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Abstract

Whereas the code in the original article (Zhang, Preisser, Li, Turner, and Rathouz
2024) on the implementation of the SAS macro CRTFASTGEEPWR accurately produces
the included output, the selected parameter values of the marginal mean model expression
in Equation (1) for two examples based on a categorical period effects parameterization
are considered extreme. This Erratum modifies the original values for period-specific
intercepts in the examples with the aim of depicting more typical settings for power
calculation in multi-period cluster randomized trials, and to diminish the possibility of
errors by users who may be led by the original examples to misinterpret the categorical
period effects parameterization in the SAS macro.

Keywords: Erratum.

The period-specific intercepts model

User choice of the categorical period effects option in the SAS macro CRTFASTGEEPWR
specifies that power calculation for the intervention effect δ is based on the marginal mean
model in Equation (1) that has period-specific intercepts

g(µijk) = βj + uijδ , j = 1, . . . , J. (1)

For a binary outcome with a logit link function, βj in Equation (1) corresponds to the log
odds of response at the j-th period when uij = 0, which often denotes the control treat-
ment condition. Notably, Equation (1) lacks a ‘true’ intercept. In contrast, an alternative
parameterization to Equation (1) is

g(µijk) = β0 + βj + uijδ , j = 1, . . . , J, (1a)

where β1 = 0 and β0 is a ‘true’ intercept term as it corresponds to a column of ones in the
overall design matrix. In Equation (1a), β0 is log odds of response under the control condition
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in the first period (j = 1) whereas indicator variables for all other periods (j = 2, . . . , J)
represent period effects relative to outcome prevalence (for a binary outcome) in the first
period. While Equations (1) and (1a) are equivalent with respect to their predicted means
µijk and interpretation of δ as the period-adjusted intervention effect, understanding their
different interpretations for period effects specification is important as it may affect power for
testing H0 : δ = 0.

The original intention of authors in two examples in the article that employ categorical period
effects was to specify null or near-null period effects, which could have been accomplished
through the specification of equal or nearly equal period-specific intercepts. Rather, in the
SAS codes, the selected period-specific intercept value for the first period is very different
than the other periods’ intercept values. Thus, the outcome proportion under the control
condition in the first period is very different from that in other periods, which may not be
realistic in most settings. We are concerned that the selection of parameter values for the
period-specific intercepts in the two examples, if misunderstood when imitated, could impact
the power calculation of users in unintended ways.

In particular, modifications are applied to the SAS code for the third example in the main
article and the second example in the appendix, focusing on the parameter values provided
for the macro argument concerning categorical period effects. The modifications aim to align
these code examples more closely with the model description accompanying Equation (1).
The Erratum file has rectified the identified errors using strikethrough and has highlighted
their corresponding corrections in green color. While the modifications to the period effects
specifications in the two examples had little impact on power as shown below, different period
effects specifications could have larger impact on power for the intervention effect in other
scenarios.

Corrections to the example from the main article

The third example in the article illustrates power calculation for a cross-sectional stepped
wedge cluster randomized trial to improve pre-operative decision-making by the use of a
patient-driven question prompt list intervention (Taylor et al. 2017; Schwarze et al. 2020).
In this example, 480 patients enrolled across six periods are clustered within 40 surgeons
who are randomized to transition from control (blue cells) to intervention condition (green
cells) at one of five randomly assigned sequences (8 surgeons per sequence). We calculate
the power for a binary primary outcome regarding whether the patient has a post-treatment
regret. We assume a balanced and complete design for the study, 12 patients for each surgeon
with two patients in each cluster period. In the marginal mean model for the binary outcome
with logit link and average intervention effects model, the control is assumed to have 2.2 3
times the odds of reporting post-treatment regret compared to the intervention group, given
by δ = log(1/2.2) = −0.789 log(1/3) = −1.099. The average probability of post-treatment
regret at baseline is assumed to be 0.22, such that β0 β1 = log[0.22/(1 − 0.22)] = −1.266 with
consistently increasing period effects βi = 0.01, i = 1, . . . , 5 βj = βj−1 +0.01, j = 2, . . . , 6. For
the working correlation structure, we used the exponential decay correlation structure with
ICCs (α0, r0) = (0.03, 0.8). Power using the t test and the z test both reach 80 78% and are
similar to one another considering the moderately large number of clusters.
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%CRTFASTGEEPWR(alpha = 0.05, m = %str(J(5, 1, 8)), corr_type = ED,
intervention_effect_type = AVE, delta = -0.789 -1.099,
period_effect_type = CAT,
beta_period_effects = %str({-1.266, 0.01,0.01,0.01,0.01,0.01 })
%str({-1.266, -1.256, -1.246, -1.236, -1.226, -1.216 }),

