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Abstract

A large body of research has focused on theory and computation for variable selection
techniques for high dimensional data. There has been substantially less work in the
big “tall” data paradigm, where the number of variables may be large, but the number
of observations is much larger. The orthogonalizing expectation maximization (OEM)
algorithm is one approach for computation of penalized models which excels in the big
tall data regime. The oem package is an efficient implementation of the OEM algorithm
which provides a multitude of computation routines with a focus on big tall data, such as a
function for out-of-memory computation, for large-scale parallel computation of penalized
regression models. Furthermore, in this paper we propose a specialized implementation
of the OEM algorithm for cross validation, dramatically reducing the computing time for
cross validation over a naive implementation.

Keywords: lasso, MCP, optimization, expectation maximization, C++, OpenMP, parallel
computing, out-of-memory computing.

1. Introduction

Penalized regression has been a widely used technique for variable selection for many decades.
Computation for such models has been a challenge due to the non-smooth properties of
penalties such as the lasso (Tibshirani 1996). A plethora of algorithms now exist such as
the least angle regression (LARS) algorithm (Efron, Hastie, Johnstone, and Tibshirani 2004)
and coordinate descent (Tseng 2001; Friedman, Hastie, and Tibshirani 2010), among many
others. There exist for these algorithms even more R (R Core Team 2022) packages for various
penalized regression routines such as glmnet (Friedman, Hastie, Simon, and Tibshirani 2022),
lars (Hastie and Efron 2022), ncvreg (Breheny 2021), grpreg (Breheny and Zeng 2021), and
gglasso (Yang, Zou, and Bhatnagar 2020), among countless others. Each of the above packages
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focuses on a narrow class of penalties, such as group regularization, non-convex penalties, or
the lasso. The existence of many options often makes it hard to choose between packages,
and furthermore difficult to develop a consistent workflow when it is not clear which type
of penalty is suitable for a given problem. There has been much focus on algorithms for
scenarios where the number of variables p is much larger than the number of observations n,
such as the LARS algorithm, yet many applications of “internet scale” typically involve an
extraordinarily large number of observations and a moderate number of variables. In these
applications, speed is crucial. The oem package (Dai and Huling 2022) is intended to provide
a highly efficient framework for penalized regression in these tall data settings. It provides
computation for a comprehensive selection of penalties, including the lasso and elastic net,
group-wise penalties, and non-convex penalties and allows for simultaneous computation of
these penalties. Most of the algorithms and packages listed above, however, are more efficient
than the oem package for scenarios when the number of variables is larger than the number
of observations. Roughly speaking, the oem package is most effective when the ratio of the
number of variables to the number of observations is less than 1/10. This is ideal for data
settings, such as in internet applications, where a large number of variables are available, but
the number of observations grows rapidly over time.

Centered around the orthogonalizing expectation maximization (OEM) algorithm of Xiong,
Dai, Huling, and Qian (2016), the oem package provides a unified framework for computation
for penalized regression problems with a focus on big tall data scenarios. The OEM algorithm
is particularly useful for regression scenarios when the number of observations is significantly
larger than the number of variables. It is efficient even when the number of variables is large (in
the thousands) as long as the number of observations is yet larger (hundreds of thousands or
more). The OEM algorithm is particularly well-suited for penalized linear regression scenarios
when the practitioner must choose between a large number of potential penalties, as the OEM
algorithm can compute full tuning parameter paths for multiple penalties nearly as efficiently
as for just one penalty.

The oem package also places an explicit emphasis on practical aspects of penalized regression
model fitting, such as tuning parameter selection, in contrast to the vast majority of penalized
regression packages. The most common approach for tuning parameter selection for penalized
regression is cross validation. Cross validation is computationally demanding, yet there has
been little focus on efficient implementations of cross validation. Here we present a modifica-
tion of the OEM algorithm to dramatically reduce the computational load for cross validation.
Additionally, the oem package provides some extra unique features for very large-scale prob-
lems. The oem package provides functionality for out-of-memory computation, allowing for
fitting penalized regression models on data which are too large to fit into memory. Feasibly,
one could use these routines to fit models on datasets hundreds of gigabytes in size on just
a laptop. The biglasso package (Zeng and Breheny 2017a,b) also provides functionality for
out-of-memory computation, however its emphasis is on ultrahigh-dimensional data scenarios
and is limited to the lasso, elastic-net, and ridge penalties. Also provided are OEM routines
based off of the quantities X⊤X and X⊤y that may already be available to researchers from
exploratory analyses. This can be especially useful for scenarios when data are stored across
a large cluster, yet the sufficient quantities can be computed easily on the cluster, making
penalized regression computation very simple and quick for datasets with an arbitrarily large
number of observations.
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The core computation for the oem package is in C++ using the Eigen numerical linear al-
gebra library (Guennebaud, Jacob, and others 2010) with an R interface via the RcppEigen
(Bates and Eddelbuettel 2013) package. Out-of-memory computation capability is provided
by interfacing to special C++ objects for referencing objects stored on disk using the bigmem-
ory package (Kane, Emerson, and Weston 2013; Kane, Emerson, Haverty, and Determan Jr.
2022).
In Section 2, we provide a review of the OEM algorithm. In Section 3 we present a new
efficient approach for cross validation based on the OEM algorithm. In Section 4 we show
how the OEM algorithm can be extended to logistic regression using a proximal Newton
algorithm. Section 5 provides an introduction to the package, highlighting useful features.
Finally, Section 6 demonstrates the computational efficiency of the package with some nu-
merical examples.

