
JSS Journal of Statistical Software
March 2023, Volume 106, Issue 8. doi: 10.18637/jss.v106.i08

Probabilistic Estimation and Projection of the
Annual Total Fertility Rate Accounting for Past
Uncertainty: A Major Update of the bayesTFR

R Package

Peiran Liu
University of Washington

Hana Ševčíková
University of Washington

Adrian E. Raftery
University of Washington

Abstract

The bayesTFR package for R provides a set of functions to produce probabilistic pro-
jections of the total fertility rates for all countries, and is widely used, including as part
of the basis for the United Nations official population projections for all countries. Liu
and Raftery (2020) extended the theoretical model by adding a layer that accounts for
the past total fertility rate estimation uncertainty. A major update of bayesTFR imple-
ments the new extension. Moreover, a new feature of producing annual total fertility rate
estimation and projections extends the existing functionality of estimating and projecting
for five-year time periods. An additional autoregressive component has been developed in
order to account for the larger autocorrelation in the annual version of the model. This
article summarizes the updated model, describes the basic steps to generate probabilistic
estimation and projections under different settings, compares performance, and provides
instructions on how to summarize, visualize and diagnose the model results.

Keywords: bayesTFR, autoregressive model, Bayesian hierarchical model, Markov chain Monte
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1. Introduction

In 2015 for the first time, the United Nations (UN) adopted the Bayesian method described
by Alkema et al. (2011) for their official population projections for all countries, the world
population prospects (WPP) 2015 (United Nations 2015). This method is probabilistic and
based on a principled statistical footing, replacing the previous deterministic method. One of
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the major components is the projection of the total fertility rate (TFR) which is implemented
in the bayesTFR R package (Ševčíková, Alkema, and Raftery 2011). This package is widely
used in research on fertility rates and population projections (Abel, Barakat, Samir, and
Lutz 2016; Gerland, Biddlecom, and Kantorová 2017; Ševčíková and Raftery 2016; Ševčíková,
Raftery, and Gerland 2018).
While the projection of TFR is probabilistic, the method does not take uncertainty about the
past into account. Liu and Raftery (2020) addressed this issue by developing a Bayesian model
that takes past TFR observations from the World Fertility Data database (United Nations
2019a) as raw data, and combines the uncertainty from the data with the uncertainty from
the model. Out-of-sample validation showed improved performance of the overall projection
model, while providing users with information about the uncertainty of estimates of past
fertility rates. A major overhaul of bayesTFR was required to incorporate the Liu and Raftery
(2020) methodology into the package.
The original framework implemented in bayesTFR was designed to work with five-year esti-
mates and produced projections on a five-year time interval basis. This has the disadvantage
of missing TFR fluctuations and pattern changes within the five-year periods. There is a
growing interest by the UN to publish population estimates and projections on an annual
basis, and in response we have extended bayesTFR to work with annual data. The update
revealed that an additional autoregressive component is needed to account for the larger
autocorrelation and thus, to model the uncertainty in the fertility transition well.
The new version of the package, version 7.3-2 (Ševčíková, Alkema, Liu, Raftery, Fosdick, and
Gerland 2023), now produces uncertainty information about the past which is propagated
into the projections and is able to estimate and project on an annual basis. This article
describes the methodological changes, and also provides instructions on how to generate
probabilistic estimations and projections under different settings. These include with and
without accounting for past TFR estimation, with annual or five-year data, and with and
without the autoregressive component in the fertility transition phase of the model. Other
updates to the package are also introduced and elaborated.
The package bayesTFR (Ševčíková et al. 2023) is available from the Comprehensive R Archive
Network (CRAN) at https://CRAN.R-project.org/package=bayesTFR.
The article is organized as follows. Section 2 summarizes the theoretical models developed
by Alkema et al. (2011); Raftery, Alkema, and Gerland (2014); Liu and Raftery (2020), and
the autoregressive model in the fertility transition phase. Section 4 describes how to use
the package, using a step-by-step approach with different model settings. Section 5 presents
experiments on the performance of the models and the selection of the various settings. The
article concludes with a discussion in Section 6.

2. Annual TFR model with uncertainty about the past
Here, we first summarize the original TFR model developed for five-year time periods (Alkema
et al. 2011). We then review the new methodology for probabilistic estimation and projection
of TFR for all countries of the world accounting for uncertainty about the past, as proposed
by Liu and Raftery (2020). Finally, we describe the changes in the methodology to work for
annual estimation and projections.
TFR can be defined as the number of children a woman would have if she were subject to
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the prevailing fertility rates at all ages from a single given year, and survived throughout
her childbearing years. Alkema et al. (2011) defined a three-phase model for the evolution of
TFR over time in a country:

• Phase I: Pre-transition phase with fluctuations at high fertility level.

• Phase II: Transition from high to low fertility, where decrements are modeled by a
random walk with drift given by a double logistic function.

• Phase III: Post-transition phase where fertility fluctuates around the replacement level
(a level close to 2.1), modeled by an autoregressive AR(1) process.

We will use the same notation as Ševčíková et al. (2011). Specifically, fc,t denotes the TFR
in country c and time period t, τc denotes the start period of phase II for country c, λc is the
start period of phase III for country c, while g(θc, fc,t) and θc denote the parametric decline
function and the corresponding country-specific parameters, respectively.

2.1. Existing model with five-year estimates

The pre-transition phase (phase I) is not modeled, as all countries have already entered
phase II. Thus, for the purpose of projecting into the future it is not needed.
The fertility transition phase (phase II) is modeled by a random walk with drift. This is
specified by

fc,t+1 = fc,t − dc,t for τc ≤ t < λc . (1)

The decrement dc,t in Equation 1 is modeled as the sum of a function of the level of the TFR
and the noise, as follows:

dc,t = d(θc, λc, τc, fc,t) = g(θc, fc,t) + εc,t (2)

where g(θc, fc,t) are the double logistic decrements, which are determined by the country-
specific parameter vector θc = (∆c1,∆c2,∆c3,∆c4, dc) and given by

−dc

1 + exp
(
−2 ln(p1)

∆c1
(fc,t −

∑4
i=1 ∆ci + 0.5∆c1)

) + dc

1 + exp
(
−2 ln(p2)

∆c3
(fc,t − ∆c4 − 0.5∆c3)

) .
(3)

The random distortions εc,t in each period have normal distributions as follows:

εc,t ∼
{
N(mt, s

2
t ), for t = τc ,

N(0, σ(fc,t)2) otherwise .
(4)

The quantity σ(fc,t) is the standard deviation of the distortions during the later periods with

σ(fc,t) = c1975(t)
(
σ0 + (fc,t − S)(−aI[S,∞)(fc,t) + bI[0,S](fc,t))

)
. (5)

The constant c1975(t) is added to model the higher error variance of the distortions before
1975. For further details about the model and its priors, see Ševčíková et al. (2011). For
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the purpose of this article, we only point to the definition of two parameters, namely the
country-specific maximum decrement dc, and the hyperparameter for the maximum standard
deviation of the distortions σ0. The dc parameter is defined as

d∗
c = log

(
dc − 0.25
2.5 − dc

)
, (6)

d∗
c ∼ N(χ, ψ2) .

The prior distribution of σ0 is σ0 ∼ U [0.01, 0.6].
The TFR in the post-transition phase (phase III) is modeled by a first order autoregressive
time series model (Raftery et al. 2014) as

fc,t+1 ∼ N(µc + ρc(fc,t − µc), σ2) for t ≥ λc , (7)

where µc is the country-specific long-term mean fertility rate, and ρc is the autoregressive
parameter with ρc ∈ (0, 1). In bayesTFR these parameters can be estimated via the Markov
chain Monte Carlo (MCMC) method. Alternatively, country-independent values can be pre-
defined or estimated by maximum likelihood.
The start period of phase II, τc, is defined as

τc =
{

max{t : (Mc − Lc,t) < 0.5}, if Lc,t > 5.5;
first estimation year, otherwise,

(8)

where Mc is the maximum observed TFR outcome in country c, and Lc,t denote local maxima.
The start period of phase III for country c, λc, is defined as the period where two consecutive
increases of TFR below 2 have been observed. More formally,

λc = min{t : fc,t > fc,t−1, fc,t+1 > fc,t and fc,p < 2 for p = t− 1, t, t+ 1} . (9)

2.2. Probabilistic TFR estimation with uncertainty

The method described above uses observed TFR values as input to estimate the model pa-
rameters. In the UN context, these input values are taken from the latest revision of the
WPP. Such TFR data are in fact estimates of the observed values, often derived from mul-
tiple data sources and involve varying amounts of uncertainty. The TFR model from the
previous section however, treats these estimates as true values.
Liu and Raftery (2020) developed a method that assesses the uncertainty around past esti-
mates of the observed TFR values and propagates it into the projections. The medians of
the resulting posterior distributions can be used as point estimates of the past TFR, reducing
the need for manual analysis and assessments by individual UN analysts. In addition, TFR
projections resulting from the method of Liu and Raftery (2020) show better out-of-sample
validation, especially better coverage of the prediction intervals, than the existing method.
The method uses the World Fertility Data database (United Nations 2019a) for past raw
TFR estimates from surveys, reports and vital registrations for most regions in the world.
We denote these data points by yc,t,s, i.e., the raw TFR estimate for country c, time t and
source s. The source s may refer to a census, a survey, vital registration statistics or other
sources. For each observation, there are features xc,s that describe the sources, estimating



Journal of Statistical Software 5

methods, recall lags and other aspects of data collection and estimation, often measures of
the quality of the data. The observed yc,t,s are modeled as:

yc,t,s | fc,t ∼ N(fc,t + δc,s, ρ
2
c,s), (10)

E[δc,s] = xc,sβ,

E[ρc,s] = xc,sγ.

