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Abstract

spsurvey is an R package for design-based statistical inference, with a focus on spa-
tial data. spsurvey provides the generalized random-tessellation stratified (GRTS) algo-
rithm to select spatially balanced samples via the grts() function. The grts() function
flexibly accommodates several sampling design features, including stratification, vary-
ing inclusion probabilities, legacy (or historical) sites, minimum distances between sites,
and two options for replacement sites. spsurvey also provides a suite of data analysis
options, including categorical variable analysis (cat_analysis()), continuous variable
analysis (cont_analysis()), relative risk analysis (relrisk_analysis()), attributable
risk analysis (attrisk_analysis()), difference in risk analysis (diffrisk_analysis()),
change analysis (change_analysis()), and trend analysis (trend_analysis()). In this
manuscript, we first provide background for the GRTS algorithm and the analysis ap-
proaches and then show how to implement them in spsurvey. We find that the spatially
balanced GRTS algorithm yields more precise parameter estimates than simple random
sampling, which ignores spatial information.

Keywords: design-based inference, generalized random-tessellation stratified algorithm, Horvitz-
Thompson, inclusion probability, spatial balance, variance estimation.

1. Introduction

Survey designs are often used to study an environmental resource in a population. These
populations are comprised of individual population units, which are often referred to as sites.
Each site contains information about the environmental resource, and a complete characteri-
zation of the resource can be obtained by studying every site. Unfortunately, studying every
site is rarely feasible. Therefore, a sample of sites is collected, and the sample is used to make
generalizations about the larger population. Typically sites are selected without replacement,
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and we make this assumption henceforth. The process by which sites are selected in the
sample is known as the sampling design.

In the design-based approach to statistical inference, a sample should be representative of
the population, but the term representative is often vague and has multiple interpretations
(Kruskal and Mosteller 1979a,b,c). We claim a representative sample should have at least the
following two properties. First, the sites must be selected as part of the sample via a random
mechanism. The design-based approach to statistical inference relies on a random selection
of sites; the random site selection forms the foundation for deriving properties of parameter
estimates (Särndal, Swensson, and Wretman 2003; Lohr 2009). Second, the probability each
site is selected as part of the sample is greater than zero. This probability of selection is
known as an inclusion probability.

There are three types of commonly studied environmental resources: point resources, linear
resources, and areal resources. A point resource has a finite number of population units (i.e.,
a finite population) and represents a collection of point geometries. An example of a point
resource is all lakes (viewed as a whole) in the United States, using the centroid of the lake
as the site location. A linear resource has an infinite number of population units (i.e., an
infinite population) and represents a collection of linestring geometries. An example of a
linear resource is all streams in the United States. An areal resource has an infinite number
of population units and represents a collection of polygon geometries. An example of an areal
resource is the San Francisco Bay Estuary.

These point, linear, and areal resources tend to be spread over geographic space. If a sample
is well-spread over geographic space, we call it a spatially balanced sample (we provide a
more technical definition of spatial balance in Section 2.2). Spatially balanced samples are
desirable because they tend to yield more precise parameter estimates than samples that are
not spatially balanced (Stevens and Olsen 2004; Barabesi and Franceschi 2011; Grafström
and Lundström 2013; Robertson, Brown, McDonald, and Jaksons 2013; Wang et al. 2013;
Benedetti, Piersimoni, and Postiglione 2017).

The spsurvey package (Dumelle, Kincaid, Olsen, and Weber 2023) selects spatially bal-
anced samples using the generalized random-tessellation stratified (GRTS) algorithm (Stevens
and Olsen 2004) and is available from the Comprehensive R Archive Network (CRAN)
at https://CRAN.R-project.org/package=spsurvey. Shortly after the GRTS algorithm
emerged, several other spatially balanced sampling algorithms followed. Walvoort, Brus,
and De Gruijter (2010) used compact geographical strata to perform stratified sampling;
this approach is available in the spcosa R package (Walvoort, Brus, and De Gruijter 2022).
Grafström, Lundström, and Schelin (2012) used a local pivot method for finite populations
and Grafström and Matei (2018) generalized this approach to infinite populations; these
approaches are available in the BalancedSampling R package (Grafström and Lisic 2019).
Grafström (2012) used a spatially correlated Poisson approach, also available in Balanced-
Sampling. Benedetti and Piersimoni (2017) used a within-sample distance approach available
in the Spbsampling R package (Pantalone, Benedetti, and Piersimoni 2022). Robertson et al.
(2013) developed balanced acceptance sampling, and subsequently, Robertson, McDonald,
Price, and Brown (2018) used Halton iterative partitioning; these approaches are available
in the SDraw R package (McDonald and McDonald 2020). Foster et al. (2020) developed
spatially balanced transect sampling; this approach is available in the MBHdesign R package
(Foster 2021).

https://CRAN.R-project.org/package=spsurvey
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The GRTS algorithm in spsurvey implements many features absent from the aforementioned
software packages. The GRTS algorithm in spsurvey can be applied to all three resource types:
point, linear, and areal. It accommodates several sampling design features like stratification,
unequal selection probabilities, legacy (or historical) sites, minimum distances between sites,
and two options for replacement sites (reverse hierarchical ordering and nearest neighbor).
The GRTS algorithm is discussed in more detail in Section 2. Section 2 also showcases how
spsurvey can be used to summarize and visualize sampling frames and samples as well as
measure spatial balance.
Another benefit of spsurvey compared to the aforementioned software packages is that sp-
survey can also be used to analyze data and estimate parameters of a population. spsurvey
has a suite of analysis functions that enable categorical variable analysis, continuous variable
analysis, attributable risk analysis, relative risk analysis, difference in risk analysis, change
analysis, and trend analysis. In addition, variances can be estimated using the local neigh-
borhood variance estimator (Stevens and Olsen 2003), which increases precision by using
the spatial locations of each observation in variance estimation. The analysis functions in
spsurvey are discussed in more detail in Section 3.
The rest of this paper is organized as follows. In Section 2, we review spatially balanced
sampling in spsurvey. In Section 3, we the describe the analysis approaches available in
spsurvey. In Section 4, we compare performance of the GRTS algorithm and local neighbor-
hood variance estimator to simple random sampling using data from the 2012 National Lakes
Assessment (U.S. Environmental Protection Agency 2017). Finally, in Section 5, we end with
a discussion and explore potential future developments for spsurvey.
To install and load spsurvey, run
R> install.packages("spsurvey")
R> library("spsurvey")

2. Spatially balanced sampling
In Section 1 we introduced the notion of a random sample. Random samples are selected from
a collection of sites. This collection of sites is known as the sampling frame. Ideally, the set of
sites in the sampling frame is the same as the set of sites in the population. Unfortunately this
is not always true, as a sampling frame may contain some sites that are not in the population
(overcoverage), may be missing sites from the population (undercoverage), or both. Selecting
an appropriate sampling frame is crucial if you want to generalize results from the sample
to the population. To understand whether a sampling frame is appropriate for a population,
summaries and visualizations of the sampling frame are helpful. Next we demonstrate using
spsurvey to summarize and visualize sampling frames. We then give theoretical background
for the generalized random-tessellation stratified (GRTS) algorithm and show how to use it
in spsurvey to select spatially balanced samples and to summarize, visualize, write, and print
these samples. We end the section by showing how to explicitly measure spatial balance using
spsurvey and to use GRTS for a variety of resource types.

