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Abstract

Holistic linear regression extends the classical best subset selection problem by adding
additional constraints designed to improve the model quality. These constraints include
sparsity-inducing constraints, sign-coherence constraints and linear constraints. The R
package holiglm provides functionality to model and fit holistic generalized linear mod-
els. By making use of state-of-the-art mixed-integer conic solvers, the package can reliably
solve generalized linear models for Gaussian, binomial and Poisson responses with a multi-
tude of holistic constraints. The high-level interface simplifies the constraint specification
and can be used as a drop-in replacement for the stats::glm() function.

Keywords: algorithmic regression, best subset selection, conic programming, holistic con-
straints, optimization, R.

1. Introduction
Selecting a sensible model from the set of all possible models is an important but typically
time-consuming task in the data analytic process. To simplify this process, Bertsimas and
King (2015); Bertsimas and Li (2020) introduce the holistic linear model (HLM). The HLM
is a constrained linear regression model in which the constraints aim to automate the model
selection process. In particular, this can be achieved by utilizing quadratic mixed-integer
optimization, where the integer constraints are used to place cardinality constraints on the
linear regression model.
Cardinality constraints are used to introduce sparsity in the statistical model, a desirable
property that leads to more interpretability, increase in computational efficiency and reduction
in the variance of the estimates (at the cost of introducing some bias). Placing a cardinality
constraint on the total number of variables allowed in the final model leads to the classical
best subset selection problem (Miller 2002) which, given a response vector y ∈ Rn, a predictor
matrix X ∈ Rn×p+1 and a subset size k between 0 and min{n, p}, finds the subset of at most
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k predictors β that produces the best fit in terms of squared error, solving the non-convex
problem

minimize
β

1
2 ∥y − Xβ∥2

2 subject to
p∑

j=1
I{βj ̸=0} ≤ k.

Several algorithms have been proposed to solve the best subset selection problem (among
the most recent ones see e.g., Hazimeh and Mazumder 2020; Zhu, Wen, Zhu, Zhang, and
Wang 2020). Other approaches which aim to achieve global sparsity mostly rely on different
types of penalties (such as LASSO-type penalties Tibshirani 1996; Sun and Zhang 2021).
Moreover, recent work considers similar constraints which be specified with the goal of in-
troducing sparsity in the model at a group level, i.e., ensuring that certain sets of predictors
are jointly included (excluded) in (from) the model. Hu, Li, Meng, Qin, and Yang (2017)
introduce sparsity in a group structure via the ℓp,q norm by using group restricted eigenvalue
condition, while (Zhang, Zhu, Zhu, and Wang 2022b) propose a group-splicing algorithm that
iteratively detects the relevant groups and excludes the irrelevant ones. Further cardinality
constraints placed on user-defined groups of predictors can be used to e.g., limit the pair-
wise multicollinearity, select the best (non-linear) transformation for the predictors or include
expert knowledge in the model estimation (such as forcing specific predictors to stay in the
model).
In addition to cardinality constraints, upper or lower bounds as well as linear constraints on
the coefficients are also relevant for improving interpretability along with introducing sparsity
(e.g., see Slawski and Hein 2013, who introduce non-negativity constraints in linear regression
and show performance similar to other sparsity inducing methods).
In this paper, we introduce the holiglm package, an R package for formulating and fitting
holistic generalized linear models (HGLMs). The package supports holistic constraints such
as mixed-integer-type constraints related to sparsity (e.g., limits on the number of predictors
to be included in the model, group sparsity constraints), linear constraints and constraints
related to multicollinearity. The contribution of the paper is three-fold. First, to the best of
our knowledge, we are the first to suggest the use of conic optimization to extend the results
presented for linear regression by Bertsimas and King (2015); Bertsimas and Li (2020) to the
class of generalized linear models (GLMs) and to formulate the most common ones as conic
optimization problems. Secondly, we survey the literature related to holistic linear regression
and, more generally, to constrained regression and provide an extensive survey of what should
be considered as holistic constraints. Finally, we provide a ready-to-use implementation of
holistic GLMs in the package holiglm. We exemplify the use of the package for a variety
of statistical problems with the hope that this will encourage the statistical community in
further exploiting the recent advances in mixed-integer conic optimization.
The holiglm package provides a flexible infrastructure for automatically translating con-
strained generalized linear models into conic optimization problems. The optimization
problems are solved by utilizing the R optimization infrastructure package ROI (Theußl,
Schwendinger, and Hornik 2020). Additionally, a high-level interface, which can be used
as a drop-in replacement for the stats::glm() function, is provided. Using ROI makes it
possible for the user to choose between a wide range of commercial and open source op-
timization solvers. With recent advancements in conic optimization, it is now possible to
routinely solve conic problems with a large number of variables and/or constraints to proven
optimality. Using conic optimization instead of iteratively reweighted least squares (IRLS)
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has the advantages that no starting values are needed, the results are more reliable and the
solvers are designed to handle different types of constraints. These advantages come at the
cost of a longer runtime; however, as shown by Schwendinger, Grün, and Hornik (2021) for
some GLMs the speed of the conic formulation is similar to the IRLS implementation. Nev-
ertheless, problems with (very) large n and/or (very) large p can currently pose a marked
computational burden on the software. It should be noted that the computational burden
depends on both the conic formulation itself (in Appendix A one can see the dimension of
the underlying optimization problems for different family and link functions) as well as the
computational ability of the solvers.
At the time of writing, there exists no ready-to-use package or library for fitting HGLMs
or HLMs. However, for R (R Core Team 2023) several packages allow the estimation of
(generalized) linear models under linear or sparsity constraints. Package abess (Zhu et al.
2022) can fit generalized linear models with canonical link functions while enforcing global
and group sparsity constraints. The CMLS (Helwig 2018) package can fit linear regres-
sion models under linear constraints by translating the problem into a linear constrained
quadratic optimization problem, which is solved by quadprog (Turlach, Weingessel, and Moler
2019). Package colf (Boutaris 2017) can fit linear regression models with lower and upper
bounds on the coefficients. The glmc (Chaudhuri, Handcock, and Rendall 2006) package
can fit generalized linear models while imposing linear constraints on the parameters. Sim-
ilarly, package restriktor (Vanbrabant 2022) provides functionalities for estimation, testing
and evaluation of linear equality and inequality constraints about parameters and effects for
generalized linear models, where the constraints can be specified by a text-based descrip-
tion. Finally, ConsReg (Sallés 2020) provides a similar functionality to restriktor. Package
holiglm (Schwendinger, Schwendinger, and Vana 2024) is available from the Comprehensive
R Archive Network (CRAN) at https://CRAN.R-project.org/package=holiglm.
This paper is structured as follows: Section 2 introduces the GLM class and presents the
representation of specific family-link combinations as conic optimization models. In Section 3,
we present a list of holistic constraints implemented in the package. Section 4 introduces
package holiglm for R. In Section 5 we compare our package regarding runtimes with existing
packages for fitting constrained GLMs. Section 6 shows the usage of the package in two
applications: fairness constraints in logistic regression and model selection in log-binomial
regression. Section 7 concludes.

2. Generalized linear models
A generalized linear model is a model for a response variable whose conditional distribution
belongs to a one-dimensional exponential family. A GLM consists of a linear predictor

ηi = β0 + β1x1i + . . . + βpxpi = x⊤
i β

and two functions, namely a twice continuously differentiable and invertible link function g
that describes how the mean, E(y) = µ, depends on the linear predictor (one has g(µ) = η),
and a variance function V that describes how the variance depends on the mean VAR(y) =
ϕV (µ) (where the dispersion parameter ϕ > 0 is a constant).
The most common distributions for the response y that can be accommodated in the GLM
setting include the normal, binomial or Poisson. The density of members of the exponential

https://CRAN.R-project.org/package=holiglm
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Family- Functions Objective Conic constraint
link λi(β), b(λi(β))
Gaussian
Identitya λi(β) = x⊤

i β , −ζ (ζ + 1, ζ − 1, 2(y1 − x⊤
1 β),

b(λi(β)) = (x⊤
i β)2/2 . . . , 2(yn − x⊤

n β)) ∈ Kn+2
soc

Binomial

Logitb & λi(β) = x⊤
i β

n∑
i=1

yix
⊤
i β − δi (δi, 1, γi + 1) ∈ Kexp

Probit b(λi(β)) = log(1 + exp(x⊤
i β)) (x⊤

i β, 1, γi) ∈ Kexp

Logb λi(β) = x⊤
i β − log(1 − exp(x⊤

i β))
n∑

i=1
yix

⊤
i β + (1 − yi)δi x⊤

i β ≤ 0

b(λi(β)) = − log
(
1 − exp(x⊤

i β)
)

(δi, 1, 1 − γi) ∈ Kexp

(x⊤
i β, 1, γi) ∈ Kexp

Poisson

Logb λi(β) = x⊤
i β

n∑
i=1

yix
⊤
i β − δi (x⊤

i β, 1, δi) ∈ Kexp

b(λi(β)) = exp(x⊤
i β)

Identityb λi(β) = log(x⊤
i β)

n∑
i=1

yiδi − x⊤
i β (δi, 1, x⊤

i β) ∈ Kexp

b(λi(β)) = x⊤
i β x⊤

i β ≥ 0

Sq.rootab λi(β) = 2 log(x⊤
i β)

n∑
i=1

2yiδi − ζ (δi, 1, x⊤
i β) ∈ Kexp

b(λi(β)) = (x⊤
i β)2 (ζ + 1, ζ − 1, 2x⊤

1 β,

. . . , 2x⊤
n β) ∈ Kn+2

soc

Table 1: GLMs as exponential families with conic reformulations. The objective functions
to be maximized are proportional to ∝

∑n
i=1 yiλi(β) − b(λi(β)). The conic constraints with

subscript i should hold for all i = 1, . . . , n. Superscript a marks family-link combinations with
an objective modeled by second-order cones. Superscript b marks family-link combinations
with an exponential cone representation. Note that for the probit link an approximation is
used by scaling the coefficients obtained from the logit link by

√
π/8 which is equivalent to

using a simple approximation (Page 1977) for the standard normal distribution.

family can be written as:

f(y; λ, ϕ) = exp
{

yλ − b(λ)
ϕ

+ c(y, ϕ)
}

,

where λ is called the canonical or natural parameter, b(·) and c(·) are known real-valued
measurable functions that vary from one exponential family to another.
It can be shown that E(y) = b′(λ) and VAR(y) = ϕb′′(λ) holds. Note that g(b′(λ)) = η.
We can denote h = (b′)−1 ◦ g−1 such that, when rewriting λ as a function of β we have
λ(β) = h(η). In case h is the identity, the link g is called canonical, i.e., b′(·) is the inverse of
the canonical link function.
The parameters β can be estimated by maximizing the likelihood function corresponding to
the different types of response. Using the distribution of the exponential family, the log-
likelihood for a sample y = (y1, . . . , yn)⊤ is given by:

log L(β; y) =
n∑

i=1

yiλi(β) − b(λi(β))
ϕi

+ c(yi, ϕi). (1)
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where ϕi = ϕ/ai for ai are user-defined observation weights.
In this paper, we leverage the fact that the maximization of the objective function in Equa-
tion 1 can be reformulated as a conic optimization problem, for most common family-link
combinations. A conic optimization problem is designed to model convex problems by opti-
mizing a linear objective function over the intersection of an affine hyperplane and a nonempty
closed convex cone. For GLMs, the types of cones relevant for maximum likelihood estimation
include the exponential cone Kexp, which can be used to model a variety of objectives and
constraints involving exponentials and logarithms, and the second-order cone Ksoc, which can
be used to model problems involving – directly or indirectly – quadratic terms. In holiglm
we provide functionality for estimating GLMs with Gaussian, binomial and Poisson families
with various link functions. Table 1 contains information on the family-link combinations
implemented in package holiglm. The second column contains, for each i, the λi() and bi()
as functions of the vector of coefficients β. The third column presents the objective function
obtained by reformulating the maximization of the log-likelihood as a conic program, while
the fourth column contains the corresponding conic constraints. Note that all reformulations
necessitate the specification of auxiliary variables ζ ∈ R and/or δ ∈ Rn, which will be opti-
mized together with the vector of regression coefficients. More details on the reformulation
of the log-likelihood maximization problem for the presented family-link combinations can be
found in Appendix A. Furthermore, we provide a package vignette which discusses how the
user can decide whether a problem is solvable via conic optimization, i.e., whether the objec-
tive (and desired constraints) can be represented using convex cones. Note that the package
currently does not allow for inverse Gaussian, gamma or negative binomial families, as at the
time of writing no appropriate conic representation could be found for these families. More
information about conic optimization in general can be found in Boyd and Vandenberghe
(2004) and MOSEK ApS (2022a), more information about conic optimization in R can be
found in Theußl et al. (2020).

