for adding a changepoint. Finally we
obtained Fl(α) by minimizing over k and α′.
Solving this recursion is possible as the functions Fl(α) can be summarized as the pointwise
minimum of a set of quadratics. For each k, we can solve the inner minimization over α′

8 cpop: Detecting Changes in Piecewise-Linear Signals

analytically. Doing so for each k will define Fl(α) as the pointwise minimum of a large set
of quadratics, and we can use a line search to then prune quadratics that do not contribute
to this minimum (which is important to reduce the computational cost of the algorithm).
See Fearnhead et al. (2019) for full details. As noted there, it is possible to further reduce
the computational cost of solving the recursion by using PELT pruning ideas from Killick
et al. (2012). This pruning enables us to reduce the search space of k within the recursion.
Finally, whilst we have described how to find the minimum value of the penalized cost, our
main interest is in the locations of the changepoints and the value of the signal that gives
that minimum cost. However extracting this information is trivial once we have solved the
recursions – again see Fearnhead et al. (2019) for details.
The novelty relative to Fearnhead et al. (2019) is that for this recursion we have decoupled
the grid of potential changepoints from the locations of the data points. Furthermore, our
setting allows for unevenly spaced data and for the noise variance to be heterogeneous. These
impact that definition of Cl−1,l(α′, α) and how we perform the inner minimization over α′.
Full details are given in Appendix A.
One further extension of this approach to detecting changes is to allow for a minimum segment
length. This can be done by optimizing the penalized cost (2) only over sets of changepoints
that are consistent with the prescribed minimum segment length. To minimize the cost
subject to such a constraint involves adapting the dynamic programming recursion so that we
only search over values of k for the location of the most recent changepoint that are consistent
with the minimum segment length. However one drawback with imposing a minimum segment
length for the change-in-slope problem is that it makes the PELT pruning ideas invalid. In
our implementation of cpop, if a minimum segment length is specified we allow the algorithm
to be run both with and without the PELT pruning. If run without PELT pruning, the
algorithm will be slower but guaranteed to find the optimal segmentation under our condition.
Running with PELT pruning is quicker but the algorithm may output a slightly sub-optimal
segmentation. In practice we have observed that this happens rarely.

3. The cpop package
The cpop package has functions to simulate data from a change-in-slope model, implement
the CPOP algorithm to estimate the location of the changes, and various functions for sum-
marizing and plotting the estimates of the change locations and the mean function.

3.1. Generating simulated data

The simchangeslope function allows for simulating data from a change-in-slope model (1):

simchangeslope(x, changepoints, change.slope, sd = 1)

It takes the following arguments:

• x: A numeric vector containing the locations of the data.

• changepoints: A numeric vector of changepoint locations.

• change.slope: A numeric vector indicating the change in slope at each changepoint.
The initial slope is assumed to be 0.

Journal of Statistical Software 9

• sd: The residual standard deviation. Can be a single numerical value or a vector of
values for the case of varying residual standard deviation. Default value is 1.

It returns a vector y of simulated values which correspond to the locations x. The mean
function of the data goes through the origin – but to add an intercept we just add a constant
to all output values. It is possible to get the value of the mean function at the x-values of
the data by setting sd = 0.
The following code demonstrates the simchangeslope function and displays the data along
with the (true) line segments and the locations of the changes in slope (see Figure 2).

R> library("cpop")
R> library("ggplot2")
R> changepoints <- c(0, 25, 50, 100)
R> change.slope <- c(0.2, -0.3, 0.2, -0.1)
R> x <- 1:200
R> sd <- 0.8
R> y <- simchangeslope(x, changepoints, change.slope, sd)
R> df <- data.frame("x" = x, "y" = y)
R> p <- ggplot(data = df, aes(x = x, y = y))
R> p <- p + geom_point(alpha = 0.4)
R> p <- p + geom_vline(xintercept = changepoints, color = "red",
+ linetype = "dashed")
R> mu <- simchangeslope(x, changepoints, change.slope, sd = 0)
R> p <- p + geom_line(aes(y = mu), color = "blue")
R> p <- p + theme_bw()
R> print(p)

3.2. Determining changes in slope

The function cpop is used to determine the locations of changes in slope.

cpop(y, x = 1:length(y) - 1, grid = x, beta = 2 * log(length(y)),
sd = sqrt(mean(diff(diff(y))^2)/6), minseglen = 0, prune.approx = FALSE)

It takes the following arguments:

• y: A vector of length n containing the data.

• x: A vector of length n containing the times/locations of data points. Default value is
NULL, in which case the locations are set to be 0, 1, . . . , n − 1, corresponding to evenly
spaced data.

• grid: An ordered vector of possible locations for the change points. If this is NULL,
then this is set to x, the vector of times/locations of the data points.

• beta: A positive real value for the penalty, β in (3), incurred for adding a changepoint.
The larger the penalty, the fewer changepoints will be detected. The default value is
beta = 2 * log(length(y)).

10 cpop: Detecting Changes in Piecewise-Linear Signals

0.0

2.5

5.0

7.5

0 50 100 150 200
x

y

Figure 2: Simulated data (black dots) with true mean (blue dashed line) and changepoints
(vertical red dashed lines).

• sd: Estimate of residual standard deviation. Can be a single numerical value if it is
the same for all data points, or a vector of n values for the case of varying standard
deviation. The default value is sd = sqrt(mean(diff(diff(y))^2)/6).

• minseglen: The minimum allowable segment length, that is the distance between suc-
cessive changepoints. The default is that no minimum segment length is imposed.

• prune.approx: Only relevant if a minimum segment length is set. If TRUE, cpop will use
an approximate pruning algorithm that will speed up computation but may occasionally
lead to a sub-optimal solution in terms of the estimated changepoint locations. If the
minimum segment length is 0, then an exact pruning algorithm is possible and is used.

The cpop function returns an S4 object for which a number of generic methods, including
plot and summary, are provided. The default value for sd is based on a simple estimator
that is appropriate for regularly-spaced data. In this case, taking the first difference of y
twice will remove the linear trend within each segment, and the variance of the resulting
twice-differenced data is an estimator of 6 times the noise variance.
The following demonstrates how the cpop function can be used to determine changes in
slope, by analyzing the data we simulated and plotted in Figure 2. It uses the default penalty,
β = 2 log n, and we assume that the true noise standard deviation, 0.8, is known. The summary
function is used to provide an overview of the analysis parameters along with estimated
changepoint locations, corresponding fitted line segments, and the (weighted) residual sum of
squares (RSS) for each segment.

Journal of Statistical Software 11

0.0

2.5

5.0

7.5

0 50 100 150 200
x

y

Figure 3: Example output of cpop for simulated data from Figure 2. The true mean and
changepoints are given in blue dashed lines, together with estimated mean (black full line)
and changepoints (red full lines).