2.1. Summarizing and visualizing sampling frames
Sampling frames for point, linear, or areal resources summarized and visualized in spsur-
vey using the summary() and plot() functions, respectively. The summary() and plot()
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functions have similar syntax and require at least two arguments: the sampling frame and
a formula. The sampling frame must be an ‘sf’ object (Pebesma 2018) or a data frame.
The formula specifies the variables in the sampling frame to summarize or visualize and can
be one-sided or two-sided. Additional arguments to summary() and plot() are discussed in
more detail later.
To demonstrate the use of summary() and plot(), we use the the NE_Lakes data in spsur-
vey. The NE_Lakes data is an ‘sf’ object of 195 lakes in the Northeastern United States.
The NE_Lakes data represent a point resource, as there are a finite number of lakes to sam-
ple. Later we study linear and areal data in spsurvey. To load NE_Lakes into your global
environment, run

R> data("NE_Lakes", package = "spsurvey")

There are five variables in NE_Lakes: AREA, a continuous variable representing lake area
(in hectares); AREA_CAT, a categorical variable representing lake area levels small (1 to 10
hectares) and large (greater than 10 hectares); ELEV, a continuous variable representing lake
elevation (in meters); and ELEV_CAT, a categorical variable representing lake elevation lev-
els low (0 to 100 meters) and high (greater than 100 meters). We can view the geometry
information and first few rows of NE_Lakes by running

R> NE_Lakes

Simple feature collection with 195 features and 4 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: 1834001 ymin: 2225021 xmax: 2127632 ymax: 2449985
Projected CRS: NAD83 / Conus Albers
First 10 features:

AREA AREA_CAT ELEV ELEV_CAT geometry
1 10.648825 large 264.69 high POINT (1930929 2417191)
2 2.504606 small 557.63 high POINT (1849399 2375085)
3 3.979199 small 28.79 low POINT (2017323 2393723)
4 1.645657 small 212.60 high POINT (1874135 2313865)
5 7.489052 small 239.67 high POINT (1922712 2392868)
6 86.533725 large 195.37 high POINT (1977163 2350744)
7 1.926996 small 158.96 high POINT (1852292 2257784)
8 6.514217 small 29.26 low POINT (1874421 2247388)
9 3.100221 small 204.62 high POINT (1933352 2368181)
10 1.868094 small 78.77 low POINT (1892582 2364213)

Notice that the geometry type of NE_Lakes is POINT, as NE_Lakes represents a point resource.
Before summarizing or visualizing NE_Lakes, store it as an ‘sp_frame’ object by running

R> NE_Lakes <- sp_frame(NE_Lakes)

One-sided formulas are used when the goal is to summarize or visualize variables individually.
To summarize the distribution of ELEV_CAT using a one-sided formula, run
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Figure 1: Distribution of the lake elevation categories (a) and the interaction between lake
elevation categories and lake area categories (b) in the Northeastern lakes data.

R> summary(NE_Lakes, formula = ~ ELEV_CAT)

total ELEV_CAT
total:195 low :112

high: 83

The output contains two columns: total and ELEV_CAT. The total column acts as an “inter-
cept” in the formula and returns the total number of observations in the sampling frame; it
can be omitted by supplying - 1 to the formula. The ELEV_CAT column returns the number
of lakes in the low and high elevation levels. The same syntax is used to visualize the spatial
distribution of ELEV_CAT (Figure 1a):

R> plot(NE_Lakes, formula = ~ ELEV_CAT)

By default, the formula argument to plot() is the resulting plot’s title, though this can be
changed using the main argument.
Additional variables can be added to the formula when separated by +. Interactions be-
tween variables can be added to the formula using :. When additional variables are added,
summary() produces a table-like summary of each variable

R> summary(NE_Lakes, formula = ~ ELEV_CAT + ELEV_CAT:AREA_CAT)

total ELEV_CAT ELEV_CAT:AREA_CAT
total:195 low :112 low:small :82

high: 83 high:small:53
low:large :30
high:large:30

Similarly, plot() produces separate visualizations for each variable (Figure 1).
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R> plot(NE_Lakes, formula = ~ ELEV_CAT + ELEV_CAT:AREA_CAT)

These separate visualizations are stepped through using <Return>. The summary() and
plot() functions also support standard formula syntax shortcuts like . and *. The formula
~ . is shorthand for ~ AREA + AREA_CAT + ELEV + ELEV_CAT and the formula ~ AREA_CAT
* ELEV_CAT is shorthand for ~ AREA_CAT + ELEV_CAT + AREA_CAT : ELEV_CAT.
Two-sided formulas are useful when the goal is to summarize or visualize one variable (a left-
hand side variable) for each level of other variables (right-hand side variables). When using
two-sided formulas, summary() returns table-like summaries of the left-hand side variable for
each level of each right-hand side variable:

R> summary(NE_Lakes, formula = ELEV ~ AREA_CAT)

ELEV by total:
Min. 1st Qu. Median Mean 3rd Qu. Max.

total 0 21.925 69.09 127.3862 203.255 561.41

ELEV by AREA_CAT:
Min. 1st Qu. Median Mean 3rd Qu. Max.

small 0.00 19.64 59.660 117.4473 176.1700 561.41
large 0.01 26.75 102.415 149.7487 241.2025 537.84

plot() returns separate visualizations of the left-hand side variable for each level of each
right-hand side variable. For example,

R> plot(NE_Lakes, formula = ELEV ~ AREA_CAT)

produces two separate visualizations – one for each level of AREA_CAT (small and large).
The plot() function has additional arguments that allow for flexible customization of graph-
ical parameters. The varlevel_args (short for “variable level arguments”) argument adjusts
graphical parameters separately for each level of a categorical variable. The var_args (short
for “variable arguments”) argument adjusts graphical parameters for a numeric variable or
simultaneously for all levels of a categorical variable. The ... argument adjusts graphical
parameters for all variables simultaneously. spsurvey’s plot() function is built on top of sf’s
plot() function. As a result, it takes the same set of graphical parameters that sf’s plot()
function does and uses the same default values.