3. Holistic constraints
Bertsimas and King (2015) and Bertsimas and Li (2020) introduced a set of constraints
designed to improve the quality of linear regression models. These constraints are crafted
based on a survey of modeling recommendations from statistical textbooks and articles. In
this section we survey different constraints suggested by the literature and provide an extensive
overview which includes but is not limited to constraints in Bertsimas and King (2015) and
Bertsimas and Li (2020). Moreover, we provide their formulations as optimization constraints.
Most of the constraints introduced in holiglm are cardinality constraints. For modeling car-
dinality constraints we need p binary variables:

zj ∈ {0, 1}, j = 1, . . . , p. (2)

These binary variables are only added to the model if needed. Here, the binary variable zj

represents the selection of variable Xj , hence, zj = 0 implies βj = 0. Problems which involve
such binary variables are called mixed-integer optimization problems. This type of cardinality
constraints can be modeled with a so-called big-M constraint.

−Mzj ≤ βj ≤ Mzj , j = 1, . . . , p, (3)
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where M is a positive constant. For the big-M constraint it is important to choose a good
constant M . A good M can be characterized by two properties:

• It is chosen big enough, that it does not impact the magnitude of the parameter βj .

• It is chosen as small as possible to improve the speed of the underlying optimization
solver and ensure stability.

3.1. Global sparsity

The global sparsity constraint can be used to model the classical best subset selection problem
(Miller 2002). The best subset selection problem is a combinatorial optimization problem
designed to select a predefined number of kmax predictors out of all available predictors. This
can be accomplished by maximizing the likelihood function while restricting the number of
predictors via integer constraints:

p∑
j=1

zj ≤ kmax, where kmax ≤ p, kmax ∈ N.

3.2. Group sparsity

Contrary to global sparsity constraints, group sparsity constraints do not restrain all pre-
dictors but only specific local groups of predictors. Group sparsity constraints can again be
subdivided into excluding and including constraints:

• Excluding constraints enforce a cardinality constraint on a subset of predictors.

• Including constraints enforce that either all predictors of a group are selected or none.

Bertsimas and King (2015) suggest to use excluding constraints for modeling pairwise multi-
collinearity and selecting the best (non-)linear transformation. Including constraints can be
used for modeling categorical variables via one-hot encoding or splines via spline basis func-
tions. In the following we present the formulation of the excluding group sparsity constraints
for restricting pairwise multicollinearity and for selecting the best variable transformation.

Limited pairwise multicollinearity

A desired property for a good model is that the predictors exhibit no multicollinearity.
Collinear predictors can cause numerical problems during the estimation, less interpretable
coefficients and misleading standard errors.
The group sparsity constraint can be used to restrict pairwise multicollinearity by excluding
pairs of predictors that exhibit strong pairwise correlation.
Using the previously introduced variables z, the pairwise multicollinearity can be formulated
as,

zj + zk ≤ 1 ∀(j, k) ∈ PC,

here PC = {(j, k) | ρmax < |ρ(j, k)|} denotes the set of pairs of highly correlated predictors.
The general rule of thumb is excluding pairs of predictors where the absolute value of the
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pairwise correlation exceeds the threshold ρmax = 0.7, but other – less as well as more re-
strictive – choices are also advocated for in the literature (see Dormann et al. 2013, for a
review).

Non-linear transformations

In cases where the true relationship between the response and a covariate is non-linear, using
an appropriate transformation can improve model quality. Commonly, non-linear transfor-
mations like log(x),

√
x or x2 are used. When using non-linear transformations, it is often

desirable to only include either the non-transformed variable or only one of the transformed
variables. A group sparsity constraint of the form∑

j∈N L
zj ≤ 1,

can be used to select at most one of the transformations. Here N L denotes the set of indices
of applied transformations, including the identity mapping, on a certain covariate.

Including group constraints

In cases where all predictors within a specified group G should be included in the model (as
in the case of dummy-encoded categorical variables), the including group sparsity constraint
(also referred here as in-out constraint) is translated to equality of all corresponding binary
variables:

zj = zk ∀(j, k) ∈ G.

3.3. Modeler expertise

Bertsimas and King (2015) point out that, in some situations, the modeler knows the true
importance of a particular covariate, be it some business requirement or other more profound
expert knowledge. In these cases, the modeler can choose to force the inclusion of a particular
covariate. This might be necessary when the automated covariate selection process decides
to discard the covariate due to other global or group sparsity constraints. To achieve this
inclusion, the following constraint can be used:

zj = 1.

3.4. Bounded domains for predictors

In certain applications, it is of interest to set constraints (bounds) on the value of particular
regression coefficients. For example, McDonald and Diamond (1990) consider the problem
of finding maximum likelihood estimates of a generalized linear model when some or all
regression parameters are constrained to be non-negative and motivate their approach with
applications in cancer death prediction and demography. Similarly, Slawski and Hein (2013)
propose the use of non-negative least squares in high-dimensional linear models. They show
that this can have similar effects to explicit regularization like LASSO (Tibshirani 1996) or
ridge regression (Hoerl and Kennard 1970) regarding predictive power and sparsity when mild
conditions on the design matrix are met. Moreover, there exist problems where the sign of the
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effect of a covariate is known beforehand. This allows the restriction of coefficient domains to
only non-negative or only non-positive values (Carrizosa, Olivares-Nadal, and Ramírez-Cobo
2020). In our conic model approach, for a coefficient βj , we can add bounds (sometimes also
called box constraints) lj and uj by the following constraint:

lj ≤ βj ≤ uj .

3.5. Linear constraints

As Lawson and Hanson (1995) point out, it might also be desirable to enforce linear constraints
of the type Lβ ≤ c for certain predictors (typical constraints include βj + βk ≤ βl, βj ≤
βk or βj = βk = βl). Such constraints might arise in applied mathematics, physics and
economics and usually convey additional information about a problem. Adding additional
convex constraints to a problem willonly tighten the set of solutions. One still has to be
careful not to add constraints that make the underlying optimization problem infeasible. If
any infeasibility arises, the underlying optimization solver will detect it.
Note that such linear constraints can also be imposed on the binary variables. For example,
constraints on the binary variable can be used to model if-then types of relations. As an
example, consider a constraint of the type “if the j-th predictor is included in the model
then the k-th predictor should also be included in the model”. This would translate to the
constraint zj ≤ zk. Note also that the global and group sparsity constraints introduced above
are special cases of linear constraints on the binary variables.

3.6. Sign coherence constraint

Sign coherence can be a desirable model property which improves interpretability, especially in
the presence of highly correlated predictors. Carrizosa et al. (2020) suggest using a sign coher-
ence constraint instead of the group sparsity constraint to restrict pairwise multicollinearity.
They argue that enforcing sign coherence (forcing strongly positive correlated variables to
have the same sign and strongly negative correlated variables to have opposite signs) is less
restrictive than using a group sparsity constraint, since it allows strongly correlated variables
to be jointly in the model without lowering interpretability due to inconsistent signs. With-
out this restriction, inconsistent signs of strongly correlated variables are often caused by
compensating coefficients (Hahs-Vaughn 2016). Given the set PC of pairs of indices of highly
correlated predictors, we can enforce equal signs of their respective coefficients by adding the
constraints

−M(1 − ujk) ≤ βj , sign(ρjk)βk ≤ Mujk, ∀(j, k) ∈ PC,

where again M is a large enough constant and ujk is a newly introduced binary variable. One
can see that for ujk = 0 and ρjk > 0 we have −M ≤ βj , βk ≤ 0, while for ujk = 1, we have
0 ≤ βj , βk ≤ M for an arbitrary pair (j, k) in PC.

4. The holiglm package
Package holiglm allows to reliably and conveniently fit generalized linear models under con-
straints. We aimed to allow for as many family-link combinations and constraints as possible
without reducing the reliability of the solution. To accomplish these goals, the package uses
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Link/Family Gaussian Binomial Poisson
Identity Q | SOC LIN & EXP
Log LIN & EXP EXP
Logit EXP
Probit EXP
Square root SOC & EXP

Table 2: Overview of the cones needed to express specific GLMs. Here, Q | SOC indicates
that either a quadratic solver or a solver supporting the second-order cone can be used. SOC
& EXP indicates that the second-order cone and exponential cone are used to model the
Poisson model with power link. Note that for the probit link an approximation is used by
scaling the coefficients obtained from the logit link by

√
π/8 (Page 1977).

Solver License Package Quadratic Objective LIN SOC EXP
CPLEX Proprietary ROI.plugin.cplex ✓
ECOS GPL-3 ROI.plugin.ecos ✓ ✓ ✓
GUROBI Proprietary ROI.plugin.gurobi ✓
MOSEK Proprietary ROI.plugin.mosek ✓ ✓ ✓ ✓

Mixed ROI.plugin.neos ✓

Table 3: Overview of the solvers implemented as plugins in ROI that can handle mixed-
integer constraints in combination with either a quadratic objective with linear constraints
or a linear objective with linear, second-order and exponential conic constraints.

state-of-the-art mixed-integer (conic) solvers. Using conic optimization, we can reliably solve
convex non-linear mixed-integer problems, given that there exists a combination of cones
that can express the non-linear problem at hand. Luckily, the (log-)likelihood of most GLMs
can be expressed by combinations of the linear (non-negative) cone, the second-order cone
and the exponential cone. Table 2 gives an overview on the cones used to express specific
GLMs. Currently, the solvers ECOS (Domahidi, Chu, and Boyd 2013), MOSEK (MOSEK
ApS 2022b) CPLEX (IBM ILOG 2022), GUROBI (Gurobi Optimization LLC 2022) and the
NEOS (Czyzyk, Mesnier, and Moré 1998) Server via the ROI.plugin.neos (Hochreiter and
Schwendinger 2020) can be used if the model contains mixed-integer constraints. Table 3
provides additional information on the solver licenses and on the different types of cones sup-
ported by these solvers. All the solvers listed in Table 3 internally aim to prove the optimality
of the solution by checking criteria based on the Karush-Kuhn-Tucker optimality conditions.
Consequently, if these solvers signal optimality, the user can be certain that the maximum
likelihood estimate (MLE) was obtained, except for the special case where the MLE does not
exist. In theory, these solvers should be able to provide a certificate of unboundedness if the
MLE does not exist; however, practically this is often not the case for the exponential cone.
Fortunately, package detectseparation (Kosmidis, Schumacher, and Schwendinger 2022) can
be used to verify the existence of the MLE before the estimation. More information on conic
optimization in general can be found in Boyd and Vandenberghe (2004).
In R, the packages ROI and CVXR (Fu, Narasimhan, and Boyd 2020) provide access to
multiple conic solvers. The CVXR package provides a domain-specific language (DSL) which
allows to formulate the optimization problems close to their mathematical formulation. To
accomplish this, it first translates the problem into an abstract syntax tree and uses disciplined
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convex programming (DCP, Grant, Boyd, and Ye 2006) to verify that the problems are
indeed convex. After the convexity is verified, the problem is transformed into its matrix
representation and dispatched to the selected solver. Here it is important to note that the
DCP rules are only sufficient for convexity, meaning that even if the DCP rules can not verify
convexity, the problem can still be convex. Based on these properties, from our perspective
the CVXR package is especially well-suited for users unfamiliar with conic optimization or
fast prototyping. The ROI package, on the other hand, offers a unified solver access to many
solvers, with a simple modeling language designed for users already familiar with R. For the
holiglm package, we choose to rely on the infrastructure of package ROI since we already
know the convexity properties of the likelihood functions and we want to be able to control
the transformation of the likelihood into the optimization problem. Additionally, ROI has
fewer dependencies and, last but not least, the authors are familiar with package ROI.