The δc,s and ρc,s are country-specific parameters which are estimated by maximum likelihood.
In Liu and Raftery (2020), the features used are the sources of the data and the correspond-
ing estimation methods, but the model allows for any user-specified features. This part is
combined with the existing Bayesian hierarchical model implemented in bayesTFR. Here, the
past TFRs are considered as unknown, and are part of the parameters to estimate. The
complete model is described in the Appendix.
If we are using TFR for five-year intervals, as for example in the tfr dataset in the wpp2019
package (United Nations Population Division 2020), the true TFR at any time stamp is
considered to be the linear interpolation of two consecutive five-year TFRs, namely

fc,t = 1
5[(tℓ+5 − t)fc,tℓ

+ (t− tℓ)fc,tℓ+5 ] for any t ∈ [tℓ, tℓ+5] .

If we are estimating from annual TFR, for each observation of the raw data, we take the floor
of t. For example, if an observation in the raw data is recorded at 1975.5, we consider this
observation as an estimate of the calendar year 1975.
Since we are now also modeling the past, not just the future as in the extant method, we need
to model the pre-transition phase (phase I), which is not necessary for projecting the future.
The TFR in this phase will be modeled by a random walk, specified by

fc,t+1 = fc,t + εc,t for t < τc,

where the distributions of the random distortions in each period are given by

εc,t ∼ N(0, s2
t ) .

Here, we simplify the model by setting the variance to be the same as the variance in the first
period of the TFR decrements. This is a reasonable assumption because the starting period
of phase II is linked to phase I, and the expected decline of TFR at the starting period of
phase II is small. Thus, the distortions of TFR share similar behavior.
The estimation of all country-specific parameters and hyperparameters conditional on the
TFRs, other than the TFRs themselves, in the phase II model remains the same as described
by Ševčíková et al. (2011). To estimate past TFR, the model for phase III is estimated
together with the phase II model via an MCMC algorithm (Gelfand and Smith 1990). This
algorithm is a combination of Gibbs sampling, Metropolis-Hastings (for ∆ci in Equation 3
and TFR), and slice sampling steps (Neal 2003).
The estimation yields a set of TFR trajectories about the past. To project into the future, we
apply the existing projection method as described in Ševčíková et al. (2011) starting with the
last estimation period of each trajectory. This is in contrast with the previous version, where
the projection for each country starts from a single data point, namely the last observed TFR.
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2.3. Annual version of bayesTFR
The original model described in Section 2.1 was designed to work with five-year data. Several
modifications needed to be made in order to estimate and project annual data well.
Most importantly, we found that unlike in the five-year version, the residuals of the phase II
model are highly autocorrelated when using annual data. We found that the lag 1 autocor-
relation coefficients are about 0.7 for residuals of phase II model for some major countries.
Thus, we modified the phase II model defined in Equations 1 and 2 by adding an additional
first-order autoregressive component. The random walk with drift model is then specified as

dc,t+1 − g(θc, fc,t+1) = ϕ(dc,t − g(θc, fc,t)) + εc,t. (11)

The prior distribution of ϕ is set to be Uniform(0, 1) and is not country-specific. For the
random distortions εc,t, the distribution is considered to be the same as in Equations 4 and 5.
The same prior distributions as in the five-year version is used for most parameters. One
exception is σ0 where the lower bound was decreased by a factor of the square root of five,
i.e., σ0 ∼ U [0.0045, 0.6]. The upper bound was kept the same to allow for the possibility of
additional correlation.
The definition of the maximum decrement defined in Equation 6 was changed to be one-fifth
of that for the five-year model:

d∗
c = log

(
dc − 0.05
0.5 − dc

)
.

No changes have been made to the model of the post-transition phase of TFR, phase III. It
is modeled by a first-order autoregressive time series model as defined in Equation 7.
The rule for determining the start period of phase II, τc, as defined in Equation 8, was
unchanged. However, since the local maxima are calculated using annual TFR data, the
results can differ from those obtained from a five-year dataset.
To determine the start periods of phase III, λc, as defined in Equation 9, we first obtain
five-year averages of TFR and apply the same rule as in the five-year version, namely that
phase III starts when two consecutive increases of TFR below 2 are observed.

2.4. Changes in TFR projections

There are three main differences in the TFR projections between the new implementation
and the one described by Ševčíková et al. (2011).
The first difference (which we alluded to at the end of Section 2.2), relates to the fact that by
accounting for the past TFR uncertainty (Equation 10), instead of observed point estimates,
the model results in a set of TFR trajectories about the past which changes the starting
values of the forecast. To project fc,T +1 where T is the last period of the estimation, the i-th
sample from the MCMC output is given by f (i)

c,T +1 = f
(i)
c,T − d

(i)
c,T + ε

(i)
c,T . Thus, the uncertainty

in the first forecast period will be wider than if we use a model without accounting for past
uncertainty, in which case f (i)

c,T = fc,T is the same for all trajectories.
The second difference relates to the annual model described in Section 2.3. When the addi-
tional autocorrelation of phase II is taken into account (Equation 11), the past noise is carried
over to the next time period. Specifically, to project fc,t+1 for a country c that is in Phase II
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at time t, the i-th sample is given by f (i)
c,t+1 = f

(i)
c,t − d

(i)
c,t + ε

(i)
c,t, where d(i)

c,t = g(f (i)
c,t ,θ

(i)
c ), and

ε
(i)
c,t is drawn from N(ϕ(i)ε

(i)
c,t−1, σ

(i)(f (i)
c,t )). For the first forecast, i.e., at the time period T +1,

the distortion of the last estimation period T is calculated before starting the projections.
Finally, the last difference regards the updated phase III model as described in Raftery et al.
(2014), where country-specific long-term means µc and autocorrelation coefficients ρc were
incorporated into the model (Equation 7) and estimated by MCMC. However, this change
has been available in bayesTFR since version 3.0-0 was published in 2013. Using this approach,
to project fc,t+1 for a country c that is in phase III at time t, the i-th MCMC sample is drawn
from a normal distribution N

(
µ

(i)
c + ρ

(i)
c (f (i)

c,t − µ
(i)
c ), σ(i),2

)
.

3. Overview of the package updates
The updated package bayesTFR retains all the functionalities of the previous version, which
implements the model of Alkema, Raftery, Gerland, Clark, and Pelletier (2012). Its new
features allow the user to conduct estimation of past TFR while accounting for uncertainty
as described in Liu and Raftery (2020), as well as to forecast TFR for both five-year and
one-year time intervals, as requested by the UN.
These new functionalities are implemented in the form of either new functions or additional
arguments to existing functions. For convenience, especially for users who are familiar with
the previous version of the package, this section summarizes the various changes. For users
who are new to the package we recommend skipping to Section 4 where the usage is explained
in more detail.
The following are established bayesTFR functions that were updated.

• run.tfr.mcmc: This is the core function for MCMC estimation of fertility transition
model parameters. The following optional arguments were added:

– annual: Logical argument determining whether the model is trained based on
annual TFR data (TRUE) or on the five-year data (FALSE). The default is FALSE.

– ar.phase2: Logical argument. If TRUE, Model 11 will be used in the estimation,
and the parameter ϕ will be estimated through the MCMC process. This is relevant
only if annual = TRUE.

– uncertainty: Logical argument determining whether the model described in Liu
and Raftery (2020) is estimated (TRUE) or if the default behavior of treating ob-
served data as true values is used (FALSE). If TRUE, the past TFR values for all
countries and time periods are estimated as additional parameters. Furthermore,
Phase III of the TFR transition model is estimated simultaneously and thus, there
is no need to call run.tfr3.mcmc separately.