2.2. The generalized random-tessellation stratified algorithm

Before discussing the GRTS algorithm, it is important to identify two distinct types of spatial
balance: spatial balance with respect to the sampling frame and spatial balance with respect
to geography. Spatial balance with respect to the sampling frame measures how closely the
spatial layout of the sample resembles the spatial layout of the sampling frame. Spatial
balance with respect to geography measures the geographic spread of the sample – usually
the sites in the sample are spread out over the domain in some equidistant manner but are
not meant to resemble the spatial layout of the sampling frame. While spatial balance with
respect to geography can be useful, spatial balance with respect to the sampling frame is
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preferred for design-based inference because this type of spatial balance is closely linked to
inclusion probabilities, which we discuss in more detail later. Henceforth, when we refer to
spatial balance, we mean spatial balance with respect to the sampling frame.
Stevens and Olsen (2004) created the first widely-used spatially balanced sampling algorithm
known as the GRTS algorithm. The GRTS algorithm has several attractive properties we
discuss throughout this subsection. Most notably, the GRTS algorithm accommodates all
three resource types: point, linear, and areal. It also accommodates a suite of flexible sampling
design options like stratification, unequal inclusion probabilities, legacy (historical) sites, a
minimum distance between sites, and two options for replacement sites. Next we provide a
brief overview of the technical details of the algorithm as described by Stevens and Olsen
(2004).
The first step in the GRTS algorithm is to determine the probability that each site is selected
in the sample, known as an inclusion probability. For example, if the population size N
equals 100, the sample size n equals 10, and each site is equally likely to be selected in the
sample, then each site’s inclusion probability is n/N = 10/100 = 0.1. After determining these
inclusion probabilities, a square bounding box is superimposed onto the sampling frame. That
bounding box is divided into four distinct, equally sized square cells. These cells compose
the first level of a hierarchical grid and are called level-one cells. These level-one cells are
randomly assigned a level-one address of zero, one, two, or three. The set of level-one cells is
denoted by A1 and defined as A1 ≡ {a1 : a1 = 0, 1, 2, 3} (Figure 2a). Each level-one cell has
an inclusion value that equals the sum of the inclusion probabilities for the sites contained in
the level-one cell. If any of the level-one cell’s inclusion values are larger than one, a second
level of cells is added by splitting each level-one cell into four distinct, equally sized squares.
Together these small squares compose the second level of a hierarchical grid and are called
level-two cells. Within each level-one cell, the level-two cells are randomly assigned a level-two
address of zero, one, two, or three. The level-one and level-two addresses compose a set that
can be used to identify any level-two cell. The set of level-two cells is denoted by A2 and
defined as A2 ≡ {a1a2 : a1 = 0, 1, 2, 3; a2 = 0, 1, 2, 3} (Figure 2b). If any of the level-two cell’s
inclusion values are greater than one, a third level of cells is added. This process continues
for k levels, where k is the first level that all level-k cells have inclusion values no greater than
one. Then Ak ≡ {a1 . . . ak : a1 = 0, 1, 2, 3; . . . ; ak = 0, 1, 2, 3}. This addressing composes a
base-four ordering scheme – Stevens and Olsen (2004) provide further details.
Next the elements in Ak are placed in hierarchical order. Hierarchical order is a numeric order
that first sorts Ak by the level-one addresses from smallest to largest, then by the level-two
addresses from smallest to largest, and so on. For example, A2 in hierarchical order is the set
{00, 01, 02, 03, 10, . . . , 13, 20, . . . , 23, 30, . . . , 33}. Then the level-k grid cells are mapped from
two-dimensional space to a line in hierarchical order (Figure 2c). More specifically, mapping
a level-k grid cell means placing each site in the level-k grid cell on the line, where each site is
represented by a line segment with length equal to its inclusion probability. The hierarchical
ordering tends to map nearby sites in two-dimensional space to nearby locations on the line.
Because the entire line represents the inclusion probabilities of each site, the line’s total length
equals the sum of these inclusion probabilities. This sum equals n, the desired sample size.
After hierarchically ordering the sites and placing them on the line, the sample is selected.
To select a sample, Stevens and Olsen (2004) denote a uniform random variable simulated
from [0, 1] as u1 and place it on the line. The location of u1 on the line corresponds falls
within some line segment that represents a site, which we denote s1. The site s1 is then the
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Figure 2: A visual description of the generalized random-tessellation stratified algorithm
using sites from an illustrative sampling frame in Oregon, USA. In (a), the level-one cells
are superimposed onto the sampling frame. In (b), the level-two cells are superimposed onto
the sampling frame. In (c), the level-two cells are mapped in heirarchical order from two-
dimensional space to a line and a sample is selected. Each cell is represented by brackets with
a closed right endpoint, meaning they contain the site at their closed right boundary. In (d),
the sites are separated by whether or not they are part of the sample.

first site selected as part of the sample. Next we define u2 ≡ u1 + 1, which falls within a
line segment that represents another site, which we denote s2. The sites s1 and s2 must be
distinct because of the requirement that each level-k cell has inclusion value no greater than
one. Then u3 ≡ u2 + 1 corresponds to s3 and so on until the set {u1, . . . , un} corresponds to
the set {s1, . . . , sn}, which are the n sites included in the sample (Figure 2d). Stevens and
Olsen (2004) provide further details.
spsurvey implements the GRTS algorithm using the grts() function. There are two required
arguments to grts(): the sampling frame and a base sample size. The first required ar-
gument is the sampling frame, which must be an ‘sf’ object. For point resources, the sf
geometries must all be POINT or MULTIPOINT; for linear resources, the sf geometries must all
be LINESTRING or MULTILINESTRING; and for areal resources, the sf geometries must all be
POLYGON or MULTIPOLYGON. The second required argument is the desired sample size for the
base sample, n_base. The base sample is a sample that does not include replacement sites
(Section 2.2.3). Additional arguments to the grts() function address specific sampling design
options, which we discuss later.
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The output from the grts() function is a list five components: sites_legacy, sites_base,
sites_over, sites_near, and design. sites_legacy, sites_base, sites_over, sites_near
are ‘sf’ objects containing the legacy sites (discussed in Section 2.2.1), base sites (except for
those already included in sites_legacy), replacement sites using reverse hierarchical order-
ing (Section 2.2.3), and replacement sites using nearest neighbor (Section 2.2.3), respectively.
Together, the collection of these sites objects are called the design sites. Each sites object
contains all original columns from the sampling frame and some additional columns related
to the sampling design. The last component of the grts() function output is a list named
design, which contains details regarding the sampling design. Next we give some examples
implementing the grts() function.
To select a GRTS sample of size 50 where each site has an equal inclusion probability, run

R> eqprob <- grts(NE_Lakes, n_base = 50)

Instead of sampling from the entire sampling frame simultaneously, it is common to divide a
sampling frame into distinct sets of sites known as strata and select samples from each stratum
independently of other strata. This approach is known as stratification and yields a stratified
sample. Särndal et al. (2003) mentions several practical and statistical benefits of stratified
samples compared to unstratified samples. One such practical benefit is that stratification
allows for stratum-specific sample sizes and implementation practices (e.g., each stratum may
have different sampling protocols). One such statistical benefit is that stratification tends to
increase precision of parameter estimates. To select a GRTS sample stratified by the lake
elevation categories where all sites within a stratum have equal inclusion probabilities, run

R> n_strata <- c(low = 35, high = 15)
R> eqprob_strat <- grts(NE_Lakes, n_base = n_strata,
+ stratum_var = "ELEV_CAT")

In a stratified sample, n_base must be a named vector whose names (low and high) rep-
resent each stratum and whose values represent stratum-specific sample sizes (35 and 15).
stratum_var is the name of the column in the sampling frame that represents the stratifica-
tion variable.
Sometimes the desire is to sample sites that belong to some level of a categorical variable
more often than others levels. For example, suppose large lakes are to be sampled more often
than small lakes. To select a GRTS sample with unequal inclusion probabilities based on lake
area categories, run

R> caty_n <- c(small = 10, large = 40)
R> uneqprob <- grts(NE_Lakes, n_base = 50, caty_n = caty_n,
+ caty_var = "AREA_CAT")

caty_n is a named vector whose names represent the categorical area levels (small and large)
and whose values represent the expected within-level sample sizes. caty_var is the name
of the column in the sampling frame that represents the unequal probability variable. If
the sample is stratified, caty_n must instead be a list whose names match the names of
n_base and whose values are named vectors. Each named vector has names that represent
the categorical variable levels and values that represent within-strata expected sample sizes.
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Another approach is to sample sites proportionally to a positive auxiliary variable, which
is sometimes referred to as proportional to size (PPS) sampling. PPS sampling can yield
more efficient estimators when the response and auxiliary variables are positively correlated
Särndal et al. (2003). To select a GRTS sample with inclusion probabilities proportional to
lake area, run

R> propprob <- grts(NE_Lakes, n_base = 50, aux_var = "AREA")

aux_var is the name of the column in the sampling frame that represents the PPS auxiliary
variable.

