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Abstract

The Extremes.jl package provides exhaustive, high-performance functions by lever-
aging the multiple-dispatch capabilities in Julia for the analysis of extreme values. In
particular, the package implements statistical models for both block maxima and peaks-
over-threshold methods, along with several methods for the generalized extreme value and
generalized Pareto distributions used in extreme value theory. Additionally, the package
offers various parameter estimation methods, such as probability-weighted moments, max-
imum likelihood, and Bayesian estimation. It also includes tools for handling dependence
in excesses over a threshold and methods for managing nonstationary models. Inference
for extreme quantiles is available for both stationary and nonstationary models, along
with diagnostic figures to assess the goodness of fit of the model to the data.

Keywords: extreme value analysis, generalized extreme value distribution, generalized Pareto
distribution, block maxima, peaks-over-threshold, nonstationary extremes, Julia.

1. Introduction

Julia (Bezanson, Karpinski, Shah, and Edelman 2012; Bezanson, Edelman, Karpinski, and
Shah 2017) is a high-performance language that was built to be remarkably easy to work
with. In the context of the climate sciences, Julia offers a high-level alternative to Fortran,
which is the language used by most physicists for climate modeling, without sacrificing the
computational performance (Edelman 2019). With the massive volume of data that is gen-
erated by climate simulations, a fast and concise language is clearly advantageous over other
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mainstream analysis languages such as MATLAB (The Math Works Inc. 2022), R (R Core
Team 2024) and Python (Python Core Team 2024).
An important aspect of climate science is the risk assessment and impact analysis of extreme
values. Recently, the Intergovernmental Panel on Climate Change (IPCC) indicated that
extreme events related to sea level, precipitation, temperature, etc., are expected to increase
in frequency and intensity with climate change, leading to important impacts on many sectors
of activities (IPCC 2021). The only statistical discipline in which a rigorous framework for
the study of extreme events has been developed is extreme value theory (EVT, e.g., Coles
2001; Beirlant, Goegebeur, Teugels, and Segers 2004). However, unlike other programming
languages used by statisticians, only a few packages for the analysis of extreme values exist
in Julia despite its growing popularity among the scientific community.
The goal of this paper is to present a new Julia package, Extremes.jl, which provides exhaus-
tive high-performance functions for the statistical analysis of extreme values. In particular,
methods for block maxima and the above-threshold peak model are implemented. Model
parameter estimation can be achieved by using the probability-weighted moments, the maxi-
mum likelihood and the Bayesian paradigm. Nonstationary models as well as diagnostic plots
are implemented to assess the model accuracy and high quantile estimation. This package
is largely inspired by two books. The first one is An Introduction to Statistical Modeling of
Extreme Values by Coles (2001) and the second one is Statistics of Extremes: Theory and
Applications by Beirlant et al. (2004). The API for Extremes.jl is designed to provide a clear
approach, leveraging the multiple-dispatch capabilities of Julia. The proposed package is de-
signed to be used by statisticians, climate scientists and engineers. Moreover, this package
has already been used in several scientific publications (e.g., Jalbert, Genest, and Perreault
2022). The package is complete and well documented, and there are many tests in place for
continuous integration. The tutorial section illustrates the package functionalities by repro-
ducing many of the results obtained by Coles (2001). Extreme value theory is widely used in
climate science, but it also plays an important role in insurance, reinsurance and finance (see
McNeil, Frey, and Embrechts 2015, for example). The developed package also allows us to
use extreme value theory in these contexts.
Probability distribution objects that are commonly used in extreme value analysis, such as the
generalized extreme value (GEV) distribution and the generalized Pareto (GP) distribution,
already exist in the package Distributions.jl (Besançon et al. 2021). However, no parameter
estimation procedure is available for these distributions. To the best of our knowledge, only
one other extreme value analysis software exists in Julia, ExtremeStats.jl (J. Hoffimann 2018),
but its features are limited. For example, Bayesian inference, diagnostic plots and nonstation-
ary models are not implemented. The implementation of diagnostic plots and nonstationary
models is of particular importance for the analysis of environmental extremes due to climate
change.
In R, at least thirteen packages exist for extreme value analysis, including extRemes (Gilleland
and Katz 2016) for univariate extreme value analysis (see Gilleland, Ribatet, and Stephenson
2013, for a short review of these packages). Extremes.jl is similar to extRemes in R, although
the latter has more features, such as point process representation and extremal index estima-
tion. However, Extremes.jl is not a mere refactoring of extRemes. The package is specifically
developed using Julia specific features such as multiple dispatch, which makes it a particu-
larly powerful package. Moreover, the Bayesian functionality of Extremes.jl is more efficient
because it uses the Hamiltonian Monte Carlo method. This method requires fewer iterations
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for the exploration of the posterior distribution than the Gibbs sampling implemented in
extRemes. For univariate extreme value analysis, Extremes.jl has more features than the
other packages in R. The texmex (Southworth, Heffernan, and Metcalfe 2024) package in R
concerns only models for threshold exceedances. The climextRemes (Paciorek 2023) package
is a specialized package for extreme value analysis in climate science, but it uses extRemes
for the extreme value analysis. The evir (Pfaff and McNeil 2018) package is a useful package
for exploratory analysis of extremes, but it does not contain advanced features for parameter
estimation, such as the method of moments or the Bayesian method, and it does not support
nonstationary modeling.

In Python, libraries for extreme value analysis are very basic. The ExtremeLy (Lamichaney
2022) package gathers the existing libraries in Python for extreme value analysis. It allows
the estimation of stationary GEV and GP distributions by the method of moments and the
method of maximum likelihood only. pyextremes (Bocharov 2021) is another package in
Python for extreme value analysis. It supports the estimation of stationary GEV and GP
distributions using the maximum likelihood method and the Bayesian method but does not
support the estimation of nonstationary models.

The remainder of this paper is as follows. In Section 2, the main statistical models used in
univariate extreme value analysis are introduced. In Section 3, some of the package function-
alities are presented. The parameter estimation techniques and inference methods for high
quantiles that are currently supported by Extremes.jl are presented in Section 4. In Section 5,
the main package types and their hierarchy are presented. Additional features, such as visu-
alization tools and declustering procedures for threshold exceedance clusters, are presented
in Section 6. In Section 7, several functionalities are illustrated by reproducing many of the
results presented by Coles (2001). Finally, in Section 8, the presented work is concluded, and
future development for Extremes.jl and extreme value analysis in Julia is presented.