– my.tfr.raw.file, covariates, cont_covariates, iso.unbiased: These are ar-
guments relevant to estimating past TFR. They allow the user to pass a file with
raw TFR estimates, to set categorical and continuous covariates for estimating
bias and measurement error variance of raw data, as well as to determine for
which countries the vital registration TFR estimates are considered accurate. The
arguments are considered only if uncertainty = TRUE.
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• tfr.predict: This is the core function for TFR prediction. There was one optional
argument added:

– uncertainty: Logical argument. If TRUE and the corresponding estimation was
produced via run.tfr.mcmc(..., uncertainty = TRUE), then each prediction
trajectory starts from a trajectory representing the past. Otherwise all prediction
trajectories start from the same point, namely the last observed TFR.

• run.tfr.mcmc.extra: Originally, this function has been implemented in order to es-
timate the TFR transition model for very small countries or countries with unusual
historical patterns. These countries were excluded from run.tfr.mcmc in order not
to bias the world parameters, and were estimated separately via this function. In this
update, the function has been extended to recompute past TFR estimates on a country-
specific basis. This allows users to analyze the impact of changes on the raw TFR of
individual countries without needing to run a new simulation for the whole world. Added
arguments to this function have the same meaning as for run.tfr.mcmc:

– uncertainty, my.tfr.raw.file, covariates and cont_covariates,
iso.unbiased

• tfr.trajectories.table, tfr.trajectories.plot: These functions give projection
quantiles in tabular and graphical formats, respectively. They have been extended to
include uncertainty information about the past, if such information exists.

The following are new functions added to the package. They are described in Section 4.4 in
more detail.

• get.tfr.estimation: Allows exploring the estimated trajectories as well as any quan-
tiles of the past TFR estimates.

• tfr.estimation.plot: Function for plotting estimates of past TFR for individual coun-
tries.

• tfr.bias.sd: Allows exploring the bias and standard deviation estimated for the raw
TFR estimates.

4. Using the updated bayesTFR
Previous versions of the bayesTFR package which implemented the model described in Sec-
tion 2.1 have been used by UN analysts and others to train TFR projection models based
on past five-year estimates. New UN requirements added the need to update the package
so that analysts can conduct estimation of past TFR accounting for uncertainty, and make
corresponding forecasts for both five-year and annual time periods.
To make probabilistic TFR projections accounting for past TFR uncertainty, the user will
follow four steps in the following order:

1. Data assembly (optional):
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(a) Prepare a dataset of raw TFR values. By default, the World Fertility Data 2019
(United Nations 2019a) is used.

(b) Assemble a dataset of reference (initial) TFR values for all countries and time
periods. By default, the world population prospects (United Nations 2019b) in the
wpp2019 package is used.

2. Model estimation:

(a) Train linear models to estimate systematic bias and standard deviation for each
observation from the raw TFR dataset.

(b) Given the reference TFR, calculate the start period of phase II and the start period
of Phase III for each country (τc and λc).

(c) Run the MCMC process to obtain posterior samples of the phase II and phase III
model parameters, and posterior samples of the past TFR for all countries.

3. Generate future TFR trajectories as discussed in Section 2.4.

4. Analyze the outputs using a set of functions that summarize, plot, diagnose and export
the results of the three steps above.

As described by Ševčíková et al. (2011), steps 2 and 3 are relatively time-consuming. Adding
the estimation uncertainty feature as well as working with annual estimates adds even more
run time. Even though we optimized the code wherever possible, it takes several hours to
complete these steps in a production-like setting.
The following sections describe the steps above in more detail, especially the parts that are
different from Ševčíková et al. (2011). We will elaborate on how to use the new features,
as well as how to use the package in the original way. We will demonstrate the package
on a realistic example with a relatively large number of MCMC iterations, which might take
several hours to process. Therefore, users who wish to explore the functionality quickly should
reduce the number of iterations to the order of magnitude of 10. However note that since the
Metropolis-Hastings step for the TFR updates will have an acceptance rate of around 30%, a
small number of iterations will result in estimation plots that are less smooth than what we
will present in this article.

4.1. Data assembly and estimation settings

The datasets assembled in this step will be passed to the main estimation function, run.tfr.mcmc,
which now has additional arguments for this purpose. It can be specified what raw TFR data
to use, whether to estimate and predict annually (logical argument annual), and whether to
use the AR(1) model in phase II as defined in Equation 11 (logical argument ar.phase2).
The argument uncertainty = TRUE specifies that uncertainty about the past is incorporated
into the estimation. In this case, a raw TFR dataset can be provided. By default, the World
Fertility Data 2019 (United Nations 2019a) is used. This dataset contains 12, 079 records for
201 countries, each of which includes the corresponding estimation method and data source.
These are then used by the model as data quality covariates in Equation 10.
The default raw TFR dataset can be viewed via
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R> data("rawTFR", package = "bayesTFR")
R> head(rawTFR)

country_code year tfr method source
1 4 1965 7.97 Indirect Census
2 4 1966 8.21 Indirect Census
3 4 1967 8.32 Indirect Census
4 4 1968 8.23 Indirect Census
5 4 1969 8.07 Indirect Census
6 4 1970 7.98 Indirect Census

The default covariates are c("source", "method"). Users can provide their own file and
covariates of their choice. Required columns are country_code, year and tfr. The name of
this file is passed to the argument my.tfr.raw.file, names of categorical variables to the
argument covariates, and names of continuous variables to the argument cont_covariates.
An additional option allows an analyst to specify that vital registration data from selected
countries are unbiased, if there is a belief that these data are not systematically biased in a
particular direction. (Note that this is not the same as saying that these data are perfect.)
The UN country codes of those countries can be passed into the argument iso.unbiased.
In this case, the bias and standard deviation of the records of those countries for which the
source column specifies “VR” (as vital registration) are forced to be equal to 0 and to be near
0, respectively (in practice the standard deviation is set to 0.0161). This option targets fine-
tuning of the estimation of developed countries, especially because the annual TFR estimates
are often not openly accessible.
The second dataset to assemble is a dataset on a reference, or initial, TFR. Its file name is
passed into the argument my.tfr.file. If uncertainty = FALSE, this dataset is considered
in the estimation as the true observed TFR. Otherwise, it is used as the starting points of
TFR in the MCMC process. By default, if my.tfr.file is not given, the tfr dataset from
the wpp2019 package is used for this purpose, which is a five-year dataset. Thus, if annual
= TRUE, a linear interpolation of the default dataset is computed.

4.2. Fitting the TFR model
Most arguments of run.tfr.mcmc remain the same as described in Ševčíková et al. (2011).
Importantly, start.year and present.year set the first and the last year of the time series
included in the computation, respectively. The arguments nr.chains, iters and output.dir
determine the number of chains, the number of iterations and the directory to store the MCMC
simulated values, respectively.
In the prior version of bayesTFR, the function run.tfr.mcmc was designed to obtain a poste-
rior sample of phase II model parameters. The estimation of phase III parameters (as defined
in Equation 7) is implemented in the function run.tfr3.mcmc. When building a full proba-
bilistic model as described in Liu and Raftery (2020), the MCMC steps for updating TFR will
affect both phases. Thus, if uncertainty = TRUE, the new run.tfr.mcmc function combines
the estimation of both phases, and there is no need to invoke the run.tfr3.mcmc function
explicitly. We call this method a “one-step estimation”. However, this is not the case if un-
certainty about the past is not taken into account. In this case, the workflow of estimating
phase II and phase III separately remains and is referred to as a a “two-step estimation”.
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annual uncertainty
TRUE FALSE

TRUE A B
One-step estimation; Two-step estimation;
Phase II-AR(1) allowed Phase II-AR(1) allowed

FALSE C D
One-step estimation Two-step estimation

Table 1: Possible combinations in fitting TFR projection model.

The various combinations of the possible settings of the arguments annual and uncertainty
are summarized in Table 1. We have marked each cell with a letter which will be referred to
in the remainder of this section.
As described in Section 2.3, when using the annual model (cells A and B), adding the autore-
gressive component in phase II as defined in Equation 11 should be considered. The option is
controlled via the logical argument ar.phase2 which should be passed to the run.tfr.mcmc
function. If ar.phase2 is set to TRUE the MCMC process performs an extra slice sampling
step for estimating ϕ, an extra country-independent parameter in the model. The argument
is ignored if annual is FALSE.

Starting a new simulation with two-step estimation
The two-step estimation should be performed if uncertainty about the past is not taken into
account (cells B and D in Table 1). The main differences between cells B and D are the setting
of prior distributions as described in Section 2.3, and whether the autoregressive component
can be included in the model. Here we give an example of a simulation with annual data
(cell B) without the autoregressive component. However, we will not use this example further
in the text, as the main focus of the article is on cell A which will be discussed in the next
section.
Our example simulation consists of three MCMC chains, each of which is 5, 000 iterations
long where thinning is disabled. (As noted earlier, the user is advised to decrease the number
of iterations to the order of ten for faster processing.) We will save the simulation results to
a directory called “annual”.