Legacy sites
Often it is desired that some sites selected from an old sample are guaranteed to be selected in
a new sample. Foster et al. (2017) discusses two types of sites that can be used to accomplish
this goal: legacy (historical) sites and iconic sites. Legacy sites were randomly selected in the
old sample, are in the current sampling frame, and must be in the current sample. Together,
this implies that the new sample can be viewed as a possible joint realization from solely the
current sampling frame. Legacy sites are often used to study behavior through time and can
beneficial to estimation Urquhart and Kincaid (1999). Iconic sites, however, are not required
to be randomly selected in the old sample or to be contained in the current sampling frame.
Iconic sites are typically used because they represent sites of particular importance – consider
a lake with a historically high level of a dangerous chemical. Because iconic sites are not
selected randomly, they are not useful for estimation using the design-based approach.
Suppose the goal is to select a base GRTS sample of size n that includes nl legacy sites. The
GRTS algorithm requires a small adjustment to incorporate these legacy sites. Legacy sites
are first assigned inclusion probabilities as if they were non-legacy sites. Then the level-k
grid cells are hierarchically ordered and mapped to the line (which has length n). The line
lengths for the legacy sites are then increased to one. The line lengths of the remaining sites
are scaled by (n − nl)/(n −

∑
i πi,l), where πi,l is the original line length of the ith legacy site.

This scaling ensures the total line length remains n. The sample can then selected using the
ui from Section 2.2. Because the legacy sites have line length one, they will always be selected
as the ui are systematically spaced by one. This scaling is only used to select the sample – the
design weights for data analysis (discussed in Section 3) are based on the pre-scaled inclusion
probabilities.
The grts() function accommodates legacy sites using the legacy_sites argument.
legacy_sites is an ‘sf’ object that contains the legacy sites as POINT or MULTIPOINT
geometries and uses the same coordinate reference system as the sampling frame. The
NE_Lakes_Legacy data in spsurvey contains five legacy sites. To select a sample of size
50 that includes the legacy sites and gives non-legacy sites an equal inclusion probability, run

R> eqprob_legacy <- grts(NE_Lakes, n_base = 50,
+ legacy_sites = NE_Lakes_Legacy)

When accommodating legacy sites, n_base (50) equals the sum of the legacy sites (5) and the
number of desired non-legacy sites (45). If the sampling design uses stratification, unequal
selection probabilities, or proportional selection probabilities, the names of the columns rep-
resenting these variables in legacy_sites must be provided using the legacy_stratum_var,
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legacy_caty_var, or legacy_aux_var arguments, respectively. By default,
legacy_stratum_var, legacy_caty_var, and legacy_aux_var are assumed to have the same
name as stratum_var, caty_var, and aux_var, respectively.

A minimum distance between sites
Recall that the GRTS algorithm selects sites that are spatially balanced with respect to the
sampling frame, not geography. Because of this, the GRTS algorithm may select sites that
are closer together in space than a practitioner desires. The GRTS algorithm can sacrifice
some spatial balance with respect to the sampling frame to incorporate a minimum distance
requirement between sites selected in a sample:

R> min_d <- grts(NE_Lakes, n_base = 50, mindis = 1600)

The units of mindis must match the units of the sampling frame for the minimum distance
requirement to be applied properly. The technical details for the GRTS algorithm’s minimum
distance adjustment are omitted here, but they involve an iterative component that is con-
trolled by the maxtry argument to the grts() function. If the minimum distance requirement
cannot be met for all sites selected in the sample, a warning message is returned. If the sample
is stratified, mindis can be a list with stratum-specific minimum distance requirements.

Replacement sites
Sometimes a site is selected in the sample but data are not able to be collected at the site.
This commonly occurs due to landowner denial or a lack of funding, among other reasons.
When this occurs, it is helpful to have a set of replacement sites so that the desired sample
size can still be reached. The grts() function provides two options for replacement sites:
reverse hierarchical ordering and nearest neighbor.
Stevens and Olsen (2004) proposed the reverse hierarchical approach for selecting replacement
sites. Suppose the desired number of base sites is n and replacement sites is nr. The GRTS
algorithm is first used to select a spatially balanced sample of size n + nr. Recall that part of
the GRTS algorithm is placing the sites in hierarchical order according to the set {a1 . . . ak :
a1 = 0, 1, 2, 3; . . . ; ak = 0, 1, 2, 3}. Simply selecting the first n − nr hierarchically ordered sites
to be in the base sample is insufficient because nearby sites have nearby hierarchical addresses.
Instead, the reverse hierarchical approach reverses the hierarchical address of the n+nr sites,
yielding a new ordering according to the set {ak . . . a1 : ak = 0, 1, 2, 3; . . . ; a1 = 0, 1, 2, 3}.
Then the first n − nr reverse hierarchically ordered sites compose the base sample and the
remaining nr are the replacement sites. If a base site cannot be evaluated, the first of the
nr replacement sites is used instead, and so on. This reverse hierarchical ordering ensures
the n − nr base sites retain as much spatial balance as possible. Because the GRTS sample
is selected for a sample size of n + nr, the larger that nr is relative to n, the less spatially
balanced the base sites, so choosing a realistic value for nr is important. To select a GRTS
sample of size 50 with 10 reverse hierarchically ordered replacement sites, run

R> eqprob_rho <- grts(NE_Lakes, n_base = 50, n_over = 10)

The value supplied to n_base is n, and the value supplied to n_over is nr. If the sample
is stratified, n_over can be a list with stratum-specific reverse hierarchical ordering require-
ments.
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An alternative approach for replacement sites is the nearest neighbor approach. The nearest
neighbor approach selects replacement sites after a GRTS sample of size n is selected. For
each site in the GRTS sample, the distance is calculated between that site and all other sites
in the sampling frame that are not part of the GRTS sample. Then the nearest nn sites are
selected as replacement sites. The replacement sites are ordered from smallest distance to the
largest distance; for example, the first replacement site is the site closest to the base site. To
select a GRTS sample of size 50 with two nearest neighbor replacement sites for each base
site, run

R> eqprob_nn <- grts(NE_Lakes, n_base = 50, n_near = 2)

The value supplied to n_base is n, and the value supplied to n_near is nn. If the sample is
stratified, n_near can be a list with stratum-specific nearest neighbor requirements.

