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Abstract

Antimicrobial resistance is an increasing threat to global health. Evidence for this
trend is generated in microbiological laboratories through testing microorganisms for re-
sistance against antimicrobial agents. International standards and guidelines are in place
for this process as well as for reporting data on (inter-)national levels. However, there is a
gap in the availability of standardized and reproducible tools for working with laboratory
data to produce the required reports. It is known that extensive efforts in data cleaning
and validation are required when working with data from laboratory information systems.
Furthermore, the global spread and relevance of antimicrobial resistance demands to in-
corporate international reference data in the analysis process.

In this paper, we introduce the AMR package for R that aims at closing this gap
by providing tools to simplify antimicrobial resistance data cleaning and analysis, while
incorporating international guidelines and scientifically reliable reference data. The AMR
package enables standardized and reproducible antimicrobial resistance analyses, includ-
ing the application of evidence-based rules, determination of first isolates, translation of
various codes for microorganisms and antimicrobial agents, determination of (multi-drug)
resistant microorganisms, and calculation of antimicrobial resistance, prevalence and fu-
ture trends. The AMR package works independently of any laboratory information system
and provides several functions to integrate into international workflows (e.g., WHONET
software provided by the World Health Organization).
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1. Introduction

Antimicrobial resistance is a global health problem and of great concern for human medicine,
veterinary medicine, and the environment alike. It is associated with significant burdens
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to both patients and health care systems. Current estimates show the immense dimensions
we are already facing, such as claiming at least 50,000 lives due to antimicrobial resistance
each year across Europe and the United States alone (O’Neill 2014). Although estimates for
the burden through antimicrobial resistance and their predictions are disputed (De Kraker,
Stewardson, and Harbarth 2016) the rising trend is undeniable (CDC 2019), thus calling for
worldwide efforts on tackling this problem.

Surveillance programs and reliable data are key for controlling and streamlining these efforts.
Surveillance data of antimicrobial resistance at higher levels (national or international) usually
comprise aggregated numbers. The basis of this information is generated and stored at local
microbiological laboratories where isolated microorganisms are tested for their susceptibility
to a whole range of antimicrobial agents. The efficacy of these agents against microorganisms
is nowadays interpreted as follows (EUCAST 2019):

e R: Resistant. There is a high likelihood of therapeutic failure.

o S: Susceptible, standard dosing regimen. There is a high likelihood of therapeutic success
using a standard dosing regimen of an antimicrobial agent.

o I. Susceptible, increased exposure. There is a high likelihood of therapeutic success,
but only when exposure to an antimicrobial agent is increased by adjusting the dosing
regimen or its concentration at the site of infection.

Generally, antimicrobial resistance is defined as the proportion of resistant microorganisms
(R) among all tested microorganisms of the same species (R + S + I). Today, the two ma-
jor guideline institutes to define the international standards on antimicrobial resistance are
the European Committee on Antimicrobial Susceptibility Testing (EUCAST, Leclercq et al.
2013) and the Clinical and Laboratory Standards Institute (CLSI, Clinical and Laboratory
Standards Institute 2014). The guidelines from these two institutes are adopted by 94% of all
countries reporting antimicrobial resistance to the WHO (World Health Organization 2018a).

Although these standardized guidelines are in place on the laboratory level for the data gen-
eration process, stored data in laboratory information systems are often not yet suitable
for data analysis. Laboratory information systems are often designed to fit billing purposes
rather than epidemiological data analysis. Furthermore, (inter-)national surveillance is hin-
dered by inadequate standardization of epidemiological definitions, different types of samples
and data collection, settings included, microbiological testing methods (including suscepti-
bility testing), and data sharing policies (Tacconelli et al. 2018). The necessity of accurate
data analysis in the field of antimicrobial resistance has just recently been further underlined
(Limmathurotsakul et al. 2019). Antimicrobial resistance analyses require a thorough under-
standing of microbiological tests and their results, the biological taxonomy of microorganisms,
the clinical and epidemiological relevance of the results, their pharmaceutical implications,
and (inter-)national standards and guidelines for working with and reporting antimicrobial
resistance.

Here, we describe the AMR package (Berends, Luz, Friedrich, Sinha, Albers, and Glas-
ner 2022) for R (R Core Team 2022), which has been developed to standardize clean and
reproducible antimicrobial resistance data analyses using international standardized recom-
mendations (Leclercq et al. 2013; Clinical and Laboratory Standards Institute 2014) while
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patient date test_no specimen mo PEN AMC CIP
1 2019-03-08 100 blood esccol R I S
1 2019-03-09 101 blood esccol R I S
2 2019-03-08 102 blood staaur R S —
3 2019-03-08 103 urine pseaer R R R

Table 1: Example of an antimicrobial resistance report. Abbreviations: R = resistant, S = sus-
ceptible, I = susceptible, increased exposure, mo = microorganism, PEN = penicillin, AMC
= amoxicillin/clavulanic acid, CIP = ciprofloxacin.

incorporating scientifically reliable reference data about valid laboratory outcome, antimi-
crobial agents, and the complete biological taxonomy of microorganisms. The AMR pack-
age provides solutions and support for these aspects while being independent of underly-
ing laboratory information systems, thereby democratizing the analysis process. Devel-
oped in R and available from the Comprehensive R Archive Network (CRAN) at https:
//CRAN.R-project.org/package=AMR since February 22, 2018 (Berends et al. 2022), the
AMR package enables reproducible workflows as described in other fields, such as environ-
mental science (Lowndes et al. 2017). The AMR package provides a new technical instrument
to aid in curbing the global threat of antimicrobial resistance. Furthermore, local and regional
data in the laboratories can now become relevant in any setting for public health.