2. Theoretical framework

Extreme value analysis is used to estimate extreme events by extrapolating beyond the data
range using an asymptotically justified limit model. The block maxima and the peaks-over-
threshold models are two classic approaches used to model the extreme values within the
extreme value theory framework.

2.1. Block maxima

Let Y1, Y2, . . . be a sequence of independently and identically distributed random variables
with distribution function F . Let Mn = max{Y1, . . . , Yn} be the sample maximum of the
first n random variables. The Fisher–Tippett–Gnedenko theorem (Fisher and Tippett 1928;
Gnedenko 1943) states that if there exist two sequences of constants an > 0 and bn such that
the normalized maximum (Mn − bn) /an converges in distribution to a nondegenerate limit
Gξ as n → ∞, viz.

lim
n→∞

P
(

Mn − bn

an
≤ y

)
= Gξ(y),
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then Gξ is necessarily of the following form

Gξ(y) =


exp

{
−(1 + ξy)−1/ξ

+

}
if ξ ̸= 0,

exp {− exp (y)} if ξ = 0;

where a+ = max{0, a}. The tail index ξ describes the tail behavior of F . If ξ is negative, the
upper tail is bounded, F is referred to as short-tailed and belongs in the domain of attraction
of the Weibull distribution. If ξ is zero, F is referred to as light-tailed and belongs in the
domain of attraction of the Gumbel distribution. If ξ is positive, the moments eventually
become infinite, F is referred to as heavy-tailed and belongs to the domain of attraction of
the Fréchet distribution.
In practice, if n is sufficiently large, the distribution of the unnormalized maximum Mn can
be approximated as follows:

P (Mn ≤ y) ≈ Gξ

(
y − bn

an

)
=


exp

[
−

{
1 + ξ

(
y−µn

σn

)}−1/ξ

+

]
if ξ ̸= 0;

exp
[
− exp

{
−

(
y−µn

σn

)}]
if ξ = 0.

(1)

The normalization constants an and bn are absorbed into the location and scale parameters µn,
and σn > 0. This limiting distribution is referred to as the generalized extreme value (GEV)
distribution, and the parameters µn, σn and ξ are the location, scale and shape parameters,
respectively. When ξ = 0, the GEV distribution reduces to the Gumbel distribution.
Equation 1 suggests the following statistical model for modeling extreme values. The series
of variables Y1, Y2, . . . is partitioned into blocks of n observations, and the maximum of each
of these blocks is computed. Let Mn,i denote the maximum of the n observations of block
i. If n is sufficiently large, then the GEV distribution is a reasonable approximation of the
distribution of Mn,i, and its parameters can be estimated by using the series of maxima
Mn,1, Mn,2, . . . This model is referred to as the block maxima approach. The subscript n
denotes the block size in the maximum expression. The location µn and scale σn depend on
the block size n, but the index n is usually dropped in the literature when the block sized is
fixed, and this is how these parameters are presented in the rest of the present paper.
In environmental applications, a block size of one year is often used. A risk measure that is
commonly used in such applications is the T -year return level rT , where T > 0; the measure
is defined as the value that is expected to be exceeded once every T years. The T−year return
level corresponds to the quantile G(rT ) = 1 − 1/T of the GEV distribution G that is used
to model the annual maxima. By inverting the cumulative distribution function expressed in
Equation 1, the expression for rT is as follows:

rT = µ − σ

ξ

[
1 −

{
− log

(
1 − 1

T

)}−ξ
]

.

In financial applications, value-at-risk is commonly used as a risk measure. It is also a high
quantile and it can be estimated by inverting the GEV distribution.

2.2. Exceedances above a high threshold
Another popular approach to studying extreme values within the extreme value theory frame-
work consists of modeling the exceedances above a high threshold. Such an approach relies



Journal of Statistical Software 5

on the Pickands-Balkema-de Haan theorem (Balkema and De Haan 1974; Pickands 1975).
Let y∗ = sup{y ∈ R : F (y) < 1} be the upper end point of the support of F , which is the
common distribution function of Y1, Y2, . . . that was introduced in the previous section. The
theorem states that if there exists a positive scaling function c(u) such that the scaled excess
random variable {(Y − u)/c(u)}|Y > u converges in distribution to a nondegenerate limit Hξ

as u → y∗, viz.

lim
u↑y∗

P
{

Y − u

c(u)
≤ z

∣∣∣∣ Y > u

}
= Hξ(z), for z ∈ R;

Then, Hξ is necessarily of the following form:

Hξ(z) = 1 − (1 + ξz)−1/ξ
+ , with ξ ∈ R.

In practice, if the threshold u is sufficiently high, the unnormalized conditional tail distribution
can be approximated as follows:

P (Y − u ≤ z|Y > u) ≈ Hξ {c(u) z} =


1 −

(
1 + ξ z

σu

)−1/ξ

+
if ξ ̸= 0,

1 − exp
(
− z

σu

)
if ξ = 0;

(2)

The normalization function c(u) is absorbed into the scale parameter σu > 0. This limiting
distribution is referred to as the generalized Pareto (GP) distribution, and the parameters σu

and ξ are the scale parameter and the tail index, respectively. This last parameter is the same
as the one corresponding to the GEV distribution and its interpretation remains the same.
The subscript u is commonly dropped in the scale parameter notation and is also dropped in
the remainder of this paper.
Based on Equation 2, Davison and Smith (1990) proposed the following model to characterize
the exceedances above a high threshold u:

P(Y > u + z) = P(Y > u + z|Y > u) × P(Y > u) for z ≥ 0. (3)

If u is large enough, the conditional distribution on the right-hand side can be approximated
with the GP distribution expressed in Equation 2, which is referred to as the peaks-over-
threshold (POT) method. Often, ζu denotes the probability P(Y > u) of exceeding the
threshold.
Notably, Coles (2001, Chapter 4) mentioned that the choice of threshold u is critical for using
the last approximation. As the GP distribution is only asymptotically justified, a threshold
that is too low leads to biased estimates, and a threshold that is too high leaves very few
data for inference, leading to a large estimation variance. In practice, parameter stability
plots (Coles 2001, Chapter 4) and mean residual life plots (Davison and Smith 1990) are
utilized to select a suitable threshold. In a stability plot, the estimates of both σ and ξ in the
GP distribution for a range of thresholds are shown. An appropriate threshold can then be
defined by the lowest threshold in which both the shape and scale estimates remain constant.
If ξ = 0, Coles (2001) proposed a reparametrization of the scale parameter which remains
constant in the range of appropriate thresholds. Additionally, an appropriate threshold can
be defined as one in which the mean of the exceedances (i.e., the mean residual life) varies
linearly with the threshold value.
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In environmental applications, the POT model is often used to estimate the T−year return
level. Suppose that the data consist of m observations per year; then, the T−year return
level can be obtained by inverting Equation 3:

rT = u + σ

ξ

{
(Tmζu)ξ − 1

}
, (4)

where ζu = P(Y > u).