R> library("holiglm")

4.1. Model fitting

Function hglm is the main function for fitting HGLMs within package holiglm.

hglm(formula, family = gaussian(), data, constraints = NULL,
weights = NULL, scaler = c("auto", "center_standardization",

"center_minmax", "standardization", "minmax", "off"),
scale_response = NULL, big_m = 100, solver = "auto", control = list(),
dry_run = FALSE, object_size = c("normal", "big"))

The design of the function arguments resembles that of the stats::glm() function, with
some additional arguments.

constraints The constraints imposed on the GLM. All constraints are of class "hglmc", so
the constraints argument expects a list of "hglmc" constraints.

scaler Especially for constraints which rely on the big-M formulation, scaling is very im-
portant as it helps to make reliable choices in regard to the chosen big-M value.

scale_response Whether the response shall be standardized. Scaling the response is only
used for family gaussian(), where the default is also to scale it.

big_m An upper bound M for the coefficients, needed for the big-M constraint.
solver By default, the best available optimization solver is chosen automatically. However,

it is possible to force the use of a particular solver by providing the solver name. The
argument is then passed along to ROI::ROI_solve.

control The control argument can be used to pass additional arguments along to
ROI::ROI_solve.

dry_run The dry_run argument allows to obtain the underlying optimization problem. This
can be useful if the user wants to impose additional constraints, which are currently not
implemented, directly to the ROI optimization object.

object_size The object_size argument controls whether additional information such as
the ROI solution as well as the hglm_model are stored in the fitted object.
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By making use of the formula system provided by the stats package, we ensure that all the
typical operations work as in stats::glm. We illustrate the usage of hglm without constraints
for the log-binomial regression model. This particular family-link combination was chosen as
a first example as it can be shown (by simulation) that using conic programming instead of
the iteratively reweighted least squares (IRLS) employed by glm is not only more reliable but
potentially faster (Schwendinger et al. 2021).

R> data("Caesarian", package = "lbreg")
R> fit <- hglm(cbind(n1, n0) ~ RISK + NPLAN + ANTIB,
+ binomial(link = "log"), solver = "ecos",
+ data = Caesarian, constraints = NULL)
R> fit

Call: hglm(formula = cbind(n1, n0) ~ RISK + NPLAN + ANTIB,
binomial(link = "log"), data = Caesarian, constraints = NULL,
solver = "ecos")

Coefficients:
(Intercept) RISK NPLAN ANTIB

-1.977 1.295 0.545 -2.066

Degrees of Freedom: 6 Total (i.e. Null); 3 Residual
Null Deviance: 83.49
Residual Deviance: 6.308 AIC: 31.49

Given that most of the auxiliary functions used in context of GLMs are implemented in R as
S3 generics, package holiglm also relies on S3 generics to provide these functions. An overview
on all the generics implemented in package stats for class "glm" can be obtained by:

R> grep("^[[:alnum:]]*\\.glm$", ls(getNamespace("stats")), value = TRUE)

[1] "add1.glm" "anova.glm" "confint.glm"
[4] "deviance.glm" "drop1.glm" "effects.glm"
[7] "extractAIC.glm" "family.glm" "formula.glm"

[10] "influence.glm" "logLik.glm" "nobs.glm"
[13] "predict.glm" "print.glm" "residuals.glm"
[16] "rstandard.glm" "rstudent.glm" "sigma.glm"
[19] "summary.glm" "vcov.glm" "weights.glm"

Since the "hglm" object inherits from class "glm" all the generics shown above will give similar
or identical results as for a "glm" object. The output below showcases the similarity of the
output of the summary function for "hglm" objects and stats::glm objects:

R> summary(fit)

Call:
hglm(formula = cbind(n1, n0) ~ RISK + NPLAN + ANTIB,
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binomial(link = "log"), data = Caesarian, constraints = NULL,
solver = "ecos")

Deviance Residuals:
1 2 3 4 5 6 8

1.06853 -0.34543 -2.21588 0.20040 -0.26605 -0.15022 0.05687

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.9774 0.3311 -5.972 2.35e-09 ***
RISK 1.2950 0.3407 3.801 0.000144 ***
NPLAN 0.5450 0.1451 3.755 0.000174 ***
ANTIB -2.0659 0.2814 -7.342 2.11e-13 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 83.4914 on 6 degrees of freedom
Residual deviance: 6.3079 on 3 degrees of freedom
AIC: 31.489

Number of iterations: 26

In the above, the number of iterations is the one needed by the solver to reach convergence.
Note that the summary function also returns the typical coefficients table which contains
information on the standard errors of the coefficients, the z score and the p value corresponding
to the hypothesis test H0 : βj = 0 vs. H1 : βj ̸= 0. The user should employ these values with
care, as in the case of constrained models, the usual asymptotic theory does not necessarily
hold. More information is provided in Section 4.4.
Instead of straight using function hglm for estimating the model, it is also possible to take
a different approach, especially if the modeler wants to access the underlying optimization
problem directly:

1. Generate the model with hglm_model.

2. Generate the underlying optimization problem with as.OP.

3. Fit the model with hglm_fit.

To generate the model, the function hglm_model can be used:

R> x <- model.matrix(cbind(n1, n0) ~ RISK + NPLAN + ANTIB, data = Caesarian)
R> model <- hglm_model(x = x, y = with(Caesarian, cbind(n1, n0)),
+ binomial(link = "log"))

Alternatively, hglm with the argument dry_run set to TRUE can be used to obtain the opti-
mization model:
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R> model <- hglm(cbind(n1, n0) ~ RISK + NPLAN + ANTIB, data = Caesarian,
+ binomial(link = "log"), constraints = NULL, dry_run = TRUE)

After the model is set up, the underlying optimization problem can be built by using the
generic function as.OP exported from ROI and solved using function ROI_solve in ROI.

R> op <- as.OP(model)
R> print(op)

ROI Optimization Problem:

Minimize a linear objective function of length 18 with
- 18 continuous objective variables,

subject to
- 49 constraints of type conic.

|- 42 conic constraints of type 'expp'
|- 7 conic constraints of type 'nonneg'

- 18 lower and 0 upper non-standard variable bounds.

R> ROI::ROI_solve(op)

Optimal solution found.
The objective value is: 1.109144e+02

Alternatively, the model can be fitted with hglm_fit. Here the solver output is already
converted into a form similar to the output of glm.fit.

R> fit <- hglm_fit(model)
R> fit

Call: NULL

Coefficients:
(Intercept) RISK NPLAN ANTIB

-1.977 1.295 0.545 -2.066

Degrees of Freedom: 6 Total (i.e. Null); 3 Residual
Null Deviance: 83.49
Residual Deviance: 6.308 AIC: 31.49

4.2. Constraints

The most distinctive feature of the holiglm package is that it allows for the usage of many
predefined constraints. In Section 3 the constraints were introduced. In this section we focus
on the R usage of the constraints. Table 4 gives an overview of all the available constraints
in holiglm.
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Constraint Category Description
k_max(k)a Global sparsity Upper bound on the number of

active predictors.
group_sparsity(vars, k = 1L)a Group sparsity Upper bound on the number of

active predictors within a group
of predictors vars.

rho_max(rho)a Group sparsity Upper bound on the strength of
the pairwise correlation; for pairs
which exceed this bound only one
of the two variables is allowed in
the model.

group_inout(vars)a Group sparsity Forces all predictors within a
group are either in (all coef-
ficients are non-zero) or out
(all coefficients are zero) of the
model.

include(vars)a Modeler expertise Forces the inclusion of predictors.
lower(kvars)b Bounded domains Forces lower bounds on coeffi-

cients.
upper(kvars)b Bounded domains Forces upper bounds on coeffi-

cients.
linear(L, dir, rhs)b Linear constraint Imposes linear constraints on the

coefficients or on the z variables
from the big-M constraint.

group_equal(vars)b Linear constraint Forces all predictors in the spec-
ified group to have the same co-
efficient.

sign_coherence(vars)a Sign coherence Ensures that the coefficients of
the specified predictors have the
same sign.

pairwise_sign_coherence(rho)a Sign coherence Ensures that coefficients of pre-
dictors that exhibit pairwise cor-
relation more than rho (in abso-
lute value) have the same sign.

Table 4: Overview on the pre-implemented constraints. Here only the main arguments are
shown, all arguments can be found in the holiglm manual. The constraints marked with a are
of mixed-integer type, while the ones marked with b are of linear type.

Combining constraints
Constraints can be combined by the combine operator c(). In the following example, we
ensure that at most 5 predictors are in the final model and that the pairwise correlation of
the active variables is less than or equal to 0.8 by combining the two constraints:

R> c(k_max(5), rho_max(0.8))

List of Holistic GLM Sparsity Constraints
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[[1]]
Holistic GLM Sparsity Constraint of Type 'k_max'
List of 1
$ k_max: int 5

[[2]]
Holistic GLM Sparsity Constraint of Type 'rho_max'
List of 4
$ rho_max: num 0.8
$ exclude: chr "(Intercept)"
$ use : chr "everything"
$ method : chr "pearson"

Global sparsity

The global sparsity constraint k_max can be used to enforce an upper bound on the number
of non-zero predictors contained in the model. The upper bound is enforced on the number
of columns in the model matrix without taking into account the intercept.

R> fit <- hglm(cbind(n1, n0) ~ RISK + NPLAN + ANTIB, binomial(link = "log"),
+ constraints = k_max(2), data = Caesarian)
R> coef(fit)

(Intercept) RISK NPLAN ANTIB
-1.818324 1.319768 0.000000 -1.774368

As one can see by looking at the coefficients, in contrast to other sparsity-inducing methods,
the coefficients are not just close to zero but exactly zero if not included in the model. The
information about the active coefficients can be obtained by using the active_coefficients
method or the coef function with type="selected".

R> active_coefficients(fit)

(Intercept) RISK NPLAN ANTIB
TRUE TRUE FALSE TRUE

R> coef(fit, type="selected")

(Intercept) RISK NPLAN ANTIB
TRUE TRUE FALSE TRUE

Group sparsity

The group sparsity constraint can be used to restrict the number of predictors to be included
from a particular subgroup. The vars argument is a vector containing the names of the
variables for which the constraint should be applied. Note that the names of the variables
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should correspond to the column names of the model matrix. As previously mentioned,
a possible use case for this type of constraint is the selection of the best out of different
transformations. For illustration, we employ a Poisson regression with log link to model the
number of apprentices moving to Edinburgh from different counties. Data is available in
package GLMsData (Dunn and Smyth 2018).