While no other packages R package with the purpose of dealing with antimicrobial resis-
tance data are available on CRAN or Bioconductor, the AMR package may be integrated
in workflows of related packages. For example, the R Epidemics Consortium (RECON) pro-
vides high-quality packages for data analysis in infectious disease outbreaks or epidemics
(for example incidence and epicontacts, Jombart et al. 2020; Nagraj, Jombart, Randhawa,
Sudre, Campbell, and Crellen 2021). In addition, on the laboratory side the antibioticR
package provides approaches to work with disk diffusion zone diameter and minimum in-
hibitory concentration data from environment samples (Petzoldt 2021). We aim at providing
a comprehensive and standardized toolbox for antimicrobial resistance data processing and
analysis, with a focus on microbiological, clinical, and epidemiological purposes that was yet
missing.

The following sections describe the functionality of the AMR package according to its core
functionalities for transforming, enhancing, and analyzing antimicrobial resistance data using
scientifically reliable reference data.

2. Antimicrobial resistance data

Microbiological tests can be performed on different specimens, such as blood or urine samples
or nasal swabs. After arrival at the microbiological laboratory, the specimens are traditionally
cultured on specific media, such as blood agar. If a microorganism can be isolated from these
media, it is tested against several antimicrobial agents. Based on the minimal inhibitory
concentration (MIC) of the respective agent and interpretation guidelines, such as guidelines
by EUCAST (Leclercq et al. 2013) and CLSI (Clinical and Laboratory Standards Institute
2014), test results are reported as “resistant” (R), “susceptible” (S) or “susceptible, increased
exposure” (I). A typical data structure is illustrated in Table 1 (Leclercq et al. 2013).
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patient date test_no specimen mo PEN AMC CIP
1 2019-03-08 100 blood esccol R I S

1 2019-03-09 101 blood esccol R I S

2 2019-03-08 102 blood StaAur > 8 (R)* < 0.01 (S)*

3 2019-03-08 103 urine P. aeru. R SH* S

Table 2: Antimicrobial resistance report example — ambiguous formats. * = Mixed reporting
of minimal inhibitory concentration (MIC) and susceptibility interpretation of MIC value. **
= False reporting; Pseudomonas aeruginosa (mo = P. aeru.) is intrinsically resistant to amox-
icillin/clavulanic acid (AMC). Abbreviations: R = resistant, S = susceptible, I = susceptible,
increased exposure, mo = microorganism, PEN = penicillin, AMC = amoxicillin/clavulanic
acid, CIP = ciprofloxacin.

For the first two rows, the information should be read as: Escherichia coli (mo = esccol) was
isolated from blood of patient 1 and was found to be resistant to penicillin, and susceptible
to amoxicillin/clavulanic acid and ciprofloxacin. However, often (especially when merging
sources) data is reported in ambiguous formats as exemplified in Table 2. It is crucial that
source data can be analyzed in a reliable way, especially when the outcome will be used to
evaluate patient treatment options. This requires reproducible and field-specific, specialized
data cleaning and transforming.

The AMR package aims at providing a standardized and automated way of cleaning, trans-
forming, and enhancing these typical data structures (Table 1 and 2), independent of the
underlying data source. Processed data would be similar to Table 3 that highlights several
package functionalities in the sections below.

3. Antimicrobial resistance data transformation

3.1. Working with taxonomically valid microorganism names

Coercing is a computational process of forcing output based on an input. For microor-
ganism names, coercing user input to taxonomically valid microorganism names is crucial
to ensure correct interpretation and to enable grouping based on taxonomic properties.
To this end, the AMR package includes all microbial entries from The Catalogue of Life
(https://www.catalogueoflife.org/), the most comprehensive and authoritative global
index of species currently available (Banki et al. 2022). It holds essential information on the
names, relationships, and distributions of more than 1.9 million species. The integration of
it into the AMR package is described in the Appendix A.

The as.mo() function makes use of this underlying data to transform a vector of characters
to a new class ‘mo’ of taxonomically valid microorganism name. The resulting values are
microbial IDs, which are human-readable for the trained eye and contain information about
the taxonomic kingdom, genus, species, and subspecies (Figure 1).