2.3. Dependent sequences

When the stationary series Y1, Y2, . . . exhibits dependence, the abovementioned theorems still
hold if the dependence is of short range. Leadbetter, Lindgren, and Rootzén (1983) provided
a precise mathematical definition for this condition on dependence. In the block maxima
model, the distribution of the block maximum still converges in distribution to the GEV
distribution as n → ∞. The threshold exceedance also still converges in distribution to
the GP distribution as u ↑ y∗. However, clustering tends to occur when the series exhibits
dependence.
To avoid modeling the dependence of threshold exceedances of the same cluster in the POT
model, a procedure called declustering is often used to retain only the maximum of the
cluster. The different cluster maxima can then be assumed to be independent and identically
distributed according to the GP distribution. Beirlant et al. (2004) described several methods
to identify these clusters.

2.4. Nonstationary sequences

In the case where the sequence of random variables Y1, Y2, . . . is nonstationary, there is unfor-
tunately no general formal framework for the analysis of extreme values. Generally, methods
qualified as pragmatic by Coles (2001, Chapter 6) are used. Let M1, M2, . . . denote the se-
quence of block maxima. Since every Mi, where i ∈ {1, 2, . . .}, corresponds to a maximum, it
is natural to assume that its distribution can be well approximated by the GEV distribution,
provided that the block size is large enough. However, the parameters of the GEV distribu-
tion for each of the maxima may vary because of the nonstationarity of the underlying series.
The usual nonstationary model for block maxima is expressed as follows:

Mi ≈ GEV (µi, σi, ξi).

From a statistical perspective, identifying one or more explanatory variables that can model
the nonstationarity of the parameters is important.
Similarly, let Zi be the ith declustered excess above the threshold, i.e., the threshold is sub-
tracted from the exceedance. The generalized Pareto distribution is a reasonable choice to
approximate the distribution of this excess, provided that the threshold is sufficiently high.

Zi ≈ GP (σi, ξi).

The GP parameters can vary, and a set of explanatory variables are needed to model this
nonstationarity.
For a nonstationary model, the notion of a return period is inappropriate since the probability
of exceeding a certain value changes during the period studied. According to Katz, Parlange,
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and Naveau (2002), a simple generalization of the return levels are the effective return levels.
The effective return level is defined by the return level corresponding to particular parameter
values. For example, for the block maxima model, a return level associated with Mi can be
calculated using the triplet of parameters (µi, σi, ξi). This is the return level that would be
obtained if the conditions of the maximum Mi continued indefinitely. The return levels for
the set of indices i correspond to the effective return levels. Their analogs can be obtained
using the POT model.

3. Package overview
Before describing the package architecture in detail, some of its functionalities are first pre-
sented to facilitate their justification in the next sections. The analysis of extreme sea level
values at Port Pirie, Australia, is performed with Extremes.jl. The data provided by Coles
(2001) consist of the annual sea level maxima recorded at Port Pirie from 1923 to 1987. In
this section, only the block maxima model and the maximum likelihood parameter estimation
method are used, as in Coles (2001, Chapter 3 and Chapter 6). In Section 7, other extreme
value models and other parameter estimation methods are presented.

3.1. Loading the Port Pirie data
All the datasets analyzed by Coles (2001) are available in Extremes.jl, and they can be loaded
with the function dataset. The following command loads the Port Pirie data:

julia> data = Extremes.dataset("portpirie")

This command returns a DataFrame, where each row consists of the year and the correspond-
ing sea level maximum. The data are illustrated in Figure 1.
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Figure 1: Annual maximum sea levels at Port Pirie.
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3.2. Block maxima model

Parameters estimation

As mentioned in Section 2.1, the GEV is a reasonable approximation for the distribution
of the annual maxima. The GEV parameter estimation using the maximum likelihood is
performed with the function gevfit. When the data are stored in a DataFrame, the name
of the DataFrame and the data column identifier can be directly passed to the function as
follows:

julia> fm = gevfit(data, :SeaLevel)

MaximumLikelihoodAbstractExtremeValueModel
model :

BlockMaxima{GeneralizedExtremeValue}
data: Vector{Float64}[65]
location: µ ~ 1
logscale: ϕ ~ 1
shape: ξ ~ 1

θ̂: [3.874750223091266, -1.6192723640210762, -0.05010719929448139]

The function returns MaximumLikelihoodAbstractExtremeValueModel <: AbstractFitted
ExtremeValueModel, which contains the extreme value model type BlockMaxima <:
AbstractExtremeValueModel and the parameter estimates θ̂. These structures are detailed
in Section 5. Note that by default, the logarithm of the scale parameter ϕ = log σ is returned.
From this output, the GEV parameter estimates are

µ̂ ≈ 3.875, σ̂ ≈ 0.198 and ξ̂ ≈ −0.050,

which are the same estimations as those obtained by Coles (2001, Chapter 3).
The approximate covariance matrix of the parameter estimates can be obtained using the
function parametervar, which takes the output of gevfit as input:

julia> V = parametervar(fm)

3×3 Matrix{Float64}:
0.000780204 0.000995016 -0.0010741
0.000995016 0.0104541 -0.00392576

-0.0010741 -0.00392576 0.00965404

The corresponding approximate 95% confidence intervals for the parameters can be obtained
using the function cint, which also takes as input the output of gevfit:

julia> cint(fm, 0.95)

3-element Vector{Vector{Float64}}:
[3.820004234825991, 3.929496211356541]
[-1.8196698585895985, -1.418874869452554]
[-0.24268345866324603, 0.14246906007428323]
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Figure 2: Diagnostic plots for GEV fit of the Port Pirie sea level data.