R> data("apprentice", package = "GLMsData")

We specify the following model with group constraints. For the variables distance Dist and
population Pop also the log transformations are considered for inclusion in the model.

R> fo <- Apps ~ Dist + log(Dist) + Pop + log(Pop) + Urban + Locn
R> constraints <- c(group_sparsity(c("Dist", "log(Dist)")),
+ group_sparsity(c("Pop", "log(Pop)")))
R> fit <- hglm(fo, constraints = constraints, family=poisson(),
+ data = apprentice)
R> coef(fit)

(Intercept) Dist log(Dist) Pop log(Pop)
7.51921885 0.00000000 -2.05542948 0.00000000 0.98217367

Urban LocnSouth LocnWest
-0.01705048 0.50439145 -0.10157628

Indeed, the logarithmically transformed variables are selected for inclusion in the model.
In-out constraints implemented in group_inout force the coefficients of all variables in argu-
ment vars to be jointly zero or different than zero. An application for this type of constraints
is dummy-encoded categorical features, where either all dummy variables should be included
in the model or none. The following Poisson regression model is restricted to include three
predictors, whereas all dummies corresponding to the variable Locn (location relative to Ed-
inburgh) should be included or excluded from the model:

R> fo <- Apps ~ log(Dist) + log(Pop) + Urban + Locn
R> constraints <- c(k_max(3), group_inout(c("LocnSouth", "LocnWest")))
R> fit <- hglm(fo, constraints = constraints,
+ family = poisson(), data = apprentice)

To restrict the pairwise collinearity, we provide the constraint rho_max which sets an upper
bound on the pairwise collinearity. For the mtcars data set in R we specify the following
linear model, where the empirical correlation of the variables cyl and disp is more than 0.9:

R> fit <- hglm(mpg ~ cyl + disp + hp + drat + wt,
+ data = mtcars, constraints = rho_max(0.9))
R> coef(fit)

(Intercept) cyl disp hp drat
34.49587578 -0.76229201 0.00000000 -0.02088543 0.81771262

wt
-2.97331332
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The variable disp is excluded from the model.

Modeler expertise

The function include can be used to force the inclusion of a specific variable in the model.
This can be useful if a modeler is interested in setting an upper bound on the number of
active variables while ensuring that a certain variable stays in the model. For example, the
following model on the Caesarian data set will include two variables and one of them will be
NPLAN:

R> fit <- hglm(cbind(n1, n0) ~ RISK + NPLAN + ANTIB, binomial(link = "log"),
+ constraints = c(k_max(2), include("NPLAN")), data = Caesarian)
R> coef(fit)

(Intercept) RISK NPLAN ANTIB
-1.0056143 0.0000000 0.5892485 -1.7899819

Bounded domains

The functions lower and upper can be used to set lower and upper bounds on the value of
the coefficients. This can be used, for example, to add non-negativity constraints or any other
bounds on the coefficients.

R> constraints <- c(lower(c(RISK = 3, ANTIB = 1e-3)), upper(c(NPLAN = -1)))
R> fit <- hglm(cbind(n1, n0) ~ RISK + NPLAN + ANTIB, binomial(link = "log"),
+ constraints = constraints, data = Caesarian)

Warning: In hglm_fit: Binding linear constraints detected.
The standard errors are corrected as described in the vignettes.

R> coef(fit)

(Intercept) RISK NPLAN ANTIB
-3.67126 3.00000 -1.00000 0.00100

Note that all three constraints are binding, as the accompanying warning indicates.

Linear constraints

To impose linear constraints on the coefficients, the function linear can be used. In the
following example we will enforce that βRISK ≤ βANTIB in the log-binomial regression model:

R> risk_leq_antib <- c(RISK = 1, ANTIB = -1)
R> fit <- hglm(cbind(n1, n0) ~ RISK + NPLAN + ANTIB, binomial(link = "log"),
+ constraints = linear(risk_leq_antib, "<=", 0), data = Caesarian)

Warning: In hglm_fit: Binding linear constraints detected.
The standard errors are corrected as described in the vignettes.
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R> coef(fit)

(Intercept) RISK NPLAN ANTIB
-0.95854524 -0.30446229 0.09905898 -0.30446229

The next example shows how to enforce that the coefficients of RISK and NPLAN sum to one,
i.e., βRISK + βNPLAN = 1.

R> risk_nplan <- c(RISK = 1, NPLAN = 1)
R> fit <- hglm(cbind(n1, n0) ~ RISK + NPLAN + ANTIB, binomial(link = "log"),
+ constraints = linear(risk_nplan, "==", 1), data = Caesarian)

Warning: In hglm_fit: Binding linear constraints detected.
The standard errors are corrected as described in the vignettes.

R> coef(fit)

(Intercept) RISK NPLAN ANTIB
-1.3047691 0.6600016 0.3399983 -1.9232425

R> coef(fit)[["RISK"]] + coef(fit)[["NPLAN"]]

[1] 1

To impose both constraints at the same time, we can either combine the linear constraints or
use the matrix notation as shown below.

R> L <- rbind(c(RISK = 1, NPLAN = 0, ANTIB = -1), c(1, 1, 0))
R> fit <- hglm(cbind(n1, n0) ~ RISK + NPLAN + ANTIB, binomial(link = "log"),
+ constraints = linear(L, c("<=", "=="), c(0, 1)), data = Caesarian)

Warning: In hglm_fit: Binding linear constraints detected.
The standard errors are corrected as described in the vignettes.

R> coef(fit)

(Intercept) RISK NPLAN ANTIB
-1.8274948 -0.2560338 1.2560338 -0.2560338

A special case of linear constraint is group_equal, which ensures that the coefficients of the
variables in vars are equal:

R> fit <- hglm(cbind(n1, n0) ~ RISK + NPLAN + ANTIB, binomial(link = "log"),
+ constraints = group_equal(c("RISK", "NPLAN", "ANTIB")),
+ data = Caesarian)
R> coef(fit)
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(Intercept) RISK NPLAN ANTIB
-0.9710750 -0.1750262 -0.1750262 -0.1750262

Finally, we showcase how linear constraints can be imposed on the z variables by setting
on_big_m = TRUE in function linear. This can be useful for modeling restrictions of the
type “if variable j is included variable k should also be included”. An application for this
type of constraints is estimating models with polynomial features, where if a higher order of
the polynomial is included in the model, it is desirable that all lower orders are also included.
The following linear model example uses data heatcap from package GLMsData where the
relation of heat capacity for a type of acid and temperature is investigated.

R> data("heatcap", package = "GLMsData")

We consider polynomial features up to degree five:

R> fo <- Cp ~ poly(Temp, 5)

The linear constraint below corresponds to the constraint

zTemp5 ≤ zTemp4 ≤ zTemp3 ≤ zTemp2 ≤ zTemp,

which ensures that a lower order polynomial feature is included if all preceding (higher order)
ones are included in the model.

R> L <- rbind(c(-1, 1, 0, 0, 0), c(0, -1, 1, 0, 0),
+ c(0, 0, -1, 1, 0), c(0, 0, 0, -1, 1))
R> colnames(L) <- colnames(model.matrix(fo, data = heatcap))[-1]
R> lin_z_c <- linear(L, rep("<=", nrow(L)), rep(0, nrow(L)), on_big_m = TRUE)

When additionally setting kmax = 3, we see that all polynomial features up to degree 3 will
be included in the model.

R> constraints <- c(k_max(3), lin_z_c)
R> fit <- hglm(fo, data = heatcap, constraints = constraints)
R> coef(fit)

(Intercept) poly(Temp, 5)1 poly(Temp, 5)2 poly(Temp, 5)3
11.2755556 1.8409086 0.3968900 0.1405174

poly(Temp, 5)4 poly(Temp, 5)5
0.0000000 0.0000000

Sign coherence constraint

We estimate a Poisson model with identity link for the apprentice data where we use in-
teractions of the location with the other predictors. In this case it can be desirable that, for
each covariate, the slopes for all locations have the same sign. Note that the model includes
no intercept:
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R> fo <- Apps ~ 0 + Locn + Locn : Dist + Locn : Pop + Locn : Urban
R> constraints <- c(
+ sign_coherence(c("LocnNorth:Dist", "LocnSouth:Dist", "LocnWest:Dist")),
+ sign_coherence(c("LocnNorth:Pop", "LocnSouth:Pop", "LocnWest:Pop")),
+ sign_coherence(c("LocnNorth:Urban", "LocnSouth:Urban",
+ "LocnWest:Urban")))
R> fit <- hglm(fo, constraints = constraints, family = poisson("identity"),
+ data = apprentice)

Warning: In hglm_fit: Binding linear constraints detected.
The standard errors are corrected as described in the vignettes.

R> coef(fit)

LocnNorth LocnSouth LocnWest LocnNorth:Dist
4.929168e-02 -1.325961e+01 1.159558e+01 -6.226539e-03

LocnSouth:Dist LocnWest:Dist LocnNorth:Pop LocnSouth:Pop
-2.172583e-01 -9.535403e-02 1.458556e-01 1.618307e+00
LocnWest:Pop LocnNorth:Urban LocnSouth:Urban LocnWest:Urban
8.259307e-02 9.274395e-03 5.071724e-01 8.709769e-07

The slope parameters for distance are all negative, while the slope parameters for population
and degree of urbanization are all positive.
Finally, we showcase on the mtcars data set how we can restrict the highly correlated pre-
dictors to have the same sign using pairwise_sign_coherence:

R> fit <- hglm(formula = mpg ~ cyl + disp + hp + drat + wt,
+ data = mtcars, constraints = pairwise_sign_coherence(0.9))
R> coef(fit)

(Intercept) cyl disp hp drat
3.449560e+01 -7.622500e-01 -1.535748e-08 -2.088604e-02 8.177559e-01

wt
-2.973326e+00

Unlike in the unrestricted model, variables cyl and disp both have a negative sign. Note
also that, in this example, the coefficient of disp is close to zero, which is in line with the
result obtained when using rho_max constraint.

4.3. Auxiliary functions

Estimate a sequence of models
Function hglm_seq can be used to estimate the sequence of models containing k = 1, . . . , p
predictors. The print method for the resulting "hglm_seq" object includes the AIC, BIC,
EBICγ (Chen and Chen 2008), SIC (Zhu et al. 2020) as well as the vector of coefficients for
each model. For the polynomial regression example introduced before, we can estimate the
sequence of models:
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R> fit_seq <- hglm_seq(formula = Cp ~ poly(Temp, 5), data = heatcap,
+ constraints = lin_z_c)
R> fit_seq

HGLM Fit Sequence:
k_max aic bic ebic sic (Intercept) poly(Temp, 5)1

1 5 -64.52 -58.29 -57.12 707 11.27556 1.840907
2 4 -65.60 -60.26 -58.27 698 11.27556 1.840908
3 3 -64.04 -59.59 -57.40 666 11.27556 1.840909
4 2 -52.30 -48.74 -46.74 543 11.27556 1.840909
5 1 -24.42 -21.75 -20.58 274 11.27556 1.840909

poly(Temp, 5)2 poly(Temp, 5)3 poly(Temp, 5)4 poly(Temp, 5)5
1 0.3968896 0.1405173 -0.05560878 0.02653112
2 0.3968899 0.1405173 -0.05560884 0.00000000
3 0.3968900 0.1405174 0.00000000 0.00000000
4 0.3968900 0.0000000 0.00000000 0.00000000
5 0.0000000 0.0000000 0.00000000 0.00000000

We can observe that the model with polynomial features up to degree 4 is the one preferred
by AIC, BIC and EBIC1.