The as.mo() function compares the user input with taxonomically valid microorganism
names, rates the matching with a score and returns results based on the highest score. This
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Microbial ID Full name
B_KLBSL Klebsiella
B_KLBSL_PNMN Klebsiella pneumoniae

B_KLBSL_PNMN_RHNS Kilebsiella pneumoniae rhinoscleromatis

&(> subspecies, a 4-5 letter acronym
species, a 4-5 letter acronym
genus, a 5-7 letter acronym
kingdom: A (Archaea), AN (Animalia), B (Bacteria),
C (Chromista), F (Fungi), or P (Protozoa)

Figure 1: The structure of a typical microbial ID as used in the AMR package. An ID
consists of two to four elements, separated by an underscore. The first element is the abbre-
viation of the taxonomic kingdom. The remaining elements consist of abbreviations of the
lowest taxonomic levels of every microorganism: genus, species (if available) and subspecies
(if available). Abbreviations used for the microbial IDs of microorganism names were created
using the base R function abbreviate().

matching score (m), ranging from 0 to 1, is calculated using the following equation:

lp, — 0.5 - min{l,,lev(z,n)}
ln “DPn - kn

M(a,n) =

where:

x is the user input;

n is a taxonomic name (genus, species, and subspecies);
e [, is the length of n;

o lev is the Levenshtein distance function (Levenshtein 1966), which counts any insertion,
deletion and substitution as 1 that is needed to change = into n;

e P, is the human pathogenic prevalence group of n, as described below;

e ky is the taxonomic kingdom of n, set as Bacteria = 1, Fungi = 2, Protozoa = 3, Archaea
= 4, others = 5.

The grouping into human pathogenic prevalence (p) is based on experience from several
microbiological laboratories in the Netherlands in conjunction with international reports
on pathogen prevalence (De Greeff, Mouton, Schoffelen, and Verduin 2019; European Cen-
tre for Disease Prevention and Control 2010; World Health Organization 2018a). Group 1
(most prevalent microorganisms) consists of all microorganisms where the taxonomic class
is Gammaproteobacteria or where the taxonomic genus is Enterococcus, Staphylococcus or
Streptococcus. This group consequently contains all common Gram-negative bacteria, such
as Pseudomonas and Legionella and all species within the order Enterobacterales. Group 2
consists of all microorganisms where the taxonomic phylum is Proteobacteria, Firmicutes,
Actinobacteria or Sarcomastigophora, or where the taxonomic genus is Absidia, Acremonium,
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Actinotignum, Alternaria, Anaerosalibacter, Apophysomyces, Arachnia, Aspergillus, Aureobac-
terium, Aureobasidium, Bacteroides, Basidiobolus, Beauveria, Blastocystis, Branhamella, Bor-
relia, Calymmatobacterium, Candida, Capnocytophaga, Catabacter, Chaetomium, Chlamy-
dia, Chlamydophila, Chryseobacterium, Chryseomonas, Chrysonilia, Cladophialophora, Cla-
dosporium, Conidiobolus, Cryptococcus, Curvularia, Exophiala, FExserohilum, Flavobacterium,
Fonsecaea, Fusarium, Fusobacterium, Hendersonula, Hypomyces, Koserella, Lelliottia, Lep-
tosphaeria, Leptotrichia, Malassezia, Malbranchea, Mortierella, Mucor, Mycocentrospora, My-
coplasma, Nectria, Ochroconis, Oidiodendron, Phoma, Piedraia, Pithomyces, Pityrosporum,
Prevotella, Pseudallescheria, Rhizomucor, Rhizopus, Rhodotorula, Scolecobasidium, Scopular-
topsis, Scytalidium,Sporobolomyces, Stachybotrys, Stomatococcus, Treponema, Trichoderma,
Trichophyton, Trichosporon, Tritirachium or Ureaplasma. Group 3 consists of all other mi-
croorganisms.

This will lead to the effect that e.g., "E. coli" will return the microbial ID of Escherichia coli
(m = 0.688, a highly prevalent microorganism found in humans) and not Entamoeba coli (m =
0.079, a less prevalent microorganism in humans), although the latter would alphabetically
come first. The matching score function is for users available as mo_matching_score().

If any coercion rules are applied, a warning is printed to the console and scores can be
reviewed by calling mo_uncertainties(), that prints all other matches with their matching
scores. Users can furthermore control the coercion rules by setting the allow_uncertain
argument in the as.mo() function. The following values or levels can be used:

¢ 0: no additional rules are applied;

o 1: allow previously accepted (but now invalid) taxonomic names and minor spelling
eITors;

e 2: allow all of 1, strip values between brackets, inverse the words of the input, strip off
text elements from the end keeping at least two elements;

e 3: allow all of level 1 and 2, strip off text elements from the end, allow any part of a
taxonomic name;

o TRUE (default): equivalent to 2;

e FALSE: equivalent to 0.

To support organization specific microbial IDs, users can specify a custom reference ‘data.frame’,
by using as.mo(..., reference_df = ...). This process can also be automated by users
with the set_mo_source () function.