R> res <- cpop(y, x, beta = 2 * log(length(y)), sd = 0.8)
R> summary(res)

cpop analysis with n = 200 and penalty (beta) = 10.59663

3 changepoints detected at x =
22 52 95

fitted values :
x0 y0 x1 y1 gradient intercept RSS

1 1 0.147335 22 4.844725 0.223685242 -0.07635023 10.07761
2 22 4.844725 52 2.717661 -0.070902123 6.40457180 10.38813
3 52 2.717661 95 7.303644 0.106650750 -2.82817758 25.09463
4 95 7.303644 200 7.563413 0.002473995 7.06861408 61.78303

overall RSS = 107.3434
cost = 199.514

The predicted change in slope (changepoint) locations and corresponding line segments can be
displayed using plot. The plot function returns a ‘ggplot2’ object which can be augmented
to include additional features such as the true change in slope locations and line segments
(see Figure 3).

R> p <- plot(res)

12 cpop: Detecting Changes in Piecewise-Linear Signals

R> p <- p + geom_vline(xintercept = changepoints[-1], color = "blue",
+ linetype = "dashed")
R> p <- p + geom_line(aes(y = mu), color = "blue", linetype = "dashed")
R> print(p)

The last two lines of code add the true changepoint locations and the true mean function to
the plot. For plotting the changepoint location we omit the first element of changepoints,
which was 0, as that was included just to set the initial slope of the mean and does not
correspond to a change-in-slope.
The estimate of the number of changes will depend on both the value of the penalty, beta, and
the assumed standard deviation of the noise, sd. By considering the form of the criteria (2)
that cpop minimizes we see that if we multiply sd by some constant c and beta by c2 then
we will obtain the same set of estimated changes. The function cpop has default values, with
sd estimated based on the second moment of the second differences of the data (as second
differences removes a linear signal), and beta set to 2 log n, where n is the length of the data.
This is a standard default penalty which has good properties if the noise is independent,
identically distributed (IID) and Gaussian, and sd is a good estimate of the noise standard
deviation. How to use cpop when these assumptions do not hold, or the noise standard
deviation varies or is hard to estimate is discussed in the examples below.

3.3. Other functions

In addition to plot and summary, the cpop package provides functions to evaluate the fitted
mean function at specified x-values, and to calculate the residuals of the fitted mean. The
primary argument of these functions is object, an instance of a ‘cpop’ S4 class as produced
by the function cpop.
The function changepoints(object) creates a data frame containing the locations of the
changepoints in terms of the their x-values.

R> changepoints(res)

location
1 22
2 52
3 95

The function estimate(object, x = object@x, ...) with argument, x, that specifies the
x-values at which the fit is to be estimated, creates a data frame with two columns containing
the locations x and the corresponding estimates ŷ. The default value for x is the vector of x
locations at which the ‘cpop’ object was defined.

R> estimate(res, x = c(0.1, 2.7, 51.6))

x y_hat
1 0.1 -0.0539817
2 2.7 0.5275999
3 51.6 2.7460223

Journal of Statistical Software 13

The function fitted(object) creates a data frame containing the endpoint coordinates for
each line segment fitted between the detected changepoints. The data frame also contains the
gradient and intercept values for each segment and the corresponding residual sum of squares
(RSS).

R> fitted(res)

x0 y0 x1 y1 gradient intercept RSS
1 1 0.147335 22 4.844725 0.223685242 -0.07635023 10.07761
2 22 4.844725 52 2.717661 -0.070902123 6.40457180 10.38813
3 52 2.717661 95 7.303644 0.106650750 -2.82817758 25.09463
4 95 7.303644 200 7.563413 0.002473995 7.06861408 61.78303

The function residuals(object) creates a single column matrix containing the residuals.

R> head(residuals(res))

[,1]
[1,] -0.4484981
[2,] 0.1758944
[3,] -0.6632084
[4,] 1.2578339
[5,] 0.2215302
[6,] -0.7221359

4. Extensions of cpop

4.1. Irregularly sampled data

The cpop package allows for irregularly spaced data, both when simulating data and when
running the CPOP algorithm. The only change to the previous code that we need to make
is to change the definition of x that is input to simchangeslope.

R> x <- (1:200)^2/200
R> changepoints <- c(0, 25, 50, 100)
R> change.slope <- c(0.2, -0.3, 0.2, -0.1)
R> sd <- 0.8
R> y <- simchangeslope(x, changepoints, change.slope, sd)

To analyse the data we use cpop as before. (The only difference is that for evenly spaced
data one can omit the x argument – but it must be included for unevenly spaced data.)

R> res <- cpop(y, x, beta = 2 * log(length(y)), sd = 0.8)

14 cpop: Detecting Changes in Piecewise-Linear Signals

0.0

2.5

5.0

7.5

0 50 100 150 200
x

y

Figure 4: Example output of cpop for unevenly spaced simulated data. The true mean and
changepoints are given in blue dashed lines, together with estimated mean (black full line)
and changepoints (red full lines).

Figure 4 shows a plot of the simulated data and estimated changepoints and mean function.

4.2. Heterogeneous data

To simulate heterogeneous data we just input a vector of the standard deviation of each data
point. For example, we can produce a version of the simulation from Section 3 but with the
noise standard deviation increasing with x.

R> x <- 1:200
R> sd <- x/100
R> y <- simchangeslope(x, changepoints, change.slope, sd)

Here the values of changepoints and change.slope are as before.
It is interesting to compare two estimates of the changepoints, one where we assume a fixed
noise standard deviation, and one where we assume the true noise standard deviation. For
the former it is natural to set this value so the the average variance of the noise is correct.

R> res <- cpop(y, x, beta = 2 * log(length(y)), sd = sqrt(mean(sd^2)))
R> res.true <- cpop(y, x, beta = 2 * log(length(y)), sd = sd)

Here res contains the results where we assume a fixed noise standard deviation, and res.true
where we use the true values. Figure 5 shows the results – and we can see that wrongly

Journal of Statistical Software 15

0

3

6

9

12

0 50 100 150 200
x

y

0

3

6

9

12

0 50 100 150 200
x

y
Figure 5: Example output of cpop for heterogeneous noise: assuming a constant noise variance
(left) and the true noise variance (right). The true mean and changepoints are given in blue
dashed lines, together with estimated mean (black full line) and changepoints (red full lines).

assuming homogeneous noise leads to detecting two false positive changepoints in regions
where the noise variance is above what was assumed.
One practical issue is how can we estimate the noise variance in the heterogeneous case?
In some situations there may be covariate information that tells the relative variance of
the noise for different data points (for example due to some data being averages of multiple
measurements). Alternatively if we know how the noise variance depends on x we can estimate
this by (i) running CPOP assuming a constant variance; (ii) calculating the residuals of the
fitted model; (iii) estimating how the noise variance varies with x by fitting an appropriate
model to the residuals. An example of this scheme will be seen in Section 5.