Group duplicates

For binomial regression models, if all the predictors are categorical or discrete variables with
few possible values, it is often the case that the model matrix contains duplicated rows. In
this case, it is convenient to aggregate the original data to a data frame containing the unique
values of the predictors in the rows and for each row the number of successes and failures
corresponding to the response. Function agg_binomial can be used for this purpose. For the
Heart data set the number of rows reduces from originally 16949 to 74:

R> data("Heart", package = "lbreg")
R> heart <- agg_binomial(Heart ~ ., data = Heart, as_list = FALSE)
R> c(nrow(Heart), nrow(heart))

[1] 16949 74

This function should always be used when possible, as it drastically reduces the size of the
underlying optimization problem and therefore, reduces the solving time. After the reduction
the model can be fitted as follows:

R> hglm(cbind(success, failure) ~ ., binomial(link = "log"),
+ data = heart, constraints = NULL)

4.4. A note on the output of the summary function

The summary function in holiglm returns information on the standard errors of the coefficients,
the associated z score and the p value corresponding to the hypothesis test H0 : βj = 0 vs.



22 Holistic Generalized Linear Models

H1 : βj ̸= 0 using the normal approximation. However, in the case of constrained models,
the usual asymptotic theory does not necessarily hold and the p values can be misleading in
testing for significance.
We use the following strategy in computing the standard errors of the regression coefficients
in holiglm:

a. For the case of sparsity constraints, the standard errors in holiglm are computed ex-
post using the Fisher information matrix only for the non-zero coefficients. While this
practice is commonly used for model selection procedures, the reader should note that
this does not take into account the uncertainty of the selection process itself. The
issue of assessing significance and effect sizes from a data set after the same data set
has been used to identify relevant predictors is also referred to as selective inference
(Taylor and Tibshirani 2015). A survey of strategies which can be used to mitigate this
problem is presented in Zhang, Khalili, and Asgharian (2022a). Possible approaches
include adjusting the p values (see e.g., Taylor and Tibshirani 2015; Lee, Sun, Sun, and
Taylor 2016), using a randomized response (Tian and Taylor 2018) or different kind of
bootstrap strategies.

b. For all other constraint types we apply a correction to the standard errorsof the coef-
ficients. More specifically, the variance-covariance matrix of the regression coefficients
is computed as the corresponding portion of the covariance matrix of the parameters,
Lagrangeans, and all auxiliary parameters corresponding to the optimization problem
of the augmented likelihood (see e.g., Schoenberg 1997, for more computational details).

Note that the approach in b. does not distinguish between binding inequality constraints
and equality constraints, however, for inference the difference is relevant. In the presence of
binding inequality constraints the normal approximation may no longer valid and confidence
intervals obtained by the usual t statistics can be misleading (Silvapulle and Sen 2005). For
more information on constrained statistical inference we refer the readers to the monographs
Robertson, Wright, and Dykstra (1988) and Silvapulle and Sen (2005), which provide a broad
overview of inference under inequality constraints. In such cases, alternative strategies should
be employed to derive confidence intervals for the parameters of interest (e.g., such as non-
parametric or residual bootstrap). For example, Self and Liang (1987) derive large sample
properties for the likelihood function in the case where the true value lies at the boundary of
the parameter space, while Grömping (2010) implements methods for performing inference
under linear equality and inequality constraints in normal models in the ic.infer R package.
In addition to performing the correction of the standard errors, the holiglm package returns
a warning every time the employed inequality constraints are binding. This warning informs
the user to proceed with caution in interpreting the output.

5. Comparison with existing R packages
In this section, we are showcasing the versatility of our package holiglm in comparison with
existing R packages for fitting GLMs under linear and/or sparsity constraints.
Table 5 gives an overview of which constraints are supported by the evaluated packages
holiglm, abess, ConsReg, bestglm and restriktor. Table 6 displays for each package which
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Constraints
Package Global sparsity Group sparsity Bounded domains Linear Sign coherence
holiglm ✓ ✓ ✓ ✓ ✓
abess ✓ ✓
bestglm ✓
ConsReg (✓) (✓)
restriktor ✓ ✓

Table 5: Overview of constraints supported by R packages for fitting constrained GLMs. A
bracketed check mark (✓) indicates that starting values are needed for finding valid solutions
to constrained problems.

Family-link combinations
Gaussian Binomial Poisson

Package Identity Logit Log Probit Log Identity Square root
holiglm ✓ ✓ ✓ ✓ ✓ ✓ ✓
abess ✓ ✓ ✓
bestglm ✓ ✓ ✓ ✓
ConsReg (✓) (✓) (✓)
restriktor ✓ ✓ (✓) ✓ ✓ (✓) (✓)

Table 6: Overview of family-link combinations supported by R packages for fitting con-
strained GLMs. A bracketed check mark (✓) indicates that starting values are needed for
finding valid solutions to constrained problems.

family-link combinations can be fitted while also making a distinction between software that
is able to estimate the models directly and software that needs additional information such
as, e.g., starting values. In the following, we aim to investigate by means of simulation
studies how holiglm compares to other packages in terms of runtimes and reliability of the
solution for the best subset selection problem and for non-negative GLMs. Finally, we also
investigate the memory consumption of the models fitted with holiglm and compare it to the
one of stats::glm() for an unconstrained problem. It should be noted that, for the various
log-likelihoods, the time for solving the underlying optimization problems with holiglm is
heavily dependent on their conic representations and the used solver. As outlined in Table 1
these representations include the second-order cone as well the primal exponential cone for
linear, logistic and Poisson regression.
In setting up the exercises, we follow a simulation setting similar to the one in Hofmann, Gatu,
Kontoghiorghes, Colubi, and Zeileis (2020). For generating the data of our predictor matrix
X ∈ Rn×(p+1) (including an intercept term) we sample n observations from a p-dimensional
multivariate normal distribution with zero mean and covariance matrix Σ := δij where δ
denotes the Kronecker delta. Given p features, we choose the first q =

⌈p
2
⌉

as true features
and set their respective coefficients to 1. Additionally, we set the intercept term to 1. The
remaining coefficients are set to 0. Therefore, we have

ηi = 1 + x1i + · · · + xqi
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together with g(µi) = ηi where g is the link function. For the different distributions of
the response, we simulated yi ∼ Normal(µi, 1), yi ∼ Binomial(1, µi) and yi ∼ Poisson(µi),
respectively.
In the different exercises, we use different n and p configurations. For each configuration,
we carry out 10 runs leading to 10 different data sets where we report the mean runtimes
together with the standard deviation of these single runs. All computational experiments
were conducted on a Dell XPS15 laptop with 32GB of RAM and an Intel Core i7-8750H
CPU@2.20GHzx12 processor. As optimization solvers in holiglm we used GUROBI 9.1.2
(Gurobi Optimization LLC 2022), ECOS 2.0.5 (Domahidi et al. 2013) and MOSEK 10.0.34
(MOSEK ApS 2022b). For all examined examples, the open-source ECOS solver can be used,
which is also the default solver in holiglm. However, regarding running times, we have also
included GUROBI (for linear regression) and MOSEK (for logistic and Poisson regression) to
show which runtimes are possible by using commercial solvers.

5.1. Fitting GLMs under global sparsity constraints

For the first study, we fit GLMs under global sparsity constraints leading to the best subset
selection problem. In this setting, we compare holiglm with the R packages abess (Zhu et al.
2022) and bestglm (McLeod, Xu, and Lai 2020).
We are interested in finding models with minimal AIC as information criterion. The AIC is
monotonic with respect to the log-likelihood, that is

log L(βa; y) ≤ log L(βb; y) ⇒ AIC(βb; y) ≤ AIC(βa; y), when |βa| = |βb| (4)

where |β| denotes the number of non-zero coefficients in β. In holiglm, we estimate the
sequence of models with global sparsity constraints to find the model with minimal AIC. Out
of this sequence containing the models with maximum log-likelihood for each support size,
we select the model with minimal AIC. In total, this leads to solving p mixed-integer conic
optimization problems.
We consider different data configurations with n = 1000 observations and varying sizes of
p = 5, 10, 15, 20, 25, 30, 35, 40 features. For logistic and Poisson regression and linear regression
with ECOS as solver, we only benchmark up to 20 features for the best subset selection study
due to long solver running times. Moreover, since bestglm uses exhaustive enumeration for
non-Gaussian GLMs, it is limited to data sets containing 15 features or less.
The runtimes results for the best subset selection problem in our first simulation are illustrated
in Table 7 and Figures 4 to 6. We can observe that in this scenario abess is orders of
magnitudes faster than the compared packages. In terms of scaling, Table 7 indicates that for
linear and logistic regression holiglm scales better than bestglm with increasing dimensions.
We compare the different packages not only with respect to the runtime but also based on
their accuracy in finding global AIC minima. To account for numerical rounding errors, we
already consider the selection of model coefficients with the lowest AIC as success. Table 8
shows that holiglm (with GUROBI respectively MOSEK as solver) and bestglm are always
able to find the model with the minimum AIC. As a result, they solve the best subset selection
problem with regard to the information criteria.
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Linear Logistic Poisson
p q hglm (ECOS) hglm (GUROBI) abess bestglm hglm (ECOS) hglm (MOSEK) abess bestglm hglm (ECOS) hglm (MOSEK) abess bestglm
5 3 1.582 0.200 0.003 0.006 5.204 10.936 0.017 0.233 4.279 13.516 0.002 0.127

(0.0120) (0.052) (0.003) (0.001) (0.421) (0.859) (0.012) (0.043) (0.836) (2.309) (0.001) (0.006)
10 5 18.521 0.363 0.003 0.007 24.905 36.740 0.031 4.017 80.576 85.402 0.005 3.799

(1.184) (0.038) (0.002) (0.001) (1.273) (1.438) (0.005) (0.125) (19.975) (11.169) (0.001) (0.508)
15 8 171.352 0.665 0.004 0.010 123.023 114.181 0.053 144.479 712.555 485.869 0.008 141.622

(14.852) (0.037) (0.001) (0.001) (16.354) (7.274) (0.006) (1.694) (319.337) (74.590) (0.001) (4.684)
20 10 1583.914 1.100 0.007 0.014 457.951 309.437 0.080 – 4887.882 1824.087 0.013 –

(290.721) (0.051) (0.000) (0.002) (74.369) (25.989) (0.004) (3562.346) (545.830) (0.001)
25 13 – 2.113 0.012 0.061 – – – – – – – –

(0.070) (0.001) (0.004)
30 15 – 4.154 0.017 0.528 – – – – – – – –

(0.162) (0.001) (0.058) –
35 18 – 31.394 0.041 12.723 – – – – – – – –

(24.355) (0.027) (6.575)
40 20 – 93.016 0.051 110.752 – – – – – – – –

(19.466) (0.023) (24.237)

Table 7: Comparison of R packages on best subset selection with respect to runtime. The
average runtimes are given in seconds together with the standard deviation (in parentheses)
across 10 data sets.

Linear Logistic Poisson
p q hglm (ECOS) hglm (GUROBI) abess bestglm hglm (ECOS) hglm (MOSEK) abess bestglm hglm (ECOS) hglm (MOSEK) abess bestglm
5 3 10 10 9 10 10 10 10 10 10 10 10 10

10 5 10 10 10 10 10 10 10 10 10 10 8 10
15 8 10 10 10 10 10 10 10 10 8 10 8 10
20 10 10 10 9 10 10 10 10 – 1 10 8 –
25 13 – 10 10 10 – – – – – – – –
30 15 – 10 10 10 – – – – – – – –
35 18 – 10 10 10 – – – – – – – –
40 20 – 10 10 10 – – – – – – – –

Table 8: Comparison of R packages on best subset selection with respect to the number of
times the method selected the correct coefficients of the model with minimal AIC for 10 data
sets.