Properties of microorganisms

The package contains functions to return a specific (taxonomic) property of a microor-
ganism from the microorganisms data set (see Appendix A). Functions that start with
mo_* can be used to retrieve the most recently defined taxonomic properties of any mi-
croorganism quickly and conveniently. These functions rely on the as.mo() function in-
ternally: mo_name (), mo_fullname(), mo_shortname(), mo_subspecies(), mo_species(),
mo_genus(), mo_family(), mo_order(), mo_class(), mo_phylum(), mo_kingdom(),
mo_type(), mo_gramstain(), mo_ref() mo_authors(), mo_year(), mo_rank(),



8 AMR: Working with Antimicrobial Resistance Data in R

mo_taxonomy (), mo_synonyms (), mo_info() and mo_url(). Determination of the Gram
stain, by using mo_gramstain(), is based on the taxonomic subkingdom and phylum. Ac-
cording to Cavalier-Smith (2002), who defined the subkingdoms Negibacteria and Posibac-
teria, only the following phyla are Posibacteria: Actinobacteria, Chloroflexi, Firmicutes and
Tenericutes. Bacteria from these phyla are considered Gram-positive — all other bacteria are
considered Gram-negative. Gram stains are only relevant for species within the kingdom of
Bacteria. For species outside this kingdom, mo_gramstain() will return NA.

3.2. Working with antimicrobial names or codes

The AMR package includes the antibiotics data set, which comprises common laboratory
information system codes, official names, anatomical therapeutic chemical (ATC) codes, de-
fined daily doses (DDD) and more than 5,000 trade names of 464 antimicrobial agents (see
Appendix A). The ATC code system and the reference list for DDDs have been developed and
made available by the World Health Organization Collaborating Centre for Drug Statistics
Methodology (WHOCC) to standardize pharmaceutical classifications (WHO Collaborating
Centre for Drug Statistics Methodology 2018). All agents in the antibiotics data set have
a unique antimicrobial ID, which is based on abbreviations used by the European Antimi-
crobial Resistance Surveillance Network (EARS-Net), the largest publicly funded system for
antimicrobial resistance surveillance in Europe (European Centre for Disease Prevention and
Control 2018). Furthermore, the AMR package includes the antivirals data set containing
antiviral agents, which is also described in the Appendix A.

Properties of antimicrobial agents

It is a common task in microbiological data analyses (and other clinical or epidemiological
fields) to work with different antimicrobial agents. The AMR package provides several func-
tions to translate inputs such as ATC codes, abbreviations, or names in any direction. Using
as.ab(), any input will be transformed to an antimicrobial ID of class ‘ab’. Helper functions
are available to get specific properties of antimicrobial IDs, such as ab_name () for getting
the official name, ab_atc () for the ATC code, or ab_cid () for the compound ID (CID) used
by PubChem (Kim et al. 2019). Trade names can be also used as input. For example, the
input values "Amoxil", "dispermox", "amox" and "JO1CA04" all return the ID of amoxicillin
(AMX):

R> as.ab("Amoxicillin")

Class <ab>
[1] AMX

R> as.ab(c("Amoxil", "dispermox", "amox", "J01CA04"))

Class <ab>
[1] AMX AMX AMX AMX

R> ab_name ("Amoxil")

[1] "Amoxicillin"
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Class Minimum Maximum Unit
‘mic’ < 0.001 > 1024 ng/ml
‘disk’ <6 > 50 mm

Table 4: Antimicrobial suceptibility test classes.

R> ab_atc("amox")

[1] "JO1CAO4"

R> ab_name ("J0O1CA04")
[1] "Amoxicillin"

If more than one antimicrobial agent is found in the input string, a warning with the additional
findings is printed to the console.

Selecting and filtering data based on classes of antimicrobial agents

The application of the ATC classification system also enables grouping of antimicrobial agents
for data analyses. Data sets with microbial isolates can be filtered on isolates with spe-
cific results for tested antimicrobial agents in a specific antimicrobial class. For example,
carbapenems () can be used to select columns or filter rows based on any of the 14 available
antimicrobial agents in the group of carbapenems according to the antibiotics data set.

3.3. Working with antimicrobial susceptibility test results

Minimal inhibitory concentrations (MIC) are susceptibility test results measured by microbi-
ological laboratory equipment to determine at which minimum antimicrobial drug concentra-
tion 99.9% of a microorganism is inhibited in growth. These concentrations are often capped
at a minimum and maximum, for example <0.02 pg/ml and >32 pg/ml, respectively. The
‘mic’ class, an ordered ‘factor’ containing valid MIC values, keeps these operators while still
ordering all possible outcomes correctly so that e.g., "<= 0.02" will be considered lower than
"0.04".

Another susceptibility testing method is the use of drug diffusion disks, which are small tablets
containing a specified concentration of an antimicrobial agent. These disks are applied onto
a solid growth medium or a specific agar plate. After 24 hours of incubation, the diameter of
the growth inhibition around a disk can be measured in millimeters with a ruler. The ‘disk’
class can be used to clean these kinds of measurements, since they should always be valid
numeric values between 6 and 50. The supported minima and maxima of valid values for
both classes, ‘mic’ and ‘disk’, are displayed in Table 4.