4.3. Choice of grid

The computational cost for cpop increases with the size of the number of potential changepoint
locations. To see the rate of increase we ran cpop with the default settings where the grid
of potential changepoints is equal to the x values of the data, for data sizes varying from
n = 200 to n = 6400. We considered two scenarios, one where we had a fixed number of
changepoints and one where we had a fixed segment size of length 100. The average CPU
(central processing unit) cost across 10 runs of cpop for each data size are shown in Figure 6.
The figure suggests that the computational cost is increasing like n2.5 when we have a fixed
number of changes, and like n1.7 when the number of changes increases linearly with n. By
comparison, if we analyse each data set with a grid of 200 evenly spaced potential locations
for the changes, the computational cost is roughly constant. We see the computational costs
are similar for both regularly and irregularly spaced data.
Thus for large data sets, we can substantially reduce the computational cost of running cpop
by using a smaller grid of potential change locations. Obviously this comes with the drawback
of a potential loss of accuracy with regards to the estimated changepoint locations. However
one possible approach is to run cpop with a coarse grid, and then re-run the algorithm with
a finer grid around the estimated changepoints.

16 cpop: Detecting Changes in Piecewise-Linear Signals

0.1

1.0

10.0

100.0

300 1000 3000
n

C
P

U
 ti

m
e

(s
ec

)

Figure 6: Empirical computational cost for cpop as a function of sample size, n, for a grid
of size n (full lines) and of size 200 (dashed lines): for regularly spaced data with a single
changepoint (black) and for a linearly increasing number of changepoints (red); and for data
with x-values simulated from a uniform distribution with a single changepoint (grey) and a
linearly increasing number of changepoints (pink). To aid interpretation straight lines for
CPU cost proportional to n1.7 (red dot-dashed) and n2.5 (black dot-dashed) are shown.

To see this we implemented the scheme for a data set with n = 6400 and a fixed segment size
of 200. We initially ran cpop with a grid with potential changes allowed every 16 observations.

R> x <- 1:6400
R> y <- simchangeslope(x, changepoints = 0:31 * 200,
+ change.slope = c(0.05, 0.1 * (-1)^(1:31)), sd = 1)

We use a smaller value for the penalty due to the smaller grid size, and the fact that this
is a preliminary step to find roughly where the changes are: so the key is to avoid missing
changes. Spurious changes can still be removed when we perform our final run of cpop.

R> res.coarse <- cpop(y, x, grid = 1:399 * 16, beta = 2 * log(400), sd = 1)

In our example we find 38 changepoints with this coarse grid. We then introduce a finer grid
around these putative changes: our new grid includes all x-values within 8 of each putative
changepoint.

R> cps <- unlist(changepoints(res.coarse))
R> grid <- NULL
R> for(i in 1:length(cps)) {
+ grid <- c(grid, cps[i] + (-7):8)
+ }
R> res.fine <- cpop(y, x, grid, beta = 2 * log(length(x)), sd = 1)

Journal of Statistical Software 17

This gives a computational saving of between 10 to 100 over the default running of cpop.
We can evaluate the accuracy of the approach by then comparing the estimated changepoints
to the estimates we obtain if we run the default setting of cpop. In this case, both runs
estimate the same number of changepoints, with the maximum difference in the location of a
change being two time-points. The slower, default running of cpop gives a segmentation with
a marginally lower cost (of 7187.1 as opposed to 7188.0).

4.4. Imposing a minimum segment length
The cpop function allows the user to specify a minimum segment length – and this is defined as
the minimum x-distance allowed between two estimated changepoints. Specifying a minimum
segment length can make the method more robust to point outliers or noise that is heavier-
tailed than Gaussian: as minimizing (2) can lead to over-fitting in such scenarios and this
over-fitting tends to be through adding clusters of changepoints close together to fit the noise
in the data. There are two disadvantages of imposing a minimum segment length. First it
can cause true changes to be missed if they are closer together than the specified minimum
segment length. Second cpop is slower when a minimum segment length is imposed.
To see these issues, we simulated data as in Section 3, except that we assumed the noise was
t4 distributed. We cannot simulate such data directly with simchangeslope, so we need to
first use simchangeslope to calculate the mean function, and then add the noise:

R> changepoints <- c(0, 25, 50, 100)
R> change.slope <- c(0.2, -0.3, 0.2, -0.1)
R> x <- 1:200
R> mu <- simchangeslope(x, changepoints, change.slope, 0.0)
R> y <- mu + rt(length(x), df = 4)

We then estimated the changepoint locations both without a minimum segment length, and
with minimum segment lengths of 10, 30 and 40. To run cpop with a minimum segment
length of 10:

R> res.min <- cpop(y, x, beta = 2 * log(length(y)), minseglen = 10,
+ sd = sqrt(2))

The argument sd = sqrt(2) is because t4 distributed noise has a variance of 2.
Results from CPOP with different minimum segment lengths are shown in Figure 7. If we
do not impose a minimum segment length, then we estimate 11 changepoints, including three
cluster of changes that overfit to the noise. By imposing a minimum segment length of 10
we avoid the over-fitting. For this example, the computational cost of running cpop with the
minimum segment length is about 6 times larger than when we do not assume a minimum
segment length.
Assuming a minimum segment length of 30 or 40 shows what can happen when our minimum
segment length assumption does not hold. A minimum segment length of 30 leads to estimates
of the first two changes at time-points 30 and 60 – the closest possible given the assumption.
As we increase the minimum segment length to 40 we miss the first changepoint all together.

4.5. Choice of penalty
The choice of the penalty, beta, in cpop can have a substantial impact on the number of

18 cpop: Detecting Changes in Piecewise-Linear Signals

0

5

10

15

0 50 100 150 200
x

y

0

5

10

15

0 50 100 150 200
x

y

0

5

10

15

0 50 100 150 200
x

y

0

5

10

15

0 50 100 150 200
x

y

Figure 7: Results of analyzing data with t4 noise with no minimum segment length (top left)
and minimum segment lengths of 10 (top right), 30 (bottom left) and 40 (bottom right). In
each plot we show data (grey dots), true mean (blue dashed line), true changepoints (blue
vertical dashed lines), estimated mean (black line) and estimated changepoints (red vertical
liens)

changepoints detected and the accuracy of the estimated mean function. This is common to
all changepoint methods, where there will be at least one tuning parameter that specifies the
evidence for a change that is needed before a change is added. The default choice of penalty,
2 log n where n is the data size, is based on assumptions that the noise is IID Gaussian with
known variance. When these assumptions do not hold, it is recommended to look at the
segmentations obtained as the penalty value is varied: this can be done efficiently using the
CROPS algorithm of Haynes et al. (2017a).
The idea of CROPS is that it allows a penalized cost method to be implemented for all penalty
values in an interval. This is implemented within the cpop package by the function:

cpop.crops(y, x = 1:length(y), grid = x, beta_min = 1.5 * log(length(y)),
beta_max = 2.5 * log(length(y)), sd = sqrt(mean(diff(diff(y))^2)/6),
minseglen = 0, prune.approx = FALSE)