alpha0 = 0.03, R0 = 0.8, dist = binary, phi = 1,
CP_size_matrix = %str(J(5, 6, 2)),
DesignPattern =%str({0 1 1 1 1 1,

0 0 1 1 1 1,
0 0 0 1 1 1,
0 0 0 0 1 1,
0 0 0 0 0 1}));

The fast GEE power of binary outcomes with exponential decay correlation
structure and (alpha0,r0):(0.03, 0.8)

Under average intervention effects model and delta = -0.786 -1.099

T S clusters df theta totaln Dist Link stddel zpower tpower
6 5 40 33 -1.266 480 BINARY LOGIT 2.917 0.8307 0.8081

0.01 -1.256 2.8282 0.8074 0.7835
0.01 -1.246
0.01 -1.236
0.01 -1.226
0.01 -1.216
0.789 -1.099

Corrections to the example from the appendix to the main article

This example illustrates use of the SAS macro CRTFASTGEEPWR for a parallel cluster
trial, based on the Enforcing Underage Drinking Laws (EUDL) Program (Preisser, Young,
Zaccaro, and Wolfson 2003). The EDUL program funded interventions at the community level
to enforce laws related to alcohol use by underage persons to reduce the underage drinking.
Moreover, the study used a non-randomized trial design because the intervention communities
were selected by the administrative units in states. The control communities were selected
by the propensity score method to match the intervention communities based on US census
data. There are three periods: one baseline assessment and two follow-up assessments for
participants in the communities participating in the EUDL program. We will use the design
of the EUDL study to calculate the power under the assumption that all confounded covariates
were balanced in control and intervention groups. The main outcome is the binary outcome of
self-reported last 30-day alcohol use for an underage person. We assume there are 40 clusters
in total with 20 clusters per intervention group and 30 participants enrolled in each cluster-
period. Assuming the baseline probability of self-reported last 30-day alcohol use for an
underage person is 0.6, we set β0 β1 = log[0.6/(1 − 0.6)] = 0.405 with consistently decreasing
period effects β1 = 0.01 βj = βj−1 − 0.01, j = 2, 3. Under the average intervention effects
model, the intervention effect is assumed to decrease the odds of underage drinking by 30%
on average, δ = log(0.7) = −0.357. Moreover, a nested exchangeable correlation structure is
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used with ICCs (α1, α2) = (0.02, 0.01). From the power calculation results, power is close to
90% given the parameters. Thus, this example further illustrates the flexibility of the SAS
macro in calculating power for multi-period cluster randomized trials with different designs.