The higher the MIC or the smaller the growth inhibition diameter, the more active substance
of an antimicrobial agent is needed to inhibit cell growth, i.e., the higher the antimicrobial
resistance against the tested antimicrobial agent. At high MICs and small diameters, guide-
lines interpret the microorganism as “resistant” (R) to the tested antimicrobial agent. At
low MICs and wide diameters, guidelines interpret the microorganism as “susceptible” (S) to
the tested antimicrobial agent. In between, the microorganism is classified as “susceptible,
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increased exposure” (I). For these three interpretations the ‘rsi’ class has been developed.
When using as.rsi() on MIC values (of class ‘mic’) or disk diffusion diameters (of class
‘disk’), the values will be interpreted according to the guidelines from the CLST or EUCAST
(Clinical and Laboratory Standards Institute 2019; The European Committee on Antimicro-
bial Susceptibility Testing 2020, all guidelines between 2011 and 2021 are included in the
AMR package). Guidelines can be changed by setting the guidelines argument.

R> # Low MIC value
R> as.rsi(as.mic(2), "E. coli", "ampicillin", guideline = "EUCAST 2021")

Class <rsi>
[1] S

R> # High MIC value
R> as.rsi(as.mic(32), "E. coli", "ampicillin", guideline = "EUCAST 2021")

Class <rsi>
[1] R

When using the as.rsi() function on existing antimicrobial interpretations, it tries to coerce
the input to the values “R”, “S” or “I”. These values can in turn be used to calculate the
proportion of antimicrobial resistance.

3.4. Interpretative rules by EUCAST

Next to supplying guidelines to interpret raw MIC values, the EUCAST has developed a
set of expert rules to assist clinical microbiologists in the interpretation and reporting of
antimicrobial susceptibility tests (Leclercq et al. 2013). The rules comprise assistance on in-
trinsic resistance, exceptional phenotypes, and interpretive rules. The AMR package covers
intrinsic resistant and interpretive rules for data transformation and standardization pur-
poses. The first prevents false susceptibility reporting by providing a list of organisms with
known intrinsic resistance to specific antimicrobial agents (e.g., cephalosporin resistance of
all enterococci). Interpretative rules apply inference from established resistance mechanisms
(Winstanley and Courvalin 2011; Courvalin 1992, 1996; Livermore, Winstanley, and Shannon
2001). Both groups of rules are based on classic IF THEN statements (e.g., IF Enterococcus
spp. resistant to ampicillin THEN also report as resistant to imipenem). Some rules provide
assistance for further actions when certain resistance has been detected, i.e., performing ad-
ditional testing of the isolated microorganism. The AMR package function eucast_rules()
can apply all EUCAST rules that do not rely on additional clinical information, such as addi-
tional information on patients’ diagnoses. Table 2 and 3 highlight the transformation for the
reporting of AMX = S in patient_id = 000003 to the correct report according to EUCAST
rules of AMX = R. Of note, however, EUCAST rules overwrite original data to correct for
the difference in how antimicrobial agents affect the tested microorganism in vitro (in the
laboratory) and in vivo (in the human body). This requires users to closely collaborate with
the data source provider to ensure correct versioning, backward compatibility, reproducibility,
and taking into account specific local regulation for resistance reporting. Typical scenarios
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where changes to the original data points apply include in vitro test results indicating sus-
ceptibility when resistance in vivo is known. The changes are based on scientific consensus
to ensure reliable high-quality reporting of antimicrobial susceptibility results. All changes to
the data are printed to the console and can also be reviewed in detail by setting the argument
eucast_rules(..., verbose = TRUE).

EUCAST rules are subject to regular updates which are implemented into the AMR pack-
age by the AMR maintenance team shortly after publication. The eucast_rules() func-
tion supports versioning of the rules. The arguments version_breakpoints and version_
expertrules can be set to current or previous versions. By default, the eucast_rules()
function uses the latest implemented version.

3.5. Working with defined daily doses (DDD)

DDDs are essential for standardizing antimicrobial consumption analysis, for inter-institutional
or international comparison. The official DDDs are published by the WHOCC (WHO Collab-
orating Center for Drug Statistics Methodology 2019). Updates to the official publication are
monitored by the AMR maintenance team and implemented in the antibiotics data set in-
cluded in the AMR package. Other metrics exist such as the recommended daily dose (RDD)
or the prescribed daily dose (PDD). However, DDDs are the only metric that is independent
of a patient’s disease and therapeutic choices and thus suitable for the AMR package.
Functions from the atc_online_*() family take any text as input that can be coerced
with as.ab() (i.e., to class ‘ab’). Next, the functions access the WHOCC online registry
(WHO Collaborating Center for Drug Statistics Methodology 2019, internet connection re-
quired) and download the property defined in the arguments (e.g., administration = "0"
or administration = "P" for oral or parenteral administration and property = "ddd" or
property = "groups" to get DDD or the group of the selected antimicrobial defined by its

ATC code).
R> atc_online_ddd("amoxicillin", administration = "0O")
[1] 1.5

R> atc_online_groups("amoxicillin")

[1] "ANTIINFECTIVES FOR SYSTEMIC USE"

[2] "ANTIBACTERIALS FOR SYSTEMIC USE"

[3] "BETA-LACTAM ANTIBACTERIALS, PENICILLINS"
[4] "Penicillins with extended spectrum"

4. Enhancing antimicrobial resistance data

4.1. Determining first isolates

Determining antimicrobial resistance or susceptibility can be done for a single agent (mono-
therapy) or multiple agents (combination therapy). The calculation of antimicrobial resistance
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statistics is dependent on two prerequisites: the data should only comprise the first isolates
and a minimum required number of 30 isolates should be met for every stratum in further
analysis (Clinical and Laboratory Standards Institute 2014).

