
JSS Journal of Statistical Software
March 2024, Volume 108, Issue 8. doi: 10.18637/jss.v108.i08

salmon: A Symbolic Linear Regression Package
for Python

Alex Boyd
University of California, Irvine

Dennis L. Sun
California Polytechnic State University

Abstract

One of the most attractive features of R is its linear modeling capabilities. We describe
a Python package, salmon, that brings the best of R’s linear modeling functionality to
Python in a Pythonic way – by providing composable objects for specifying and fitting
linear models. This object-oriented design also enables other features that enhance ease-
of-use, such as automatic visualizations and intelligent model building.

Keywords: linear regression, linear model, visualization, model building, Python.

1. Introduction
Linear models are ubiquitous in statistics, science, engineering, and machine learning. A
linear model assumes that the expected value of a response variable y is a linear function of
explanatory variables, x1, . . . , xp:

E[y | x] = β0 + β1x1 + β2x2 + · · · + βpxp (1)

for coefficients β0, β1, . . . , βp. Model (1) is more flexible and general than it may first appear.
For example, linear models do not necessarily have to be linear in the original explanatory
variables. If we add higher-order polynomial terms to a linear model, then we can also model
non-linear effects:

E[y | x] = β0 + β1x1 + β2x2
1 + β3x3

1 + β4x2. (2)

How are linear models used? First, they can be used for description. For example, we
may want to emphasize trends in a scatterplot by superimposing a best-fit line on the points.
Second, they may be used for prediction. Once the coefficients β0, . . . , βp have been estimated,
the linear model can be used to predict the value of the response y for a new observation
where only the explanatory variables are known. Finally, linear regression can be used for

https://doi.org/10.18637/jss.v108.i08
https://orcid.org/0009-0002-8886-8703
https://orcid.org/0000-0003-0116-2004

2 salmon: Symbolic Linear Regression in Python

Flexibility

Ease of Use
JMP

Minitab

MATLAB

scikit-learn

Rstatsmodels

salmon

Figure 1: Tradeoffs of different solutions for fitting linear models.

inference. The coefficients may encode information about nature, such as the causal effect of
one variable on another, in which case we need hypothesis tests and confidence intervals for
model parameters.
Because of these different use cases, several solutions for fitting linear models have emerged.
Figure 1 illustrates the tradeoffs. At one extreme are point-and-click software packages, like
JMP (SAS Institute Inc. 2019) and Minitab (Minitab Inc. 2017), which fit linear models and
provide automatic visualizations. Although these packages have much built-in functionality,
they are not easily extensible. For example, complicated data cleaning and wrangling often
have to be done outside these software packages.
At the other extreme are programming languages for scientific computing, like MATLAB
(The MathWorks Inc. 2021) and Python (Van Rossum et al. 2011). To fit a linear model,
users have to manually construct the matrices to be passed to a least-squares solver. To
obtain predictions from the fitted model, users must implement the matrix multiplications.
Although these environments can be powerful, users have to keep track of low-level details
that distract from the modeling.
Libraries within these languages ease the burden somewhat. For example, scikit-learn is a
Python library for machine learning that provides a consistent API (application programming
interface) for specifying, fitting, and predicting using a linear regression model (Pedregosa
et al. 2011). However, it provides little help with the other two uses of linear regression,
description and inference, offering neither visualizations nor uncertainty estimates. Also, the
LinearRegression model in scikit-learn assumes that the explanatory variables have already
been transformed into the numerical matrix that will be passed into a least-squares solver, so
users must manually transform the variables or else define the transformations as part of the
model.
R (R Core Team 2023) occupies a medium between the two extremes. On the one hand,
it is a full-fledged programming language. On the other, it provides a high-level API for
specifying and fitting linear regression models through formulas and the lm function. For
example, Model 2 could be specified and fit in R as

R> lm(y ~ poly(x1, 3) + x2, data)

Although R provides automatic diagnostic plots, it offers limited visualizations of the fitted
model, in comparison with point-and-click software packages such as JMP and Minitab.

Journal of Statistical Software 3

patsy (Smith et al. 2022) and statsmodels (Seabold and Perktold 2010) are Python libraries
that port R-style modeling to Python. Like R, statsmodels provides some automatic diagnostic
plots but not visualizations of the fitted model. However, R formula syntax is not interpretable
by Python, so formulas have to be specified as strings:

>>> smf.ols("y ~ poly(x1, 3) + x2", data)

This creates problems when the column names do not meet the language’s rules for variable
names. For example, columns with names such as "weight.in.kg" or "person’s height"
would need to be wrapped in patsy’s “quote” object, Q:

>>> smf.ols("y ~ Q('weight.in.kg') + Q('person\'s height')", data)

Because the Q constructor takes a string as input, we have strings within strings – hence
the need for two different kinds of string delimiters. If the variable name itself includes an
apostrophe or a quotation mark, then that character needs to be escaped. An object-oriented
approach to model specification, described in this paper, avoids these complications, allowing
any object that is a valid column name in a pandas DataFrame to be used directly in the model
specification, without requiring a workaround for problematic variable names. Furthermore,
having objects associated with each variable in a model makes it easy to specify customization
options for each variable (e.g., the baseline level for a categorical variable).
In this paper, we describe salmon, a Python package for linear regression that offers an object-
oriented interface for specifying linear models. The two main contributions of salmon are:

1. Providing an R-like (but Pythonic) API for specifying models.

2. Producing appropriate visualizations of the models, bridging the gap with point-and-
click packages, like JMP and Minitab.

Its philosophy and design is similar to other statistical packages in Python, such as Symbulate
(Ross and Sun 2019). Throughout, we provide comparisons of model specification in salmon
with the similar formula syntax of R.
The easiest way to obtain salmon is to install it via pip:

pip install salmon-lm

but it can also be installed from source at http://github.com/ajboyd2/salmon.