%CRTFASTGEEPWR(alpha = 0.05, m = %str(J(2, 1, 20)), corr_type = NE,
alpha1 = 0.02, alpha2 = 0.01 ,intervention_effect_type = AVE,
delta = -0.357, period_effect_type = CAT,
beta_period_effects = %str({0.405,-0.01, -0.01 0.395,0.385}), dist = binary,
phi=1, CP_size_matrix = %str(J(2, 3, 30)),
DesignPattern =%str({0 1 1,

0 0 0}));

The fast GEE power of binary outcomes with nested exchangeable correlation
structure and (alpha1,alpha2):(0.02, 0.01)

Under average intervention effects model and delta = -0.357

T S clusters df theta totaln Dist Link stddel zpower tpower
3 2 40 36 0.405 3600 BINARY LOGIT 3.2624 0.9036 0.8875

-0.01 0.395 3.2586 0.903 0.8868
-0.01 0.385
-0.357

We provide SAS codes to calculate and compare powers using GEE analysis bases on dif-
ferent effect sizes. In the example codes, CRTFASTGEEPWR is used to calculate pow-
ers under varying effect sizes, reducing the odds of underage drinking in the EDUL study
by (20%, 25%, 30%, 35%, 40%) on average, leading to δ = log(0.20, 0.25, 0.30, 0.35, 0.40) =
(−0.223, −0.288, −0.357, −0.431, −0.511). Outputs of the SAS codes are attached below the
codes.

%macro multi_effectsizes(effectsizes);
%local index value;
%do index = 1 %to %sysfunc(countw(&effectsizes,%str( )));
%let value =%scan(&effectsizes,&index,%str( ));

%CRTFASTGEEPWR(alpha=0.05, m =%str(J(2,1,20)), corr_type = NE,
alpha1 = 0.02, alpha2 = 0.01, intervention_effect_type = AVE,
delta = &value, period_effect_type = CAT,
beta_period_effects = %str({0.405,-0.01, -0.01 0.395,0.385}), dist = binary,
phi = 1, CP_size_matrix = %str(J(2, 3, 30)),
DesignPattern = %str({0 1 1,

0 0 0}));
%end;

%mend;
%multi_effectsizes(-0.223 -0.288 -0.357 -0.431 -0.511);

The fast GEE power of binary outcomes with nested exchangeable correlation
structure and (alpha1,alpha2):(0.02, 0.01)

Under average intervention effects model and delta = -0.223
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T S clusters df theta totaln Dist Link stddel zpower tpower
3 2 40 36 0.405 3600 BINARY LOGIT 2.0482 0.5352 0.508

-0.01 0.395 2.0322 0.5288 0.5016
-0.01 0.385

-0.223

The fast GEE power of binary outcomes with nested exchangeable correlation
structure and (alpha1,alpha2):(0.02, 0.01)

Under average intervention effects model and delta = -0.288

T S clusters df theta totaln Dist Link stddel zpower tpower
3 2 40 36 0.405 3600 BINARY LOGIT 2.6395 0.7516 0.7276

-0.01 0.395 2.6373 0.7477 0.7236
-0.01 0.385

-0.288

The fast GEE power of binary outcomes with nested exchangeable correlation
structure and (alpha1,alpha2):(0.02, 0.01)

Under average intervention effects model and delta = -0.357

T S clusters df theta totaln Dist Link stddel zpower tpower
3 2 40 36 0.405 3600 BINARY LOGIT 3.2624 0.9036 0.8875

-0.01 0.395 3.2586 0.903 0.8868
-0.01 0.385

-0.357

The fast GEE power of binary outcomes with nested exchangeable correlation
structure and (alpha1,alpha2):(0.02, 0.01)

Under average intervention effects model and delta = -0.431

T S clusters df theta totaln Dist Link stddel zpower tpower
3 2 40 36 0.405 3600 BINARY LOGIT 3.9239 0.9752 0.967

-0.01 0.395 3.934 0.9758 0.9677
-0.01 0.385

-0.431

The fast GEE power of binary outcomes with nested exchangeable correlation
structure and (alpha1,alpha2):(0.02, 0.01)

Under average intervention effects model and delta = -0.511

T S clusters df theta totaln Dist Link stddel zpower tpower
3 2 40 36 0.405 3600 BINARY LOGIT 4.6296 0.9962 0.9933

-0.01 0.395 4.6605 0.9965 0.9938
-0.01 0.385

-0.511
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