R> annual <- TRUE
R> nr.chains <- 3
R> total.iter <- 5000
R> thin <- 1
R> simu.dir <- file.path(getwd(), "annual")

The first step is to launch an estimation of phase II:

R> m2 <- run.tfr.mcmc(output.dir = simu.dir, nr.chains = nr.chains,
+ iter = total.iter, thin = thin, annual = annual)

The second step is to start an estimation of phase III:

R> m3 <- run.tfr3.mcmc(sim.dir = simu.dir, nr.chains = nr.chains,
+ iter = total.iter, thin = thin)
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Here, we are using the same number of chains and iterations for phase II and phase III.
However, this is not a requirement, but rather depends on the MCMC convergence. Even the
3 × 5, 000 iterations might be not enough to reach convergence, but will usually give realistic
outputs. Setting total.iter = 62000 or total.iter = "auto" will most likely result in
full convergence.

Starting a new simulation with one-step estimation
We now show an example of a simulation with uncertainty which is performed with one step
only (cells A and C in Table 1). In particular, here we set annual to TRUE (cell A), but the
same function would be used if annual is FALSE (cell C). We will also include the phase II-
AR(1) model (ar.phase2) which would not have any effect in cell C. The results will be saved
in the directory "annual_unc". We will use this simulation throughout the article.

R> annual <- TRUE
R> ar.phase2 <- TRUE
R> nr.chains <- 3
R> total.iter <- 5000
R> thin <- 1
R> simu.dir.unc <- file.path(getwd(), "annual_unc")

As in the previous case, this setting may not be enough to yield fully converged MCMC
simulations, but will still give realistic outputs. The processing time is within a range of a
couple of hours. For faster processing, set total.iter = 50 for a toy simulation. In addition,
the parallel argument can be set to TRUE, in which case the three chains will be processed in
parallel. In Section 5.2, we will give recommendations for settings that yield fully converged
MCMC simulations. When appropriate, we will use results from such converged simulations
to present outputs.
As mentioned in Section 4.1, additional arguments of run.tfr.mcmc allow one to pass user-
specific raw TFR data (my.tfr.raw.file), names of categorical covariates (covariates),
names of continuous covariates (cont_covariates), or to specify countries with unbiased
vital registration data (iso.unbiased). If the iso.unbiased option is used, the covariates
argument should include the variable source, or more specifically, the variable defined by the
argument source.col.name which is source be default. In such a case, the function reduces
the bias and standard deviation of records where the source column specifies “VR”. In our
example we will specify that the VR data of Canada and the USA (codes 124 and 840) are
unbiased.
To estimate both phase II and phase III, one could do

R> m <- run.tfr.mcmc(output.dir = simu.dir.unc, nr.chains = nr.chains,
+ iter = total.iter, annual = annual, thin = thin,
+ uncertainty = TRUE, ar.phase2 = ar.phase2, iso.unbiased = c(124, 840))

In comparison to the two-step model, the training process here has an extra Metropolis-
Hastings step per iteration for generating posterior TFR samples.

Continuing an existing simulation
If an existing simulation needs to be extended by more iterations, one would proceed as in
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the previous version of bayesTFR:

• Use continue.tfr.mcmc if the MCMCs were originally created via run.tfr.mcmc, re-
gardless of whether one is in the one-step or the two-step estimation mode.

• Use continue.tfr3.mcmc if the MCMCs were originally created via run.tfr3.mcmc.

Now suppose we want to extend the simulation in the previous section by 100 iterations.
Then we could do

R> m <- continue.tfr.mcmc(output.dir = simu.dir.unc, iter = 100)

(Set the iter argument to 10 if working with a toy simulation.) This will continue running
both TFR phases in a one-step estimation while inheriting all settings from the original
simulation, including uncertainty, annual, ar.phase2 or settings about the raw data. At
the end of the processing, each chain will be 5, 100 iterations long.

4.3. Generating projections

The main function for generating projections is called tfr.predict. The new version of the
package adds the argument uncertainty. If it is TRUE and the model was estimated taking
uncertainty about the past into consideration, then that past uncertainty will be carried over
to the projections. In this case, each future trajectory starts from a trajectory representing
the past.
Suppose we want to generate projections represented by 1, 000 posterior trajectories until
the year 2100 based on the simulation stored in the directory given by simu.dir.unc, with
burn-in of the first 2, 100 iterations for each chain. This can be done using the following
command:

R> pred <- tfr.predict(sim.dir = simu.dir.unc, end.year = 2100,
+ burnin = 2100, nr.traj = 1000, uncertainty = TRUE)

The function takes the existing 5, 100 iterations in each chain, removes the first 2, 100 values
and generates 1, 000 TFR trajectories based on 1, 000 equally spaced parameter values and
past TFR, out of the remaining 3, 000 × 3 = 9, 000 iterations. For a toy simulation, use
burnin = 20 and nr.traj = 50.
If uncertainty is set to FALSE, all future trajectories start from the last observed data point.
If the estimation process accounted for uncertainty, but the projection does not, the starting
value of the projections is the initial TFR value for the last observed time period. This is
however not recommended but may serve the purpose of apples-to-apples comparisons.

4.4. Analyzing results

If results are to be explored at a later time point, one can load the estimation object from
disk using the command

R> m <- get.tfr.mcmc(simu.dir.unc)
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For one-step estimation, this object contains information about both phases. For a two-step
simulation, or if the phase III object is to be extracted explicitly, use

R> m3 <- get.tfr3.mcmc(simu.dir.unc)

Similarly, to load the prediction object from disk, do

R> pred <- get.tfr.prediction(simu.dir.unc)

Summary functions

For the summary statistics of the estimation object in this section, we will use the following
thinning and burn in settings:

R> thin <- 3
R> burnin <- 2100

Use thin <- 1 and burnin <- 20 if you’re working with the toy simulation.
To view a summary of country-independent parameters, one can use

R> summary(m, thin = thin, burnin = burnin)

Since the object m was got by one-step estimation, the output includes estimation summaries
for both phases. In comparison to the previous version of the package, phase II contains one
additional parameter, namely "rho_phase2" which represents ϕ in Model 11. As with any
other parameter, the name, or multiple parameter names, can be passed to the function to
view summary statistics for those selected parameters.

R> summary(m, par.names = c("rho_phase2", "sigma0"), thin = thin,
+ burnin = burnin)

MCMCs of phase II
=================
Number of countries: 201
Hyperparameters estimated using 201 countries.
WPP: 2019
Input data: TFR for period 1950-2020
Time interval: annual

Iterations = 2103:5100
Thinning interval = 3
Number of chains = 3
Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:
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Mean SD Naive SE Time-series SE
rho_phase2 0.6753 0.09237 0.0016864 0.008547
sigma0 0.0606 0.01477 0.0002696 0.001473

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
rho_phase2 0.47033 0.67203 0.69641 0.71269 0.73374
sigma0 0.05062 0.05485 0.05793 0.06168 0.08991

The full list of parameter names for phase II can be obtained via

R> tfr.parameter.names(meta = m$meta)

[1] "alpha" "alphat" "delta" "Triangle4" "delta4"
[6] "psi" "chi" "a_sd" "b_sd" "const_sd"

[11] "S_sd" "sigma0" "mean_eps_tau" "sd_eps_tau" "rho_phase2"

Passing the meta argument is needed to identify that the simulation contains a phase II-AR(1)
estimation, and thus it contains the "rho_phase2" parameter. Phase III parameter names
are not dependent on the simulation, thus no meta argument is needed:

R> tfr3.parameter.names()

[1] "mu" "rho" "sigma.mu" "sigma.rho" "sigma.eps"

Specifying a country in the summary function will show results for the country-specific pa-
rameters of that country. This is done via the country argument which accepts either the
name or the numerical code of the country, as well as an ISO-2 or ISO-3 character code. This
is the case for any function in the package that accepts the country argument, as is shown
throughout the paper.
As for the parameters to summarize, functions tfr.parameter.names.cs() and
tfr3.parameter.names.cs() list the allowed parameter names for phase II and phase III,
respectively. For a simulation that took into account uncertainty about the past, there is
an additional country-specific parameter, called "tfr", capturing that uncertainty. It is not
listed explicitly via the above functions, but it can be explored like any other parameter. For
the summary function it means passing it to the par.names.cs argument. For example, to
view summary statistics of TFR estimation for Nigeria, we can do

R> summary(m, country = "Nigeria", par.names.cs = "tfr", thin = thin,
+ burnin = burnin)