2. The orthogonalizing EM algorithm

2.1. Review of the OEM algorithm

The OEM algorithm is centered around the linear regression model:

y = Xβ + ε, (1)

where X = (xij) is an n × p design matrix, y ∈ Rn is a vector of responses, β = (β1, . . . , βp)⊤

is a vector of regression coefficients, and ε is a vector of random error terms with mean zero.
When the number of covariates is large, researchers often want or need to perform variable
selection to reduce variability or to select important covariates. A sparse estimate β̂ with
some estimated components exactly zero can be obtained by minimizing a penalized least
squares criterion:

β̂ = argmin
β

∥y − Xβ∥2 + Pλ(β), (2)

where the penalty term Pλ has a singularity at the zero point of its argument. Widely used
examples of penalties include the lasso (Tibshirani 1996), the group lasso (Yuan and Lin
2006), the smoothly clipped absolute deviation (SCAD) penalty (Fan and Li 2001), and the
minimax concave penalty (MCP; Zhang 2010), among many others.
The OEM algorithm can solve (2) under a broad class of penalties, including all of those pre-
viously mentioned. The basic motivation of the OEM algorithm is the triviality of minimizing
this loss when the design matrix X is orthogonal. However, the majority of design matrices
from observational data are not orthogonal. Instead, we seek to augment the design matrix
with extra rows such that the augmented matrix is orthogonal. If the non-existent responses
of the augmented rows are treated as missing, then we can embed our original minimization
problem inside a missing data problem and use the EM algorithm. Let ∆ be a matrix of
pseudo observations whose response values z are missing. If ∆ is designed such that the
augmented regression matrix

Xc =
(

X
∆

)
is column orthogonal, an EM algorithm can be used to solve the augmented problem efficiently
similar to Healy and Westmacott (1956). The OEM algorithm achieves this with two steps:
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Step 1. Construct an augmentation matrix ∆.

Step 2. Iteratively solve the orthogonal design with missing data by the EM algorithm.

Step 2.1. E-step: Impute the missing responses z by z = ∆β(t), where β(t) is the
current estimate.

Step 2.2. M-step: Solve

β(t+1) = argmin
β

1
2∥y − Xβ∥2 + 1

2∥z − ∆β∥2 + Pλ(β). (3)

An augmentation matrix ∆ can be constructed using the active orthogonalization procedure.
The procedure starts with any positive definite diagonal matrix S and ∆ can be constructed
conceptually by ensuring that ∆⊤∆ = dS2 − X⊤X is positive semidefinite for some constant
d ≥ λ1(S−1X⊤XS−1), where λ1(·) is the largest eigenvalue. The term ∆ need not be
explicitly computed, as the EM iterations in the second step result in closed-form solutions
which only depend on ∆⊤∆. To be more specific, let A = ∆⊤∆ and u = X⊤y + Aβ(t).
Furthermore, assume the regression matrix X is standardized so that

n∑
i=1

x2
ij = 1, for j = 1, . . . , p.

Then the update for the regression coefficients when Pλ(β) = 0 has the form β
(t+1)
j = uj/dj .

When Pλ(β) is the ℓ1 norm, corresponding to the lasso penalty,

β
(t+1)
j = sign(uj)

(
|uj | − λ

dj

)
+

,

where (a)+ denotes max{a, 0}.
Xiong et al. (2016) used a scalar value for d and for simplicity chose S to be the diagonal
matrix. Furthermore, they showed that while the above algorithm converges for all d ≥
λ1(X⊤X), using d = λ1(X⊤X) results in the fastest convergence. Such a d can be computed
efficiently using the Lanczos algorithm (Lanczos 1950).

2.2. Penalties

The oem package uses the OEM algorithm to solve penalized least squares problems with the
penalties outlined in Table 1. For a vector u of length k and an index set g ⊆ {1, . . . , k} we
define the length |g| subvector ug of a vector u as the elements of u indexed by g. Furthermore,
for a vector u of length k let ∥u∥ =

√∑k
j=1 u2

j .
For λ > 0 let:

P SCAD
λ,γ (β) =


λ|β| |β| ≤ λ;
− |β|2−2γλ|β|+λ2

2(γ−1) λ < |β| ≤ γλ;
(γ+1)λ2

2 |β| > γλ

for γ > 2 and

P MCP
λ,γ (β) =

{
λ|β| − β2

2γ |β| ≤ γλ;
γλ2

2 |β| > γλ

for γ > 1.
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Penalty Penalty form
Lasso λ

∑p
j=1 wj |βj |

Elastic Net αλ
∑p

j=1 wj |βj | + 1
2(1 − α)λ

∑p
j=1 wjβ2

j

MCP
∑p

j=1 P MCP
λwj ,γ(βj)

SCAD
∑p

j=1 P SCAD
λwj ,γ (βj)

Group Lasso λ
∑G

k=1 ck∥βgk
∥

Group MCP λ
∑G

k=1 P MCP
λck,γ (∥βgk

∥)
Group SCAD λ

∑G
k=1 P SCAD

λck,γ (∥βgk
∥)

Sparse Group Lasso λ(1 − τ)
∑G

k=1 ck∥βgk
∥ + λτ

∑p
j=1 wj |βj |

Table 1: The penalties available in the oem package. In the group lasso, gk refers to the index
set of the k-th group. The vector w ∈ Rp is a set of variable-specific penalty weights and the
vector c ∈ RG is a set of group-specific penalty weights.

The updates for the above penalties are given below:

1. Lasso
β

(t+1)
j = S(uj , wjλ, d) = sign(uj)

( |uj | − wjλ

d

)
+

. (4)

2. Elastic Net
β

(t+1)
j = sign(uj)

(
|uj | − wjαλ

d + wj(1 − α)λ

)
+

. (5)

3. MCP

β
(t+1)
j = M(uj , wjλ, γ, d) =

 sign(uj)
γ
(

|uj |−wjλ
)

+
(γd−1) , if |uj | ≤ wjγλd,

uj/d, if |uj | > wjγλd.
(6)

where γ > 1

4. SCAD

β
(t+1)
j = C(uj , wjλ, γ, d)

=


sign(uj)

(
|uj | − wjλ

)
+/d, if |uj | ≤ (d + 1)wjλ,

sign(uj)
[
(γ−1)|uj |−wjγλ

][
(γ−1)d−1

] , if (d + 1)wjλ < |uj | ≤ wjγλd,

uj/d, if |uj | > wjγλd.