An isolate is a microorganism strain cultivated on specified growth media in a laboratory,
so its phenotype can be determined. First isolates are isolates of any species found first in
a patient per episode, regardless of the body site or the type of specimen (such as blood
or urine) (Clinical and Laboratory Standards Institute 2014). The selection on first isolates
(using function first_isolate()) is important to prevent selection bias, as it would lead
to overestimated or underestimated resistance to an antimicrobial agent. For example, if
a patient is admitted with a multi-drug resistant microorganism and that microorganism is
found in five different blood cultures the following week, it would overestimate resistance if all
isolates were to be included in the analysis. The episode in days can be set with the argument
episode_days, which defaults to 365 as suggested by the Clinical and Laboratory Standards
Institute (2014) guideline.

4.2. Determining multi-drug resistant organisms (MDRO)

Definitions of multi-drug resistant organisms (MDRO) are regulated by national and interna-
tional expert groups and differ between nations. The AMR. package provides the functionality
to quickly identify MDROs in a data set using the mdro() function. Guidelines can be set
with the argument guideline. At default, it applies the guideline as proposed by Magio-
rakos et al. (2012). Their work describes the definitions for bacteria being “MDR” (multi-
drug-resistant), “XDR” (extensively drug-resistant) or “PDR” (pan-drug-resistant). These
definitions are widely adopted (Abat, Fournier, Jimeno, Rolain, and Raoult 2018) and known
in the field of medical microbiology.

Other guidelines currently supported are the international EUCAST guideline (guideline =
"EUCAST", European Committee on Antimicrobial Susceptibility Testing 2016), the interna-
tional WHO guideline on the management of drug-resistant tuberculosis, (guideline = "TB",
World Health Organization 2014), and the national guidelines of The Netherlands (guideline
= "NL", Werkgroep Infectiepreventie 2011), and Germany (guideline = "DE", Miiller et al.
2015).

Some guidelines require a minimum availability of tested antimicrobial agents per isolate.
This is needed to prevent false-negatives, since no reliable determination can be performed on
only a few test results. This required minimum defaults to 50%, but can be set by the user
with the pct_minimum_classes. Isolates that do not meet this requirement will be skipped
for determination and will return NA (not applicable), with an informative warning printed
to the console.

The rules are applied per row of the data. The mdro() function automatically identifies
the variables containing the microorganism codes and antimicrobial agents based on the
guess_ab_col() function. Following the guideline set by the user, it analyzes the specific
antimicrobial resistance of a microorganism and flags that microorganism accordingly. The
outcome is demonstrated in Table 5, where the first row is an MDRO according to the Dutch
guidelines (Werkgroep Infectiepreventie 2011).

The returned value is an ordered ‘factor’ with the levels Negative < Positive, unconfirmed
< Positive. For some guideline rules that require additional testing (e.g., molecular confir-
mation), the level Positive, unconfirmed is returned.
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mo AMC GEN TOB CIP MFX MDRO
B_ESCHR_COLI S R R R R Positive
B ESCHR COLI R S R R S Negative
B ESCHR COLI S S S R S Negative

Table 5: Example of a multi-drug resistant organism (MDRO) in a data set identified by apply-
ing Dutch guidelines. Abbreviations: mo = microorganism, AMC = amoxicilline/clavulanic
acid, GEN = gentamicin, TOB = tobramycin, CIP = ciprofloxacin, MFX = moxifloxacin,
MDRO = multi-drug resistant organism, B_ ESCHR_ COLI = microorganism code of Es-
cherichia coli.

Multi-drug resistant tuberculosis

Tuberculosis is a major threat to global health caused by Mycobacterium tuberculosis (MTB)
and is one of the top ten causes of death worldwide (World Health Organization 2018b).
Exceptional antimicrobial resistance in MTB is therefore of special interest. To this end,
the international WHO guideline for the classification of drug resistance in MTB (World
Health Organization 2014) is included in the AMR package. The mdr_tb() function is
a convenient wrapper around mdro(..., guideline = "TB"), which returns an other or-
dered ‘factor’ than other mdro() functions. The output will contain the ‘factor’ levels
Negative < Mono-resistant < Poly-resistant < Multi-drug-resistant < Extensive
drugresistant, following the WHO guideline.