2. Model building and fitting
We introduce the design and syntax of salmon by way of a case study. We assume that
all salmon objects and methods have already been imported into the global namespace, as
follows:

>>> from salmon import Q, C, Log, Poly, LinearModel

http://github.com/ajboyd2/salmon

4 salmon: Symbolic Linear Regression in Python

Neighborhood Price($) Style Sq. Ft. Fire?
0 SawyerW 162000 2 Story 1400 No
1 CollgCr 195000 2 Story 1660 No
2 Crawfor 164000 Other 1646 Yes
3 NridgHt 417500 1 Story 2464 Yes
4 SawyerW 186800 1 Story 1400 No

Table 1: First five rows of the Ames Housing dataset, with only the relevant columns for this
paper shown.

We will use a sampled version of the Ames housing data set (De Cock 2011), which can be
found within the repository for the package. The first five rows of this sampled data set are
shown in Table 1.
We will start with the simplest possible model, which assumes the sale price is a linear function
of just the square footage:

E[Price($) | x] = β0 + β1(Sq. Ft.). (3)

This simple linear regression model can be specified in salmon as follows:

>>> x = Q("Sq. Ft.")
>>> y = Q("Price($)")
>>> simple_model = LinearModel(x, y)
>>> print(simple_model)

Price($) ~ 1 + Sq. Ft.

Notice that a quantitative variable is specified by creating a Quantitative object, or Q for
short, with the name of the column in the DataFrame. Alternatively, we could have created
a generic variable using V and let salmon infer the type. Either way, these variable objects
become the explanatory (x) and response (y) components of a ‘LinearModel’ object.
An intercept is added by default, as evidenced by the constant term 1 in the printout. To
specify a model without an intercept, we could either insert - 1 into the expression (which
mirrors the formula syntax of R) or specify intercept = False:

>>> no_intercept_model = LinearModel(x - 1, y)
>>> no_intercept_model = LinearModel(x, y, intercept = False)
>>> print(no_intercept_model)

Price($) ~ Sq. Ft.

To fit the simple_model above to data, we call the .fit() method and pass in a pandas
DataFrame containing those variables:

>>> simple_model.fit(data)

Journal of Statistical Software 5

Coefficient SE t p 2.5% 97.5%
Sq. Ft. 118.5 2.068 57.33 0.000 114.5 122.6
Intercept 3614 3254 1.111 0.2668 −2766 9995

Table 2: Coefficients and inferences for Model 3, simple_model.

Figure 2: Basic visualization of the fitted Model 3, simple_model.

Notice that .fit() returns the standard regression output – containing the coefficients, their
standard errors, the t statistic and p value for testing βj = 0, and associated 95% confidence
intervals – stored in a DataFrame for easy display and access. From the regression output,
Sq. Ft. appears to have substantial explanatory power, but to be sure, we should visualize
the model. A model can be visualized using the .plot() method; salmon will automatically
choose an appropriate visualization:

>>> simple_model.plot()

Notice that the line of code above produces a scatterplot of the data in black, with the fitted
regression line superimposed in red (Figure 2). To produce a similar plot from a model that
was fit in R, scikit-learn, or statsmodels, we would have had to first create a grid of “test”
x values, use the fitted model to predict the value of the response at each of those x values,
and then plot these predictions as a line using some plotting library.
Confidence and prediction intervals can be added to any model visualization, by passing the
desired error rate α (so that the confidence level is 1 − α) to arguments confidence_band or
prediction_band in .plot():

>>> alpha_val = 0.05
>>> simple_model.plot(confidence_band = alpha_val)

In Figure 3, the points appear to “fan out” from the fitted model as square footage increases.
This suggests that the assumption of constant variance (homoskedasticity) may be violated.

6 salmon: Symbolic Linear Regression in Python

Figure 3: Visualization of the fitted Model 3, simple_model, with confidence band.

One fix is to transform the response variable. In other words, we can instead fit the model:

E[log(Price($)) | x] = β0 + β1(Sq. Ft.) (4)

which can be accomplished by literally transforming the response:

>>> simple_log_model = LinearModel(Q("Sq. Ft."), Log(Q("Price($)")))
>>> print(simple_log_model)

log(Price($)) ~ 1 + Sq. Ft.

Compare with R, where the same model would be specified as

R> log(`Price($)`) ~ `Sq. Ft.`

Note that the backticks are only necessary due to the variable names containing special
characters (e.g., spaces and dollar sign).
salmon supports a number of different transformations by default, such as:

• Natural Logarithm: Log(X).

• Logarithm of Base 10: Log10(X).

• Sine: Sin(X).

• Cosine: Cos(X).

• Exponential: Exp(X).

• Standardization: Std(X), Standardize(X).

• Centering: Cen(X), Center(X).

• Identity: Identity(X).

Journal of Statistical Software 7

Coefficient SE t p 2.5% 97.5%
Sq. Ft. 5.906e-4 1.055e-5 55.96 0.000 5.699e-4 6.113e-4
Intercept 11.14 0.0166 670.6 0.000 11.11 11.17

Table 3: Coefficients and inferences for the fitted Model 4, simple_log_model.

Figure 4: Visualization of the fitted Model 4, simple_log_model, with confidence band. By
default, salmon plots the original variables, rather than the transformed variables.

Now we can fit and visualize this new model:

>>> simple_log_model.fit(data)
>>> simple_log_model.plot(confidence_band = alpha_val)

By default, salmon plots the variables in the original (untransformed) space, which is usually
desired. After all, we are interested in Price($), not log(Price($)). However, the log-space view
can be helpful for checking whether the linear regression assumptions are met. To produce a
plot in the transformed space, specify transformed_y_space = True.