(7)

where γ > 2.

5. Group Lasso
The update for the k-th group is

β(t+1)
gk

= G(ugk
, ckλ, d) = ugk

d

(
1 − ckλ

∥ugk
∥2

)
+

. (8)
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6. Group MCP
The update for the k-th group is

β(t+1)
gk

= M(∥ugk
∥, ckλ, γ, d) ugk

∥ugk
∥

. (9)

7. Group SCAD
The update for the k-th group is

β(t+1)
gk

= C(∥ugk
∥, ckλ, γ, d) ugk

∥ugk
∥

. (10)

8. Sparse Group Lasso
The update for the k-th group is

β(t+1)
gk

= G(vgk
, ckλ(1 − τ), 1), (11)

where the j-th element of v is S(uj , wjλτ, d). This is true because the thresholding
operator of two nested penalties is the composition of the thresholding operators where
the innermost nested penalty’s thresholding operator is evaluated first. For more de-
tails and theoretical justification of the composition of proximal operators for nested
penalties, see Jenatton, Mairal, Bach, and Obozinski (2010).

3. Parallelization and fast cross validation
The OEM algorithm lends itself naturally to efficient computation for cross validation for
penalized linear regression models. When the number of variables is not too large (ideally
n ≫ p) relative to the number of observations, computation for cross validation using the
OEM algorithm is on a similar order of computational complexity as fitting one model for
the full data. To see why this is the case, note that the key computational step in OEM is in
forming the matrix A. Recall that A = dIp − X⊤X. In K-fold cross validation, the design
matrix is randomly partitioned into K submatrices as

X =

X1
...

XK

 .

Then for the kth cross validation model, the OEM algorithm requires the quantities A(k) =
d(k)Ip − X⊤

−kX−k and X⊤
−ky−k, where X−k is the design matrix X with the kth submatrix

Xk removed and y−k is the response vector with the elements from the kth fold removed.
Then trivially, we have that A = dIp −

∑K
k=1 X⊤

k Xk, A(k) = dIp −
∑

c=1,...,K,c̸=k X⊤
c Xc, and

X⊤
−ky−k =

∑
c=1,...,K,c̸=k X⊤

c yc. Then the main computational tasks for fitting a model on
the entire training data and for fitting k models for cross validation is in computing X⊤

k Xk

and X⊤
k yk for each k, which has a total computational complexity of O(np2 + np) for any

k. Hence, we can precompute these quantities and the computation time for the entire cross
validation procedure can be dramatically reduced from the naive procedure of fitting models
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for each cross validation fold individually. It is clear that X⊤
k Xk and X⊤

k yk can be computed
independently across all k and hence we can reduce the computational load even further by
computing them in parallel. The techniques presented here are not applicable to models
beyond the linear model, such as logistic regression.

4. Extension to logistic regression
The logistic regression model is often used when the response of interest is a binary outcome.
The OEM algorithm can be extended to handle logistic regression models by using a proximal
Newton algorithm similar to that used in the glmnet package and described in Friedman
et al. (2010). OEM can act as a replacement for coordinate descent in the inner loop in the
algorithm described in Section 3 of Friedman et al. (2010). While we do not present any new
algorithmic results here, for the sake of clarity we will outline the proximal Newton algorithm
of Friedman et al. (2010) that we use.
The response variable Y takes values in {0, 1}. The logistic regression model posits the
following model for the probability of an event conditional on predictors:

µ(x) = P(Y = 1|x) = 1
1 + exp{−(x⊤β)} .

Under this model, we compute penalized regression estimates by maximizing the following
penalized log-likelihood with respect to β:

1
n

n∑
i=1

{
yix

⊤
i β + log(1 + exp(x⊤

i β))
}

− Pλ(β). (12)

Then, given a current estimate β̂, we approximate (12) with the following weighted penalized
linear regression:

− 1
2n

n∑
i=1

wi{zi − x⊤
i β} − Pλ(β), (13)

where

zi = x⊤
i β̂ + yi − µ̂(xi)

µ̂(xi)(1 − µ̂(xi))
wi = µ̂(xi)(1 − µ̂(xi))

and µ̂(xi) is evaluated at β̂. Here, zi are the working responses and wi are the weights. For
each iteration of the proximal Newton algorithm, we maximize (13) using the OEM algorithm.
Similar to Krishnapuram, Carin, Figueiredo, and Hartemink (2005); Friedman et al. (2010),
we optionally employ an approximation to the Hessian using an upper-bound of wi = 0.25
for all i. This upper bound is often quite efficient for big tall data settings.

5. The oem package

5.1. The oem() function

The function oem() is the main workhorse of the oem package.
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Figure 1: Estimated coefficient paths for the lasso, MCP, and group lasso.

R> nobs <- 1e4
R> nvars <- 25
R> rho <- 0.25
R> sigma <- matrix(rho, ncol = nvars, nrow = nvars)
R> diag(sigma) <- 1
R> x <- mvrnorm(n = nobs, mu = numeric(nvars), Sigma = sigma)
R> y <- drop(x %*% c(0.5, 0.5, -0.5, -0.5, rep(0, nvars - 4))) +
+ rnorm(nobs, sd = 3)

The group membership indices for each covariate must be specified for the group lasso via
the argument groups. The argument gamma specifies the γ value for MCP. The plot method
for ‘oemfit’ objects allows the user to plot the estimated coefficient paths. Its argument
which.model allows the user to select the model to be plotted.