5.2. Fitting GLMs under non-negativity constraints

The second study deals with estimating non-negative GLMs, i.e., finding models under lin-
ear constraints, specifically under non-negativity constraints on the coefficients. We again
consider different data configurations with n = 1000 observations and varying sizes of p =
5, 10, 15, 20, 25, 30, 35, 40 features. Here we compare holiglm with the packages ConsReg and
restriktor.
In the case of linear constraints, we encountered the problem that for ConsReg, the default
optimizer solnp provides results where coefficients can be negative contrary to the specified
constraints. Package ConsReg relies on non-linear general-purpose optimization solvers. This
has two main disadvantages:

• Starting values need to be provided, which must reside in the feasible region’s interior.

• General-purpose solvers are less reliable than conic optimization solvers in the sense
that they are more likely to find local rather than global optima.

Hence, a general-purpose solver may signal success, but the returned solution is not a global
optimum. Since conic solvers internally verify the solution using the Karush-Kuhn-Tucker
conditions, they are unlikely to signal success without obtaining the global optima. We also
tried to use a vector consisting of zeros as an initial solution (which lies on the boundary of
the feasible region), but this also led to solutions with negative coefficients. To mitigate our
problem, we start with finding a solution to the unconstrained optimization problem fitting
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Linear Logistic Poisson
p q hglm (ECOS) hglm (GUROBI) ConsReg restriktor hglm (ECOS) hglm (MOSEK) ConsReg restriktor hglm (ECOS) hglm (MOSEK) ConsReg restriktor
5 3 0.110 0.069 0.032 3.327 0.297 0.337 0.086 3.426 0.242 0.207 0.074 3.186

(0.007) (0.020) (0.038) (0.116) (0.013) (0.026) (0.007) (0.062) (0.021) (0.010) (0.039) (0.092)
10 5 0.178 0.055 0.056 4.001 0.376 0.419 0.190 4.091 0.346 0.262 0.338 3.829

(0.008) (0.010) (0.021) (0.058) (0.008) (0.013) (0.161) (0.108) (0.031) (0.023) (0.222) (0.080)
15 8 0.237 0.070 0.072 4.847 0.467 0.472 0.299 5.009 0.526 0.312 0.744 4.698

(0.007) (0.019) (0.033) (0.083) (0.042) (0.009) (0.120) (0.091) (0.053) (0.027) (0.365) (0.086)
20 10 0.333 0.076 0.130 7.155 0.541 0.584 0.815 6.412 1.320 0.359 1.317 6.122

(0.031) (0.023) (0.075) (0.378) (0.019) (0.057) (0.776) (0.126) (1.256) (0.009) (0.771) (0.170)
25 13 0.417 0.070 0.166 9.608 0.617 0.615 0.748 8.790 1.942 0.399 1.990 8.014

(0.092) (0.027) (0.084) (2.516) (0.015) (0.014) (0.089) (1.928) (1.580) (0.007) (0.302) (0.191)
30 15 0.440 0.068 0.186 11.583 0.730 0.718 1.147 11.639 4.585 0.454 2.343 10.326

(0.031) (0.010) (0.137) (0.478) (0.049) (0.054) (0.569) (2.020) (1.515) (0.019) (1.280) (0.328)
35 18 0.471 0.070 0.233 15.384 0.805 0.792 1.529 16.185 4.839 0.617 3.960 15.564

(0.014) (0.006) (0.149) (0.533) (0.047) (0.131) (0.645) (4.076) (2.170) (0.169) (1.211) (1.212)
40 20 0.553 0.077 0.295 20.641 0.881 0.813 2.139 18.163 6.847 0.643 2.642 19.139

(0.008) (0.002) (0.179) (0.253) (0.043) (0.036) (0.898) (0.273) (2.800) (0.054) (2.066) (1.277)

Table 9: Comparison of R packages on fitting linear constraints with respect to runtime. The
average runtimes are given in seconds together with the standard deviation (in parentheses)
across 10 data sets.

a full model. We set the respective negative coefficients of this full model to zero and use it
as the initial solution to solnp. This procedure helped increase the number of times where
ConsReg could find a valid solution satisfying the non-negativity constraints. The time for
fitting this full model is also included in the reported runtimes of package ConsReg.
The results presented in Table 9 and Figure 7 show that when 10 or more features are used,
the hglm method is faster than other methods for fitting non-negative GLMs with Gaussian
responses. This is achieved by using GUROBI as the optimization solver. Moreover, the
timings imply that, in this case, holiglm scales better with higher dimensions. Table 10
displays the number of times each method was able to obtain a valid solution. It is worth
noting that all methods were able to fit non-negative regression models in the case of linear
regression.
For the case of logistic regression, both Table 9 and Figure 8 show that holiglm is faster than
other packages for higher dimensions (i.e., 20 or more covariates). This is true for both conic
solvers ECOS and MOSEK and we observe better scaling behavior as the dimensions increase.
However, unlike linear regression, there are cases where ConsReg cannot find a valid solution,
as indicated in Table 10.
Table 9 summarizes the runtimes for Poisson regression, and Figure 9 shows them visually.
Using ECOS as solver the runtimes of ConsReg and holiglm are similar for lower dimensions,
but ConsReg becomes faster when we reach 30 or more dimensions. However, Table 10
indicates that ConsReg cannot always find non-negative Poisson regression models. The
most efficient method appears to be using hglm in combination with MOSEK as the solver.
Moreover, the benchmarks indicate that this combination also has the best scaling behavior
for the Poisson regression case.
In all evaluated scenarios restriktor is the slowest at fitting non-negative GLMs.

5.3. Memory usage in unconstrained logistic regression

Finally, we take a look at the used memory of models produced by holiglm with regards to
different data sizes in an unconstrained logistic regression. Both methods for fitting hglm and
hglm_fit contain the argument object_size, which can take the values "normal" and "big".
Notably, the "big" object is primarily intended for development purposes and includes addi-
tional components such as hglm_model and the ROI optimization problem. Figure 1 displays
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Linear Logistic Poisson
p q hglm (ECOS) hglm (GUROBI) ConsReg restriktor hglm (ECOS) hglm (MOSEK) ConsReg restriktor hglm (ECOS) hglm (MOSEK) ConsReg restriktor
5 3 10 10 10 10 10 10 10 10 10 10 10 10

10 5 10 10 10 10 10 10 9 10 10 10 9 10
15 8 10 10 10 10 10 10 8 10 10 10 7 10
20 10 10 10 10 10 10 10 5 10 10 10 6 10
25 13 10 10 10 10 10 10 7 10 10 10 1 10
30 15 10 10 10 10 10 10 8 10 10 10 2 10
35 18 10 10 10 10 10 10 8 10 10 10 1 10
40 20 10 10 10 10 10 10 7 10 10 10 3 10

Table 10: Comparison of R packages for fitting GLMs with linear constraints with respect to
the number of times the method found a valid solution for 10 data sets.

p = 45 p = 50 p = 55 p = 60

p = 25 p = 30 p = 35 p = 40

p = 5 p = 10 p = 15 p = 20

0
25

00
50

00
75

00

10
00

0 0
25

00
50

00
75

00

10
00

0 0
25

00
50

00
75

00

10
00

0 0
25

00
50

00
75

00

10
00

0

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

n

si
ze

 o
f f

itt
ed

 o
bj

ec
t (

in
 M

B
)

Method

glm

hglm

hglm("big")

Figure 1: Comparison between object.size of hglm(object_size = "normal"),
hglm(object_size = "big") and glm objects for logistic regression.

the used memory of fitted objects (both object sizes "normal" and "big") for logistic regres-
sion in comparison with plain objects of class glm. To provide a comprehensive evaluation, we
vary the number of observations (n = 100, 1200, 2300, 3400, 4500, 5600, 6700, 7800, 8900, 10000)
and features (p = 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60). Our results show that hglm objects
with object_size = "big" occupy more memory than their object_size = "normal" coun-
terparts while objects of object_size = "normal" occupy slightly less memory than com-
parable glm objects.
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6. Use cases
This section illustrates the usage of the holiglm package on more realistic real-world examples.

6.1. Fairness in logistic regression

We illustrate how the holiglm package can be employed for estimating the coefficients of
a logistic regression model with the fairness constraints proposed in Zafar, Valera, Gomez-
Rodriguez, and Gummadi (2019). In the fairness literature, one is typically interested in
building classification models free of the so-called disparate impact. A decision-making process
suffers from disparate impact if it grants disproportionately large fraction of beneficial (or
positive) outcomes to certain groups of a sensitive feature, such as gender or race. Assuming
we have a binary response variable y and a binary sensitive feature w, a binary classifier is free
of disparate impact if the probability that the classifier assigns an observation to the positive
class is the same for both values of the sensitive feature w: P(ŷ = 1|w = 0) = P(ŷ = 1|w = 1).
If w has more than two classes, this relation should hold for all values of w. Note that
even if the sensitive variable w is not included in the model, the classifier can still suffer
from disparate impact (mainly due to the association between the non-sensitive variables x
included in the model and the sensitive variable).
However, for many classifiers these probabilities are typically non-convex functions of the
parameters, which complicates estimation. To provide a more general framework, Zafar et al.
(2019) propose a covariance measure of decision boundary unfairness. This is given by the
covariance between a sensitive binary attribute w and the signed distance from the (non-
sensitive) feature vectors xi to the decision boundary:

COV(w, dβ(x)) = E((w − w̄)dβ(x)) − E((w − w̄))E(dβ(x))︸ ︷︷ ︸
=0

≈ 1
n

n∑
i=1

(wi − w̄)dβ(xi). (5)

The framework can also accommodate for various binary sensitive variables w(k), k = 1, . . . , K,
where limits are imposed for the above covariance measure for each of the k sensitive variables.
For the logistic regression problem, where the signed distance to the decision boundary is
proportional to x⊤

i β, the fairness constrained model is given by:

maximize
β

∑n
i=1 log(p(yi|xi, β))

subject to 1
n

∑n
i=1(w(1)

i − w̄(1))x⊤
i β ≤ c1

1
n

∑n
i=1(w(1)

i − w̄(1))x⊤
i β ≥ −c1,

. . .
1
n

∑n
i=1(w(K)

i − w̄(K))x⊤
i β ≤ cK

1
n

∑n
i=1(w(K)

i − w̄(K))x⊤
i β ≥ −cK ,

(6)

where ck ∈ R+ for k = 1, . . . , K is a given constant which trades off accuracy and decision
boundary unfairness.
As an illustrative example we employ the AdultUCI data set in package arules (Hahsler,
Buchta, Grün, and Hornik 2021), which contains data extracted from the 1994 U.S. census
bureau database. The response variable in this data set is the binary variable income which
indicates whether the income of the respondents exceeds USD 50 000 per year.
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R> data("AdultUCI", package = "arules")

Before estimation, we eliminate all observations with missing values:

R> AdultUCI <- na.omit(AdultUCI)
R> dim(AdultUCI)

[1] 30162 15

The data is rather unbalanced in terms of the distribution of the response:

R> prop.table(table(AdultUCI$income))

small large
0.7510775 0.2489225

Moreover, this data set is known to be skewed in terms of race and gender.

R> xtabs(~ sex + race, data = AdultUCI)

race
sex Amer-Indian-Eskimo Asian-Pac-Islander Black Other White

Female 107 294 1399 87 7895
Male 179 601 1418 144 18038

Given the sparsely populated race groups Amer-Indian-Eskimo, Asian-Pac-Islander and
Other, we merge them into the Other group.