>>> simple_log_model.plot(confidence_band = alpha_val,
... transformed_y_space = True)

From Figure 5, it is clear that the fanning is indeed reduced in log-space – as we had hoped!
However, the model may be further improved by adding a quadratic term to capture the
parabolic relationship. We create a new model for this:

E[log(Price($)) | x] = β0 + β1(Sq. Ft.) + β2(Sq. Ft.)2 (5)

A polynomial model, like Model 5, can be specified in salmon using the Poly() class, much
as one uses the poly() function in R:

>>> poly_model = LinearModel(Poly(Q("Sq. Ft."), 2), Log(Q("Price($)")))
>>> print(poly_model)

8 salmon: Symbolic Linear Regression in Python

Figure 5: Two visualizations of Model 4, simple_log_model. The plot on the left shows
the original response (Price($)), while the plot on the right shows the transformed response
(log(Price($))).

Coefficient SE t p 2.5% 97.5%
Sq. Ft. 9.989e-4 4.603e-5 21.70 5.9e-97 9.087e-4 0.0011
(Sq. Ft.)2 −1.180e-7 1.296e-8 −9.107 1.5e-19 −1.434e-7 −9.261e-8
Intercept 10.82 0.0386 280.3 0.000 10.75 10.90

Table 4: Coefficients and inferences for Model 5, poly_model.

log(Price($)) ~ 1 + Sq. Ft. + (Sq. Ft.)^2

>>> poly_model.fit(data)

As can be seen, in this example Poly(Q("Sq. Ft.", 2) is equivalent to Q("Sq. Ft.") +
Q("Sq. Ft.") ** 2.

>>> poly_model.plot(confidence_band = alpha_val, transformed_y_space = True)

The p value for the quadratic term (Sq. Ft.)2 is practically zero, which suggests that the fit
is substantially improved by adding the quadratic term.
So far, the models have only used square footage. It is worth investigating whether the fit
can be improved by adding the two categorical variables in the data set – the presence of a
fireplace and the overall style of house. The former is binary, with a value of “Yes” indicating
that the house has a fireplace. The latter can take three different values: “1 Story”, “2 Story”
and “Other”.

E [log(Price($)) | x] = β0 + β1I(Style = “2 Story”) + β2I(Style = “Other”) +
β3I(Fire? = “Yes”)

(6)

where I(·) denotes the indicator function.

Journal of Statistical Software 9

Figure 6: Two visualizations of the fitted polynomial Model 5, poly_model. The plot on the
left shows the original response (Sale Price), while the plot on the right shows the transformed
response (log(Price($))).

Coefficient SE t p 2.5% 97.5%
Style{2 Story} 0.1058 0.0143 7.374 2.1e-13 0.0777 0.1339
Style{Other} −0.1500 0.0164 −9.156 9.8e-20 −0.1821 −0.1179
Fire?{Yes} 0.3966 0.0124 31.87 1e-191 0.3722 0.4210
Intercept 11.82 0.0105 1124 0.000 11.80 11.84

Table 5: Coefficients and inferences for Model 6, simple_cat_model.

>>> simple_cat_model = LinearModel(C("Style") + C("Fire?"),
... Log(Q("Price($)")))
>>> print(simple_cat_model)

Log(Price($)) ~ 1 + Style + Fire?

>>> simple_cat_model.fit(data)

The same model would be specified in R as

R> log(`Price($)`) ~ `Style` + `Fire?`.

The backquotes are necessary because of the non-standard column names. Also, the code
above assumes that Style and Fire? are unambiguously categorical. If they could be con-
fused for quantitative variables, they would have to be explicitly cast to factors:

R> log(`Price($)`) ~ as.factor(`Style`) + as.factor(`Fire?`)

This is an example where salmon’s insistence on explicit variable types using C and Q saves
typing in the long run.

10 salmon: Symbolic Linear Regression in Python

Figure 7: Two visualizations of Model 6, simple_cat_model, which contains two categorical
predictors. The plot on the left shows the original response (Price($)), while the plot on the
right shows the transformed response (log(Price($))).

>>> simple_cat_model.plot(confidence_band = alpha_val,
... transformed_y_space = True)

To specify that these variables are categorical, we create a Categorical object (or C for short).
As the regression output shows, salmon automatically chooses a dummy/one-hot encoding of
the levels and drops a baseline level. This behavior can be customized by specifying additional
arguments to C. For example, salmon chose “1 Story” to be the baseline level for Style. To
make “Other” the baseline level, we would specify the variable as C("Style", baseline =
"Other"). Changing the baseline level does not affect the predictions from the model but
does affect the interpretation of the coefficients.
Model 6 assumes no interaction between the factors, which is why the fitted lines in Figure 7
are parallel. To fit a model with an interaction term:

E[log(Price($)) | x] =β0 + β1I(Style = “2 Story”)+
β2I(Style = “Other”) + β3I(Fire? = “Yes”)+
β4I(Style = “2 Story”)I(Fire? = “Yes”)+
β5I(Style = “Other”)I(Fire? = “Yes”)

(7)

we use the & operator to include interactions of all orders between the two Categorical
variables:

>>> house, fire = C("Style"), C("Fire?")
>>> interaction_model = LinearModel(house & fire, Log(Q("Price($)")))
>>> print(interaction_model)

log(Price($)) ~ 1 + Style + Fire? + (Style)(Fire?)

>>> interaction_model.fit(data)

Journal of Statistical Software 11

Coef. SE t p 2.5% 97.5%
(Style{2 Story})(Fire?{Yes}) −0.0190 0.0289 −0.6593 0.5097 −0.0756 0.0376
(Style{Other})(Fire?{Yes}) −0.1638 0.0327 −5.008 5.813e-7 −0.2280 −0.0997
Style{2 Story} 0.1123 0.0217 5.179 2.385e-7 0.0698 0.1548
Style{Other} −0.0740 0.0223 −3.318 9.181e-4 −0.1177 −0.0303
Fire?{Yes} 0.4347 0.0173 25.13 3e-126 0.4008 0.4687
Intercept 11.80 0.0119 987.7 0.000 11.78 11.82

Table 6: Coefficients and inferences for Model 7, interaction_model. (The labels have been
abbreviated for space considerations.)