R> fit <- oem(x = x, y = y, penalty = c("lasso", "mcp", "grp.lasso"),
+ gamma = 2, groups = rep(1:5, each = 5), lambda.min.ratio = 1e-3)
R> par(mar = c(5, 5, 5, 3) + 0.1)
R> layout(matrix(1:3, ncol = 3))
R> plot(fit, which.model = 1, xvar = "lambda", cex.main = 3,
+ cex.axis = 1.25, cex.lab = 2)
R> plot(fit, which.model = 2, xvar = "lambda", cex.main = 3,
+ cex.axis = 1.25, cex.lab = 2)
R> plot(fit, which.model = 3, xvar = "lambda", cex.main = 3,
+ cex.axis = 1.25, cex.lab = 2)

To compute the loss function in addition to the estimated coefficients, the compute.loss
argument must be set to TRUE like in the following code:

R> fit <- oem(x = x, y = y, penalty = c("lasso", "mcp", "grp.lasso"),
+ gamma = 2, groups = rep(1:5, each = 5), lambda.min.ratio = 1e-3,
+ compute.loss = TRUE)

By default, compute.loss is set to FALSE because it adds a large computational burden,
especially when many penalties are input. The logLik method for ‘oemfit’ objects can
be used for objects fitted using oem() with compute.loss = TRUE. The logLik method for
‘oemfit’ objects has a which.model argument which allows to specify the model:
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R> logLik(fit, which.model = 2)[c(1, 25, 50, 100)]

[1] -14189.39 -13804.72 -13795.76 -13795.11

5.2. Fitting multiple penalties

The OEM algorithm is well-suited to quickly estimate a solution path for multiple penalties
simultaneously for the linear model if the number of variables is not too large, often when
the number of variables is several thousands or fewer, provided the number of observations
is larger than the number of variables. Ideally the number of observations should be at least
ten times larger than the number of variables for best performance. Once the quantities A
and X⊤y are computed initially, then the remaining computational complexity for the OEM
algorithm for a given model and tuning parameter is just O(p2) per iteration. To demonstrate
the efficiency, consider the following simulated example:

R> nobs <- 1e6
R> nvars <- 100
R> rho <- 0.25
R> sigma <- matrix(rho, ncol = nvars, nrow = nvars)
R> diag(sigma) <- 1
R> x2 <- mvrnorm(n = nobs, mu = numeric(nvars), Sigma = sigma)
R> y2 <- drop(x2 %*% c(0.5, 0.5, -0.5, -0.5, rep(0, nvars - 4))) +
+ rnorm(nobs, sd = 5)
R> mb <- microbenchmark(
+ "oem[lasso]" = oem(x = x2, y = y2, penalty = c("lasso"),
+ gamma = 3, groups = rep(1:20, each = 5)),
+ "oem[all]" = oem(x = x2, y = y2, penalty = c("lasso", "mcp",
+ "grp.lasso", "scad"), gamma = 3, groups = rep(1:20, each = 5)),
+ times = 10L)
R> print(mb, digits = 3)

Unit: seconds
expr min lq mean median uq max neval cld

oem[lasso] 2.38 2.39 2.41 2.42 2.44 2.46 10 a
oem[all] 2.88 2.89 2.92 2.91 2.93 3.00 10 b

5.3. Parallel support via OpenMP
As noted in Section 3, the key quantities necessary for the OEM algorithm can be computed
in parallel. By specifying ncores to have a value greater than 1, the oem() function automat-
ically employs OpenMP (OpenMP Architecture Review Board 2015) to compute A and X⊤y
in parallel. Due to memory access inefficiencies in breaking up the computation of A into
pieces, using multiple cores does not speed up computation linearly. It is typical for OpenMP
not to result in linear speedups, especially on Windows machines, due to its overhead costs.
Furthermoe, if a user does not have OpenMP on their machine, the oem package will still
run normally on one core. In the following example, we can see a slight benefit from invoking
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the use of extra cores on a Windows laptop with a dual core multithreaded Intel i5 processor
with 4 threads.

R> nobs <- 1e5
R> nvars <- 500
R> rho <- 0.25
R> sigma <- rho ** abs(outer(1:nvars, 1:nvars, FUN = "-"))
R> x2 <- mvrnorm(n = nobs, mu = numeric(nvars), Sigma = sigma)
R> y2 <- drop(x2 %*% c(0.5, 0.5, -0.5, -0.5, rep(0, nvars - 4))) +
+ rnorm(nobs, sd = 5)
R> mb <- microbenchmark(
+ "oem" = oem(x = x2, y = y2, penalty = c("lasso", "mcp",
+ "grp.lasso", "scad"), gamma = 3, groups = rep(1:20, each = 25)),
+ "oem[parallel]" = oem(x = x2, y = y2, ncores = 2,
+ penalty = c("lasso", "mcp", "grp.lasso", "scad"), gamma = 3,
+ groups = rep(1:20, each = 25)), times = 10L)
R> print(mb, digits = 3)

Unit: seconds
expr min lq mean median uq max neval cld
oem 4.80 4.85 4.93 4.93 5.00 5.07 10 b

oem[parallel] 3.72 3.84 3.98 3.95 4.11 4.31 10 a

5.4. The cv.oem() function

The cv.oem() function is used for cross validation of penalized models fitted by the oem()
function. It does not use the method described in Section 3 and hence can be used for models
beyond the linear model. It can also benefit from parallelization using either OpenMP or
the foreach package. For the former, one only needs to specify the ncores argument of
cv.oem() and the key quantities for the OEM algorithm are computed in parallel for each
cross validation fold. With the foreach package (Kane et al. 2013; Revolution Analytics and
Weston 2022b), cores must be “registered” in advance using doParallel (Microsoft Corporation
and Weston 2022), doMC (Revolution Analytics and Weston 2022a), or otherwise. Each cross
validation fold is computed on a separate core, which may be more efficient depending on the
user’s hardware.