5. Analyzing antimicrobial resistance data

5.1. Calculation of antimicrobial resistance

The AMR package contains several functions for fast and simple resistance calculations of
bacterial or fungal isolates. A minimum number of available isolates is needed for the relia-
bility of the outcome. The CLSI guideline suggests a minimum of 30 available first isolates
irrespective of the type of statistical analysis (Clinical and Laboratory Standards Institute
2014). Therefore, this number is used as the default setting for any function in the pack-
age that calculates antimicrobial resistance or susceptibility, which can be changed with the
minimum argument in all applicable functions.

Counts

The AMR package relies on the concept of tidy data (Wickham 2014), although not strictly
following its rules (one row per test rather than one row per observation). Function names
to calculate the number of available isolates follow these general resistance interpretation
standards with count_S(), count_I(), and count_R() respectively. Combinations of an-
timicrobial resistance interpretations can be counted with count_SI() and count_IR(). All
these functions take a vector of interpretations of the class ‘rsi’ (as discussed above) or are
internally transformed with as.rsi(). The returned value is the sum of the respective inter-
pretation in the selected test column. All count_x*() functions support quasi-quotation with
pipes, grouped variables, and can be used with dplyr::summarize() (Wickham, Frangois,
Henry, and Miiller 2022).

13
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Proportions

Calculation of antimicrobial resistance is carried out by counting the number of first resis-
tant isolates (interpretation of “R”) and dividing it by the number of all first isolates, see
Equation 1. This is implemented in the proportion_R() function. To calculate antimi-
crobial susceptibility, the number of susceptible first isolates (interpretation of “S” and “I”)
has to be counted and divided by the number of all first isolates, which is implemented in
the proportion_SI() function. For convenience, the resistance() function is an alias
of the proportion_R() function, and the susceptibility() function is an alias of the
proportion_SI() function.

The functions proportion_R(), proportion_IR(), proportion_I(), proportion_SI(), and
proportion_S() follow the same logic as the count_*() functions and all return a vector of
class ‘double’ with a value between 0 and 1. The argument minimum defines the minimal
allowed number of available (tested) isolates (default: minimum = 30). Any number below
the set minimum will return NA with a warning.

For calculating the proportion (P) of antimicrobial resistance or susceptibility to one antimi-
crobial agent, the following equation is used:

_ Y[ € o]
P(x,o) - —k ) (1)
Ei:l[xi € {Rv S>I}]

where P is the proportion of outcome o (that is either “R”, “S”, “I”, or a combination of
two of them), where x is a character vector of length k only consisting of values “R”, “S”, or
“I” and [z; € o] is the indicator function, returning 1 if the indicator function is true and 0
otherwise. The denominator must include the collection {R,S,I} so that “wrong” elements
in z (i.e., elements not being “R”, “S”, or “I”) will not be counted. Thus, the theoretical
antimicrobial susceptibility of the vector x = {S,S,I, R, R} is:

3
Plao=(s1}) = 5 =06

For the proportion of empiric susceptibility (s) for more than one antimicrobial agent, the
calculation can be carried out in two ways (Table 6). The first method is to count the total
number of first isolates where at least one agent was tested as “S” or “I” and divide it by the
number of first isolates tested where any of the agents was tested (Equation 2). This method
will be used when setting only_all_tested = FALSE in the susceptibility() function:

. SEme(shvue(sy
@) = Sk 12 e (R, S,1} Vy, € {R,S,1}]’

(2)

where z is a character vector only consisting of values “R”, “S”, or “I” (i.e., “agent A”) and
y is another character vector only consisting of values “R”, “S”, or “I” (i.e., “agent B”).

The second method is to count the total number of first isolates where at least one agent was
tested as “S” or “I” and where all agents were tested divided by the number of first isolates
tested where all of the agents were tested (Equation 3). This method will be used when
setting only_all_tested = TRUE in the susceptibility() function:

g S (e {S,I} Vs € {S,1}) Az € {R,S, I} Ay; € {R,S,T}] 3)
(@y) Sk [z € {R,S, I} Ay € {R,S,T}]
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Antimicrobial agent All isolates Only isolates tested for both agents
(only_all_tested = FALSE) (only_all_tested = TRUE)
Agent A Agent B Include as Inclusie as Include as Include as
numerator denominator numerator denominator
Sorl Sorl v v v v
R Sorl v v v v
N/A Sorl v v
Sorl R v v v v
R R v v
N/A R
Sorl N/A v v
R N/A
N/A N/A

Table 6: Example calculation for determining empiric susceptibility (%SI) for more than one
antimicrobial agent. Abbreviations: R = resistant, S = susceptible, I = susceptible/increased
exposure, N/A = not tested/missing.

Based on Equation 1, the overall resistance and susceptibility of antimicrobial agents like
gentamicin (GEN) and amoxicillin (AMX) can be calculated using the following syntax. The
example_isolates is an example data set included in the AMR package, see Appendix A.
The n_rsi() function is analogous to the n() function of the dplyr package. It counts the
number of available isolates, but only includes observations with valid antimicrobial results
(i.e., “R”, “S”, or “I7).