Figure 8: Two visualizations of Model 7, interaction_model, which contains two categorical
predictors and their interaction. The plot on the left shows the original response (Sale Price),
while the plot on the right shows the transformed response (log(Sale Price($))).

The same model would be specified in R as log(‘Price($)‘) ~ ‘Style‘ * ‘Fire?‘. Note
that R uses * to mean factor crossing, rather than multiplication.

>>> interaction_model.plot(confidence_band = alpha_val,
... transformed_y_space = True)

In Figure 8, we see that the visualization of the fitted Model 7 is the classical interaction plot
(Faraway 2016). Even when we allow for an interaction, the lines are still roughly parallel,
suggesting that the interaction is weak.
Now, let’s combine these categorical variables with the square footage into a single model.

12 salmon: Symbolic Linear Regression in Python

Coefficient SE t p

(Style{2 Story})(Fire?{Yes}) −0.0389 0.0215 −1.807 0.0709
(Style{Other})(Fire?{Yes}) −0.1478 0.0244 −6.057 1.564e-9
Style{2 Story} −0.1524 0.0171 −8.926 7.7e-19
Style{Other} −0.1535 0.0167 −9.184 7.7e-20
Sq. Ft. 5.732e-4 1.188e-5 48.24 0.000
Fire?{Yes} 0.2160 0.0137 15.79 5.7e-54
Intercept 11.15 0.0161 691.6 0.000

Table 7: Coefficients and inferences for Model 8, quant_cat_model. (The confidence intervals
are not shown for space considerations.)

For simplicity, we omit the quadratic term:

E[log(Price($)) | x] = β0 + β1I(Style = “2 Story”) +
β2I(Style = “Other”) + β3I(Fire? = “Yes”) +
β4I(Style = “2 Story”)I(Fire? = “Yes”) +
β5I(Style = “Other”)I(Fire? = “Yes”) +
β6(Sq. Ft.)

(8)

Adding the quantitative variable Sq. Ft. to the model is straightforward:

>>> house, fire, sqft = C("Style"), C("Fire?"), Q("Sq. Ft.")
>>> quant_cat_model = LinearModel((house & fire) + sqft, Log(Q("Price($)")))
>>> print(quant_cat_model)

log(Price($)) ~ 1 + Sq. Ft. + Style + Fire? + (Style)(Fire?)

>>> quant_cat_model.fit(data)

The same model would be specified in R by:
log(‘Price($)‘) ~ ‘Sq. Ft.‘ + ‘Style‘*‘Fire?‘.

>>> quant_cat_model.plot(confidence_band = alpha_val)

However, Model 8 assumed no interaction between the quantitative variable and the categori-
cal variables. As one final step, we consider interacting the square footage with the categorical
variables, which is equivalent to fitting a separate model for each possible combination of the

Journal of Statistical Software 13

Figure 9: Visualization of the fitted Model 8, quant_cat_model. The quantitative variable
is on the x axis, while each unique combination of the categorical variables is represented by
a different line and color.

categorical variables:

E[log(Price($)) | x] = β0 + β1(Sq. Ft.)β2I(Style = “2 Story”)+
β3I(Style = “Other”) + β4I(Fire? = “Yes”) +
β5I(Style = “2 Story”)I(Fire? = “Yes”) +
β6I(Style = “Other”)I(Fire? = “Yes”) +
β7(Sq. Ft.)I(Style = “2 Story”) +
β8(Sq. Ft.)I(Style = “Other”) +
β9(Sq. Ft.)I(Fire? = “Yes”) +
β10(Sq. Ft.)I(Style = “2 Story”)I(Fire? = “Yes”) +
β11(Sq. Ft.)I(Style = “Other”)I(Fire? = “Yes”)

(9)

The sheer number of interaction terms would make this model difficult to specify, but because
the variables are represented as composable objects in salmon, they can be stored in variables
and reused, as illustrated below.

>>> house, fire, sqft = C("Style"), C("Fire?"), Q("Sq. Ft.")
>>> full_model = LinearModel(house & fire & sqft, Log(Q("Price($)")))
>>> print(full_model)

log(Price($)) ~ 1 + Sq. Ft. + Style + Fire? + (Style)(Fire?) +
(Sq. Ft.)(Style) + (Sq. Ft.)(Fire?) + (Sq. Ft.)(Style)(Fire?)

>>> full_model.fit(data)

14 salmon: Symbolic Linear Regression in Python

Coefficient SE t p

(Sq. Ft.)(Style{2 Story}) −2.852e-4 4.556e-5 −6.260 4.4e-10
(Sq. Ft.)(Style{Other}) −4.985e-4 4.912e-5 −10.15 8.4e-24
(Style{2 Story})(Fire?{Yes}) −0.0766 0.0886 −0.8640 0.3877
(Style{Other})(Fire?{Yes}) −0.0236 0.0872 −0.2713 0.7862
Style{2 Story} 0.2222 0.0666 3.338 8.550e-4
Style{Other} 0.4554 0.0621 7.331 2.9e-13
(Sq. Ft.)(Style{2 Story})(Fire?Yes) 6.001e-5 5.605e-5 1.071 0.2844
(Sq. Ft.)(Style{Other})(Fire?Yes) 3.096e-5 6.166e-5 0.5021 0.6156
Fire?{Yes} 0.0592 0.0513 1.155 0.2482
Sq. Ft. 7.457e-4 2.922e-5 25.52 8e-130
(Sq. Ft.)(Fire?{Yes}) 6.014e-5 3.821e-5 1.574 0.1156
Intercept 10.96 0.0341 321.1 0.000

Table 8: Coefficients and inferences for Model 9, full_model. (The confidence intervals are
not shown for space considerations.)