2.3. Summarizing, visualizing, and binding design sites
The summary() and plot() functions in spsurvey are also used to summarize and visualize
the design sites (all the sites contained in sites_legacy, sites_base, sites_over, and
sites_near). summary() and plot() for design sites require the object output from grts()
and a formula. The formula is used the same way as it is for summary() and plot() applied
to sampling frames, though using summary() and plot() for design sites requires the formula
contains siteuse. siteuse is a categorical variables added to sites_legacy, sites_base,
sites_over, and sites_near that indicates the site type (Legacy, Base, Over, or Near).
Incorporating siteuse enables breaking up the summaries and visualizations by site type.
The default formula when summarizing or visualizing design sites is ~ siteuse.
Recall eqprob_rho is the unstratified, equal probability GRTS sample with reverse hierar-
chically ordered replacement sites. To visualize the design sites for eqprob_rho (Figure 3a),
run

R> plot(eqprob_rho)

By default, plot() will use all non-NULL sites objects. To request particular sites objects,
use the siteuse argument (Figure 3b):

R> plot(eqprob_rho, siteuse = "Base")

The design sites can be overlain onto the sampling frame via the sframe argument.
To summarize the design sites for each lake elevation level, run

R> summary(eqprob_rho, formula = siteuse ~ ELEV_CAT)

siteuse by total:
Base Over

total 50 10

siteuse by ELEV_CAT:
Base Over

low 30 5
high 20 5
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Figure 3: Base and replacement (using reverse hierarchical ordering) sites are shown for an
unstratified, equal probability GRTS sample of the Northeastern lakes data. In (a), the base
and replacement sites are shown. In (b), only the base sites are shown.

Running

R> plot(eqprob_rho, formula = siteuse ~ ELEV_CAT)

produces two separate visualizations: one for each level of ELEV_CAT. To summarize lake area
for each site type, run

R> summary(eqprob_rho, formula = AREA ~ siteuse)

AREA by total:
Min. 1st Qu. Median Mean 3rd Qu. Max.

total 1.043181 2.491625 3.833015 13.26145 7.540559 137.8127

AREA by siteuse:
Min. 1st Qu. Median Mean 3rd Qu. Max.

Base 1.043181 2.539218 4.273565 14.52684 11.178641 137.81268
Over 1.767196 2.456281 2.804252 6.93449 5.619522 38.26573

Running

R> plot(eqprob_rho, formula = AREA ~ siteuse)

produces two separate visualizations: one for the Base sites and another for the Over sites.
To bind together sites_legacy, sites_base, sites_over, and sites_near (four separate
‘sf’ objects) into a single ‘sf’ object, use sp_rbind():

R> sites_bind <- sp_rbind(eqprob_rho)

Then sites_bind is then easily written out using a function like sf::write_sf().
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2.4. Printing design sites

Basic summaries of site counts in a design can be easily returned using print(). These
summaries represent the crossing of variable type (total, stratification, unequal probability,
and stratification and unequal probability) with site type (Legacy, Base, Over, and Near).
Only crossings used in the design are returned. Next we print a design stratified by lake
elevation category with legacy sites, reverse hierarchically ordered replacement sites, and
nearest neighbor replacement sites

R> n_strata <- c(low = 10, high = 10)
R> n_over_strata <- c(low = 2, high = 5)
R> print(grts(NE_Lakes, n_base = n_strata, stratum_var = "ELEV_CAT",
+ legacy_sites = NE_Lakes_Legacy, n_over = n_over_strata, n_near = 1))

Summary of Site Counts:

siteuse by total:
Legacy Base Over Near

total 5 15 7 27

siteuse by stratum:
Legacy Base Over Near

high 0 10 5 15
low 5 5 2 12

2.5. Measuring spatial balance

We have discussed the notion spatial balance but have not yet given a way to measure it.
Stevens and Olsen (2004) proposed measuring spatial balance using Voronoi polygons (i.e.,
Dirichlet Tessellations). A Voronoi polygon for a base design site si contains the region in
the sampling frame closer to si than any other design site. Stevens and Olsen (2004) define
vi as the sum of the inclusion probabilities for all sites in the sampling frame contained in the
ith Voronoi polygon. They show that the expected value of vi is 1 for all i. This framework
motivates the use of loss metrics based on Voronoi polygons to measure spatial balance. One
loss metric is Pielou’s evenness index (PEI; Shannon 1948; Pielou 1966), which is defined as

PEI = 1 +
n∑

i=1

vi

n
ln(vi/n)/ ln(n),

where n is the sample size. PEI is bounded between zero and one. A PEI of zero indicates
perfect spatial balance. As PEI increases, the spatial balance worsens.
The sp_balance() function in spsurvey measures spatial balance and requires three argu-
ments: a set of design sites, the sampling frame, and a vector of loss metrics. The default
loss metric is "pielou" for PEI, though several other metrics are available. To calculate PEI
for the unstratified, equal probability GRTS sample with no replacement sites (eqprob), run

R> sp_balance(eqprob$sites_base, NE_Lakes)
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stratum metric value
1 None pielou 0.0301533

To highlight the benefit of the spatially balanced GRTS sampling, we can select a simple
random sample (SRS) using spsurvey’s irs() function and measure its spatial balance (a
SRS selects sites with equal probability and independent of spatial location).

R> set.seed(5)
R> eqprob_irs <- irs(NE_Lakes, n_base = 50)
R> sp_balance(eqprob_irs$sites_base, NE_Lakes)

stratum metric value
1 None pielou 0.04589258

The GRTS sample has better spatial balance than the SRS sample because the PEI value is
lower in the GRTS sample. For stratified samples, spatial balance metrics can be calculated
separately for each stratum using the stratum_var argument. We explore the relationship
between spatial balance and estimation in Section 4.

2.6. Linear and areal sampling frames

The examples in Section 2 have thus far been applied to point resources. Applications to
linear and areal resources use the same syntax – all that changes is the geometry type of the
‘sf’ object used as an argument. For example, we select an equal probability GRTS sample
of size 25 from Illinois_River, a linear resource of reach segments on the Illinois_River,
by running

R> set.seed(5)
R> eqprob_linear <- grts(Illinois_River, n_base = 25)

We visualize the sample overlain onto the sampling frame (Figure 4a) by running

R> plot(eqprob_linear, sframe = Illinois_River, pch = 19)

Notice how the sample units area spread throughout the reach segments. The same approach
can be used to select GRTS sample of size 40 from Lake_Ontario, an areal resource of
shoreline segments surrounding Lake Ontario, by running

R> set.seed(5)
R> eqprob_areal <- grts(Lake_Ontario, n_base = 40)

We visualize the sample overlain onto the sampling frame (Figure 4b) by running

R> plot(eqprob_areal, sframe = Lake_Ontario, pch = 19)

Notice how the sample units are spread throughout the shoreline.
To learn more about how the GRTS algorithm accommodates each of the three resource
types (point, linear, areal), run ?grts and view the package vignettes (vignette(package =
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Figure 4: Equal probability GRTS sample of size 20 from the Illinois River data (a) and the
Lake Ontario data (b).

"spsurvey"). To learn more about the Illinois_River and Lake_Ontario data in spsurvey,
run ?Illinois_River and ?Lake_Ontario, respectively.