R> levels(AdultUCI$race)[c(1, 2)] <- "Other"

Clear differences are observable in the percentage of high income earners in the sex and race
groups:

R> aggregate(income ~ sex + race, data = AdultUCI,
+ function(x) mean(as.numeric(x) - 1))

sex race income
1 Female Other 0.11475410
2 Male Other 0.26731602
3 Female Black 0.06075768
4 Male Black 0.19816643
5 Female White 0.12298923
6 Male White 0.32531323

We will therefore consider both race and gender as sensitive variables in our use case. We
create one w(k) binary (i.e., dummy) variable for each factor level combination.
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R> W <- model.matrix(~ 0 + sex:race, data = AdultUCI)

We consider the following predictive model for the analysis (note that the sensitive variables
are not included in the model formula):

R> form <- "income ~ age + relationship + `marital-status` + workclass +
+ `education-num` + occupation + I(`capital-gain` - `capital-loss`) +
+ `hours-per-week`"

The variable native-country is not included in the model as it was eliminated in a prelimi-
nary stepwise selection procedure.
In order to assess the trade-off between fairness and prediction accuracy, we follow Zafar
et al. (2019) and choose a grid of values αk ∈ [0, 1] which are used to compute ck = αks(k).
Here s(k) is the empirical covariance (in absolute value) between the sensitive variable w(k)

and the linear predictor x⊤
i β̂ from the unconstrained regression; s(k) serves in this case as an

upper bound on the disparate impact covariance measure. A value αk = 0 represents the case
where the empirical covariance in Equation 5 is restricted to zero while αk = 1 represents
the case with no fairness constraints. We first estimate the unconstrained model using the
stats::glm function and the calculate s(k):

R> m0 <- glm(as.formula(form), family = binomial(), data = AdultUCI)
R> s <- apply(W, 2, function(w) abs(cov(w, m0$linear.predictors)))

The left-hand side of the constraints from Equation 6 can be specified in matrix form Lβ
where L is constructed by:

R> xm <- model.matrix(m0)
R> L <- t(apply(W, 2, function(w) colMeans((w - mean(w)) * xm)))

For a grid of αk values, we estimate the fairness constrained logistic regressions. We set
the big_m argument to 5, which means that the standardized coefficients (see scaler =
"center_standardization") are constrained to be at most 5 in absolute value. A value of
5 for big_m is small enough to ensure a fast convergence of the algorithm and, at the same
time, sufficiently large to be non-restrictive for the problem at hand (in none of the estimated
models this bound was reached). For each model we store the in-sample predictions, which
will be used for assessing the accuracy versus fairness trade-off.

R> library("holiglm")
R> K <- nrow(L)
R> alpha <- seq(0, 1, by = 0.05)
R> pred_prob_race_sex <- sapply(alpha, function(ak) {
+ ck <- ak * s
+ model_constrained <- hglm(as.formula(form),
+ family = binomial(), data = AdultUCI,
+ scaler = "center_standardization", big_m = 5,
+ constraints = c(linear(L, rep(">=", K), - ck),
+ linear(L, rep("<=", K), ck)))
+ phat <- predict(model_constrained, type = "response")
+ phat
+ })
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For each model we compute the in-sample accuracy and area under the ROC curve (using
package pROC, Robin et al. 2011). Note that we consider a cut-off probability threshold of
0.5, i.e., a label of ŷ = 1 will be assigned if the predicted probability exceeds 50%. To assess
the disparate impact of the different models we use the following measure:

DI = P(ŷ = 1|w(k) = 0)
P(ŷ = 1|w(k) = 1)

.

We only consider the dummy variable w(k) which corresponds to the White:Male factor
combination when computing DI but other approaches which take into account all w(k)’s are
available. The DI measure considers the White:Male as the privileged group in this data set
and a value less than one indicates that, in the prediction, the privileged group is favored.
As a rule of thumb, values greater than 0.8 can be considered acceptable. 1

R> obs <- AdultUCI$income
R> res <- apply(pred_prob_race_sex, 2, function(phat) {
+ tab <- table(phat > 0.5, obs)
+ tab_w <- table(phat > 0.5, W[, "sexMale:raceWhite"])
+ ptab_w <- prop.table(tab_w)
+ DI <- ptab_w[2, 1]/ptab_w[2, 2]
+ acc <- sum(diag(tab))/sum(tab)
+ c(DI = DI, acc = acc, auc = pROC::roc(obs, phat, quiet = TRUE)$auc)
+ })

We create the scatterplots of the three measures for the grid of α values:

R> par(mfrow = c(1, 3))
R> plot(alpha, res[1,], type = "b",
+ xlab = expression(alpha), ylab = "Disparate impact")
R> plot(alpha, res[2,], type = "b",
+ xlab = expression(alpha), ylab = "Accuracy")
R> plot(alpha, res[3,], type = "b",
+ xlab = expression(alpha), ylab = "AUROC")

The resulting plot can be seen in Figure 2. We observe that the model with α = 0 has a DI
measure of around 0.6, so it still exhibits disparate impact in favor of the privileged group,
even if the covariance measure is restricted to zero in the model building phase. To get a
more accurate picture, one could repeat the analysis by computing the above measures on
a test set. The cut-off values for the prediction can also be chosen differently. Finally, one
can see that the trade-off between fairness and predictive power is not very high, as the loss
in the predictive measures is not dramatic as αk decreases. Such trade-off analysis can help
the modelers and decision-makers in choosing a setting which is acceptable for the use-case
at hand.

1See also e.g., the guidelines of the US Equal Employment Opportunity
Commission regarding hiring practices at https://www.eeoc.gov/laws/guidance/
questions-and-answers-clarify-and-provide-common-interpretation-uniform-guidelines.

https://www.eeoc.gov/laws/guidance/questions-and-answers-clarify-and-provide-common-interpretation-uniform-guidelines
https://www.eeoc.gov/laws/guidance/questions-and-answers-clarify-and-provide-common-interpretation-uniform-guidelines
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Figure 2: This figure displays the disparate impact, accuracy and area under the ROC curve
for different degrees of fairness given by α ∈ [0, 1], where an α of zero implies a fair model in
terms of the specified covariance measure.

6.2. Model selection in log-binomial regression

In the following example we show how the holiglm package can be used for model selection
for log-binomial regression. For this example we use the icu data set from the aplore3
package (Braglia 2016). In this application, the goal is to model the status of patients at
hospital discharge (i.e., alive versus dead) using a series of patient-specific predictors.

R> data("icu", package = "aplore3")
R> dim(icu)

[1] 200 21

First, we will check if the MLE exists by making use of the detectseparation package. For
log-binomial regression the existence criterion is slightly different from the existence criterion
for logistic regression, for more information we refer to Schwendinger et al. (2021).

R> library("detectseparation")
R> icu <- icu[, setdiff(colnames(icu), "id")]
R> glm(sta ~ ., family = binomial("log"), data = icu,
+ method = "detect_separation")

Data separation in log-binomial models does not necessarily result in infinite
estimates

Implementation: ROI | Solver: lpsolve
Separation: TRUE
Existence of maximum likelihood estimates

(Intercept) age genderFemale raceBlack raceOther
0 0 0 0 0

serSurgical canYes crnYes infYes cprYes
0 0 0 0 0
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sys hra preYes typeEmergency fraYes
0 0 0 0 0

po2<= 60 ph< 7.25 pco> 45 bic< 18 cre> 2.0
0 0 0 0 0

locStupor locComa
0 0

0: finite value, Inf: infinity, -Inf: -infinity

Package detectseparation signals that the data has the separation property; however, the
estimates are still all expected to be finite for the log-binomial regression. Note that for
logistic regression the MLE does not exist (i.e., has infinite components). To verify this,
again detectseparation can be used.

R> glm(sta ~ ., family = binomial("logit"), data = icu,
+ method = "detect_separation")

Implementation: ROI | Solver: lpsolve
Separation: TRUE
Existence of maximum likelihood estimates

(Intercept) age genderFemale raceBlack raceOther
0 0 0 -Inf 0

serSurgical canYes crnYes infYes cprYes
0 0 0 0 0

sys hra preYes typeEmergency fraYes
0 0 0 0 0

po2<= 60 ph< 7.25 pco> 45 bic< 18 cre> 2.0
0 0 0 0 0

locStupor locComa
Inf 0

0: finite value, Inf: infinity, -Inf: -infinity

For the purpose of model selection, we estimate a sequence of models of different size k =
1, . . . , 21 using function hglm_seq. In Figure 3 we present, for each model size k, the AIC and
BIC of the optimized model together with the selected coefficients (which can be interpreted
in terms of relative risks for the log-binomial regression).

R> fits <- hglm_seq(formula = sta ~ ., family = binomial("log"),
+ data = icu, solver = "ecos")

In terms of AIC, models of size 7–9 are preferred, while the size suggested by BIC is around
3-5. Looking at the estimated set of coefficients for each k can provide additional insights
into the model behavior.
For example, the modeler can look at the stability of the magnitude of the coefficients and
how they change when the number of predictors decreases. Big changes in the magnitude of
the coefficients or sign changes can be an indication of multicollinearity problems within the
data.
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k aic bic RR0 age genderFemale raceBlack raceOther serSurgical canYes crnYes infYes cprYes sys hra preYes typeEmergency fraYes po2≤ 60 ph< 7.25 pco> 45 bic< 18 cre> 2.0 locStupor locComa
21 172.73 245.29 0.00 1.03 0.68 0.53 1.40 0.93 5.88 1.04 0.99 1.53 1.00 1.00 2.20 8.71 1.67 1.38 2.52 0.37 1.26 0.76 4.40 4.83
20 170.73 239.99 0.00 1.03 0.69 0.53 1.41 0.93 5.87 1.04 1.52 1.00 1.00 2.19 8.69 1.67 1.38 2.53 0.37 1.25 0.76 4.36 4.83
19 168.74 234.71 0.00 1.03 0.68 0.54 1.44 0.93 5.80 1.48 1.00 1.00 2.16 8.71 1.69 1.37 2.61 0.37 1.23 0.77 4.33 4.96
18 166.78 229.45 0.00 1.03 0.69 0.56 1.34 5.90 1.48 1.00 1.00 2.13 9.15 1.59 1.40 2.70 0.36 1.24 0.77 4.46 5.11
17 164.90 224.27 0.00 1.03 0.66 0.56 1.38 6.00 1.54 1.00 2.06 9.52 1.46 1.19 2.44 0.40 1.28 0.81 4.09 4.64
16 163.11 219.18 0.00 1.03 0.69 0.55 1.49 5.71 1.38 2.02 8.90 1.38 1.11 2.37 0.42 1.32 0.90 4.26 4.99
15 161.23 214.00 0.00 1.03 0.67 0.55 1.51 6.17 1.39 1.99 9.40 1.39 2.24 0.43 1.40 0.91 4.15 4.89
14 159.69 209.16 0.00 1.03 0.67 1.54 6.30 1.42 1.93 9.55 1.42 2.36 0.43 1.42 0.89 4.19 4.99
13 158.26 204.44 0.00 1.02 0.64 0.51 1.45 5.41 1.34 2.12 9.03 1.34 2.81 0.43 4.13 4.79
12 156.80 199.68 0.00 1.02 0.66 0.49 5.32 1.32 2.14 9.04 1.32 2.72 0.43 4.11 4.73
11 155.49 195.07 0.00 1.03 0.65 5.49 1.32 2.07 9.23 1.35 2.93 0.42 4.16 4.84
10 154.42 190.70 0.00 1.02 0.66 5.42 1.31 2.09 9.33 2.83 0.42 4.22 4.84
9 153.56 186.54 0.00 1.02 0.87 5.29 1.97 8.90 3.30 0.38 4.62 5.29
8 153.32 183.01 0.01 1.02 4.72 1.67 8.43 3.11 0.39 4.72 4.72
7 153.99 180.37 0.01 1.02 4.24 8.40 2.74 0.40 4.24 4.24
6 155.03 178.12 0.01 1.02 4.08 8.97 0.52 4.08 4.08
5 157.53 177.31 0.02 3.83 8.06 0.54 5.55 5.55
4 160.47 176.96 0.02 3.37 7.75 5.74 4.59
3 163.17 176.36 0.04 5.03 5.28 4.22
2 169.78 179.68 0.15 6.85 5.48
1 186.29 192.89 0.17 4.75

Figure 3: AIC, BIC and relative risks (exp βj) for the icu data from the log-binomial re-
gression with constraints on the maximum number of predictors k. RR0 corresponds to the
baseline relative risk exp β0.