Figure 10: Visualization of the fitted Model 9, full_model, which includes an interaction
between the quantitative and categorical variables.

>>> full_model.plot(confidence_band = alpha_val)

R supports a similarly concise syntax for the same model

R> log(`Price($)`) ~ `Style` * `Fire?` * `Sq. Ft.`

but at the cost of making * mean something other than “multiplication”.
To use a regression model for prediction, we can call the .predict() method on new data.
The new data must be a pandas DataFrame whose column names match the variable names
in the model specification. In most cases, the new data will be in the same format as the

Journal of Statistical Software 15

Predicted log(Price($))
0 11.82
1 11.94
2 12.00
3 13.00
4 12.00

Table 9: First five predicted values from the full_model using the DataFrame: new_data.

Predicted log(Price($)) 2.5% 97.5%
0 11.82 11.36 12.29
1 11.94 11.48 12.41
2 12.00 11.54 12.47
3 13.00 12.53 13.47
4 12.00 11.53 12.46

Table 10: First five predicted values with 95% prediction intervals from the full_model using
the DataFrame: new_data.

data used to fit the model, so this requirement will automatically be satisfied. In our example
below, the new DataFrame, new_data, is simply the same as data.

>>> full_model.predict(new_data)

Accompanying confidence or prediction intervals can be obtained by passing the desired error
rate α to confidence_interval or prediction_interval:

>>> full_model.predict(new_data, prediction_interval = alpha_val)

Occasionally, it is useful to add variables to a regression model without estimating their
coefficients. In salmon, this is achieved by simply shifting the response variable.

>>> offset = 3 * Q("Sq. Ft.")
>>> offset_model = LinearModel(C("Fire?"), Q("Price($)") - offset)
>>> print(offset_model)

Price($) - 3*(Sq. Ft.) ~ 1 + Fire?

Compare this with R, where an offset is specified using the offset() command:

R> SalePrice ~ Fire + offset(3 * SqFt)

Anecdotally, we have evidence that including an offset term by shifting the response is more
intuitive. One of our colleagues, who uses R but was unfamiliar with the offset() function,
attempted to implement offsets by shifting the response, which does not work in R. This
motivated our decision to support shifting the response variable in salmon.

16 salmon: Symbolic Linear Regression in Python

3. Model diagnostics
The previous section explained how to build regression models; this section focuses on how
to evaluate them. There are both visual and analytical diagnostics; we only attempt to
highlight a few examples of each. For a full description of the API, please refer to the online
documentation.
In the following examples, we will check whether the assumptions are satisfied for Model 9,
full_model, as well as compare it to Model 8, quant_cat_model, which is a nested model.
Both models were defined in Section 2.

Visual Diagnostics

In Equation 1, we only made assumptions about the conditional expectation of the response y,
given the explanatory variables x. However, statistical inferences for linear regression require
assumptions about the entire conditional distribution, not just the expectation. Perhaps the
easiest way to specify this conditional distribution is to write

y = β0 + β1x1 + β2x2 + . . . + βpxp + ϵ, (10)

where the error term ϵ is independent of x and assumed to follow a Normal(0, σ2) distribution.
One can easily verify that this model is a special case of Model 1.
The assumption that the errors are independent and normally distributed with constant
variance is usually assessed by inspecting the residuals. In salmon, the residual diagnostic
plots can be generated directly from the fitted model:

>>> full_model.plot_residual_diagnostics()

Four plots of the residuals are produced, as shown in Figure 11: A normal Q-Q plot, a
histogram, a scatterplot of the fitted values versus the residuals, and a line plot of the residuals
versus their order in the data set. The residuals appear to be skewed to the left, but otherwise
there do not appear to be obvious violations of the assumptions. The line plot of the residuals
versus their order is not as useful for this data set, since the row ordering is arbitrary, but it
could potentially reveal violations of independence in data sets where row order is significant,
such as time series data.
To further investigate assumptions, we can produce residual plots and partial regression plots
by calling the methods model.residual_plots() and model.partial_plots() respectively.
These will each produce one plot per explanatory variable.

Analytical Diagnostics

Visual diagnostics are in the eye of the beholder, so analytical diagnostics are equally im-
portant. One common, if not always the most useful, diagnostic of a model’s fit is the R2

value.

>>> full_model.r_squared()

0.652748378553996

Journal of Statistical Software 17

Figure 11: Residual diagnostic plots for the fitted regression model.

One problem with R2 is that it is monotonically increasing in the number of variables in the
model. A better diagnostic is Adjusted-R2, which accounts for the number of variables. To
calculate Adjusted-R2, we specify the argument adjusted = True. Besides R2, AIC and BIC
are also available.
A more formal way of evaluating a model is to test it against another model. The anova
command, when called on a single model, returns the results of the omnibus F test, as well
as the partial F test for the each individual variable in the model.

>>> from salmon import anova
>>> anova(full_model)

The inclusion of interactions between the quantitative variable (square footage) and the cat-
egorical variables (fireplace and house style) adds complexity to the model that may not be
supported by the data. To test this, we can perform a partial F test comparing the full model
to a reduced model without these interaction terms using the anova command again, except
passing in two fitted models. This mirrors the behavior of the anova() function in R.

>>> anova(full_model, quant_cat_model)

The results of the partial F test confirm that interactions significantly improve the fit of the
model to the data.

18 salmon: Symbolic Linear Regression in Python

DF SS Err. SS Reg. F p

Global Test 11 309.578 309.578 500.765 0.000
(Style)(Sq. Ft.) 2 169.819 303.415 54.828 4.2e-24
(Fire?)(Style) 2 163.699 309.536 0.373 0.6883
Style 2 166.776 306.458 27.755 1.1e-12
(Fire?)(Style)(Sq. Ft.) 2 163.721 309.513 0.574 0.5630
Fire? 1 163.731 309.503 1.333 0.2482
Sq. Ft. 1 200.263 272.971 651.347 8e-130
(Fire?)(Sq. Ft.) 1 163.796 309.438 2.477 0.1156
Error 2912

Table 11: Global F test results for full_model.