3. Analysis
After collecting data at the design sites, population parameters can be estimated. Often
times, these parameters are population proportions, means, or totals. Suppose τ represents
a population total. Horvitz and Thompson (1952) showed that an unbiased estimator of τ is
given by

τ̂ =
n∑

i=1

yi

πi
, (1)

where n is the sample size, yi is the response variable measured at si (the ith design site),
and πi is the inclusion probability of si. The term π−1

i is the reciprocal of πi and is called
a design weight. The design weight quantifies how many sites si represents in the sampling
frame. Though Equation 1 was originally derived for finite populations, Cordy (1993) showed
it remains unbiased for infinite populations. Other parameters like proportions and means
are estimated using similar forms of Equation 1.
Horvitz and Thompson (1952) showed that an unbiased estimator of the variance of τ̂ is given
by

V̂AR(τ̂) =
n∑

i=1

(1 − πi)
π2

i

y2
i +

n∑
i=1

∑
i ̸=j

(πij − πiπj)
πijπiπj

yiyj , (2)

where πij is the probability both si and sj are included in the sample. In a finite population
simple random sample, Equation 2 reduces to the following well-known formula:

V̂AR(τ̂) = N(N − n)
n(n − 1)

n∑
i=1

(
yi − τ̂

N

)2
, (3)
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where N equals the number of sites in the sampling frame. Sen (1953) and Yates and Grundy
(1953) derived a similar unbiased estimator of the variance of τ̂ . Both this estimator and
Equation 2 rely on knowing the πij for all si and sj . Calculating πij can be very challeng-
ing for more complicated designs, so Hartley and Rao (1962), Overton (1987), and Brewer
(2002) proposed different approaches to approximating πij when estimating variances (as in
Equation 2).
The aforementioned variance estimators and πij approximations do not incorporate the spatial
locations of the si. Stevens and Olsen (2003) derived an estimator of the variance of τ that
does incorporate the spatial locations of the si by conditioning on random properties of the
GRTS sample. This variance estimator is called the local neighborhood variance estimator.
The local neighborhood variance estimator of τ̂ is denoted V̂AR(τ̂)lnb and is given by

V̂AR(τ̂)lnb =
n∑

i=1

∑
sj∈D(si)

wij

 yj

πj
−

∑
sk∈D(si)

wik
yk

πk

2

, (4)

where the wij are weights and D(si) is the set of design sites in si’s local neighborhood.
Stevens and Olsen (2003) provide technical details and discuss how to determine the local
neighborhoods. Equation 4 is useful for two reasons. First, it does not rely on πij . Second,
incorporating the spatial locations of the si tends to reduce the variance of τ̂ compared to a
variance estimator that ignores spatial locations, which leads to narrower confidence intervals
and more powerful hypothesis testing.
spsurvey provides a suite of functions for analyzing data. These functions implement the
Horvitz-Thompson estimator (Equation 1) to estimate population parameters like propor-
tions, means, and totals. The default variance estimator is the local neighborhood variance
estimator (Equation 4), though the SRS, Horvitz-Thompson, and Yates-Grundy variance es-
timators as well as the πij approximations are also available. Next we show how to implement
some of these analysis functions using the the NLA_PNW data in spsurvey. The NLA_PNW data
is an ‘sf’ object with several variables measured at 96 lakes (treated as a whole) in the Pa-
cific Northwest Region of the United States. There are five variables in NLA_PNW we will
use throughout the rest of this section: WEIGHT, which represents a continuous design weight
equaling the reciprocal of the site’s inclusion probability (π−1

i ); URBAN, which represents a
categorical identifier based on whether the site is in an urban or non-urban area; STATE,
which represents a categorical state identifier (California, Oregon, Washington); BMMI, which
represents a continuous benthic macroinvertebrate multi-metric index; and NITR_COND, which
represents a categorical nitrogen condition (Good, Fair, Poor). To load NLA_PNW into your
global environment, run

R> data("NLA_PNW", package = "spsurvey")

3.1. Categorical variable analysis

To analyze categorical variables in spsurvey, use the cat_analysis() function. cat_analysis
requires a few arguments: dframe, a data frame or ‘sf’ object that contains the data; vars,
the variables to analyze, and weight, the design weights. The cat_analysis function pro-
vides several pieces of output for each level of each variable in vars, including sample sizes,
proportion estimates, total estimates, standard error estimates, margins of error (standard
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errors multiplied by a critical value), and confidence intervals. The proportion estimates are
suffixed with a .P while the total estimates are suffixed with a .U (short-hand for unit total).
Recall that the default local neighborhood variance estimator requires spatial coordinates.
If dframe is a data frame, these are provided via the xcoord and ycoord arguments. If
dframe is an ‘sf’ object, these are automatically taken from the ‘sf’ object’s geometry col-
umn. Additional variance estimation options are available via the vartype and jointprob
arguments.
To perform categorical variable analysis of nitrogen condition, run

R> nitr <- cat_analysis(NLA_PNW, vars = "NITR_COND", weight = "WEIGHT")

To view the sample sizes, estimates, and 95% confidence intervals for the proportion of lakes
in each nitrogen category, run

R> subset(nitr,
+ select = c(Category, nResp, Estimate.P, LCB95Pct.P, UCB95Pct.P))

Category nResp Estimate.P LCB95Pct.P UCB95Pct.P
1 Fair 24 23.69392 11.55386 35.83399
2 Good 38 51.35111 36.78824 65.91398
3 Poor 34 24.95496 13.35359 36.55634
4 Total 96 100.00000 100.00000 100.00000

The confidence level can be changed using the conf argument. To view the sample sizes,
estimates, and 95% confidence intervals for the total number of lakes in each nitrogen category,
run

R> subset(nitr,
+ select = c(Category, nResp, Estimate.U, LCB95Pct.U, UCB95Pct.U))

Category nResp Estimate.U LCB95Pct.U UCB95Pct.U
1 Fair 24 2530.428 1171.077 3889.780
2 Good 38 5484.120 3086.357 7881.883
3 Poor 34 2665.103 1375.258 3954.949
4 Total 96 10679.652 7903.812 13455.491

When vars is a vector, all variables are analyzed separately using a single call to cat_analysis().
Sometimes the goal is to estimate parameters for different subsets of the population – these
subsets are called subpopulations. For example, to analyze nitrogen condition while treating
each state as a separate subpopulation, run

R> nitr_subpop <- cat_analysis(NLA_PNW, vars = "NITR_COND",
+ subpops = "STATE", weight = "WEIGHT")

To view the sample sizes and 95% confidence intervals for the total number of Oregon lakes
in each nitrogen category, run
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R> subset(nitr_subpop,
+ subset = Subpopulation == "Oregon",
+ select = c(Subpopulation, Category, nResp, Estimate.U, LCB95Pct.U,
+ UCB95Pct.U))

Subpopulation Category nResp Estimate.U LCB95Pct.U UCB95Pct.U
5 Oregon Fair 8 1298.8470 266.5980 2331.096
6 Oregon Good 26 2854.3752 1533.3077 4175.443
7 Oregon Poor 13 630.3551 241.3029 1019.407
8 Oregon Total 47 4783.5773 3398.7997 6168.355

When subpops is a vector, all subpopulations are analyzed separately using a single call to
cat_analysis(). When vars and subpops are both vectors, all combinations of variables
and subpopulations are analyzed separately using a single call to cat_analysis().
Suppose the sampling design was stratified by the URBAN variable. To incorporate stratification
by urban category, run

R> nitr_strat <- cat_analysis(NLA_PNW, vars = "NITR_COND",
+ stratumID = "URBAN", weight = "WEIGHT")

To incorporate subpopulations (by state) and stratification (by urban category), run