7. Conclusion
The holiglm package can be used to fit generalized linear models which are optimal with
respect to a set of specified constraints. The package provides different types of constraints
which are relevant for statistical modeling purposes such as: (i) different requirements for
sparsity (e.g., setting an upper limit on the number of predictors included in the model
globally or from a group of pre-specified variables, forcing a group of predictors to jointly be
included or excluded from the model), (ii) linear constraints, (iii) constraints on the pairwise
correlation among predictors, (iv) constraints on the sign of the coefficients. The interface
of the package is very similar to the one provided by stats::glm, making it accessible for
users to specify the desired GLMs. Using the fact that the most common GLMs can be
represented as conic programs, holiglm leverages the tremendous advancements in the field of
conic programming to provide efficient estimation of constrained GLMs. The package relies
on ROI as the underlying infrastructure. Through the ROI plugins, problems with conic
objectives and conic- and mixed-integer constraints such as the ones implemented in holiglm
can reliably be computed within R. Since conic optimization is an active field of research,
this means that the runtime of estimating constrained GLMs with the holiglm package will
be reduced once more mature solvers or faster algorithms for conic optimization will become
available. Future work includes extending the package with further family-link combinations,
by finding appropriate conic representations (if possible) for e.g., the binomial family with
complementary log-log link, the inverse Gaussian or the gamma families. Package holiglm
can be used for automatic model selection. However, we recommend using it complementary
to the modeler’s expertise as an exploratory tool which provides guidance on the structure of
the final model.
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A. Conic formulations
In this section we reformulate the log-likelihood of the different family-link combinations in
terms of Equation 1. Let x⊤

i β = ηi.
The family-link combinations implemented in holiglm can be expressed by the zero and free
cones:

Kzero = {0}, Kfree = R = K∗
zero,

where K∗ = {y ∈ Rn | y⊤x ≥ 0 ∀x ∈ K} denotes the dual cone for a closed convex cone K,
the linear cone:

Klin = {x ∈ R | x ≥ 0},

the second-order cone:

Kn
soc = {(t, x) ∈ Rn | x ∈ Rn−1, t ∈ R, ∥x∥2 ≤ t}

and the primal exponential cone:

Kexp = {(x, y, z) ∈ R3 | y > 0, ye
x
y ≤ z} ∪ {(x, 0, z) ∈ R3 | x ≤ 0, z ≥ 0}.

A.1. Gaussian

For the Gaussian family, the log-likelihood is proportional to:

log L(β; y1, . . . , yn) ∝
n∑

i=1
−(yi − g−1(ηi))2

2

∝
n∑

i=1
−y2

i − 2yig
−1(ηi) + g−1(ηi)2

2 ∝
n∑

i=1
yi g−1(ηi)︸ ︷︷ ︸

λi(β)

− g−1(ηi)2

2︸ ︷︷ ︸
b(λi(β))

Identity link

For the identity link we have g−1(ηi) = ηi so

λi(β) = x⊤
i β, b(λi(β)) = (x⊤

i β)2/2.

Using an auxiliary variable ζ, an inequality of the form ζ ≥ w2 can be expressed by a second-
order cone:

ζ ≥ z2 ⇐⇒ (ζ + 1, ζ − 1, 2w) ∈ K3
soc,

since

(ζ + 1, ζ − 1, 2w) ∈ K3
soc ⇐⇒ ∥(ζ − 1, 2w)∥2 ≤ ζ + 1

and by using the definition of the norm and squaring both sides we get

(ζ − 1)2 + (2w)2 ≤ (ζ + 1)2 ⇐⇒ 4z2 ≤ 4ζ.
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Using the same technique on w ∈ Rn leads to

ζ ≥
n∑

i=1
z2

i ⇐⇒ (ζ + 1, ζ − 1, 2z1, . . . , 2zn) ∈ Kn+2
soc . (7)

Since max ∑n
i=1 yix

⊤
i β − (x⊤

i β)2

2 can be rewritten into max −
∑n

i=1
1
2(yi − x⊤

i β)2 − y2
i
2 , and

by dropping the constant term ∑n
i=1

y2
i
2 we obtain the following reformulation:

maximize
β,ζ

− ζ

subject to (ζ + 1, ζ − 1, 2(y1 − x⊤
1 β), . . . , 2(yn − x⊤

n β)) ∈ Kn+2
soc

β ∈ Rp, ζ ∈ R.

A.2. Binomial

For the binomial family, the log-likelihood is proportional to:

log L(β; y1, . . . , yn) ∝
n∑

i=1
yi log(g−1(ηi)) + (1 − yi) log(1 − g−1(ηi))

∝
n∑

i=1
yi (log(g−1(ηi)) − log(1 − g−1(ηi)))︸ ︷︷ ︸

λi(β)

− (− log(1 − g−1(ηi)))︸ ︷︷ ︸
b(λi(β))

Logit link

For the logit link we have:

λi(β) = log(g−1(ηi)) − log(1 − g−1(ηi)))

= log
( exp(ηi)

1 + exp(ηi)

)
− log

(
1 − exp(ηi)

1 + exp(ηi)

)
= ηi

b(λi(β)) = − log(1 − g−1(ηi)))

= − log
(

1 − exp(ηi)
1 + exp(ηi)

)
= log (1 + exp(ηi)) .

Employing an auxiliary variable δ, the inequality log(1 + exp(x)) can be represented using
the exponential cone. For introducing the representation, note that the exponential function
can be modeled by an exponential cone:

δ ≥ exp(x) ⇐⇒ (x, 1, δ) ∈ Kexp. (8)

Now, the inequality

δ ≤ log(1 + exp(x)) ⇐⇒ exp(δ) ≤ 1 + exp(x) (9)
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can be reformulated as:

1 + γ ≥ exp(δ) ⇐⇒ (δ, 1, 1 + γ) ∈ Kexp

γ ≥ exp(x) ⇐⇒ (x, 1, γ) ∈ Kexp

The objective is therefore reformulated as:

maximize
β,δ,γ

n∑
i=1

yix
⊤
i β − δi

subject to (δi, 1, 1 + γi) ∈ Kexp for all i ∈ {1, . . . , n}
(x⊤

i β, 1, γi) ∈ Kexp for all i ∈ {1, . . . , n}
β ∈ Rp, δ ∈ Rn, γ ∈ Rn.

Log link

For the log link we have:

λi(β) = log(g−1(ηi)) − log(1 − g−1(ηi)))
= log (exp(ηi)) − log (1 − exp(ηi)) = ηi − log (1 − exp(ηi))

b(λi(β)) = − log(1 − g−1(ηi))) = − log (1 − exp(ηi))

Similar as before, the inequality δ ≤ log(1 − exp(x)) can be represented using the exponential
cone. Now

δ ≤ log(1 − exp(x)) ⇐⇒ exp(δ) ≤ 1 − exp(x)
can be expressed as (using Equation 8):

1 − γ ≥ exp(δ) ⇐⇒ (δ, 1, 1 − γ) ∈ Kexp

γ ≥ exp(x) ⇐⇒ (x, 1, γ) ∈ Kexp.

The objective is therefore reformulated as:

maximize
β,δ,γ

n∑
i=1

yix
⊤
i β + (1 − yi)δi

subject to x⊤
i β ≤ 0 for all i ∈ {1, . . . , n}

(δi, 1, 1 − γi) ∈ Kexp for all i ∈ {1, . . . , n}
(x⊤

i β, 1, γi) ∈ Kexp for all i ∈ {1, . . . , n}
β ∈ Rp, δ ∈ Rn, γ ∈ Rn.

A.3. Poisson

For the Poisson family, the log-likelihood is proportional to:

log L(β; y1, . . . , yn) ∝
n∑

i=1
yi log(g−1(ηi))︸ ︷︷ ︸

λi(β)

− g−1(ηi)︸ ︷︷ ︸
b(λi(β))
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Log link

For the log link we have:

λi(β) = ηi, b(λi(β)) = exp(ηi).

Using Equation 8, the objective can be reformulated as:

maximize
β,δ

n∑
i=1

yix
⊤
i β − δi

subject to (x⊤
i β, 1, δi) ∈ Kexp for all i ∈ {1, . . . , n}

β ∈ Rp, δ ∈ Rn.

Identity link

For the identity link we have:

λi(β) = log(ηi), b(λi(β)) = ηi.

Imposing ηi ≥ 0 for all i = 1, . . . , n and using Equation 8, the objective can be reformulated
as:

maximize
β,δ

n∑
i=1

yiδi − x⊤
i β

subject to (δi, 1, x⊤
i β) ∈ Kexp for all i ∈ {1, . . . , n}

x⊤
i β ≥ 0 for all i ∈ {1, . . . , n}

β ∈ Rp, δ ∈ Rn.

Square root link

For the square root link we have:

λi(β) = 2 log(ηi), b(λi(β)) = η2
i .

Using Equations 7 and 8, the objective can be reformulated as:

maximize
β,δ,ζ

n∑
i=1

2yiδi − ζ

subject to (δi, 1, x⊤
i β) ∈ Kexp for all i ∈ {1, . . . , n}

(ζ + 1, ζ − 1, 2x⊤
1 β, . . . , 2x⊤

n β) ∈ Kn+2
soc

β ∈ Rp, δ ∈ Rn, ζ ∈ R.
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B. Runtime plots

This appendix contains the beeswarm plots for the runtime benchmarks in Section 5. The
data described by these plots along with scripts to generate and plot the results can be found
in the replication material of this paper.
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Figure 4: Runtimes for best subset selection for linear regression across 10 data sets.
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Figure 5: Runtimes for best subset selection for logistic regression across 10 data sets.
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Figure 6: Runtimes for best subset selection for Poisson regression across 10 data sets.
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Figure 7: Runtimes for non-negative linear regression across 10 data sets.
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Figure 8: Runtimes for non-negative logistic regression across 10 data sets.



48 Holistic Generalized Linear Models

p = 35 p = 40

p = 20 p = 25 p = 30

p = 5 p = 10 p = 15

Con
sR

eg

hg
lm

(E
COS)

hg
lm

(M
OSEK)

re
str

ikt
or

Con
sR

eg

hg
lm

(E
COS)

hg
lm

(M
OSEK)

re
str

ikt
or

Con
sR

eg

hg
lm

(E
COS)

hg
lm

(M
OSEK)

re
str

ikt
or

0.1

1.0

10.0

0.1

1.0

10.0

0.1

1.0

10.0

tim
e 

(in
 s

) 
−

 lo
g−

sc
al

e

Package

ConsReg

hglm(ECOS)

hglm(MOSEK)

restriktor

Figure 9: Runtimes for non-negative Poisson regression across 10 data sets.
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