The tabular sections of the output contain one row per past observed period each (by de-
fault 71, i.e., from 1950 to 2020). To select a subset we can specify which time periods we
are interested in as tfr_<time>. For example, to view results for time periods 1, 30 and 70
(corresponding to 1950, 1979 and 2019) we do
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R> summary(m, country = "Nigeria", par.names.cs = c("tfr_1", "tfr_30",
+ "tfr_70"), thin = thin, burnin = burnin)

...
1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE
tfr_1_c566 6.371 0.19266 0.003518 0.025403
tfr_30_c566 6.740 0.07461 0.001362 0.009197
tfr_70_c566 5.200 0.26172 0.004778 0.099382

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
tfr_1_c566 5.931 6.262 6.378 6.493 6.745
tfr_30_c566 6.587 6.689 6.741 6.796 6.876
tfr_70_c566 4.824 4.968 5.189 5.374 5.779

Exploring TFR estimation

In addition to summary statistics, one can explore the estimated trajectories as well as any
quantiles of the past TFR estimates. For example,

R> nigeria_obj <- get.tfr.estimation(country = "NG", sim.dir = simu.dir.unc,
+ burnin = burnin, thin = thin, probs = c(0.025, 0.1, 0.5, 0.9, 0.975))

returns a list where trajectories are contained in the element tfr_table. The number of rows
corresponds to the number of trajectories (here 3000 = 3[chains] · (5100 − 2100)/3[thin], or
120 = 3(60 − 20) for the toy simulation), while columns correspond to time periods (here 71).

R> dim(nigeria_obj$tfr_table)

[1] 3000 71

The quantiles are contained in the element tfr_quantile:

R> head(nigeria_obj$tfr_quantile)

2.5% 10% 50% 90% 97.5% year
1: 5.931205 6.134300 6.377760 6.614433 6.744657 1950
2: 5.977130 6.148832 6.383231 6.580278 6.701673 1951
3: 6.021235 6.168258 6.387442 6.579906 6.665112 1952
4: 6.039646 6.181161 6.376453 6.577242 6.684508 1953
5: 6.094877 6.163529 6.367027 6.599665 6.699566 1954
6: 6.052390 6.171088 6.359326 6.598861 6.691794 1955
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Figure 1: Annual TFR estimation for Nigeria (left panel) and the United States (right panel),
resulting from a converged simulation. The red line shows the posterior median, while the
red shaded area shows the pointwise 80% intervals, and the pink shaded areas shows the
corresponding 95% intervals. The UN’s 2019 WPP (interpolated) five-year estimates are
shown by the black line.

This element is missing if the probs argument is not given.
For example, to plot the estimation with user-defined intervals, do:

R> plot <- tfr.estimation.plot(country = 566, sim.dir = simu.dir.unc,
+ burnin = burnin, thin = thin, pis = c(80, 95), plot.raw = TRUE)
R> print(plot)

The function uses the ggplot2 package (Wickham 2016) to visualize estimation uncertainty.
Figure 1 shows results of the function call for Nigeria (as above) and the USA (country =
840 or country = "USA") using a converged simulation.
Several arguments in this function need to be clarified:

• sim.dir: Users can specify the location of the simulation set, or use the mcmc.list
argument to pass the m object directly. For example
tfr.estimation.plot(mcmc.list = m, ...).

• pis: Specifies which probability intervals will be plotted. It is a vector of at most two
elements.

• plot.raw: Logical argument which determines whether the raw data used for estimating
past uncertainty are plotted. If TRUE and the estimation process was not based on the
default data, it is recommended to provide the argument grouping, which should be
one of the categorical covariates in the raw data set. This covariate defines the color
and shape of the points, as seen in Figure 1 where the default grouping is the source
column of the rawTFR dataset.

• save.image: (not used in the call above) If TRUE, the plot will be saved as a PDF file in
the directory specified in the argument plot.dir, named "tfr_country<code>.pdf".
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Estimate Std. Error t value P(> |t|)
(Intercept) −0.43 0.10 −4.37 0.00
covariate_1DHS-NS −0.31 0.17 −1.76 0.09
covariate_1Estimate −0.14 0.37 −0.39 0.70
covariate_1MICS 0.72 0.27 2.68 0.01
covariate_1MIS 0.29 0.16 1.79 0.08
covariate_1Survey −0.21 0.23 −0.94 0.35
covariate_1WFS −0.18 0.17 −1.06 0.30
covariate_2Indirect 0.80 0.11 7.05 0.00

Table 2: Linear model for bias obtained from summary(bias_sd$model_bias) for Nigeria.

Method Source Bias Std
Indirect WFS 0.18 0.13
Indirect DHS-NS 0.06 0.09
Direct Survey −0.64 0.64
Indirect DHS 0.37 0.28
Direct WFS −0.61 0.61
Direct DHS-NS −0.74 0.74

Table 3: Bias and standard deviation of each observation obtained from bias_sd$table for
Nigeria.

Exploring bias and standard deviation of observations

Information about the bias and standard deviation of observations will give users an indication
of the quality of the observations and whether these quantities were poorly estimated.
Now suppose we are interested in the bias and standard deviation estimates of the observations
for Nigeria. Then we could use

R> bias_sd <- tfr.bias.sd(sim.dir = simu.dir.unc, country = 566)

The function will return a list with elements model_bias, model_sd and table. The
model_bias and model_sd objects are of class ‘lm’ and contain the linear models used to
estimate the bias and standard deviation, respectively, while the ‘table’ object includes the
observed data points, data quality covariates, and the actual estimates for the specified coun-
try, here for Nigeria.

R> summary(bias_sd$model_bias)
R> head(bias_sd$table)

The results are shown in Tables 2 and 3.
To generate the estimates in the ‘table’ object, the predict S3 method is applied to the
‘model_*’ objects. Then the following steps are performed:

1. For some countries, the number of data points is very small for several groups. This
could lead to a large bias, but a very small variance. As a result, the estimation
will be unreasonably concentrated on the bias-adjusted data points. In this case, the
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standard deviation estimates were adjusted as max(0.1, |bias|/2). The reason for such
an adjustment is that it is unlikely that one observation is very biased but with a very
small relative standard deviation. It is also unlikely that there is a source of data that
is very precise (with standard deviation less than 0.1), but is only collected once.

2. For countries included in iso.unbiased, the model estimates are overwritten with zero
or close to zero values as explained in Section 4.1.

3. Duplicates are dropped so that the combinations of data quality covariates are unique.

The output can help to detect problematic estimates on certain data points so that adjust-
ments can be made by the analyst if necessary. In the example above, the estimated bias and
standard deviation for the Indirect method and nationwide DHS surveys were 0.06 and 0.09,
respectively. These estimates were derived based on only three data points in this category,
and all of them were very close to the UN estimates (three of the brown dots in Figure 1 in
year 1969, 1974 and 1979). Since the number of data points from nationwide DHS estimates
is small (3 data points), the estimated bias (0.06) and standard deviation (0.09) may be too
small.

Exploring TFR prediction

Plotting the posterior sample of projected TFR trajectories is done via the
tfr.trajectories.plot function. The updated version of the package incorporates uncer-
tainty about the past, if taken into account in the estimation and projection. For example,
to plot the prediction of TFR for Burkina Faso contained in the pred object created in
Section 4.3 or at the beginning of Section 4.4, use

R> tfr.trajectories.plot(pred, country = "Burkina Faso", nr.traj = 20,
+ pi = c(80, 95), uncertainty = TRUE)
R> tfr.trajectories.plot(pred, country = "Burkina Faso", nr.traj = 20,
+ pi = c(80, 95), uncertainty = FALSE)

Here, the parameter uncertainty is used to specify whether the uncertainty about the past
TFR should be plotted together with the prediction. If uncertainty is TRUE, the optional
parameters thin, burnin, col_unc can be used to define the burn-in, thinning and the
color for the past uncertainty plot.
The code above applied to a converged simulation results in the plots shown in Figure 2.
If the user selects uncertainty = FALSE for a simulation where past uncertainty was taken
into account (similarly to the right panel of Figure 2), the past TFR used for the initialization
of the model is shown as the observed TFR. In this case, there could be a discontinuity between
the last observed and the first projected time period.
These new arguments are also accepted by the tfr.trajectories.plot.all function which
generates projection plots for all countries at once, as described by Ševčíková et al. (2011).
TFR predictions in a tabular format can be explored using the tfr.trajectories.table
and summary functions which work the same way as in the previous versions of the package,
except that in the former case, the output now contains uncertainty information about the
past.
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Figure 2: TFR prediction (from a converged simulation) for Burkina Faso with uncertainty
about the past TFR (left panel) and without it (right panel). The black dots in the right panel
represent the TFR used for initializing the simulation. In both panels, the red curves (solid,
dashed and dotted) show the probabilistic prediction (median, 80% and 95% probability
intervals), while the blue lines show the traditional UN scenarios of adding and removing a
half a child to/from the main projection, here the median TFR.