DF SS Err. SS Reg. F p

Full Model 11 163.657 309.578
Reduced Model 5 179.015 294.219 54.655 2.0e-54
Error 2912

Table 12: Partial F test results from comparing full_model to quant_cat_model.

4. Automatic model building
The salmon package also provides functions to automate the model building process. In the
following examples, we use salmon to automatically select the “best” model, according to a
metric of our choosing, from among the following variables: Sq. Ft. − E[Sq. Ft.], (Sq. Ft. −
E[Sq. Ft.])2, I(Style = “2 Story”), I(Style = “Other”), I(Fire? = “Yes”), plus interactions
between all categorical and quantitative variables. The response variable in this scenario is
log(Price($)).
To utilize the model building features of salmon, we first specify a model that contains all of
the variables under consideration:

>>> quant_vars = Poly(Cen(Q("Sq. Ft.")), 2)
>>> all_terms_model = LinearModel(
... (1 + C("Style")) * (1 + C("Fire?")) * (1 + quant_vars),
... Log(Q("Price($)")))
>>> print(all_terms_model)

log(Sale Price($)) ~ 1 + (Sq. Ft. - E(Sq. Ft.)) +
(Sq. Ft. - E(Sq. Ft.))^2 + Fire? +
(Fire?)(Sq. Ft. - E(Sq. Ft.)) +
(Fire?)((Sq. Ft. - E(Sq. Ft.))^2) +
Style + (Style)(Sq. Ft. - E(Sq. Ft.)) +
(Style)((Sq. Ft. - E(Sq. Ft.))^2) +
(Fire?)(Style) +
(Fire?)(Style)(Sq. Ft. - E(Sq. Ft.)) +
(Fire?)(Style)((Sq. Ft. - E(Sq. Ft.))^2)

Journal of Statistical Software 19

Stepwise selection methods are supported through the stepwise function. Forward stepwise
is specified by forward = True, while backward stepwise is specified by forward = False.
Additionally, we specify what metric to optimize (e.g., AIC, BIC, R2) using the method
parameter. For example, if we use forward stepwise to optimize for BIC, we obtain the
following “best” model:

>>> from salmon import stepwise
>>> results = stepwise(full_model = all_terms_model, metric_name = "BIC",
... forward = True, data = data)
>>> print(results["metric"])

BIC | -168.69617383126013

>>> print(results["best_model"])

log(Price($)) ~ 1 +
(Fire?)(Sq. Ft. - E(Sq. Ft.)) +
(Style)(Sq. Ft. - E(Sq. Ft.)) +
Fire? + Style + (Sq. Ft. - E(Sq. Ft.)) +
(Sq. Ft. - E(Sq. Ft.))^2 +
(Fire?)(Style)(Sq. Ft. - E(Sq. Ft.)^2)

The procedure produced a model associated with the lowest BIC score, but at the cost of vio-
lating what some would consider best modeling practices: namely, the inclusion of interactions
and higher-order terms without main effects and lower-order terms (Cox 1984). For example,
(Fire?)(Style)(Sq. Ft. - E(Sq. Ft.))ˆ2) is included, but not (Fire?)(Style) or
(Fire?)(Style)(Sq. Ft. - E(Sq. Ft.)).
Due the object-oriented nature of salmon, the package can keep track of inter-variable re-
lationships. To employ this feature, we simply specify the parameter naive = False when
calling the stepwise function:

>>> results = stepwise(full_model = all_terms_model, metric_name = "BIC",
... forward = True, naive = False, data = data)
>>> print(results["metric"])

BIC | -187.50648709382568

>>> print(results["best_model"])

log(Price($)) ~ 1 + (Fire?)(Sq. Ft. - E(Sq. Ft.)) +
(Fire?)(Sq. Ft. - E(Sq. Ft.)^2) +
(Style)(Sq. Ft. - E(Sq. Ft.)) +
(Style)(Sq. Ft. - E(Sq. Ft.)^2) +
Fireplace? + Style + (Sq. Ft. - E(Sq. Ft.)) +
(Sq. Ft. - E(Sq. Ft.)^2)

20 salmon: Symbolic Linear Regression in Python

Model Task salmon statsmodels R (lm)
Simple Linear Regression fit 2.759 8.701 1.505
(1 quantitative predictor) predict 0.607 2.267 0.350

Multiple Regression fit 3.637 15.590 5.098
(4 quant. + 1 cat. predictors) predict 1.421 6.536 1.020

Multiple Regression fit 7.810 11.576 2.344
(2 quant. + 1 cat. + interactions) predict 2.671 3.994 1.171

Multiple Regression fit 2198.1 7491.4 5280.5
(1000 quant.) predict 215.73 22.80 191.41

Table 13: Timing comparisons of salmon and competitors on four models. For each model,
we time two tasks: 1) fitting the model (including inferential statistics) and 2) using the fitted
model to make predictions. All reported times are in milliseconds.

Now, the selected model is guaranteed to not violate standard model building practices. For
example, if an interaction term is included, the main effects will be also.

5. Integration with Python ecosystem

The salmon package is deliberately built on top of pandas, in order to leverage the power
of its DataFrame for organizing heterogeneous data (McKinney 2010). It expects pandas
DataFrames as inputs, and it outputs results as pandas DataFrames. However, salmon is also
integrated with other packages within the Python data science ecosystem.
First, the ‘LinearModel’ class in salmon implements .fit() and .predict() methods, so
any ‘LinearModel’ can be used as scikit-learn estimators. This means that all of scikit-learn’s
routines for model selection and evaluation, such as cross validation, will work with models
that are created in salmon (Buitinck et al. 2013).
Second, salmon plots are produced using matplotlib. These plots can be further edited and
customized in matplotlib because every plotting command in salmon returns a matplotlib
Figure (Hunter 2007).