R> nitr_strat_subpop <- cat_analysis(NLA_PNW, vars = "NITR_COND",
+ subpops = "STATE", stratumID = "URBAN", weight = "WEIGHT")

3.2. Continuous variable analysis

To analyze continuous variables in spsurvey, use the cont_analysis() function. Like
cat_analysis(), cont_analysis() requires specifying the dframe, vars, and weight ar-
guments. The cont_analysis() function provides several pieces of output for each variable
in vars, including sample sizes, cumulative distribution function (CDF) estimates, percentile
estimates, mean estimates, total estimates, standard error estimates, margins of error, and
confidence intervals. The CDF, percentile, mean, and total estimates are returned in separate
list elements and may be included or omitted using the statistics argument (by default,
all quantities are estimated). As with cat_analysis(), the local neighborhood variance
estimator is the default variance estimator.
To perform continuous variable analysis of benthic macroinvertebrate multi-metric index
(BMMI), run

R> bmmi <- cont_analysis(NLA_PNW, vars = "BMMI", weight = "WEIGHT",
+ siteID = "SITE_ID")

To view sample sizes, estimates, and 95% confidence intervals for the mean, run

R> subset(bmmi$Mean,
+ select = c(Indicator, nResp, Estimate, LCB95Pct, UCB95Pct))
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Figure 5: BMMI cumulative distribution function (CDF) estimates (solid line) and 95%
confidence intervals (dashed lines).

Indicator nResp Estimate LCB95Pct UCB95Pct
1 BMMI 96 56.50929 53.01609 60.00249

To visualize the CDF estimates and alongside their 95% confidence intervals, run

R> plot(bmmi$CDF)

The percentile output is contained in bmmi$Pct. By default, a few specific percentiles are
estimated, though this can be changed via the pctval argument.
To analyze BMMI separately for each state, run

R> bmmi_state <- cont_analysis(NLA_PNW, vars = "BMMI", subpops = "STATE",
+ weight = "WEIGHT")

To view the sample sizes, estimates, and 95% confidence intervals for the mean in each state,
run

R> subset(bmmi_state$Mean,
+ select = c(Subpopulation, Indicator, nResp, Estimate, LCB95Pct,
+ UCB95Pct))

Subpopulation Indicator nResp Estimate LCB95Pct UCB95Pct
1 California BMMI 19 50.48964 42.55357 58.42572
2 Oregon BMMI 47 61.29675 56.23802 66.35548
3 Washington BMMI 30 54.23036 48.06838 60.39234
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To incorporate stratification (by urban category), run

R> bmmi_strat <- cont_analysis(NLA_PNW, vars = "BMMI", stratumID = "URBAN",
+ weight = "WEIGHT")

To incorporate subpopulations (by state) and stratification (by urban category), run

R> bmmi_strat_state <- cont_analysis(NLA_PNW, vars = "BMMI",
+ subpops = "STATE", stratumID = "URBAN", weight = "WEIGHT")

3.3. Additional analysis approaches

Several other analysis options are available in spsurvey: relative risk analysis using
relrisk_analysis(); attributable risk analysis using attrisk_analysis(); difference in
risk analysis using diffrisk_analysis(); change analysis using change_analysis(); and
trend analysis using trend_analysis(). The arguments for these functions are nearly iden-
tical to the arguments for cat_analysis() and cont_analysis(), with a few occasional
exceptions.
The relative risk of an event (with respect to a stressor) is the ratio of two quantities. The
numerator of the ratio is the probability the event occurs given exposure to the stressor. The
denominator of the ratio is the probability the event occurs given no exposure to the stressor.
Mathematically, the relative risk is defined as

RR = P(Event | Stressor)
P(Event | No Stressor) ,

where P(Event | Stressor) is the probability the event occurs given exposure to the stressor
and P(Event | No Stressor) is the probability the event occurs given no exposure to the
stressor. The attributable risk of an event (with respect to a stressor) is one minus a ratio
of two quantities. The numerator of the ratio is the probability the event occurs given no
exposure to the stressor. The denominator of the ratio is the overall probability the event
occurs. Mathematically, the attributable risk is defined as

AR = 1 − P(Event | No Stressor)
P(Event) ,

where P(Event) is the overall probability the event occurs.
Though relative risk and attributable risk are most often discussed in the medical literature,
Van Sickle and Paulsen (2008) emphasize the usefulness of relative and attributable risk in
the context of aquatic resources and stressors. The final risk metric available in spsurvey is
difference in risk (with respect to a stressor). The difference in risk is the difference between
the probability the event occurs given exposure to the stressor and the probability the event
occurs given no exposure to the stressor. Mathematically, the difference in risk is defined as

RD = P(Event | Stressor) − P(Event | No Stressor).

Because it is not a relative metric, the difference in risk complements the relative and at-
tributable risks. The three risk metrics quantify several different aspects of risk and together
to help provide a complete characterization of a resource’s risk (with respect to a stressor).
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The risk analysis functions in spsurvey require four new arguments: vars_response, which in-
dicates the response variables; vars_stressor, which indicates the stressor variables;
response_levels, which indicates the two levels of the response variables (event and no
event); and stressor_levels, which indicates the two levels of the stressor variables (stres-
sor present and stressor not present). If the vars_response and vars_stressor arguments
are vectors, all combinations of vars_response and vars_stressor are analyzed. Subpop-
ulations and stratification are accommodated via the subpops and stratumID arguments,
respectively.
Change and trend estimation are most commonly used to study the behavior of a resource
through time. Change estimation focuses on comparing the resource at two time points.
Parameters are estimated at each time point and the difference between the estimates is of
interest. The variance of this difference incorporates the variability at each time point and
the correlation between sites that are sampled at both time points. In trend estimation,
parameters are estimated at each time point and a regression model fits a linear trend in
the estimates through time. There are three available regression models: a simple linear
regression model, a weighted linear regression model, and the mixed effects linear regression
model from Piepho and Ogutu (2002).
The change and trend analysis functions in spsurvey require three new arguments: vars_cat,
which indicates the categorical variables to estimate; vars_cont, which indicates the continu-
ous variables to estimate; and a surveyID variable that distinguishes between the time points.
The trend_analysis() function also requires the model_cat and model_cont arguments,
which indicate the trend models for the categorical and continuous variables, respectively. As
with the risk analysis functions, subpopulations and stratification are accommodated via the
subpops and stratumID arguments, respectively.

4. Application
In this section, we use spsurvey to compare two sampling and analysis approaches: spatial
and non-spatial. The spatial approach uses the GRTS algorithm for sampling and the local
neighborhood variance estimator (Equation 4) for analysis. The non-spatial approach uses
simple random sampling (SRS) and its variance estimator (Equation 3) for analysis. The data
studied are from the United States Environmental Protection Agency’s 2012 National Lakes
Assessment, a survey designed to monitor the status of lakes in the conterminous United
States in 2012 (U.S. Environmental Protection Agency 2017).
We considered two variables in the NLA12 data: Atrazine presence (AP), a binary metric
indicating whether Atrazine is present; and a continuous benthic macroinvertebrate multi-
metric index (BMMI). Data were recorded at 1028 lakes for AP and 914 lakes for BMMI. By
running

R> NLA12 <- sp_frame(NLA12)
R> summary(NLA12, formula = ~ AP + BMMI)

total AP BMMI
total:1030 N :694 Min. : 0.00

Y :334 1st Qu.:33.00
NA's: 2 Median :43.90
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Figure 6: Spatial distributions of Atrazine presence (a) and a benthic macroinvertebrate
multi-metric index (b) from the 2012 National Lakes Assessment.