R> tfr.trajectories.table(pred, country = "Burkina Faso")

median 0.025 0.1 0.9 0.975 -0.5child +0.5child
1950 6.655622 5.920312 6.096360 7.150919 7.325010 NA NA
1951 6.652163 5.898786 6.121541 7.164751 7.290802 NA NA
1952 6.649168 5.910383 6.125930 7.111552 7.235108 NA NA
1953 6.642280 5.929401 6.130181 7.080910 7.200169 NA NA
1954 6.652158 5.961541 6.152881 7.044679 7.167199 NA NA
...
2095 1.912930 1.196287 1.508627 2.863504 3.516937 1.412930 2.412930
2096 1.902512 1.235173 1.499763 2.864060 3.482927 1.402512 2.402512
2097 1.904649 1.216530 1.492337 2.839775 3.470921 1.404649 2.404649
2098 1.897675 1.239371 1.488701 2.818639 3.458704 1.397675 2.397675
2099 1.899654 1.229692 1.510012 2.767684 3.514113 1.399654 2.399654
2100 1.887052 1.226206 1.500331 2.749430 3.537936 1.387052 2.387052

R> summary(pred, country = "Burkina Faso")

Projections: 80 ( 2021 - 2100 )
Trajectories: 1000
Phase II burnin: 2100
Phase II thin: 9
Phase III burnin: 2100
Phase III thin: 9

Country: Burkina Faso
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Figure 3: Estimated double logistic curves (from a converged simulation) for Burkina Faso
(left panel) and Thailand (right panel). The data points (black dots and squares) are the
estimated median decrements per year.

Projected TFR:
mean SD 2.5% 5% 10% 25% 50% 75% 90% 95% 97.5%

2020 4.87 0.277 4.17 4.33 4.54 4.71 4.89 5.05 5.21 5.32 5.39
2021 4.77 0.334 3.96 4.12 4.36 4.57 4.78 4.98 5.17 5.28 5.38
2022 4.66 0.384 3.77 3.98 4.17 4.43 4.68 4.91 5.12 5.27 5.35
2023 4.56 0.434 3.57 3.82 3.99 4.29 4.58 4.85 5.09 5.24 5.36
...

Exploring double logistic function

The double logistic function defined in Equation 3 can be viewed using

R> DLcurve.plot(country = "BFA", mcmc.list = m, burnin = burnin,
+ pi = c(95, 80), nr.curves = 100)

Results can be seen in the left panel of Figure 3, while the right panel shows the result of the
same call with country = "Thailand".
If a simulation contains information about past uncertainty, then the phase II and I data
(black dots and squares) represent decrements of the estimated TFR median. In case of an
annual simulation, these are annual decrements, otherwise they would correspond to five-year
decrements. If the projections were produced without taking past uncertainty into account,
then the data points represent the observed decrements.
This also applies to the DLcurve.plot.all function which plots the double logistic curves
for all countries at once.

MCMC traces, density and diagnosis

To explore traces of the MCMC parameters, the existing functions tfr.partraces.plot (for
country-independent parameters) and tfr.partraces.cs.plot (for country-specific param-
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Figure 4: Trace plots for ϕ (left panel) and TFR of Nigeria in 1985 (right panel).
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Figure 5: Density plots for ϕ (left panel) and TFR of Nigeria in 1985 (right panel).

eters) can be used. Similarly, for density plots, tfr.pardensity.plot and tfr.pardensity.
cs.plot are available.
As mentioned previously, there are two additional parameters in this version of the package,
namely "rho_phase2", which is country-independent and defined in Model 11, and "tfr"
which is a country-specific parameter. These two parameters can be used within the afore-
mentioned functions, like any other parameters.
For example, the trace plots and the density plots of ϕ and Nigeria’s TFR estimate in year
1985 (as shown in Figures 4 and 5) can be visualized via

R> tfr.partraces.plot(m, par.names = "rho_phase2", nr.points = 200)
R> tfr.partraces.cs.plot(m, country = "Nigeria", par.names = "tfr_36",
+ nr.points = 200)
R> tfr.pardensity.plot(m, par.names = "rho_phase2", burnin = burnin)
R> tfr.pardensity.cs.plot(m, country = "Nigeria", par.names = "tfr_36",
+ burnin = burnin)
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To check if the MCMC algorithm has converged and adequately explored the parameter
space, the tfr.diagnose function can be used; see Ševčíková et al. (2011) for more details.
In the case of one-step estimation, the function checks parameters from phase II as well as
Phase III. In the case of two-step estimation, one would use tfr.diagnose for assessing the
convergence of phase II parameters, and tfr3.diagnose for assessing the convergence of
phase III parameters. Both functions accept a logical argument express which can disable
or reduce the checking of country-specific parameters in order to speed up the process.
If the estimation includes uncertainty about the past, the assessment of country-specific pa-
rameters include the "tfr" parameter for each country and time period, in our case more
than 14, 200 "tfr" parameters. In practice, it is often impossible to achieve convergence
for all of them. Thus, we introduced the rule of accepting the "tfr" parameters as having
converged if 95% of them have converged.
To apply the convergence diagnostics to our simulation, one could do

R> tfr.diagnose(simu.dir.unc, thin = thin, burnin = burnin, express = TRUE)

As mentioned earlier, in our illustrative code examples the MCMC algorithm has not been
run for long enough to achieve full convergence. See Section 5.2 for alternative settings. Note
that the toy simulation we proposed earlier cannot be checked for convergence, as there is a
requirement of a minimum number of iterations per chain, which the toy simulation does not
satisfy.

4.5. Estimating a small set of countries

The Bayesian framework we have shown so far is designed to estimate all countries of the world
at once, where the historical experience of an individual country influences the distribution
of its own parameters as well as of the world parameters, while using the same settings for
all countries. However, this is not always practical for several reasons:

1. Analysts might want to experiment with settings for individual countries without wait-
ing several hours for a simulation of the whole world to finish.

2. Different sets of covariates might be needed to estimate different countries.

3. Countries with unusual historical patterns or very small countries might be excluded
from the simulation in order not to bias the world parameters.

It was the last reason, as well as the need to include aggregations in the estimation, that mo-
tivated us to implement the run.tfr.mcmc.extra function in the original version of the pack-
age. The idea is that, while run.tfr.mcmc updates all parameters, the run.tfr.mcmc.extra
function updates only the country-specific parameters of the specified countries, while re-using
the existing distribution of the global parameters.
Since the function was designed for special cases of countries or aggregations, the original
implementation allowed the user to process only the locations that had not been included in
the world simulation. With the two additional use cases above, we have now relaxed that
restriction and made it possible to rerun and overwrite existing estimations of country-specific
parameters and past TFR estimates for individual countries, while allowing the user to change



24 bayesTFR Update: Annual Total Fertility Rate Accounting for Past Uncertainty

various estimation settings. However, several global settings are not subject to change, such
as switching between annual and five-year estimation, or changing the ar.phase2 argument.
Suppose that after running the simulation with the default data from the World Fertility Data,
the user wishes to experiment with their own data that exclude Nigeria’s questionable data
points, such as the Indirect DHS-NS data points identified in Table 3 as having unreasonably
low standard deviations and biases. Unlike in the main simulation, the experiment will not
force the vital registration (VR) data of the United States to have zero bias and variance. For
that purpose, we will extract data for Nigeria (code 566) and the USA (code 840) from the
default raw dataset discussed in Section 4.1, remove the Indirect DHS-NS points for Nigeria
and store them into a file called "raw_tfr_user.csv":

R> countries <- c(566, 840)
R> myrawTFR <- subset(rawTFR, country_code %in% countries)
R> myrawTFR <- subset(myrawTFR, !(country_code == 566
+ & method == "Indirect" & source == "DHS-NS"))
R> write.csv(myrawTFR, file = "raw_tfr_user.csv", row.names = FALSE)

For experimentation with the run.tfr.mcmc.extra function, we recommend copying the
main simulation into a different directory and applying the function to the copy. This is
because the processing overwrites the existing estimation results, and thus there is no way
back to the original results in case the experiments do not yield satisfactory outputs. Here we
will append "_extra" to the directory name stored in simu.dir.unc and copy the content
from simu.dir.unc into it. This step is equivalent to the command "cp -r annual_unc
annual_unc_extra" on unix-based systems:

R> simu.dir.extra <- paste0(simu.dir.unc, "_extra")
R> dir.create(simu.dir.extra)
R> file.copy(list.files(simu.dir.unc, full.names = TRUE), simu.dir.extra,
+ recursive = TRUE)

To run the new estimation for the two selected countries, we can do

R> run.tfr.mcmc.extra(sim.dir = simu.dir.extra, countries = countries,
+ iter = total.iter, burnin = burnin, uncertainty = TRUE,
+ my.tfr.raw.file = "raw_tfr_user.csv",
+ covariates = c("source", "method"))

We recommend using the same values of total.iter and burnin as in the main simulation.
To compare the new estimation results to those shown in Figure 1 we again use the
tfr.estimation.plot function, now passing simu.dir.extra into the sim.dir argument.
It can be seen in the left panel of Figure 6 that excluding the Indirect DHS-NS data points for
Nigeria changed the estimates, especially for 1979. The uncertainty increased for the United
States (right panel of Figure 6), since it was removed from the iso.unbiased set.
Finally, the option uncertainty = TRUE can be used even in two-step estimation where
uncertainty about the past was not taken into account. This is possible because we do not
expect the global parameters to be significantly different in the two situations (i.e., with and
without uncertainty).
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Figure 6: TFR estimation for Nigeria (left panel) and the United States (right panel), resulting
from a non-converged simulation with modified data set.