R> cvfit <- cv.oem(x = x, y = y, penalty = c("lasso", "mcp", "grp.lasso"),
+ gamma = 2, groups = rep(1:5, each = 5), nfolds = 10)

The best performing model and its corresponding best tuning parameter can be accessed via:

R> cvfit$best.model

[1] "mcp"

R> cvfit$lambda.min

[1] 0.0739055
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A summary method for ‘cv.oem’ objects is available, similar to the summary method for
objects created with cv.ncvreg() of the ncvreg package, which prints output from all of the
cross validated models. It can be used like the following:

R> summary(cvfit)

lasso-penalized linear regression with n=10000, p=25
At minimum cross-validation error (lambda=0.0242):
-------------------------------------------------

Nonzero coefficients: 13
Cross-validation error (Mean-Squared Error): 9.11
Scale estimate (sigma): 3.018

<===============================================>

mcp-penalized linear regression with n=10000, p=25
At minimum cross-validation error (lambda=0.0739):
-------------------------------------------------

Nonzero coefficients: 5
Cross-validation error (Mean-Squared Error): 9.10
Scale estimate (sigma): 3.016

<===============================================>

grp.lasso-penalized linear regression with n=10000, p=25
At minimum cross-validation error (lambda=0.0242):
-------------------------------------------------

Nonzero coefficients: 16
Cross-validation error (Mean-Squared Error): 9.10
Scale estimate (sigma): 3.017

Predictions from any model (which.model = 2) or the best of all models (which.model =
"best.model") are obtained using the predict method for ‘cv.oem’ objects. The tuning
parameter is specified via the argument s, which can take numeric values or "lambda.min"
for the best tuning parameter or "lambda.1se" for a good but more conservative tuning
parameter.

R> predict(cvfit, newx = x[1:3, ], which.model = "best.model",
+ s = "lambda.min")

[,1]
[1,] -0.2233264
[2,] 0.2211386
[3,] 0.4760399

5.5. The xval.oem() function

The xval.oem() function is much like cv.oem() but is limited to use for linear models only.
It is significantly faster than cv.oem(), as it uses the method described in Section 3. Whereas
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Figure 2: Cross validated mean squared prediction errors for paths of tuning parameters for
the lasso, MCP, and group lasso.

cv.oem() performs repeated calls to oem(), all of the primary computation in xval.oem() is
carried out in C++. We chose to keep the xval.oem() function separate from the cv.oem()
function because the underlying code between the two methods is vastly different and fur-
thermore because xval.oem() is not available for logistic regression models.

R> xvalfit <- xval.oem(x = x, y = y, penalty = c("lasso", "mcp",
+ "grp.lasso"), gamma = 2, groups = rep(1:5, each = 5), nfolds = 10)
R> yrng <- range(c(unlist(xvalfit$cvup), unlist(xvalfit$cvlo)))
R> layout(matrix(1:3, ncol = 3))
R> par(mar = c(5, 5, 5, 3) + 0.1)
R> plot(xvalfit, which.model = 1, ylim = yrng, cex.main = 3,
+ cex.axis = 1.25, cex.lab = 2)
R> plot(xvalfit, which.model = 2, ylim = yrng, cex.main = 3,
+ cex.axis = 1.25, cex.lab = 2)
R> plot(xvalfit, which.model = 3, ylim = yrng, cex.main = 3,
+ cex.axis = 1.25, cex.lab = 2)

5.6. OEM with precomputation with the oem.xtx() function

The key quantities, X⊤X and X⊤y can be computed in parallel, and when data are stored
across a large cluster, their computation can be performed in a straightforward manner. When
they are available, the oem.xtx() function can be used to carry out the OEM algorithm based
on these quantities instead of on the full design matrix X and the full response vector y. All
methods available to objects fitted by oem() are also available to objects fitted by oem.xtx().

R> xtx <- crossprod(x) / nrow(x)
R> xty <- crossprod(x, y) / nrow(x)
R> fitxtx <- oem.xtx(xtx, xty, penalty = c("lasso", "mcp", "grp.lasso"),
+ gamma = 2, groups = rep(1:5, each = 5))

5.7. Out-of-memory computation with the big.oem() function

Standard R objects are stored in memory and thus, when a design matrix is too large for
memory it cannot be used for computation in the standard way. The bigmemory package
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offers objects which point to data stored on disk and thus allows users to bypass memory
limitations. It also provides access to C++ objects which do the same. These objects are
highly efficient due to memory mapping, which is a method of mapping a data file to virtual
memory and allows for efficient moving of data in and out of memory from disk. For further
details on memory mapping, we refer readers to Bovet and Cesati (2005) and Kane et al.
(2013). The big.oem() function allows for out-of-memory computation by linking Eigen
matrix objects to data stored on disk via bigmemory.
The standard approach for loading the data from SEXP objects (X_ in the example below) to
Eigen matrix objects (X in the example below) in C++ looks like:

using Eigen::Map;
using Eigen::MatrixXd;
const Map<MatrixXd> X(as<Map<MatrixXd> >(X_));

To instead map from an object which is a pointer to data on disk, we first need to load the
bigmemory headers:

#include <bigmemory/MatrixAccessor.hpp>
#include <bigmemory/BigMatrix.h>

Then we link the pointer (passed from R to C++ as X_ and set as bigPtr below) to data to
an Eigen matrix object via:

XPtr<BigMatrix> bigPtr(X_);
const Map<MatrixXd> X = Map<MatrixXd>

((double *)bigPtr->matrix(), bigPtr->nrow(), bigPtr->ncol());

The remaining computation for OEM is carried out similarly as for oem(), yet here the object
X is not stored in memory.
To test out big.oem() and demonstrate its memory usage profile we simulate a large dataset
and save it as a “filebacked” ‘big.matrix’ object from the bigmemory package.