6. Timing and numerical comparisons

We conducted timing comparisons between salmon, statsmodels, and R. The results are shown
in Table 13. The salmon package is consistently faster than statsmodels in all scenarios. It
is also faster than R on large examples (with p = 1000 predictors), although it is still slower
than R on small examples, perhaps because formulas are native in R. The speed of salmon
on large examples is likely due to the careful handling of the linear algebra, some details of
which are described in Appendix A.2.
We also compare the numerical stability of salmon, statsmodels, and R on a synthetic example.
First, we generate a grid of n = 1000 evenly-spaced values in the range [108 −1, 108 +1] for the

Journal of Statistical Software 21

salmon statsmodels R (lm)
Coefficient 2.095 2.000 NA

(0.1059) (3 × 10−10) (NA)
Intercept 3046697 0.00000002 200000002

(5372320) (3 × 10−18) (0.0475)

Table 14: Estimated parameters (with standard errors in parentheses) from salmon and
competitors on synthetic data simulated according to Equation 11. Only salmon recovers
the correct coefficients. R fails to produce a coefficient at all, while statsmodels returns the
incorrect coefficients with a high degree of confidence.

explanatory variable x. Then, we generate the response variable y according to the relation

yi = 2 + 2xi + ϵi, (11)

where ϵ1, . . . , ϵn are i.i.d. Normal(0, 1). Model 11 describes a simple linear regression model
with β0 = β1 = 2. The large values of x make it nearly collinear with the intercept.
The estimated parameters (β̂0 and β̂1) from the three packages are shown in Table 14. R
fails to estimate a coefficient at all. The behavior of statsmodels is more troubling; it throws
a warning, but proceeds to report incorrect values with a high degree of precision. Only
salmon returns the correct values, due to careful handling of numerical linear algebra (see
Appendix A.2 for more details). Note that although the intercept is suspiciously large, this is
because the standard error of the intercept is very large. Recall that the standard deviation
of the intercept is σ

√
1
n + x̄2∑

i
(xi−x̄)2 ≈ 5471751 for the parameters of our simulation.

The Jupyter notebooks to reproduce these experiments can be found in the supplementary
materials and on GitHub at https://github.com/ajboyd2/salmon/tree/master/paper_
outputs.

7. Conclusion
The salmon package allows for convenient and intuitive model building, using, and diagnosing
for linear regression within Python. As our examples have demonstrated, the consistent
interface allows for an linear regression experience in Python that reproduces – and in some
cases, enhances – the experience in R.
Future work in salmon will pertain to extending the package’s capabilities by implementing
other types of models beyond linear regression, such as generalized linear models, as well as
providing additional tests that are supported in R, such as linear contrasts.

Acknowledgments
We are indebted to Ben Mangelsdorf, who contributed code to the salmon package and helped
with the preparation of this paper. We are also grateful to Fernando Perez, Nicholas Russo,
Jonathan Taylor, and John Walker for their feedback, as well as to the Bill and Linda Frost
Fund for support.

https://github.com/ajboyd2/salmon/tree/master/paper_outputs
https://github.com/ajboyd2/salmon/tree/master/paper_outputs

22 salmon: Symbolic Linear Regression in Python

References

Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A, Grisel O, Niculae V, Prettenhofer
P, Gramfort A, Grobler J, Layton R, Vanderplas J, Joly A, Holt B, Varoquaux G (2013).
“API Design for Machine Learning Software: Experiences from the scikit-learn Project.”
In European Conference on Machine Learning and Principles and Practices of Knowledge
Discovery in Databases Workshop: Languages for Data Mining and Machine Learning, pp.
108–122.

Chatterjee S, Hadi AS (2015). Regression Analysis by Example. John Wiley & Sons.

Cox DR (1984). “Interaction.” International Statistical Review, pp. 1–24. doi:10.2307/
1403235.

De Cock D (2011). “Ames, Iowa: Alternative to the Boston Housing Data as an End
of Semester Regression Project.” Journal of Statistics Education, 19(3). doi:10.1080/
10691898.2011.11889627.

Faraway JJ (2016). Linear Models with R. Chapman & Hall/CRC.

Hunter JD (2007). “matplotlib: A 2D Graphics Environment.” Computing in Science &
Engineering, 9(3), 90–95. doi:10.1109/mcse.2007.55.

McKinney W (2010). “Data Structures for Statistical Computing in Python.” In S Van der
Walt, J Millman (eds.), Proceedings of the 9th Python in Science Conference, pp. 51–56.

Minitab Inc (2017). Minitab 17: Statistical Software for Process Control, Improvement and
Education. Minitab Inc., State College. URL https://www.minitab.com/.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Pretten-
hofer P, Weiss R, Dubourg V, et al. (2011). “scikit-learn: Machine Learning in Python.”
Journal of Machine Learning Research, 12(85), 2825–2830.

R Core Team (2023). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Ross K, Sun DL (2019). “symbulate: Simulation in the Language of Probability.” Journal of
Statistics Education, pp. 1–17. doi:10.1080/10691898.2019.1600387.

SAS Institute Inc (2019). JMP, Version 15. Cary. URL https://www.JMP.com/.

Seabold S, Perktold J (2010). “statsmodels: Econometric and Statistical Modeling with
Python.” In Proceedings of the 9th Python in Science Conference, volume 57, p. 61.

Smith NJ, et al. (2022). patsy. Python package version 0.5.3, URL https://pypi.org/
project/patsy/.

The MathWorks Inc (2021). MATLAB – The Language of Technical Computing, Version
R2021a. Natick. URL https://www.mathworks.com/products/matlab/.