These are the confidence intervals for the location, log scale and shape parameters.
Note that inference based on the Gumbel distribution is also provided in the package. All
the methods presented are also applicable to the Gumbel case.

Goodness of fit

Diagnostic plots to evaluate the goodness of fit of the model can be displayed using the func-
tion diagnosticplots, which takes as argument the type AbstractFittedExtremeValueModel:

julia> diagnosticplots(fm)

The corresponding plots are shown in Figure 2.

Return level

The T -year return level estimate can be obtained using the function ReturnLevel. For exam-
ple, the estimated 100-year return level for the Port Pirie block maxima model is computed
as follows:

julia> r = returnlevel(fm, 100)
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ReturnLevel
returnperiod: 100
value: Vector{Float64}[1]

This function returns a ReturnLevel that contains the return period and the return level. In
this example, the return level can be extracted using r.value, and a value of [4.69] is returned.
The approximate 95% confidence interval for the 100-year return level can be obtained using

julia> c = cint(r, 0.95)

1-element Vector{Vector{Real}}:
[4.377121171613508, 4.999685549252193]

3.3. Nonstationary block maxima model
Using Julia’s multiple-dispatch capability, the same functions used in the previous section can
be applied to the nonstationary model for parameter estimation, display of the diagnostic
figures and estimation of effective return levels. For the Port Pirie example, the year can be
used as the covariate.

Parameter estimation
Coles (2001, Chapter 6) proposed modeling the GEV location parameter as a linear function of
the year. This model has 4 parameters. In Extremes.jl, the maximum likelihood parameter
estimation of this type of model is obtained using the function gevfit, where the covariate
identifiers for the location parameter are provided by the optional argument locationcovid:

julia> fm1 = gevfit(data, :SeaLevel, locationcovid = [:Year])

MaximumLikelihoodAbstractExtremeValueModel
model :

BlockMaxima{GeneralizedExtremeValue}
data: Vector{Float64}[65]
location: µ ~ 1 + Year
logscale: ϕ ~ 1
shape: ξ ~ 1

θ̂: [4.568356786108704, -0.0003547310197546491,
-1.6196104648710474, -0.050460448403627546]

The approximate covariance matrix of the parameter estimates can be obtained using the
function parametervar, and the corresponding confidence intervals can be obtained using
the function cint.

Goodness of fit
The goodness of fit can be assessed based on the diagnostic plots of the standardized maxima
conditional on the estimated parameters (see Coles 2001, Chapter 6). These plots are obtained
using the function
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Figure 3: Diagnostic plots for GEV fit of the Port Pirie sea level data.

julia> diagnosticplots(fm1)

and are illustrated in Figure 3.

Effective return levels

The T -year effective return level estimate can be obtained using the function ReturnLevel.
For example, the estimated 100-year effective return level for the Port Pirie block maxima
model is computed as follows:

julia> r = returnlevel(fm1, 100)

ReturnLevel
returnperiod: 100
value: Vector{Float64}[65]

The function returns a ReturnLevel containing the return period and 65 effective return lev-
els. The effective return level vector can be extracted using r.value, and [4.70, . . . , 4.68]⊤ is
returned. The 95% confidence interval for the 100-year effective return levels can be obtained
using
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Figure 4: The 100-year effective return levels of the sea level at Port Pirie. The solid line
corresponds to the maximum likelihood estimate, and the 95% confidence interval is illustrated
by the ribbon.

julia> cint(r, 0.95)

The effective return levels and their corresponding 95% confidence intervals are shown in
Figure 4. In this Port Pirie example, the applied non-stationary methods indicated no evi-
dence of non-stationarity. Conversely, several examples in Section 7 demonstrate instances of
non-stationarity.

4. Estimation

4.1. Parameter estimation

Many techniques have been proposed for parameter estimation in extreme value models.
The Extremes.jl package currently supports three of these techniques: maximum likelihood
inference, Bayesian inference and inference based on the probability-weighted moments. In
the case of a nonstationary extreme value model, the covariates are standardized before the
parameters are estimated to help fit the model. The model parameters and the standardized
variables are transformed back to their original scales before the fitted model is returned.

Maximum likelihood

The functions gevfit and gpfit are provided for parameter estimation by maximum likeli-
hood for the block maxima model and the threshold exceedances model, respectively. These
functions can be called with the data vector as an input or with a DataFrame containing the
data. The Nelder-Mead solver (Nelder and Mead 1965; Gao and Han 2012) is implemented in
the package Optim.jl (Mogensen and Riseth 2018) to find the point estimate that maximizes
the log-likelihood.
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The approximate covariance matrix of the parameter estimates can be obtained with the func-
tion parametervar. This matrix is based on the inverse of the observed Fisher information
matrix. The corresponding Wald confidence interval on parameter estimates can be obtained
using the function cint.

Bayesian paradigm
In Extremes.jl, Bayesian parameter estimation is performed through the functions gevfitbayes
and gpfitbayes for the block maxima model and the threshold exceedances model, respec-
tively. These functions simulate an autocorrelated sample from the parameter posterior
distribution using the No-U-Turn Sampler extension (Hoffman and Gelman 2014) on the
Hamiltonian Monte Carlo (Neal 2011) implemented in the package Mamba.jl (Smith 2014).
Currently, only the improper flat prior is implemented. It yields a proper posterior as long
as the sample size is larger than 3 (Northrop and Attalides 2016). A functionality allowing
the use of a prior defined by the user will be added in the next version of the package.
Credible intervals on the parameter are obtained using the function cint with the appro-
priate empirical quantiles of the simulated posterior distribution sample. The parameter
covariance matrix is estimated using the empirical covariance of the sample in the function
parametervar.

Probability-weighted moments
Parameter estimates based on the probability-weighted moments (Landwehr, Matalas, and
Wallis 1979) are provided through the functions gevfitpwm and gpfitpwm for the block
maxima and the threshold exceedances model, respectively. Unlike the two other implemented
estimation procedures in Extremes.jl, the parameter estimation based on the probability-
weighted moments is only possible for the stationary extreme value model.
The covariance matrix of the parameter estimates obtained using the probability-weighted
moments is estimated by nonparametric bootstrapping in the function parametervar. Con-
fidence intervals on the parameter estimates are estimated by nonparametric bootstrapping
in the function cint.