R> nobs <- 1e6
R> nvars <- 250
R> bkFile <- "big_matrix.bk"
R> descFile <- "big_matrix.desc"
R> big_mat <- filebacked.big.matrix(nrow = nobs, ncol = nvars,
+ type = "double", backingfil = bkFile, backingpath = ".",
+ descriptorfile = descFile, dimnames = c(NULL, NULL))
R> for (i in 1:nvars) {
+ big_mat[, i] = rnorm(nobs)
+ }
R> yb <- rnorm(nobs, sd = 5)

Using the profvis() function of the profvis package (Chang, Luraschi, and Mastny 2020), we
can see that no copies of the design matrix are made at any point. Furthermore, a maximum of
173 Megabytes are used by the R session during this simulation, whereas the size of the design
matrix is 1.9 Gigabytes. The following code generates an interactive HTML visualization of
the memory usage of big.oem() line-by-line:
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R> profvis::profvis({
+ bigfit <- big.oem(x = big_mat, y = yb, penalty = c("lasso",
+ "grp.lasso", "mcp", "scad"), gamma = 3, groups = rep(1:50, each = 5))
+ })

Here we save a copy of the design matrix in memory for use by oem():

R> xb <- big_mat[, ]
R> print(object.size(xb), units = "Mb")

1907.3 Mb

R> print(object.size(big_mat), units = "Mb")

0 Mb

The following benchmark for on-disk computation is on a system with a hard drive with
7200 RPM, 16 MB Cache, and SATA 3.0 Gigabytes per second (a quite modest setup com-
pared with a system with a solid state drive). Even without a solid state drive we pay little
time penalty for computing on disk over computing in memory.

R> mb <- microbenchmark(
+ "big.oem" = big.oem(x = big_mat, y = yb, penalty = c("lasso",
+ "grp.lasso", "mcp", "scad"), gamma = 3, groups = rep(1:50, each = 5)),
+ "oem" = oem(x = xb, y = yb, penalty = c("lasso", "grp.lasso", "mcp",
+ "scad"), gamma = 3, groups = rep(1:50, each = 5)), times = 10L)
R> print(mb, digits = 3)

Unit: seconds
expr min lq mean median uq max neval cld

big.oem 8.46 8.51 8.73 8.57 8.69 9.73 10 a
oem 9.81 9.85 10.36 10.08 10.65 12.03 10 b

5.8. Sparse matrix support

The oem() and cv.oem() functions accept sparse design matrices as provided by package
Matrix (Bates, Maechler, and Jagan 2022) in the ‘CsparseMatrix’ class of objects. If the
design matrix provided has a high degree of sparsity, using a ‘CsparseMatrix’ object can
result in a substantial computational speedup and reduction in memory usage.

R> library("Matrix")
R> n.obs <- 1e5
R> n.vars <- 200
R> true.beta <- c(runif(15, -0.25, 0.25), rep(0, n.vars - 15))
R> xs <- rsparsematrix(n.obs, n.vars, density = 0.01)
R> ys <- rnorm(n.obs, sd = 3) + as.vector(xs %*% true.beta)
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R> x.dense <- as.matrix(xs)
R> mb <- microbenchmark(
+ fit = oem(x = x.dense, y = ys, penalty = c("lasso", "grp.lasso"),
+ groups = rep(1:40, each = 5)),
+ fit.s = oem(x = xs, y = ys, penalty = c("lasso", "grp.lasso"),
+ groups = rep(1:40, each = 5)), times = 10L)
R> print(mb, digits = 3)

Unit: milliseconds
expr min lq mean median uq max neval cld
fit 669.9 672.5 679.3 680.3 682.2 690.6 10 b

fit.s 63.2 64.1 65.5 65.3 66.8 68.2 10 a

5.9. API comparison with glmnet
The application program interface (API) of the oem package was designed to be familiar to
users of the glmnet package. Data ready for use by glmnet() can be used directly by oem().
Most of the arguments are the same, except the penalty argument and other arguments
relevant to the various penalties available in oem().
Here we fit linear models with a lasso penalty using oem() and glmnet():

R> oem.fit <- oem(x = x, y = y, penalty = "lasso")
R> glmnet.fit <- glmnet(x = x, y = y)

Here we fit linear models with a lasso penalty using oem() and glmnet() with sparse design
matrices:

R> oem.fit.sp <- oem(x = xs, y = ys, penalty = "lasso")
R> glmnet.fit.sp <- glmnet(x = xs, y = ys)

Now we make predictions using the fitted model objects from both packages:

R> preds.oem <- predict(oem.fit, newx = x)
R> preds.glmnet <- predict(glmnet.fit, newx = x)

We now plot the coefficient paths using both fitted model objects:

R> plot(oem.fit, xvar = "norm")
R> plot(glmnet.fit, xvar = "norm")

We now fit linear models with a lasso penalty and select the tuning parameter with cross
validation using cv.oem(), xval.oem(), and cv.glmnet():

R> oem.cv.fit <- cv.oem(x = x, y = y, penalty = "lasso")
R> oem.xv.fit <- xval.oem(x = x, y = y, penalty = "lasso")
R> glmnet.cv.fit <- cv.glmnet(x = x, y = y)

We now plot the cross validation errors using all fitted cross validation model objects:
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R> plot(oem.cv.fit)
R> plot(oem.xv.fit)
R> plot(glmnet.cv.fit)

We now make predictions using the best tuning parameter according to the cross validation
error using all fitted cross validation model objects:

R> preds.cv.oem <- predict(oem.cv.fit, newx = x, s = "lambda.min")
R> preds.xv.oem <- predict(oem.xv.fit, newx = x, s = "lambda.min")
R> preds.cv.glmnet <- predict(glmnet.cv.fit, newx = x, s = "lambda.min")

6. Timings
Extensive numerical studies are conducted in Xiong et al. (2016) regarding the OEM algorithm
for computation time for paths of tuning parameters for various penalties. So in the following
simulation studies, we will focus on computation time for the special features of the oem
package such as cross validation and sparse matrix support. All simulations are run on a 64-
bit machine with an Intel Xeon E5-2470 2.30 GHz CPU and 128 Gigabytes of main memory
and a Linux operating system.