Van Rossum G, et al. (2011). Python Programming Language. URL https://www.python.
org/.

https://doi.org/10.2307/1403235
https://doi.org/10.2307/1403235
https://doi.org/10.1080/10691898.2011.11889627
https://doi.org/10.1080/10691898.2011.11889627
https://doi.org/10.1109/mcse.2007.55
https://www.minitab.com/
https://www.R-project.org/
https://doi.org/10.1080/10691898.2019.1600387
https://www.JMP.com/
https://pypi.org/project/patsy/
https://pypi.org/project/patsy/
https://www.mathworks.com/products/matlab/
https://www.python.org/
https://www.python.org/

Journal of Statistical Software 23

A. Implementation details

A.1. Expression tree

A goal for salmon was to be able to represent variables in an object oriented fashion that
also allowed easy manipulations/transformations. The solution to this was to represent the
variables as an abstract syntax tree, borrowing heavily from a programming languages ap-
proach. Every expression of variables can be modeled as a tree where each inner node is an
operation such as addition, multiplication, or transformation and each leaf is a variable (either
quantitative or categorical). The following code and figure are equivalent in representation.

>>> Q("a") - C("b") * C("c") + Q("d") ** 3 * Q("e") +
... Sin(Q("f") ** 5) * Log(Q("g") + Q("h") + 1)

Figure 12: Expression tree.

This design allowed for a recursive style implementation when defining actions amongst vari-
ables. We denote the class ‘Expression’ to denote the most general and all encompassing
structure of variables. The exact object composition scheme can be described in BNF with
the following grammar:

<Expression> ::= <Variable>
| <Constant>
| <Expression> + <Expression>
| <Expression> - <Expression>
| <Expression> * <Expression>
| <Expression> / <Expression>
| <Expression> ** <Constant>

<Variable> ::= Var(<Name>)
| <Quantitative>
| <Categorical>
| <Transformation>(<Expression>)

24 salmon: Symbolic Linear Regression in Python

| <Variable> ** <Constant>
| <Variable> * <Constant>
| <Variable> / <Constant>
| <Variable> * <Variable>
| <Variable> / <Variable>

<Quantitative> ::= Q(<Name>)

<Categorical> ::= C(<Name>)

<Transformation> ::= Sin
| Cos
| Exp
| Log
| Log10
| Standardize
| Center
| Identity

<Constant> ::= int
| float
| <Constant> + <Constant>
| <Constant> - <Constant>
| <Constant> * <Constant>
| <Constant> / <Constant>

<Name> ::= str

A.2. Model fitting
Our general strategy for fitting the linear regression model is similar to R’s (R Core Team
2023). We first calculate a QR decomposition of the design matrix X, which allows us to
calculate the regression coefficients β̂ by solving the system Rβ̂ = Q⊤y and the estimated
covariance matrix Σ̂ = σ̂2(X⊤X)−1 by solving the system R⊤RΣ̂ = I (since X⊤X = R⊤R).
When the model includes an intercept, R calculates the coefficients by appending a column
of ones to the design matrix

X̃ =
(
1 X

)
.

The regression coefficients are then given by

β̂ :=
(

β̂0
β̂1:p

)
= (X̃⊤X̃)−1X̃⊤y.

We take a slightly different approach, centering all of the variables first. The centered versions
of the design matrix X and the response variable y are given by

Xc = X − 1
n

11⊤X yc = y − 1
n

11⊤y

:= X − 1x̄⊤ := y − 1ȳ

Journal of Statistical Software 25

It is well-known that centering does not change the coefficients of the explanatory variables
(Chatterjee and Hadi 2015). That is, we can calculate β̂1:p as

β̂1:p = (X⊤
c Xc)−1X⊤

c yc

and recover the intercept as

β̂0 = y − x⊤β̂1:p.

The advantage of centering is that the computations are more numerically stable.
To calculate the covariance matrix, Σ̂, the main hurdle is computing (X̃⊤X̃)−1. We compute
this without explicitly constructing X̃, using properties of block matrices. To our knowledge,
these formulas do not appear in the literature, so we reproduce the derivations here for
completeness.
First, observe that the inverse of X̃⊤X̃ can be written in block form as

(X̃⊤X̃)−1 =
(

n 1⊤X
X⊤1 X⊤X

)−1

=
(

a b⊤

b C

)
.

Next, C can be obtained as the inverse of the Schur complement of the block matrix X̃⊤X̃:

C =
(
X⊤X − (X⊤1) 1

n
(1⊤X)

)−1

=
(
X⊤(I − P)X

)−1
(P := 1

n
11⊤ is a projection matrix)

=
(
X⊤(I − P)2X

)−1
((I − P)2 = I − P)

=
(
((I − P)X)⊤(I − P)X

)−1
(I − P is symmetric)

= (X⊤
c Xc)−1.

Finally, we compute a and b in terms of C.

b = −C(X⊤1) 1
n

= −Cx̄

a = 1
n

+ 1
n

(1⊤X)C(X⊤1) 1
n

= 1
n

− x̄⊤b.

26 salmon: Symbolic Linear Regression in Python

Affiliation:
Dennis L. Sun
California Polytechnic State University
Department of Statistics
1 Grand Ave
San Luis Obispo, CA 93407, United States of America
E-mail: dsun09@calpoly.edu
URL: https://dlsun.github.io/

Journal of Statistical Software https://www.jstatsoft.org/
published by the Foundation for Open Access Statistics https://www.foastat.org/

March 2024, Volume 108, Issue 8 Submitted: 2021-10-02
doi:10.18637/jss.v108.i08 Accepted: 2023-02-05

mailto:dsun09@calpoly.edu
https://dlsun.github.io/
https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v108.i08

	Introduction
	Model building and fitting
	Model diagnostics
	Automatic model building
	Integration with Python ecosystem
	Timing
	Conclusion
	Implementation details
	Expression tree
	Model fitting