4.2. Return levels
Inference for the return levels can be obtained using the function ReturnLevel, which is ap-
plied to a AbstractFittedExtremeValueModel structure. Confidence intervals on the return
level can be obtained using the function cint. When the estimation procedure is the maxi-
mum likelihood approach, the Wald confidence interval using the variance estimated by the
delta method is returned. When the probability-weighted moments are used, the confidence
interval is computed using nonparametric bootstrapping. Under the Bayesian paradigm, the
empirical quantile of the return level posterior distribution is returned as the credible interval.
These functions return a unit dimension vector for the return level and one vector for the
confidence interval. The reason is that the function always returns the same type in the
stationary and nonstationary cases. The function is therefore type-stable, allowing better
code execution performance.
For the nonstationary models, since the model parameters vary over time, the quantiles also
vary over time. Therefore, a T -year return level can be estimated for each year. This set of
return levels are referred to as effective return levels, as proposed by Katz et al. (2002).
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5. Type hierarchy
Extremes.jl leverages the multiple-dispatch capabilities of Julia (see Zappa Nardelli, Belyakova,
Pelenitsyn, Chung, Bezanson, and Vitek 2018). Several methods have been developed de-
pending on the type of input argument. There are four main abstract types defined in
Extremes.jl: DataItem, AbstractExtremeValueModel, AbstractFittedExtremeValueModel
and ReturnLevel. When a parameter estimation function is called to estimate the parameters
of an extreme value model, the data and the explanatory variables are first encapsulated in ob-
jects of type Variable, and the extreme value model is built in the AbstractExtremeValue-
Model structure. The appropriate method of parameter estimation is performed, and an
object of type AbstractFittedExtremeValueModel, which contains the results of the esti-
mation procedure, is returned. The function ReturnLevel used to estimate the quantiles
that can be applied to an AbstractFittedExtremeValueModel object, and an object of type
ReturnLevel is returned. The relation between these types is illustrated in Figure 5. This
section describes these main abstract types and their utility. Figure 6 illustrates the complete
hierarchy.

5.1. DataItem

DataItem is an abstract type that encapsulates the data and its label. Several methods are
defined for this type of data manipulation, for example, data standardization. It contains the
composite type Variable that holds the name (String) and values (Vector{<:Real}) of a
variable. It also contains the composite type VariableStd that holds the name (String), the
standardized values (Vector{<:Real}), the offset (Real), and the scale offset (Real) values
of the transformation.
This type is useful when explanatory variables are introduced to model nonstationarity. These
variables are encapsulated in Variable. In the parameter estimation procedure, the variables
are standardized and stored in VariableStd.

Figure 5: Abstract type hierarchy in Extremes.jl.
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This standardization allows for greater robustness of the estimation procedure. The variables
are then transformed back to their original scale using the offset and scale as well as the
extreme value model parameters before returning the results of the parameter estimation
procedure.

5.2. AbstractExtremeValueModel
AbstractExtremeValueModel is an abstract type for the two classical extreme value models,
the block maxima and the peaks-over-threshold models. For each of these models, two com-
posite subtypes of AbstractExtremeValueModel, BlockMaxima and ThresholdExceedance,
are defined to encapsulate the statistical model.
The BlockMaxima subtype is defined as follows:

julia> struct BlockMaxima <: AbstractExtremeValueModel
data::Variable
location::paramfun
logscale::paramfun
shape::paramfun

end

where data corresponds to the block maxima data encapsulated in Variable and location,
logscale and shape correspond to the GEV parameters as a function of the given covariates.
The parameter function can be the identity function in the case of a constant parameter. This
allows Extremes.jl to hold nonstationary models within the same structures as stationary
models.
The ThresholdExceedance subtype is defined as follows:

julia> struct ThresholdExceedance <: AbstractExtremeValueModel
data::Variable
logscale::paramfun
shape::paramfun

end

where the exceedances above the threshold are encapsulated in data, and the logscale
and shape represent the GP distribution parameters as a function of the given covariates.
Similar to BlockMaxima, the ThresholdExceedance structure can contain both stationary
and nonstationary extreme value models for exceedances above a high threshold.

5.3. AbstractFittedExtremeValueModel
AbstractFittedExtremeValueModel is a composite subtype of AbstractExtremeValueModel
that is defined to contain the data, the extreme value model and the parameter estimates.
This structure is flexible enough to contain parameter point estimates when the estimation
method is based on maximum likelihood or probability-weighted moments or a sample of
the parameters posterior distribution when the estimation is performed under the Bayesian
paradigm.
The composite type depends on the estimation procedure, and different methods apply to
each of them:
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julia> struct MaximumLikelihoodAbstractExtremeValueModel{T} <:
AbstractFittedExtremeValueModel{T}

"Extreme value model definition"
model::T
"Maximum likelihood estimate"
θ̂::Vector{Float64}

end

julia> struct BayesianAbstractExtremeValueModel{T} <:
AbstractFittedExtremeValueModel{T}

"Extreme value model definition"
model::T
"MCMC outputs"
sim::Mamba.Chains

end

julia> struct pwmAbstractExtremeValueModel{T} <:
AbstractFittedExtremeValueModel{T}

"Extreme value model definition"
model::T
"Probability-weighted moments estimate"
θ̂::Vector{Float64}

end

The extreme value model (AbstractExtremeValueModel) is stored in the model, and the
parameter point estimates are stored in θ̂. In the Bayesian model case, the parameter posterior
sample sim is stored in an object of type Chains from the package Mamba.jl (Smith 2014).