6.1. Cross validation

In this section we will compare the computation time of the cv.oem() and xval.oem() for
various penalties, both individually and simultanously, with the cross validation functions
from various other packages, including glmnet, ncvreg, grpreg, gglasso, and the Python (van
Rossum et al. 2011) package sklearn (Pedregosa et al. 2011). The model class we use from
sklearn is ‘LassoCV’, which performs cross validation for lasso linear models. In particular,
we focus on the comparison with glmnet, as it has been carefully developed with computation
time in mind and has long been the gold standard for computational performance.
In the simulation setup, we generate the design matrix from a multivariate normal distribution
with covariance matrix (σij) = 0.5|i−j|. Responses are generated from the following model:

y = Xβ + ϵ,

where the first five elements of β are (−0.5, −0.5, 0.5, 0.5, 1) and the remaining are zero and
ϵ is an independent mean zero normal random variable with standard deviation 2. The total
number of observations n is set to 105 and 106, the number of variables p is varied from 50
to 500, and the number of folds for cross validation is set to 10. For grouped regularization,
groups of variables of size 25 are chosen contiguously. For the MCP regularization that has
an additional tuning parameter γ, the tuning parameter γ is chosen to be 3. Each method
is fitted using the same sequence of 100 values of the tuning parameter λ and convergence is
specified to be the same level of precision for each method. The computation times for the
glmnet and oem functions without cross validation are given as a reference point.
From the results in Figure 3, both the xval.oem() and cv.oem() functions are competitive
with all other cross validation alternatives. Surprisingly, the xval.oem() function for the
lasso penalty only is competitive with and in many scenarios is even faster than glmnet,
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Figure 3: Average computing time over ten runs in log(seconds) for the functions that perform
cross validation for selection of the tuning parameter for various penalized regression methods.
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Figure 4: Average computing time over ten runs in log(seconds) for the xval.oem() function
with a varying number of cores. Results are shown for just one penalty (lasso) and three
simultaneously fitted penalties (lasso, group lasso, and MCP) with 100 values for the tuning
parameter λ for each penalty.

which does not perform cross validation. The xval.oem() is clearly faster than cv.oem() in
all scenarios. In many scenarios cv.oem() takes at least 6 times longer than xval.oem().
Both cross validation functions from the oem package are nearly as fast in computing for
three penalties simultaneously as they are for just one. We have found in general that for
any scenario where n ≫ p and cross validation is required, it is worth considering oem as
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Figure 5: Average computing time over ten runs in log(seconds) for computation of lasso
linear regression models using sparse matrices.

a fast alternative to other packages. In particular, a rough rule of thumb is that oem is
advantageous when n > 10p, however, oem may be advantageous with fewer observations
than this for penalties other than the lasso, such as MCP, SCAD, and group lasso.
Now we test the impact of parallelization on the computation time of xval.oem() using the
same simulation setup as above except now we additionally vary the number of cores used.
From the results in Figure 4, we can see that using parallelization through OpenMP helps
to some degree. However, it is important to note that using more cores than the number of
cross validation folds will unlikely result in better computation time than the same number
of cores as the number of folds due to how parallelization is implemented.

6.2. Sparse matrices

In the following simulated example, sparse design matrices are generated using the function
rsparsematrix() of the Matrix package with nonzero entries generated from an independent
standard normal distribution. The proportion of zero entries in the design matrix is set to
0.99, 0.95, and 0.9. The total number of observations n is set to 105 and 106 and the number
of variables p is varied from 250 to 1000. Responses are generated from the same model as
in Section 6.1. Each method is fitted using the same sequence of 100 values of the tuning
parameter λ and convergence is specified to be the same level of precision for each method.
The authors are not aware of penalized regression packages other than glmnet that provide
support for sparse matrices, so we just compare oem with glmnet. From the results in Figure 5,
it can be seen that oem() is superior in computation time for very tall data settings with a
high degree of sparsity of the design matrix.

6.3. Penalized logistic regression

In this simulation, we generate the design matrix from a multivariate normal distribution
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Figure 6: Average computing time over ten runs in log(seconds) for the functions that penal-
ized estimates for binomial regression models.

with covariance matrix (σij) = 0.5|i−j|. Responses are generated from the following model:

P(Yi = 1|xi) = 1
1 + exp (−x⊤

i β)
, for i = 1, . . . , n,

where the first five elements of β are (−0.5, −0.5, 0.5, 0.5, 1) and the remaining are zero. The
total number of observations n is set to 104 and 105, the number of variables p is varied from
50 to 500. For grouped regularization, groups of variables of size 25 are chosen contiguously.
For the MCP regularization, the tuning parameter γ is chosen to be 3. Each method is
fitted using the same sequence of 25 values of the tuning parameter λ. Both glmnet() and
oem() allow for a Hessian upper-bound approximation for logistic regression models, so in
this simulation we compare both the vanilla versions of each in addition to the Hessian upper-
bound versions. For logistic regression models, unlike linear regression, the various functions
compared use vastly different convergence criteria, so care was taken to set the convergence
thresholds for the different methods to achieve a similar level of precision.
The average computing times over 10 runs are displayed in Figure 6. The Hessian upper-
bound versions of glmnet() and oem() are given by the dashed lines. The glmnet() function
is the fastest for lasso-penalized logistic regression, but oem() without the use of a Hessian
upper-bound is nearly as fast as glmnet() when the sample size gets larger. For the MCP
and group lasso, oem() with the Hessian upper-bound option is the fastest across the vast
majority of simulation settings. In general, the Hessian upper-bound is most advantageous
when the number of variables is moderately large.