Journal of Statistical Software 19

5

6.1

6.46

6.75

7.12

7.21

10.8

27.9

50

234

250.8

263.5

276.6

290.7

333.6

348.7

376.1

460.5

50 100 150
location

pe
na

lty

unpenalised cost

0

4

8

0 50 100 150 200
x

y

Figure 8: Example plot of output from cpop.crops (left), and best segmentation based on
calculated BIC (right). For the left-hand plot each row shows a segmentation, with points
at estimated changepoint location. The left-hand axis shows a penalty value that leads to
that segmentation, and the right-hand axis gives the corresponding unpenalized cost. For the
right-hand plot we show the true mean and changepoints (blue dashed lines), and estimated
mean (black line) and changepoints (red lines).

The arguments of cpop.crops are identical to those of cpop except that, rather than spec-
ifying a single penalty value (beta), the range of penalty values to be used is specified by
beta_min and beta_max, which fix the smallest and largest penalty value to be used. The out-
put is an instance of an S4 class that contains details of all segmentations found by minimizing
the penalized cost for some penalty value in the interval between beta_min and beta_max.
To see the use of cpop.crops, consider an application where we do not know the standard
deviation of the noise. Under our criteria (2), the optimal segmentation with penalty c2β and
standard deviation σi/c will be the same if we fix β and σ1:n but vary c > 0. Thus under an
assumption that the noise is homogeneous, we can run cpop with sd = 1 but for a range of
β ∈ [2σ2

− log n, 2σ2
+ log n], and this will give us the optimal segmentations for β = 2 log n as

we vary noise standard deviation between σ− and σ+.
We simulated data as per Section 3 but with sd = 1.5. To run CPOP for a range of β ∈ [5, 50]
we use

R> res.crops <- cpop.crops(y, x, beta_min = 5, beta_max = 50, sd = 1)

For our example 2 log n = 10.6, so this is equivalent to trying noise standard deviation in the
range [0.69, 2.2].
We can plot the location in the changepoints for each segmentation found by CPOP for
β ∈ [5, 50].

R> plot(res.crops)

This is shown in Figure 8, and shows that there are 6 different segmentations found. These are
labelled with a penalty value which gives that segmentation (left axis) and the unpenalized
cost, i.e., the weighted RSS, for that segmentation and penalty value (right axis).

20 cpop: Detecting Changes in Piecewise-Linear Signals

Details of the segmentations can be obtained using segmentations(res.crops). This gives
a matrix with one row for each of the segmentations, and each row contains a value of β that
gives that segmentation, the corresponding unpenalized cost, the penalized cost, the number
of changepoints, and then the list of ordered changepoints. We can also obtain a list with
the output from cpop corresponding to each segmentation, with models(res.crops). For
example, one approach to choose a segmentation from the output from cpop.crops is to find
the segmentation that minimizes a cost under a model where we assume the noise variance is
unknown (Fryzlewicz 2014),

n log
(

1
n

n∑
i=1

(
yi − f̂(xi)

)2
)

+ 2K log n.

Here f̂ is the estimated mean function and K is the number of changepoints. This can be
calculated as follows.

R> models <- cpop.crops.models(res.crops)
R> M <- length(models)
R> BIC <- rep(NA, M)
R> ncps <- segmentations(res.crops)[, 4]
R> n <- length(y)
R> for(j in 1:M) {
+ BIC[i] <- n * log(mean((residuals(models[[j]]))^2)) +
+ 2 * ncps[i] * log(n)
+ }

This uses that the fourth column of the matrix segmentations(res.crops) stores the number
of changepoints in each segmentation, and that we can calculate yi − f̂(xi) using the residual
function evaluated for the corresponding entry of cpop.crops.models(res.crops). The
segmentation which has the smallest value of BIC is shown in Figure 8, and shows that this
correctly chooses the segmentation with three changes.
As a final example, we performed a similar analysis but with correlated noise. This violates the
assumption of IID noise that underpins the default choice of penalty, thus we run cpop.crops
for a range of penalties.
We simulated data with n = 500 data points and 10 equally spaced changepoints.

R> n <- 500
R> x <- 1:n
R> mu <- simchangeslope(x, changepoints = 45 * 0:10,
+ change.slope = c(0.15, 0.3 * (-1)^(1:10)), sd = 0)
R> epsilon <- rnorm(n + 2)
R> y <- mu + (epsilon[1:n] + epsilon[2:(n + 1)] + epsilon[3:(n + 2)])/sqrt(3)

The noise is MA(3), and we simulate the data by first calculating the mean function, mu, and
then adding the MA(3) noise.
We could continue as above, and choose between the segmentations by minimizing a penalized
cost under an appropriate model for the noise; this type of approach is suggested for change
in mean models by Cho and Fryzlewicz (2024). A simpler, albeit more qualitative approach,

Journal of Statistical Software 21

8

8.53

12.2

15.8

86.9

200

363

379.3

388.6

419

435.9

1319

100 200 300 400
location

pe
na

lty

unpenalised cost

400

600

800

1000

1200

8 12 16
No. of changepoints

un
pe

na
lis

ed
 c

os
t

−3

0

3

6

9

0 100 200 300 400 500
x

y

Figure 9: Correlated noise example. Output from cpop.crops (top left), unpenalized cost
against number of changepoint (top right) and estimate from segmentation corresponding to
“elbow” (bottom).

is to plot the residual sum of squares of the segmentation against the number of changepoints
(Lebarbier 2005; Baudry, Maugis, and Michel 2012; Fearnhead and Rigaill 2020; Fryzlewicz
2020). This avoids the need to specify a model for the residuals. The idea of this approach is
that adding “true” changes should lead to a noticeably larger reduction in the residual sum
of squares than adding “spurious” changes. Thus the best segmentation should correspond
to an “elbow” in this plot.

R> res.crops <- cpop.crops(y, x, beta_min = 8, beta_max = 200, sd = 1)
R> segs <- segmentations(res.crops)
R> p <- ggplot(data = segs, aes(x = m))
R> p <- p + geom_line(aes(y = Qm))
R> p <- p + geom_vline(xintercept = 10, color = "red")
R> p <- p + xlab("No. of changepoints") + ylab("unpenalized cost")
R> plot(p)

This runs cpop.crops and then uses the fact that the output of segmentations includes

22 cpop: Detecting Changes in Piecewise-Linear Signals

columns that give the number of changepoints and the unpenalized cost of each segmentation.
These columns are labelled "m" and "Qm" respectively. The plot gives a clear elbow, see
Figure 9, and this corresponds to a correct estimate of the number of changes.