5.4. ReturnLevel

ReturnLevel is a composite type that is dependent on the estimation procedure. It has three
attributes, the return level model model, the returnperiod and value, that are used to store
the type of AbstractExtremeValueModel model, the return period and the estimated value,
respectively. A ReturnLevelModel type depends on the extreme value model, either a block
maxima or a peaks-over-threshold model.

julia> struct ReturnLevel{T} <: AbstractFittedExtremeValueModel{T}
model::ReturnLevelModel{T}
returnperiod::Real
value::Array{<:Real}

end

6. Additional features

6.1. Visualization tools

Several validation plots for assessing the accuracy of the fitted models are implemented in
Extremes.jl using the function plot from the package Gadfly.jl (Jones et al. 2021).
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Diagnostic plots

Diagnostic plots for AbstractFittedExtremeValueModel can be built using the function
diagnosticplots. It consists of a four-panel plot (see Figure 2, Section 3.2) that includes a
probability plot (upper left panel), a quantile plot (upper right panel), a density plot (lower
left panel) and a return level plot (lower right panel).
Each of these subplots can be built with its own function, which is also defined for
AbstractFittedExtremeValueModel: probplot, qqplot, histplot and returnlevelplot.
These functions are specifically designed for extreme values and follow the definitions pre-
sented by Coles (2001, Section 2.6.7). In the Bayesian fitted model case, these plots are
constructed by taking the mean of the statistics computed over each MCMC iteration.
Moreover, standardized versions of these plots, diagnosticplots_std, probplot_std and
qqplot_std, are defined for residuals in the case of nonstationary models.

Mean residual life plot

The mean residual life plot can be plotted using the function mrlplot to help users choose a
suitable threshold for the peaks-over-threshold model (see Figure 8a, Section 7.1).

Stability plots

Extremes.jl does not currently provide a function to illustrate stability graphs for threshold
selection in the peaks-over-threshold model. The user can plot these graphs by plotting the
parameter estimates as a function of the threshold.

6.2. Declustering

A composite type Cluster is also defined for the threshold exceedance clusters over which
declustering methods (see Section 6) are defined.

julia> struct Cluster
"first threshold"
u1::Real
"second threshold"
u2::Real
"positions of clustered exceedences"
position::Vector{<:Int}
"values of clustered exceedences"
value::Vector{<:Real}

end

When the data are dependent, the exceedances tend to cluster. It is common to assume
that the marginal distribution of each exceedance is a generalized Pareto (see, for example,
Coles 2001, Chapter 5). Various methods have been proposed for dealing with the problem
of dependent exceedances. The most widely adopted method consists of declustering the
exceedances by filtering the exceedances to obtain a set that is approximately independent.
As summarized by Coles (2001), the declustering approach consists of the following:

• identifying clusters of extreme values;
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• retrieving the maxima within each cluster;

• assuming that each cluster maxima are independent; and

• fitting the GP distribution to the cluster maxima.

In Extremes.jl, two methods for identifying clusters of extreme values are implemented in the
function getcluster: the runs method and the two thresholds method. This function extracts
the clusters from a vector of values and returns a vector of type Cluster.

The two thresholds method

The two threshold declustering method is used when three arguments are given to the function
getcluster: the vector of values to decluster and threshold values u1 and u2, where u1 > u2.
A vector of clusters is then returned, where each cluster is defined as a sequence of values
higher than threshold u2 with at least a value higher than threshold u1.

The runs method

The runs declustering method (see Coles 2001, Section 5.3.2) is used when two arguments
are given to the function getcluster: the vector of values to decluster and one threshold
value u. An additional keyword argument runlength can be used to specify the runlength
parameter r. Exceedances separated by fewer than r nonexceedances are assumed to belong
to the same cluster (see Beirlant et al. 2004, Chapter 10). When r = 0, each exceedance
forms a separate cluster. By default, r = 1 in the function getcluster when using the runs
declustering method.

7. Examples
Four additional examples from Coles (2001) are developed in this section to show the func-
tionalities of Extremes.jl. In the first example, the Bayesian stationary threshold exceedances
model is illustrated in Section 7.1 using rainfall data (Coles 2001, Chapter 4). Declustering
the threshold exceedances is performed in Section 7.2 using the Wooster temperatures dataset
(Coles 2001, Chapter 5). The nonstationary block maxima model is illustrated in Section 7.3
using the annual sea level maxima at Fremantle (Coles 2001, Chapter 6) and the nonstationary
threshold exceedances model with rainfall in South England (Coles 2001, Chapter 6).
As mentioned in Section 4.1, stationary extreme value models can be fitted by either the
probability-weighted moments, maximum likelihood or Bayesian methods, while the probability-
weighted moments cannot be applied to nonstationary models. For illustration in this section,
the block maxima models are fitted by the maximum likelihood method, and the threshold
exceedance models are fitted by the Bayesian method.
In addition to Extremes.jl, the DataFrames.jl, Distributions.jl, and Gadfly.jl packages need
to be installed to reproduce these examples. These packages can be loaded as follows:

julia> using Extremes, Dates, DataFrames, Distributions, Gadfly
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Figure 7: Daily rainfall recorded in mm at a location in southwest England.

7.1. Threshold exceedances approach

The stationary ThresholdExceedance model is illustrated using the daily rainfall accumu-
lations at a location in southwest England from 1914 to 1962, as shown in Figure 7. This
dataset was studied by Coles (2001, Chapter 4). The daily rainfall is assumed to be inde-
pendent and identically distributed. This dataset can be loaded using the following lines of
code:

julia> data = Extremes.dataset("rain")

Threshold selection and exceedances extraction

Parameter estimation of the generalized Pareto distribution in Extremes.jl is performed us-
ing the threshold exceedances in (0, ∞). To extract the threshold exceedances, a suitable
threshold for the peaks-over-threshold model can be chosen by examining the mean residual
life plot. The meanresidual life plot can be constructed using the function mrlplot.
Figure 8a shows the mean residual life plot for daily rainfall accumulations in southwest
England. When the threshold is high enough, the mean residual life is expected to be a linear
function of the threshold. Here, a reasonable threshold is 30 mm, as concluded by Coles
(2001, Chapter 4). Once the threshold is defined, the exceedances above this threshold can
be retrieved as follows:

julia> df_exceedance = filter(row -> row.Rainfall > threshold, data)
julia> df_exceedance.Exceedance = df_exceedance.Rainfall .- threshold
julia> select!(df_exceedance, :Date, :Exceedance)

and are shown in Figure 8b.