Mean :43.22
3rd Qu.:54.60
Max. :86.10
NA's :116

we see that the true proportion of lakes containing Atrazine is 0.3249, and the true mean
BMMI of lakes is 43.22. By running

R> plot(NLA12, formula = ~ AP + BMMI)

we see that Atrazine presence is concentrated in the Upper Midwest (Figure 6a), while there
is no clear spatial pattern for BMMI (Figure 6b). The data for each resource are treated as
separate populations for the purposes of this section.
A simulation study was used to compare the spatial and non-spatial approaches. First un-
stratified, equal probability samples of size 250 were selected from the Atrazine presence
population (Figure 6a) using the GRTS and SRS algorithms. Then several quantities were
computed: the sample’s spatial balance measured using Pielou’s evenness index; an estimate,
denoted by p̂, of the true proportion of Atrazine presence, denoted by p; an estimate of the
standard error of p̂; and an indicator variable measuring whether a 95% confidence interval
for p contains 0.3249. This process was repeated 2000 times, and then the following sum-
mary metrics were computed: mean spatial balance; mean bias, measured as the average
deviation of p̂ from p; root-mean-squared error, measured as the square root of the average
squared deviation of p̂ from p; the 95% confidence interval coverage rate; and mean margin
of error, measured as the average half-width of the 95% confidence interval for p. The same
process was used to study BMMI. The spsurvey functions grts(), irs(), sp_balance(),
cat_anlaysis(), and cont_analysis() were used during these simulations.
The Atrazine presence summary metrics are presented in Table 1. The mean spatial balance
for the GRTS samples is lower than for the SRS samples. The Atrazine presence estimates
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Algorithm SPB Bias RMSE Coverage MOE
GRTS 0.0214 −0.0003 0.0206 0.9525 0.0406
SRS 0.0339 −0.0008 0.0258 0.9455 0.0505

Table 1: Sampling algorithm (Algorithm), mean spatial balance (SPB), mean bias (Bias),
root-mean-squared error (RMSE), 95% confidence interval coverage (Coverage), and mean
margin of error (MOE) for 2000 simulation trials comparing the spatial and non-spatial ap-
proaches for studying Atrazine presence.

(a) (b)

Figure 7: Boxplots of spatial balance (a) and margins of error (b) in the 2000 simulation trials
comparing the spatial and non-spatial approaches for studying Atrazine presence.

from the GRTS and SRS samples both appear to be unbiased (mean bias near zero), but
the root-mean-squared error of the SRS estimates is roughly 25% higher than root-mean-
squared error of the GRTS estimates. The spatial approach and the non-spatial approach
both have confidence interval coverage near 95%. The mean margin of error for the non-
spatial approach, however, is roughly 24% higher than for the spatial approach. Boxplots
representing each simulation trial’s spatial balance and margin of error are displayed for both
approaches in Figure 7.
The BMMI summary metrics are presented in Table 2. These results are similar to the
Atrazine presence results: GRTS samples tend be more spatially balanced than SRS samples;
the mean bias of estimates from the GRTS and SRS samples is near zero; root-mean-squared
error from the SRS samples is roughly 10% higher than root-mean-squared error from the
GRTS samples; confidence interval coverage is near 95% for both approaches; and the mean
margin of error for the non-spatial approach is roughly 9% higher than the mean margin of
error for the spatial approach. Boxplots representing each simulation trial’s spatial balance
and margin of error are displayed for both approaches in Figure 8.
The advantages of the spatial approach in this simulation study are clear. The GRTS samples
are more spatially balanced than the SRS samples. The estimates from the GRTS samples
are unbiased and have lower root-mean-squared error than estimates from the SRS samples.
The spatial approach has smaller margins of error than the non-spatial approach (while re-
taining proper coverage). This implies that confidence intervals from the spatial approach
are narrower (more precise) than confidence intervals from the non-spatial approach.
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Algorithm SPB Bias RMSE Coverage MOE
GRTS 0.0213 0.0063 0.7655 0.9520 1.5303
SRS 0.0336 0.0134 0.8421 0.9440 1.6668

Table 2: Samplilng algorithm (Algorithm), mean spatial balance (SPB), mean bias (Bias),
root-mean-squared error (RMSE), 95% confidence interval coverage (Coverage), and mean
margin of error (MOE) for 2000 simulation trials comparing the spatial and non-spatial ap-
proaches for studying BMMI.

(a) (b)

Figure 8: Boxplots of spatial balance (a) and margins of error (b) for 2000 simulation trials
comparing the spatial and non-spatial approaches for studying BMMI.

For Atrazine presence, the non-spatial approach has a roughly 25% higher root-mean-squared
error than the spatial approach. For BMMI, the non-spatial approach have a roughly 10%
higher root-mean-squared error than the spatial approach. The relative root-mean-squared
error increase is larger for Atrazine presence than BMMI. This is likely because Atrazine
presence has a stronger spatial pattern (Figure 6a) than BMMI (Figure 6b), suggesting that
the stronger the spatial pattern, the greater the advantage of the spatial approach compared
to the non-spatial approach.

5. Discussion
spsurvey offers a suite of tools for design-based statistical inference, with a focus on spatial
data. The summary() and plot() functions summarize and visualize data. The grts() func-
tion selects spatially balanced samples from point, linear, and areal resources and flexibly ac-
commodates stratification, varying inclusion probabilities, legacy (historical) sites, minimum
distance between sites, and two options for replacement sites (reverse hierarchical ordering
and nearest neighbor). The sp_balance() function computes the spatial balance of a sample.
The sp_rbind() binds together the design sites into a single ‘sf’ object. spsurvey’s analysis
functions are used for categorical variable analysis (cat_analysis()), continuous variable
analysis (cont_analysis()), relative risk analysis (relrisk_analysis), attributable risk
analysis (attrisk_analysis()), difference in risk analysis (diffrisk_analysis), change
analysis (change_analysis), and trend analysis (trend_analysis). Aside from these core
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functions, spsurvey has several other specialized functions to perform cluster sampling and
analysis, cumulative distribution function (CDF) hypothesis testing, panel designs, power
analysis, design weight adjustments, and more.
We plan to continually update spsurvey so that it is reflective of new research. Because
spsurvey depends on sf for sampling and survey (Lumley 2020) for analysis, spsurvey may
also change alongside these packages. spsurvey is an open-source project, and we want it to be
as helpful and user-friendly as possible. To help us accomplish these goals, we encourage users
to give us feedback regarding desired features, bug fixes, and other suggestions for spsurvey.

Data and code availability
All writing, code, and data associated with this manuscript are available for viewing and down-
load in a supplementary R package located at the GitHub repository: https://github.com/
USEPA/spsurvey.manuscript. Instructions for use are included in the repository’s README.
This supplementary R package contains a replication script that can be used to reproduce
all results presented in the manuscript. Replicating the simulation study could take 10–60
minutes, but results are provided as .rda files in the supplementary R package. Moreover,
all necessary replication codes can be found on the journal’s website.
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