4.6. Structure of the output directory

Having a look at the simulation directory, here annual_unc, one should see a structure similar
to the following:

annual_unc
bayesTFR.mcmc.meta.rda
diagnostics
mc1
mc2
mc3
phaseIII

bayesTFR.mcmc.meta.rda
mc1
mc2
mc3

predictions
thinned_mcmc_9_2100

bayesTFR.mcmc.meta.rda
mc1

The directories mc1, mc2 and mc3 on the first level are generated by the run.tfr.mcmc func-
tion and contain results from the three chains of the Phase II estimation. Each of the di-
rectories contains one text file per parameter. The names of the hyperparameters and their
corresponding notation are the same as described in Table 1 in Ševčíková et al. (2011). In
addition, the parameter rho_phase2 representing ϕ from Equation 11 is also stored as a
hyperparameter if the phase II-AR(1) is considered. The names of the files storing country-
independent parameters consist of the parameter name and the suffix ".txt", while in the
case of the files storing country-specific parameters the parameter name is followed by the
suffix "_country<code>.txt".
If uncertainty is taken into account, the MCMC algorithm also generates estimates for the
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µ̄ ρ̄ σµ σρ σε

mu rho sigma.mu sigma.rho sigma.eps

Table 4: Country-independent parameters for phase III in Model 7, with their corresponding
names in the code. They can be obtained using tfr3.parameter.names().

µc ρc

mu.c rho.c

Table 5: Country-specific parameters for phase III in Model 7, with their corresponding names
in the code. They can be obtained using tfr3.parameter.names.cs().

past TFR data. These samples are considered as country-specific parameters, called "tfr",
and thus stored in files "tfr_country<code>.txt". They contain matrices of size the number
of (thinned) iteration times the number of time periods. In the example above, the default
starting year is 1950, and the present year is 2020, i.e., 71 years. Therefore, each file contains
TFR estimates in 5, 100 rows and 71 columns.
The file "bayesTFR.mcmc.meta.rda" on the first level stores meta information about the
phase II estimation, which is contained in the m$meta object. If uncertainty is taken into
account, the raw data used to obtain the estimates of TFR are stored as an additional element,
called raw_data.original. A logical element ar.phase2 indicates whether the autoregressive
component of phase II is considered in the estimation. In order to allow users to work with
different subsets of countries with the same base of global estimates, information indicating
whether the countries were processed separately has been also stored in the meta object. It
is accessible via the extra element, created only if the run.tfr.mcmc.extra function has
been invoked and if uncertainty is TRUE. Here, extra_iter and extra_thin are used to
retrieve the settings for specific countries. The raw data in this case are stored in a list called
raw_data_extra. It is overwritten every time run.tfr.mcmc.extra is called for the same
country.
The results of phase III are stored in the directory "phaseIII". It has the same structure as
described above. It is generated either by the run.tfr.mcmc function in case of a one-step
estimation, or by the run.tfr3.mcmc function, in case of a two-step estimation. The meta file
contains meta information related to the phase III estimation. In the "mcx" directories, the
names of the hyperparameters and their notations for phase III are listed in Table 4. Similarly,
the country-specific parameters and their notations are listed in Table 5. All files in this case
contain one value per (thinned) iteration. Note that the country-specific parameters for
phase III are only estimated for countries which are already in phase III, which in our case is
41 countries.
The "predictions" directory is created by the pop.predict function and it holds binary
files, one per country, each containing the predicted TFR trajectories for that country.
Other convenience directories might have been created for speeding up processing. For ex-
ample, the "thinned_mcmc_9_2100" directory was created by pop.predict to hold the final
chain for each parameter derived by applying the burnin, thinning and collapsing the three
chains into one, in order to generate the predictions. Since we asked to generate 1, 000 poste-
rior TFR trajectories with burnin of 2, 100 iterations, a thinning of 9 was applied to retrieve
those trajectories: 3 · (5, 100 − 2, 100)/9 = 1, 000. Thus, the parameter files in the "mc1"
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subdirectory here all contain 1, 000 rows. Note that these values will differ when working
with a toy simulation.
If functions for convergence diagnostics have been used, the simulation directory contains a
folder "diagnostics" which holds results from these runs, one file per unique combination
of thin and burnin.

5. Experiments
We have shown how the updated bayesTFR package can handle different versions of the
TFR projection model. In this section, we will present results of experiments under different
settings and discuss the implications of these settings. Based on those experiments we will
give recommendations for a reasonable configuration of the model. Finally, we will discuss
future directions in the development of the package.

5.1. Experiments with settings

The new version of bayesTFR allows the user to handle different types of modeling needs,
summarized in Table 1. An analyst can choose between a five-year and an annual model, as
well as between accounting for past uncertainty or not. Flexibility is added by allowing the
user to treat VR records for selected countries as unbiased, as well as using the autoregressive
component in phase II.
However, a question of consistency of results between the various settings may arise. For
example, a forecast should not change dramatically when switching from five-year to annual
data. Currently, there are no annual observations collected for all countries, and only a
few countries (such as New Zealand) have good annual VR data, the only available annual
observations. Thus, if past uncertainty is not taken into account the model would be estimated
on some version of interpolated data for most countries.

Countries in phase III with good records

The first major difference can be seen for countries in phase III, especially for countries with
high quality VR records. We take Switzerland as an example. The left panel of Figure 7
shows TFR projections for a five-year model without accounting for past uncertainty (cell D
in Table 1), while the right panel shows results from an annual model with uncertainty about
the past (cell A in Table 1). It can be seen that the results on the right yield wider probability
intervals. For countries like Switzerland, the bias and uncertainty of past estimation is very
low. Since the estimating process takes the linear interpolated TFR as the reference, the
process can add extra bias to these data. Even though this is not large, the uncertainty
propagated from the beginning of the forecast period could lead to a large difference.
Now we consider the VR records for a set of selected countries (OECD and some developed
countries as unbiased; the list can be found in the Appendix). The corresponding TFR
projections for Switzerland are shown in the right panel of Figure 8.
It can be seen that when compared to results from a five-year model (left panel), the differences
between the two sets of projections are negligible. It is important especially for countries with
nearly perfect historical data, such as Switzerland, that similar results be obtained whether
annual or five-year data are used.
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Figure 7: TFR predictions for Switzerland. Left panel: Original five-year model without
accounting for past uncertainty. Right panel: Annual model with past uncertainty.
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Figure 8: TFR prediction of Switzerland. Left panel: Original five-year model without
accounting for past uncertainty. Right panel: Annual model with past uncertainty, with
assuming VR records of selected countries (including Switzerland) as unbiased.

Countries in phase II

The second major difference relates to countries in phase II, such as Nigeria. Figure 9 shows
the difference between a projection resulting from a five-year model without accounting for
past uncertainty (left panel) and from an annual model with uncertainty about the past
without applying the phase II-AR(1) component.
It can be seen that if we account for uncertainty and use annual data, the prediction shows
a faster decline. Without performing an out-of-sample validation, it is impossible to say
which of these projections is better. Nevertheless, a more detailed analysis revealed that the
posterior median of the residuals εc,t for all countries in Model 2 is highly autocorrelated.
Figure 10 summarizes the estimates.
This suggests including the autocorrelation process in the modeling as defined in Equation 11.
Figure 11 summarizes the differences. The decline has become slower, which is more in line
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Figure 9: TFR prediction of Nigeria. Left panel: Original five-year model without accounting
for past uncertainty. Right panel: Annual model with past uncertainty without phase II-
AR(1).
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Figure 10: Histogram of autocorrelation for median phase II residuals of all countries.