Bayesian inference

The generalized Pareto distribution can be fitted to threshold exceedances using the Bayesian
method using the function gpfitbayes:
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Figure 8: Mean residual life plot of the daily rainfall data (a), and exceedances above the
threshold of 30 mm (b).

julia> import Random
julia> Random.seed!(4786)
julia> nothing #hide
julia> fm = gpfitbayes(df_exceedance, :Exceedance)

BayesianAbstractExtremeValueModel
model :

ThresholdExceedance
data: Vector{Float64}[152]
logscale: ϕ ~ 1
shape: ξ ~ 1

sim :
Mamba.Chains
Iterations: 2001:5000
Thinning interval: 1
Chains: 1
Samples per chain: 3000
Value: Array{Float64, 3}[3000,2,1]

By default, 5000 iterations of the Hamiltonian Monte Carlo algorithm are performed. The
first 2000 iterations are considered the warmup period, and there is no chain thinning. The
result is a sample of size 3000 with a parameter posterior distribution in the format of Chains
in the package Mamba.jl. Figure 9 illustrates the chain traces. The diagnostic plots built
with the function diagnosticplots are shown Figure 10.
The empirical covariance matrix of the parameters and the credible intervals can be obtained
with the functions parametervar and cint, respectively:

julia> parametervar(fm)

2×2 Matrix{Float64}:



22 Extremes.jl: Extreme Value Analysis in Julia

Iteration

0 1000 2000 3000

-0.2

0.0

0.2

0.4

0.6

ξ

Iteration

0 1000 2000 3000

4

6

8

10

12

σ

Figure 9: MCMC realizations of the generalized Pareto parameter posterior distribution.
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Figure 10: Diagnostic plots for the threshold exceedances model fitted to the daily rain-
fall data.
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0.0157694 -0.0083161
-0.0083161 0.0106421

julia> cint(fm, 0.95)

2-element Vector{Vector{Float64}}:
[1.7565728861081145, 2.2442609341726394]
[-0.002598987690899647, 0.4029866604225447]

Return level estimation

The T-year return level estimate can be obtained using the function returnlevel. Along
with the fitted generalized Pareto distribution for the threshold exceedances, the following
information is also needed for estimating the T-year return level using the POT model: the
threshold, the number of total observations and the number of observations per year. For
example, the 100-year return level for the rainfall POT model is computed as follows:

julia> nobs = size(data,1)
julia> nobsperblock = 365
julia> r = returnlevel(fm, threshold, nobs, nobsperblock, 100)

ReturnLevel
returnperiod: 100
value: Matrix{Float64}[3000]

The function returns a ReturnLevel structure containing the return period and the return
level for each MCMC iteration, 3000 in this case. The corresponding 95% credible interval
can be computed using the function cint:

julia> c = cint(r, 0.95)

1-element Vector{Vector{Real}}:
[74.13350590381265, 176.0166014288908]

7.2. Declustering threshold exceedances

Both methods for identifying the clusters are illustrated with the Wooster dataset studied by
Coles (2001, Chapter 5). This dataset consists of the daily temperature minimum recorded in
Wooster, Ohio, from 1983 to 1988. The attention is restricted to the winter months (November
to February) and to the negated series for using the model defined for maxima. This dataset
can be loaded as follows:

julia> data = Extremes.dataset("wooster")

The opposite temperature of the winter months can be extracted as follows:
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Figure 11: Opposite daily minimum temperatures recorded in winter in Wooster.

julia> df = copy(data)
julia> df[!,:Temperature] = -data[:,:Temperature]
julia> filter!(row -> month(row.Date) ∈ (1,2,11,12), df)

Figure 11 shows the opposite winter daily minimum temperatures.

The runs method

When using a single threshold of −10◦F , the runs declustering method is used. Setting the
runlength to 4, 17 clusters are identified using the function getcluster:

julia> threshold = -10.0
julia> cluster = getcluster(df[:,:Temperature], threshold, runlength = 4)

The first cluster, viz.,

julia> first(cluster)

Cluster
u1: -10.0
u2: -10.0
position: [17, 18, 19, 20]
value: [-6, -5, -6, -1]

is in positions 17 to 20 of the series, and the opposite of the associated temperatures are
[−6, −5, −6, −1]. These characteristics can be extracted for each cluster. The function
maximum allows us to extract the maximum value of each cluster:

julia> z = maximum.(cluster)
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17-element Vector{Int64}:
-1
-7
13
...

-6
3

-7

This function is useful for retrieving the data on which the generalized Pareto distribution
can be fitted.

The two thresholds method

In the two threshold method, a cluster of threshold exceedances is defined as a streak of
data higher than the second threshold u2 with at least one data point higher than the first
threshold u1, where u1 ≥ u2. When using u1 = −10◦F as the first threshold and u2 = −15◦F
as the second threshold, 27 clusters are identified:

julia> u1 = -10.0
julia> u2 = -15.0
julia> cluster = getcluster(df[:,:Temperature], u1, u2)

The first cluster, viz.,

julia> first(cluster)

Cluster
u1: -10
u2: -15
position: [16, 17, 18, 19, 20]
value: [-13, -6, -5, -6, -1]

is in positions 16 to 20 of the series, and the opposite of the associated temperatures are
[−13, −6, −5, −6, −1]. These characteristics can be extracted for each cluster. The function
maximum allows us to extract the maximum value of each cluster:

julia> z = maximum.(cluster)

27-element Vector{Int64}:
-1
-7
13
...

-6
3

-7
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(a) (b)

Figure 12: Annual maximum sea levels at Freemantle (a) as a function of the year and (b) as
a function of the Southern Oscillation Index (SOI).

7.3. Nonstationary block maxima approach

The nonstationary BlockMaxima model is illustrated using the annual maximum sea levels
recorded at Fremantle in West Australia from 1897 to 1989, as studied by Coles (2001, Chap-
ter 6). Again, this dataset can be loaded as follows:

julia> data = Extremes.dataset("fremantle")

Figure 12 shows the annual maxima as a function of the year and as a function of the Southern
Oscillation Index (SOI).
In the nonstationary block maxima model, each GEV parameter is allowed to be a function
of multiple covariates:

µ = X1 × β1

ϕ = X2 × β2

ξ = X3 × β3

where {X1, β1}, {X2, β2} and {X3, β3} are the design matrix and the corresponding coefficient
parameter vector of µ, ϕ and ξ, respectively.

Maximum likelihood parameter estimation

Several nonstationary GEV models using the year and the SOI as covariates can be fitted
with the function gevfit.