5. Application
We now demonstrate an application of cpop on analyzing power spectra of velocity as a func-
tion of wavenumber obtained from models of the Atlantic Ocean. The data is available in the
cpop package and can be loaded with data("wavenumber_spectra", package = "cpop").
It contains four spectra, corresponding to two different months (February and August) from
two different runs of the model (2000 and 2100) corresponding to present and future scenarios:
see Figure 10. The data comes from Richards, Whitt, Brett, Bryan, Feloy, and Long (2021),
and is available from Richards, Whitt, and Brett (2020). See Richards et al. (2021) for a
fuller description of the data.
Interest lies in estimating the rate of decay of the log-spectra against log-wavenumber. We
can do this by removing the first three data points (where the spectra is increasing) and then
using cpop to fit a piecewise-linear curve to the remaining data. We perform an initial run of
cpop assuming an estimated homogeneous noise variance on the data from August from the
2000 run.

R> data("wavenumber_spectra", package = "cpop")
R> x <- log(wavenumber_spectra[-(1:3), 1], base = 10)
R> y <- log(wavenumber_spectra[-(1:3), 4], base = 10)
R> grid <- seq(from = min(x), to = max(x), length = 200)
R> sig2 <- mean(diff(diff(y))^2)/6
R> res <- cpop(y, x, grid, sd = sqrt(sig2),
+ minseglen = 0.09, beta = 2 * log(200))

Here we estimate the noise variance, sig2, based on the variance of the double difference of
the data. For regions where the mean is linear and the data is evenly spaced, taking the
double difference will lead to a mean zero process. If the noise is IID with variance σ2 then
the double-differenced process will have a marginal variance that is 6σ2. Thus our estimate is
the empirical mean of the square of the double-difference data divided by 6. The original data
is evenly spaced in in terms of wavenumber, but as we take logs, x is unevenly spaced: so this
estimator will be biased in our setting. However it will give a reasonable ball-park figure for
an initial run of cpop – the residuals from which can then be used to get a better estimate of
the noise variance. We use a evenly spaced grid for possible change-point locations. To avoid
the potential for adding multiple changepoints between two observations, we set a minimum
segment length of 0.09 (as the largest distance between consecutive x values is 0.08).
The output is shown in the top-right plot of Figure 10, and appears to be over-fitting to the
early part of the series. This is because the noise variance is heterogeneous, and decreasing
with x. However, given our initial fit we can use the residuals to estimate the noise vari-
ance. The noise for the spectra is expected to be approximately inversely proportional to
the wavenumber. By using a Taylor-expansion, we have the variance of the noise for the log-
spectra should be approximately the variance of the noise of the spectra divided by the square
of the mean of the spectra. As the mean of the spectra is roughly a power of the wavenumber,

Journal of Statistical Software 23

10−1

100

101

102

103

10−5.5 10−5 10−4.5 10−4 10−3.5

wavenumber (cyc/m)

sp
ec

tr
a

−1

0

1

2

3

−5.0 −4.5 −4.0 −3.5

log10(wavenumber)

lo
g 1

0(s
pe

ct
ra

)

−1

0

1

2

−5.0 −4.5 −4.0 −3.5

log10(wavenumber)

lo
g 1

0(s
pe

ct
ra

)

10−1

100

101

102

103

10−5 10−4.5 10−4 10−3.5

wavenumber (cyc/m)

sp
ec

tr
a

Figure 10: Application of cpop to wavenumber_spectra data. Log-log plot of raw data (top
left) of horizontal wavenumber spectra of velocity for two months and two runs of an ocean
model: February 2000 (black), August 2000 (red), February 2100 (green) and August 2100
(blue). Output from cpop applied to analyse the decay of spectra from August 2000, with
y equal to log spectra and x equal to log wave number, with estimated homogeneous noise
variance (top right) and estimated heterogeneous noise variance (bottom left). Log-log plot
of fitted spectra for all four series (bottom right) with original data in full-lines and estimate
in dashed lines.

this suggests using a model for the variance, σ2
x say, depending on x as log σ2

x = a + bx: so
that the variance is proportional to some power of the wavenumber. We can estimate the
parameters of this model by maximizing the log-likelihood of Gaussian model for the residuals
with this form for the variance.

R> r2 <- residuals(res)^2
R> loglik <- function(par) {
+ return(length(r2) * par[1] + par[2] * sum(x) +
+ sum(r2/(exp(par[1] + par[2] * x))))
+ }
R> est.hat <- optim(c(0, 0), loglik)

24 cpop: Detecting Changes in Piecewise-Linear Signals

R> sig2 <- exp(est.hat$par[1] + est.hat$par[2] * x)
R> res2 <- cpop(y, x, grid, sd = sqrt(sig2),
+ minseglen = 0.09, beta = 2 * log(200))

Here we have calculated the maximum likelihood estimates by using optim to minimize minus
the log-likelihood. The resulting output from cpop is shown in the bottom left plot of Figure
10. The first two changes could represent real regime transitions relating to the inviscid fluid
physics that one would see in the real ocean (see Figure 6a of Callies and Ferrari 2013), while
the three changes for the largest values of x may relate to a breakdown in the numerical
ocean model near the highest wavenumber of the ocean model grid (Soufflet, Marchesiello,
Lemarié, Jouanno, Capet, Debreu, and Benshila 2016). The estimates of the spectra for
all four series, obtained by repeating this approach, is also shown in Figure 10. For this
application, the residuals from the fitted model appear to be uncorrelated and sub-Gaussian,
so using the fit based on the default penalty choice is reasonable. Though one could also
explore segmentations for other penalty choices using cpop.crops as in the previous section.

Acknowledgments
We would like to thanks Jessica Luo and Dan Whitt for access to and help with the wavenum-
ber spectra data. Paul Fearnhead acknowledges funding from EPSRC grant EP/N031938/1.

References

Aminikhanghahi S, Cook DJ (2017). “A Survey of Methods for Time Series Change
Point Detection.” Knowledge and Information Systems, 51(2), 339–367. doi:10.1007/
s10115-016-0987-z.

Anastasiou A, Chen Y, Cho H, Fryzlewicz P (2022). breakfast: Methods for Fast Multi-
ple Change-Point Detection and Estimation. R package version 2.3, URL https://CRAN.
R-project.org/package=breakfast.

Anastasiou A, Fryzlewicz P (2022). “Detecting Multiple Generalized Change-Points by Iso-
lating Single Ones.” Metrika, 85(2), 141–174. doi:10.1007/s00184-021-00821-6.