with the five-year projections.
It can be seen however, that the starting point of the projections (year 2020) is now lower,
and in fact it is significantly lower than the current UN estimates. The standard deviation
of ε in Model 11 is less than 0.02, if the autoregressive component is included. This could be
problematic, given that for developed countries with low TFR and relatively stable societies,
the standard deviation of annual TFR changes is about twice as much as 0.02. This is likely a
result of a possible smoothing of the data. To remedy that, we introduce a new lower bound
on the σ0 parameter (argument sigma0.min in run.tfr.mcmc) of 0.04, which becomes the
new default. Figure 12 shows the relevant differences.
If the lower bound on σ0 is applied, the prediction yields wider probability intervals as well as
a higher median (top right panel), which better matches the five-year forecast. The estimation
in this case (bottom right panel) also shows a better match with the raw data as well as with
the UN estimates, which is another argument for using the new default for sigma0.min.
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Figure 11: TFR prediction for Nigeria resulting from an annual model with past uncertainty
without phase II-AR(1) (left panel) and with phase II-AR(1) (right panel).
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Figure 12: TFR prediction (top row) and estimation (bottom row) for Nigeria from an annual
model with uncertainty with autoregressive component. Left column: without lower bound
on σ0. Right column: with sigma0.min = 0.04.
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5.2. Recommendations

We have shown the flexibility of the new version of bayesTFR which can incorporate different
variations of the TFR model as well as being compatible with the extant version of the
model. As one of the key components in population projections currently adopted by the
United Nations, this is a key step for migrating population projections from a five-year basis
to an annual one. The package is designed to support UN analysts in this process, as well as
to give other researchers and practitioners a tool to generate their own projections.
In addition to incorporating past uncertainty of TFR in the forecast, and performing annual-
based projections, the package has introduced two other important components, namely the
ability to specify VR data as unbiased, and the autoregressive component in phase II. In
Section 5.1, we have described the reasoning behind these two new options, as well as for
setting a lower bound on the standard deviation.
Based on our experiments and analysis, when using the annual model with uncertainty about
the past in a production-like setting, i.e., if full convergence of the MCMC algorithm is desired,
we recommend the following settings:

R> annual <- TRUE
R> nr.chains <- 3
R> total.iter <- 62000
R> thin <- 10
R> burnin <- 2000
R> iso.goodvr <- c(36, 40, 56, 124, 203, 208, 246, 250, 276, 300, 352, 372,
+ 380, 392, 410, 428, 442, 528, 554, 578, 620, 724, 752, 756, 792, 826,
+ 840)
R> m <- run.tfr.mcmc(output.dir = simu.dir.unc, nr.chains =
+ nr.chains, iter = total.iter, annual = annual, thin = thin,
+ uncertainty = TRUE, ar.phase2 = TRUE, iso.unbiased = iso.goodvr,
+ parallel = TRUE)
R> pred <- tfr.predict(sim.dir = simu.dir.unc, end.year = 2100,
+ burnin = burnin, nr.traj = 1000, uncertainty = TRUE)

The ISO codes listed include most European countries, Australia, Japan, South Korea, New
Zealand and the United States. These countries have a long history of vital registration with
coverage rates often around 99%, indicating that their observations have been of high quality.
You should expect a full simulation with these settings to run for several days. Thus, we
recommend processing it by a batch script in the background, so that it can be left unattended.

6. Discussion
In this article, we have described the latest major update of the R package bayesTFR. This
update significantly enriches the modeling framework in the previous version of the package,
and gives analysts the flexibility to account for past TFR uncertainty, use annual data, and
allow for an autoregressive model in phase II. Moreover, by making use of the vectorization
nature of R (R Core Team 2023), the computational cost has been kept at a reasonable
level while making the model more sophisticated. New functions for visualizing estimation
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results, as well as updated analysis tools will further support analysts in exploring the package
outputs.
On the package development side, there are at least two major areas for future improvements.
The first is modeling age-specific fertility rates with past uncertainty which is of interest to de-
mographers. The second would be further vectorizing the MCMC process. If past uncertainty
is included in the model, updating the estimates of TFR is the most time-consuming part of
the process. Since we consider each past TFR per country and time period as a parameter, it
adds over 14, 000 parameters in the annual case. Thus, the speed of the Metropolis-Hastings
step for updating TFR plays a big role in determining the overall speed of the method. If past
uncertainty is not included, updates of country-specific parameters dominate the computing
time, and thus are subject to further optimization.
On the modeling side, there are also two obvious directions for improvement. First, instead
of modeling the bias and standard deviation based on linear regression for each country
separately, these could be folded into the process, giving a fully united probabilistic model.
A pooled version could yield more robust estimates, especially given the small amount of
data in some surveys. Another direction is related to the completeness of the VR data. The
completeness of VR coverage is the most important factor for how precise the VR records are,
and this is an important consideration for VR but not for other surveys. Due to the low bias
of high quality vital registration systems, more research could be done on how to incorporate
this information in the model.
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A. Prior distributions
Here we provide a full description of the Bayesian hierarchical model, which was summarized
in the main text for annual model. Level 1 is used if uncertainty = TRUE:

Level 1: yc,t,s | fc,t ∼ N (fc,t + δc,s, ρ
2
c,s) ,

E[δc,s] = xc,sβ ,

E[ρc,s] = xc,sγ ;
Level 2: Phase I: fc,t = fc,t−1 + εc,t ,

Phase II: fc,t = fc,t−1 − dc,t−1 ,

ar.phase2 = FALSE : dc,t = gc,t + εc,t ,

ar.phase2 = TRUE : dc,t − gc,t = ϕ(dc,t−1 − gc,t−1) + εc,t ,

Phase III: fc,t = µc + ρc(fc,t−1 − µc) + εc,t ,

θc = (∆c1,∆c2,∆c3,∆c4, dc)
εc,t ∼ N (0, σ2

c,t) ,

g(fc,t | θc) = − dc

1 + exp
(
−2 ln(9)

∆c1
(fc,t −

∑
i ∆ci + 0.5∆c1)

)
+ dc

1 + exp
(
−2 ln(9)

∆c3
(fc,t − ∆c4 − 0.5∆c3)

)
The country-specific variance, σc,t, varies according to the phase and the current fertility
level, as follows:

σc,t = c1975(t)
(
σ0 + (fc,t − S)(−aIfc,t>S + bIfc,t<S)

)
for t is in phase II.

c1975(t) = cIt≤1975 + It>1975 .

The country-level parameters, {Uc, ρc, µc, γci,∆c4, dc}, are specified as follows:

Level 3: Uc

 = fc,τ τc ≥ 1950
∼ U(min{5.5,max

t
{fc,t}}, 8.8) τc < 1950

ϕc = log
(
dc − 0.05
0.5 − dc

)
,

ϕc ∼ N (χ, ψ2) ,

∆′
c4 = log

( ∆c4 − 1
2.5 − ∆c4

)
,

∆′
c4 ∼ N (∆4, δ

2
4) ,

pci = ∆ci

Uc − ∆c4
for i = 1, 2, 3 ,

pci = exp(γci)∑
j exp(γcj) ,

γci ∼ N (αi, δ
2
i ) ,

µc ∼ N (µ̄, σ2
µ) ,

ρc ∼ N (ρ̄, σ2
ρ) ;
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where τc is the starting year of phase II for country c.
The hyperparameters are {sτ , σ0, a, b, S, c, σϵ, χ, ψ,∆4, δ4,α, δ, µ̄, σµ, ρ̄, σρ}. Some of these
refer to level 2 and some to level 3. The prior distribution of these hyperparameters is as
follows (ϕ is used if ar.phase2 = TRUE):

Level 4: 1/s2
τ ∼ Gamma(1, 0.42) ,
σ0 ∼ U [0.002, 0.6], recommended U [0.04, 0.6] ,
a ∼ U [0, 0.2] ,
b ∼ U [0, 0.2] ,
S ∼ U [3.5, 6.5] ,
c ∼ U [0.8, 2] ,
σϵ ∼ U [0, 0.5] ,
χ ∼ N (−1.5, 0.62) ,

1/ψ2 ∼ Gamma(1, 0.62) ,
∆4 ∼ N (0.3, 1) ,

1/δ2
i ∼ Gamma(1, 1) for i = 1, 2, 3, 4 ,
α1 ∼ N (−1, 1) ,
α2 ∼ N (0.5, 1) ,
α3 ∼ N (1.5, 1) ,
µ̄ ∼ U [0, 2.1] ,
σµ ∼ U [0, 0.318] ,
ρ̄ ∼ U [0, 1] ,
σρ ∼ U [0, 0.289] ,
ϕ ∼ U [0, 1] .

B. List of unbiased VR countries
In this article, we are assuming that the following countries have nearly perfect VR histories:
Australia, Austria, Belgium, Canada, Czech Republic, Denmark, Finland, France, Germany,
Greece, Iceland, Ireland, Italy, Japan, Korea, Latvia, Luxembourg, Netherlands, New Zealand,
Norway, Portugal, Spain, Sweden, Switzerland, Turkey, the United Kingdom, the United
States.
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