• The stationary model:

julia> fm = gevfit(data, :SeaLevel)

• The nonstationary model using the year as the covariate of the location parameter:

julia> fm1 = gevfit(data, :SeaLevel, locationcovid = [:Year])

• The nonstationary model using the year and the SOI as the covariates of the location
parameter:
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julia> fm2 = gevfit(data, :SeaLevel, locationcovid = [:Year, :SOI])

• The nonstationary model using the year and the SOI as the covariates of both the
location and the log-scale parameters:

julia> fm3 = gevfit(data, :SeaLevel, locationcovid = [:Year, :SOI],
logscalecovid = [:Year, :SOI])

As shown by Coles (2001, Chapter 6), the best model is the one where the location parameter
varies as a linear function of the year and the SOI. This model is fm2 in the present section.
Several diagnostic plots for assessing the accuracy of the GEV model fitted to the Fremantle
data can be shown with the function diagnosticplots and are illustrated in Figure 13. The
approximate covariance matrix of the parameter estimates for this model can be obtained
using the function parametervar:

julia> parametervar(fm2)

5×5 Matrix{Float64}:
1.02181 -0.000524501 . . . 0.0127779 -0.0209508

-0.000524501 2.69285e-7 -6.4457e-6 1.05896e-5
6.71532e-5 -1.61708e-8 0.000239274 -0.000355337
0.0127779 -6.4457e-6 0.00703707 -0.00256783

-0.0209508 1.05896e-5 -0.00256783 0.00444377

The corresponding Wald 95% confidence intervals of the parameters are computed with the
function cint:

julia> cint(fm2, 0.95)

5-element Vector{Vector{Float64}}:
[-4.607209165941878, -0.6447744599886223]
[0.0010969546332656244, 0.0031311107401392115]
[0.01603794386329234, 0.09299743628807014]
[-2.27859801793459, -1.9497660238399186]
[-0.2806398353854561, -0.0193312124712762]

Return level estimation

Since the model parameters vary over time, the quantiles also vary over time. Therefore, the
100-year effective return levels (Katz et al. 2002) can be estimated for each year as follows:

julia> r = returnlevel(fm2, 100)

ReturnLevel
returnperiod : 100
value : Vector{Float64}[86]

and the corresponding 95% confidence intervals are given as:
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Figure 13: Residual diagnostic plots in the linear trend GEV model of the Fremantle annual
maximum sea level series.

julia> c = cint(r, 0.95)

86-element Vector{Vector{Real}}:
[1.6464829066065432, 1.8515044599835624]
[1.7251036134261084, 1.9123156899250917]
[1.7048688798346419, 1.8920739830279043]
...

[1.7646548289730073, 2.0266301171024437]
[1.9073298034621462, 2.128061044319707]
[1.9027214984142944, 2.1238131691228004]

Figure 14 shows the estimated 100-year return levels along with their 95% confidence intervals
estimated with the fm2 model.

7.4. Nonstationary threshold exceedances approach

The nonstationary threshold exceedances model is illustrated again using the daily rainfall
at a location in southwest England from 1914 to 1962 (Coles 2001, Chapter 6), as shown in
Figure 7.
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Figure 14: The 100-year effective return level of the sea level at Fremantle.

In the nonstationary threshold exceedances model, the GP parameters are allowed to be
functions of multiple covariates:

ϕ = X2 × β2

ξ = X3 × β3

where {X2, β2} and {X3, β3} are the design matrix and the corresponding coefficient param-
eter vector of ϕ and ξ, respectively.

Bayesian inference

The Bayesian estimation of the parameters of the GP distribution is performed with the
function gpfitbayes. In addition to the stationary model, the nonstationary model using
the year as the covariate for the log-scale GP parameter can be fitted as follows:

julia> import Random
julia> Random.seed!(4786)
julia> nothing #hide
julia> fm1 = gpfitbayes(df, :Exceedance, logscalecovid = [:Year])

The model fit can be assessed with the diagnostic plots shown in Figure 15.
The empirical covariance matrix of the parameters and the credible intervals can be obtained
with the functions parametervar and cint, respectively:

julia> parametervar(fm1)
julia> cint(fm1, 0.95)

Return level estimation

The 100-year effective return level estimates can be obtained using the function returnlevel.
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Figure 15: Residual diagnostic plots with a linear trend with the threshold excess model fitted
to daily rainfall exceedances data at a location in southwest England.

julia> nobs = size(data,1)
julia> nobsperblock = 365
julia> r = returnlevel(fm1, threshold, nobs, nobsperblock, 100)

ReturnLevel
returnperiod: 100
value: Matrix{Float64}[456000]

The corresponding 95% credible interval can be computed using the function cint.

julia> c = cint(r, 0.95)

152-element Vector{Vector{Real}}:
[63.68524916513855, 173.95767630079843]
[63.68524916513855, 173.95767630079843]
[63.68524916513855, 173.95767630079843]
...
[78.00472366762, 237.2212316732687]
[76.94872130273704, 238.893208610095]
[76.94872130273704, 238.893208610095]
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Figure 16: The 100-year effective return level of the daily rainfall in southwest England.

The 100-year effective return levels along with their 95% credible intervals are illustrated in
Figure 16.

8. Conclusion and future work
The Extremes.jl package provides a collection of methods for the analysis of extreme values
in Julia. In this article, we have illustrated the use of the Extremes.jl package with many
examples using datasets from Coles (2001). Extremes.jl is designed to be easy to use by
researchers, students in courses on extreme values and engineers needing robust and pow-
erful estimations of extremes. This package has a concise and robust API, which exploits
Julia’s multidispatch features, and the functionality is tested against the known results by
Coles (2001). An often overlooked aspect of Julia is that since the code is entirely in Julia,
contributions from graduate students and scientists are easier compared to other high-level
languages that need low-level codes for performance reasons.
Future work on this package will include the implementation of the computation of extremal
index (e.g., Laurini and Tawn 2003; Ferro and Segers 2003) to measure the degree of clus-
tering of extremes in stationary processes. Moreover, other inference methods, such as point
processes or the use of r order statistics, could be implemented. More direct methods for
model selection will potentially be implemented in the next major version. Extremes.jl is not
intended for multivariates extremes, but the development of other packages for the analysis
of multivariates extremes in Julia is encouraged. Extremes.jl could potentially be used as a
building block for a multivariate extremes package.
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