Andreou E, Ghysels E (2002). “Detecting Multiple Breaks in Financial Market Volatility
Dynamics.” Journal of Applied Econometrics, 17(5), 579–600. doi:10.1002/jae.684.

Arnold TB, Tibshirani RJ (2022). genlasso: Path Algorithm for Generalized Lasso Problems.
R package version 1.6.1, URL https://github.com/glmgen/genlasso.

Auger IE, Lawrence CE (1989). “Algorithms for the Optimal Identification of Segment Neigh-
borhoods.” Bulletin of Mathematical Biology, 51(1), 39–54. doi:10.1016/s0092-8240(89)
80047-3.

Baranowski R, Chen Y, Fryzlewicz P (2019). “Narrowest-Over-Threshold Detection of Mul-
tiple Change-Points and Change-Point-like Features.” Journal of the Royal Statistical So-
ciety B, 81, 649–672. doi:10.1111/rssb.12322.

https://doi.org/10.1007/s10115-016-0987-z
https://doi.org/10.1007/s10115-016-0987-z
https://CRAN.R-project.org/package=breakfast
https://CRAN.R-project.org/package=breakfast
https://doi.org/10.1007/s00184-021-00821-6
https://doi.org/10.1002/jae.684
https://github.com/glmgen/genlasso
https://doi.org/10.1016/s0092-8240(89)80047-3
https://doi.org/10.1016/s0092-8240(89)80047-3
https://doi.org/10.1111/rssb.12322

Journal of Statistical Software 25

Baranowski R, Chen Y, Fryzlewicz P (2023). not: Narrowest-Over-Threshold Change-Point
Detection. R package version 1.5, URL https://CRAN.R-project.org/package=not.

Baudry JP, Maugis C, Michel B (2012). “Slope Heuristics: Overview and Implementation.”
Statistics and Computing, 22(2), 455–470. doi:10.1007/s11222-011-9236-1.

Callies J, Ferrari R (2013). “Interpreting Energy and Tracer Spectra of Upper-Ocean Turbu-
lence in the Submesoscale Range (1–200 km).” Journal of Physical Oceanography, 43(11),
2456–2474. doi:10.1175/jpo-d-13-063.1.

Cho H, Fryzlewicz P (2024). “Multiple Change Point Detection under Serial Dependence:
Wild Contrast Maximisation and Gappy Schwarz Algorithm.” Journal of Time Series
Analysis, 45(3), 479–494. doi:10.1111/jtsa.12722.

Erdman C, Emerson JW (2008). “bcp: An R Package for Performing a Bayesian Analysis of
Change Point Problems.” Journal of Statistical Software, 23, 1–13. doi:10.18637/jss.
v023.i03.

Fearnhead P, Liu Z (2011). “Efficient Bayesian Analysis of Multiple Changepoint Models
with Dependence across Segments.” Statistics and Computing, 21, 217–229. doi:10.1007/
s11222-009-9163-6.

Fearnhead P, Maidstone R, Letchford A (2019). “Detecting Changes in Slope with an
L0 Penalty.” Journal of Computational and Graphical Statistics, 28(2), 265–275. doi:
10.1080/10618600.2018.1512868.

Fearnhead P, Rigaill G (2020). “Relating and Comparing Methods for Detecting Changes in
Mean.” Stat, 9(1), e291. doi:10.1002/sta4.291.

Frick K, Munk A, Sieling H (2014). “Multiscale Change Point Inference.” Journal of the
Royal Statistical Society B, 76(3), 495–580. doi:10.1111/rssb.12047.

Fryzlewicz P (2014). “Wild Binary Segmentation for Multiple Change-Point Detection.” The
Annals of Statistics, 42(6), 2243–2281. doi:10.1214/14-aos1245.

Fryzlewicz P (2020). “Detecting Possibly Frequent Change-Points: Wild Binary Segmenta-
tion 2 and Steepest-Drop Model Selection.” Journal of the Korean Statistical Society, 49(4),
1027–1070. doi:10.1007/s42952-020-00060-x.

Grose D, Fearnhead P (2024). cpop: Detection of Multiple Changes in Slope in Univariate
Time-Series. R package version 1.0.7, URL https://CRAN.R-project.org/package=cpop.

Grundy T, Killick R, Mihaylov G (2020). “High-Dimensional Changepoint Detection via
a Geometrically Inspired Mapping.” Statistics and Computing, 30(4), 1155–1166. doi:
10.1007/s11222-020-09940-y.

Haynes K, Eckley IA, Fearnhead P (2017a). “Computationally Efficient Changepoint Detec-
tion for a Range of Penalties.” Journal of Computational and Graphical Statistics, 26(1),
134–143. doi:10.1080/10618600.2015.1116445.

Haynes K, Fearnhead P, Eckley IA (2017b). “A Computationally Efficient Nonparametric
Approach for Changepoint Detection.” Statistics and Computing, 27(5), 1293–1305. doi:
10.1007/s11222-016-9687-5.

https://CRAN.R-project.org/package=not
https://doi.org/10.1007/s11222-011-9236-1
https://doi.org/10.1175/jpo-d-13-063.1
https://doi.org/10.1111/jtsa.12722
https://doi.org/10.18637/jss.v023.i03
https://doi.org/10.18637/jss.v023.i03
https://doi.org/10.1007/s11222-009-9163-6
https://doi.org/10.1007/s11222-009-9163-6
https://doi.org/10.1080/10618600.2018.1512868
https://doi.org/10.1080/10618600.2018.1512868
https://doi.org/10.1002/sta4.291
https://doi.org/10.1111/rssb.12047
https://doi.org/10.1214/14-aos1245
https://doi.org/10.1007/s42952-020-00060-x
https://CRAN.R-project.org/package=cpop
https://doi.org/10.1007/s11222-020-09940-y
https://doi.org/10.1007/s11222-020-09940-y
https://doi.org/10.1080/10618600.2015.1116445
https://doi.org/10.1007/s11222-016-9687-5
https://doi.org/10.1007/s11222-016-9687-5

26 cpop: Detecting Changes in Piecewise-Linear Signals

Jackson B, Scargle JD, Barnes D, Arabhi S, Alt A, Gioumousis P, Gwin E, Sangtrakulcharoen
P, Tan L, Tsai TT (2005). “An Algorithm for Optimal Partitioning of Data on an Interval.”
IEEE Signal Processing Letters, 12(2), 105–108. doi:10.1109/lsp.2001.838216.

James NA, Matteson DS (2015). “ecp: An R Package for Nonparametric Multiple Change
Point Analysis of Multivariate Data.” Journal of Statistical Software, 62(7), 1–25. doi:
10.18637/jss.v062.i07.

Jewell SW, Hocking TD, Fearnhead P, Witten DM (2020). “Fast Nonconvex Deconvolution
of Calcium Imaging Data.” Biostatistics, 21(4), 709–726. doi:10.1093/biostatistics/
kxy083.