6.4. Quality of solutions

In this section we present information about the quality of solutions provided by each of
the compared packages. Using the same simulation setup and precisions for convergence as
the cross validation and binomial simulations, we investigate the numerical precision of the
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n p glmnet gglasso ncvreg
105 50 −4.04 × 10−09 −3.39 × 10−06 −1.45 × 10−12

100 −8.66 × 10−09 −3.45 × 10−06 3.37 × 10−11

250 −1.87 × 10−08 −3.33 × 10−06 −1.51 × 10−12

500 −3.35 × 10−08 −3.37 × 10−06 2.80 × 10−11

106 50 −4.20 × 10−09 −3.35 × 10−06 1.68 × 10−11

100 −3.18 × 10−09 −3.40 × 10−06 4.13 × 10−12

250 −7.51 × 10−09 −3.35 × 10−06 6.62 × 10−12

500 −1.57 × 10−08 −3.35 × 10−06 5.99 × 10−15

Table 2: Averages differences between the oem() function and other methods in objective
function values averaged over all of the values of the tuning parameter for the linear regression
simulations. Negative here means that the oem() function results in estimates with a lower
objective function value.

n p glmnet glmnet (ub) gglasso ncvreg
104 50 −2.79 × 10−13 −4.30 × 10−12 −4.33 × 10−07 −5.31 × 10−03

100 −1.82 × 10−13 −4.74 × 10−12 −4.95 × 10−07 −4.90 × 10−03

250 −6.52 × 10−13 −3.87 × 10−12 −5.06 × 10−07 −5.03 × 10−03

500 −4.80 × 10−13 −6.90 × 10−12 −5.30 × 10−07 −5.48 × 10−03

105 50 −1.48 × 10−13 −2.72 × 10−12 −4.79 × 10−07 −3.05 × 10−03

100 −1.30 × 10−13 −2.17 × 10−12 −4.78 × 10−07 −4.55 × 10−03

250 −9.30 × 10−14 −2.78 × 10−12 −4.78 × 10−07 −4.47 × 10−03

500 −2.07 × 10−13 −4.49 × 10−12 −4.51 × 10−07 −3.07 × 10−03

Table 3: Averages differences between the full Hessian version of oem() and other methods
in objective function values averaged over all of the values of the tuning parameter for the
logistic regression simulations. Negative here means the oem() function results in estimates
with a lower objective function value. The heading “glmnet (ub)” corresponds to glmnet()
with the Hessian upper bound option.

methods by presenting the objective function values corresponding to the given solutions.
Specifically, we look at the difference in the objective function values between oem() and the
comparative functions. A negative value here indicates that the oem() function results in
solutions with a smaller value of the objective function. Since each simulation is run on a
sequence of tuning parameter values we present the differences in objective functions averaged
over the tuning parameters. Since the objective function values across the different tuning
parameter values are on the same scale, this comparison is reasonable. While the grpreg()
function from the grpreg package provides solutions for the group lasso, it minimizes a slightly
modified objective function, wherein the covariates are orthonormalized within groups as
described in Section 2.1 of Breheny and Huang (2015). Due to this fact we do not compare
the objective function values associated with results returned by grpreg().
The objective function value differences for the linear model simulations are presented in
Table 2. We can see that the solutions provided by oem() are generally more precise than
those of other functions except ncvreg() for the MCP. However, the differences between the
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n p glmnet glmnet (ub) gglasso ncvreg
104 50 −7.01 × 10−14 −4.09 × 10−12 −4.20 × 10−07 −5.31 × 10−03

100 6.74 × 10−13 −3.88 × 10−12 −4.76 × 10−07 −4.90 × 10−03

250 −3.88 × 10−14 −3.25 × 10−12 −4.97 × 10−07 −5.03 × 10−03

500 −4.06 × 10−13 −6.82 × 10−12 −5.16 × 10−07 −5.47 × 10−03

105 50 3.16 × 10−12 5.87 × 10−13 −4.71 × 10−07 −3.05 × 10−03

100 3.06 × 10−12 1.02 × 10−12 −4.61 × 10−07 −4.55 × 10−03

250 2.72 × 10−12 3.40 × 10−14 −4.71 × 10−07 −4.47 × 10−03

500 1.09 × 10−12 −3.19 × 10−12 −4.31 × 10−07 −3.07 × 10−03

Table 4: Averages differences between the upper bound version of oem() and other methods
in objective function values averaged over all of the values of the tuning parameter for the
logistic regression simulations. Negative here means the oem() function results in estimates
with a lower objective function value. The heading “glmnet (ub)” corresponds to glmnet()
with the Hessian upper bound option.

solutions provided by oem() and ncvreg() for the MCP are close to machine precision. The
objective function value differences for the logistic model simulations are presented in Tables 3
and 4. Table 3 refers to comparisons between oem() using the full Hessian and other methods
and Table 4 refers to comparisons between oem() using the Hessian upper-bound. We can
see that oem() in both cases results in solutions which are generally more precise than other
methods. Interestingly, for the logistic regression simulations unlike the linear regression
simulations, we see that oem() provides solutions which are dramatically more precise than
ncvreg() for the MCP. These results indicate that the nonconvexity of the MCP has more
serious consequences for logistic regression in terms of algorithmic choices.
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