Killick R, Eckley I (2014). “changepoint: An R Package for Changepoint Analysis.” Journal
of Statistical Software, 58(3), 1–19. doi:10.18637/jss.v058.i03.

Killick R, Fearnhead P, Eckley IA (2012). “Optimal Detection of Changepoints with a Linear
Computational Cost.” Journal of the American Statistical Association, 107(500), 1590–
1598. doi:10.1080/01621459.2012.737745.

Kim SJ, Koh K, Boyd S, Gorinevsky D (2009). “ℓ1 Trend Filtering.” SIAM Review, 51(2),
339–360. doi:10.1137/070690274.

Kovács S, Li H, Bühlmann P, Munk A (2023). “Seeded Binary Segmentation: A General
Methodology for Fast and Optimal Change Point Detection.” Biometrika, 110(1), 249–
256. doi:10.1093/biomet/asac052.

Lebarbier É (2005). “Detecting Multiple Change-Points in the Mean of Gaussian Process by
Model Selection.” Signal Processing, 85(4), 717–736. doi:10.1016/j.sigpro.2004.11.
012.

Li H, Munk A, Sieling H (2016). “FDR-Control in Multiscale Change-Point Segmentation.”
Electronic Journal of Statistics, 10(1), 918–959. doi:10.1214/16-ejs1131.

Maidstone R, Hocking T, Rigaill G, Fearnhead P (2017). “On Optimal Multiple Changepoint
Algorithms for Large Data.” Statistics and Computing, 27(2), 519–533. doi:10.1007/
s11222-016-9636-3.

Matteson DS, James NA (2014). “A Nonparametric Approach for Multiple Change Point
Analysis of Multivariate Data.” Journal of the American Statistical Association, 109(505),
334–345. doi:10.1080/01621459.2013.849605.

Meier A, Kirch C, Cho H (2021). “mosum: A Package for Moving Sums in Change-Point
Analysis.” Journal of Statistical Software, 97(8), 1–42. doi:10.18637/jss.v097.i08.

Niu YS, Zhang H (2012). “The Screening and Ranking Algorithm to Detect DNA Copy
Number Variations.” The Annals of Applied Statistics, 6(3), 1306–1326. doi:10.1214/
12-aoas539.

Pein F, Hotz T, Sieling H (2023). stepR: Multiscale Change-Point Inference. R package
version 2.1-9, URL https://CRAN.R-project.org/package=stepR.

https://doi.org/10.1109/lsp.2001.838216
https://doi.org/10.18637/jss.v062.i07
https://doi.org/10.18637/jss.v062.i07
https://doi.org/10.1093/biostatistics/kxy083
https://doi.org/10.1093/biostatistics/kxy083
https://doi.org/10.18637/jss.v058.i03
https://doi.org/10.1080/01621459.2012.737745
https://doi.org/10.1137/070690274
https://doi.org/10.1093/biomet/asac052
https://doi.org/10.1016/j.sigpro.2004.11.012
https://doi.org/10.1016/j.sigpro.2004.11.012
https://doi.org/10.1214/16-ejs1131
https://doi.org/10.1007/s11222-016-9636-3
https://doi.org/10.1007/s11222-016-9636-3
https://doi.org/10.1080/01621459.2013.849605
https://doi.org/10.18637/jss.v097.i08
https://doi.org/10.1214/12-aoas539
https://doi.org/10.1214/12-aoas539
https://CRAN.R-project.org/package=stepR

Journal of Statistical Software 27

Pein F, Sieling H, Munk A (2017). “Heterogeneous Change Point Inference.” Journal of the
Royal Statistical Society B, 79(4), 1207–1227. doi:10.1111/rssb.12202.

R Core Team (2024). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Reeves J, Chen J, Wang XL, Lund R, Lu QQ (2007). “A Review and Comparison of Change-
point Detection Techniques for Climate Data.” Journal of Applied Meteorology and Clima-
tology, 46(6), 900–915. doi:10.1175/jam2493.1.

Richards KJ, Whitt DB, Brett G (2020). Climate Change Impact on Submesoscale ROMS
Data. doi:10.5281/zenodo.4615129.

Richards KJ, Whitt DB, Brett G, Bryan FO, Feloy K, Long MC (2021). “The Impact
of Climate Change on Ocean Submesoscale Activity.” Journal of Geophysical Research:
Oceans, 126(5), e2020JC016750. doi:10.1029/2020jc016750.

Romano G, Eckley IA, Fearnhead P, Rigaill G (2023). “Fast Online Changepoint Detection
via Functional Pruning CUSUM Statistics.” Journal of Machine Learning Research, 24(81),
1–36. URL http://jmlr.org/papers/v24/21-1230.html.

Ross GJ (2015). “Parametric and Nonparametric Sequential Change Detection in R: The cpm
Package.” Journal of Statistical Software, 66(3), 1–20. doi:10.18637/jss.v066.i03.

Runge V, Hocking TD, Romano G, Afghah F, Fearnhead P, Rigaill G (2023). “gfpop: An R
Package for Univariate Graph-Constrained Change-Point Detection.” Journal of Statistical
Software, 106(6), 1–39. doi:10.18637/jss.v106.i06.

Scott AJ, Knott M (1974). “A Cluster Analysis Method for Grouping Means in the Analysis
of Variance.” Biometrics, 30(3), 507–512. doi:10.2307/2529204.

Shi X, Gallagher C, Lund R, Killick R (2022). “A Comparison of Single and Multiple Change-
point Techniques for Time Series Data.” Computational Statistics & Data Analysis, 170,
107433. doi:10.1016/j.csda.2022.107433.

Soufflet Y, Marchesiello P, Lemarié F, Jouanno J, Capet X, Debreu L, Benshila R (2016).
“On Effective Resolution in Ocean Models.” Ocean Modelling, 98, 36–50. doi:10.1016/
j.ocemod.2015.12.004.

Tibshirani RJ (2014). “Adaptive Piecewise Polynomial Estimation via Trend Filtering.” The
Annals of Statistics, 42(1), 285–323. doi:10.1214/13-aos1189.

Truong C, Oudre L, Vayatis N (2018). “ruptures: Change Point Detection in Python.” arXiv
1801.00826, arXiv.org E-Print Archive. doi:10.48550/arxiv.1801.00826.

Truong C, Oudre L, Vayatis N (2020). “Selective Review of Offline Change Point Detection
Methods.” Signal Processing, 167, 107299. doi:10.1016/j.sigpro.2019.107299.

Wang T, Samworth RJ (2018). “High Dimensional Change Point Estimation via Sparse
Projection.” Journal of the Royal Statistical Society B, 80(1), 57–83. doi:10.1111/rssb.
12243.

https://doi.org/10.1111/rssb.12202
https://www.R-project.org/
https://doi.org/10.1175/jam2493.1
https://doi.org/10.5281/zenodo.4615129
https://doi.org/10.1029/2020jc016750
http://jmlr.org/papers/v24/21-1230.html
https://doi.org/10.18637/jss.v066.i03
https://doi.org/10.18637/jss.v106.i06
https://doi.org/10.2307/2529204
https://doi.org/10.1016/j.csda.2022.107433
https://doi.org/10.1016/j.ocemod.2015.12.004
https://doi.org/10.1016/j.ocemod.2015.12.004
https://doi.org/10.1214/13-aos1189
https://doi.org/10.48550/arxiv.1801.00826
https://doi.org/10.1016/j.sigpro.2019.107299
https://doi.org/10.1111/rssb.12243
https://doi.org/10.1111/rssb.12243

28 cpop: Detecting Changes in Piecewise-Linear Signals

Xu H, Padilla O, Wang D, Li M (2022). changepoints: A Collection of Change-Point De-
tection Methods. R package version 1.1.0, URL https://CRAN.R-project.org/package=
changepoints.

Yu Y, Chatterjee S, Xu H (2022). “Localising Change Points in Piecewise Polynomi-
als of General Degrees.” Electronic Journal of Statistics, 16(1), 1855–1890. doi:
10.1214/21-ejs1963.

https://CRAN.R-project.org/package=changepoints
https://CRAN.R-project.org/package=changepoints
https://doi.org/10.1214/21-ejs1963
https://doi.org/10.1214/21-ejs1963

Journal of Statistical Software 29

A. Details of the recursion
Here we describe how to calculate the inner minimization

min
α′

[
Fk(α′) + Cl−1,l(α′, α) + β

]
in the dynamic programming recursion – and how to do this so that the computational cost
does not increase with the number of observations since the putative most recent changepoint.
The function Fk(α′) will be defined as the minimum of a set of quadratics. Denote this q

(k)
i (α′)

for i = 1, . . . , Mk. Then we wish to solve

min
α′

[
min

i∈1:Mk

{
q

(k)
i (α′) + Ck,l(α′, α)

}
+ β

]
= min

i∈1:Mk

{
min

α′

[
q

(k)
i (α′) + Ck,l(α′, α) + β

]}
.

So we only need to be able to calculate minα′ [q(α′) + Cl−1,l(α′, α)], for any known quadratic
q(α′). In the following, we will denote the co-coefficients of q(α′) by a, b and c, so

q(α′) = a + bα′ + cα′2.

Our approach will be to (i) calculate the co-coefficients of Ck,l(α′, α) in constant time, through
the use of summary statistics; (ii) calculate the co-coefficients of the sum q

(k)
i (α′)+Ck,l(α′, α)+

β; (iii) calculate the co-coefficients of the quadratic in α after we minimize with respect to
α′. Steps (ii) and (iii) are trivial, but we give details below for completeness.
To simplify the exposition in the following we will use the convention that expressions that
are of the form 0/0 are equal to 0.
Define the following summary statistics for the data. These can be calculated prior to solving
the dynamic programming recursion and enable the simple and quick calculation of Ck,l(α′, α).
These summary statistics are defined relative to the grid points – so a summary statistic with
sub-script k will be based on all the data points for which xi ≤ gk, and we define nk to be
the largest of observation such that xnk

≤ gk.

S
(Y)
k =

nk∑
i=1

yi

σ2
i

, S
(Y Y)
k =

nk∑
i=1

y2
i

σ2
i

, Sk =
nk∑
i=1

1
σ2

i

S
(X)
k =

nk∑
i=1

xi

σ2
i

, S
(XX)
k =

nk∑
i=1

x2
i

σ2
i

, S
(XY)
k =

nk∑
i=1

xiyi

σ2
i

.

All summary statistics with sub-script 0, or that involve an empty sum, such that nk = 0,
are defined to be 0.
If we then define the co-coefficients of Ck,l(α′, α), so that

Ck,l(α′, α) = Aα2 + Bαα′ + Cα + D + Eα′ + Fα′2,

then tedious algebra gives that these coefficients are defined in terms of the summary statistics
as

A = S
(XX)
k − S

(XX)
l

(gk − gl)2 − 2gl
S

(X)
k − S

(X)
l

(gk − gl)2 + g2
l

Sk − Sl

(gk − gl)2 ,

30 cpop: Detecting Changes in Piecewise-Linear Signals

B = 2(gk + gl)
S

(X)
k − S

(X)
l

(gk − gl)2 − 2S
(XX)
k − S

(XX)
l

(gk − gl)2 − 2gkgl
Sk − Sl

(gk − gl)2 ,

C = 2gl
S

(Y)
k − S

(Y)
l

gk − gl
− 2S

(XY)
k − S

(XY)
l

gk − gl
,

D = S
(Y Y)
k − S

(Y Y)
l ,

E = 2S
(XY)
k − S

(XY)
l

gk − gl
− 2gk

S
(Y)
k − S

(Y)
l

gk − gl
,

F = S
(XX)
k − S

(XX)
l

(gk − gl)2 − 2gk
S

(X)
k − S

(X)
l

(gk − gl)2 + g2
k

Sk − Sl

(gk − gl)2 .

Adding q
(k)
i (α′) + β to Ck,l(α′, α) just changes the coefficients of powers of α′ – that is D

increases by a + β, E increases by b and F increases by c. Minimizing the resulting quadratic
with-respect to α′ gives a quadratic of the form a′ + b′α + c′α2 where

a′ = D + a + β − (E + b)2

4(F + c) ,

b′ = C − (E + b)B
2(F + c) ,

c′ = A − B2

4(F + c) .

Affiliation:
Paul Fearnhead, Daniel Grose
Department of Mathematics and Statistics
Lancaster University
Lancaster, LA1 4YF, United Kingdom
E-mail: p.fearnhead@lancaster.ac.uk, dan.grose@lancaster.ac.uk

Journal of Statistical Software https://www.jstatsoft.org/
published by the Foundation for Open Access Statistics https://www.foastat.org/

May 2024, Volume 109, Issue 7 Submitted: 2022-11-22
doi:10.18637/jss.v109.i07 Accepted: 2023-10-06

mailto:p.fearnhead@lancaster.ac.uk
mailto:dan.grose@lancaster.ac.uk
https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v109.i07

	Introduction
	Software for changepoint detection

	Background
	An L0 penalized criteria
	Dynamic programming recursion

	The cpop package
	Generating simulated data
	Determining changes in slope
	Other functions

	Extensions of cpop
	Irregularly sampled data
	Heterogeneous data
	Choice of grid
	Imposing a minimum segment length
	Choice of penalty

	Application
	Details of the recursion