R> library("dplyr")

R> example_isolates 7>}, summarize (

+ r_gen = proportion_R(GEN), r_amx = proportion_R(AMX),
+ n_gen = n_rsi(GEN), n_amx = n_rsi(AMX), n_total = n())

r_gen r_amx n_gen n_amx n_total
1 0.2458221 0.5955556 1855 1350 2000

This output reads: the resistance to gentamicin of all isolates in the example_isolates
data set is P(z = GEN,o0 = {R}) = 24.6%, based on 1,855 out of 2,000 available isolates.
This means that the susceptibility is P(x = GEN, 0 = {S,1}) = 75.4%. The susceptibility to
amoxicillin is P(x = AMX, 0 = {S,I}) = 40.4% based on 1,350 isolates.

To calculate the effect of combination therapy, i.e., treating patients with multiple agents
at the same time, all proportion_x*() functions can handle multiple variables as arguments
as defined in Equation 2 and 3. For example, to calculate the empiric susceptibility of a
combination therapy comprising gentamicin (GEN) and amoxicillin (AMX):

R> example_isolates 7>/, summarize (
+ si_gen_amx = proportion_SI(GEN, AMX), n_gen_amx = n_rsi(GEN, AMX),
+ n_total = n())
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si_gen_amx n_gen_amx n_total
1 0.931843 1921 2000

This leads to the conclusion that combining gentamicin with amoxicillin would cover
s(z = GEN,y = AMX) = 93.2% based on 1,921 out of 2,000 available isolates, which is
17.8% more than when treating with gentamicin alone (P(x = GEN,o0 = {S,1}) = 75.4%).
With these functions, exact calculations can be done to evaluate the empiric success of treat-
ing infections with one or more antimicrobial agents.

6. Design decisions

The AMR package follows the rationale of tidyverse packages as authored by Wickham
et al. (2019). Most functions take a ‘data.frame’ or ‘tibble’ as input, support piping (%>%)
operations, can work with quasi-quotations, and can be integrated into dplyr workflows, such
as mutate() to create new variables and group_by() to group by variables. Although the
AMR package integrates well into tidyverse workflows, it can also be used with base R only.
To this extent, the AMR package was developed to be independent of any other R package
to ensure and maintain sustainability.

The AMR package supports multiple languages. Currently supported languages are Dan-
ish, Dutch, English, French, German, Italian, Portuguese, Russian, Spanish and Swedish.
The system language will be used if the language is supported but can be overwritten with
options(AMR_locale = ...). Multi-language support affects language-dependent output of
functions such as mo_name (), mo_gramstain(), mo_type(), and ab_name ().

The AMR package uses S3 classes, object oriented systems available in R. They allow different
types of output based on the user input. The AMR package introduces five S3 classes (‘mo’,
‘ab’, ‘rsi’, ‘mic’, and ‘disk’) to increase the convenience when working with antimicrobial
susceptibility data.

7. Reproducible example

We consider the problem of working with antimicrobial resistance data from three different
hospitals between 2011-01-01 and 2020-01-01. After loading the AMR package and additional
tidyverse packages to allow transformation and plotting, we load the example_isolates_
unclean example data from the AMR package into the global environment and assign it a
new name.

R> library("dplyr")

R> library("tidyr")

R> library("AMR")

R> options(AMR_locale = "en")

R> data <- example_isolates_unclean
R> glimpse(data)

Rows: 3,000
Columns: 8
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$ patlent_ld <Chr> IIJ3|| s IIR7II s |IP3II s IIPlOII s IIB7II s llw3|| s IIJ8II s IIM3H s

$ hospital <chr> IIA"’ ||All’ IIAH, IIA"’ llAll’ IIAH, IIAII’ llAll’ IIAll, IIAII’ .
$ date <date> 2012-11-21, 2018-04-03, 2014-09-19, 2015-12-10,

$ bacteria  <chr> "E. coli", "K. pneumoniae", "E. coli", "E. coli",...
$ AMX <Chr> IIRII s ||Rll , IIRlI , IISH s llSll , IIRll , IIRII s IlRll s IISll , IISII S e
$ AMC <Chr> III"’ IlIll’ |IS|I’ "Ill’ llSll’ ||SI|’ HSH, llS"’ I|Sll, HSH’..-
$ CIP <Chr> IISII, ||Sll, IISlI’ IISII’ llSll, IIRll, IISII’ llSll, IISll, IISII’."
$ GEN <Chr> HS"’ IlSll, |IS|I’ HSH’ IISH, I|SI|’ HSH’ IISH’ IISII, HSH’..-

R> unique(data$hospital)
[1] IIAII IIBll IICH

R> unique(data$bacteria)

[1] "E. coli" "K. pneumoniae"

[3] "S. aureus" "S. pneumoniae"

[6] "klepne" "strpne"

[7] "esccol" "staaur"

[9] "Escherichia coli" "Staphylococcus aureus"

[11] "Streptococcus pneumoniae" "Klebsiella pneumoniae"
R> data 7>} count (bacteria)

bacteria n

E. coli 494

esccol 508

Escherichia coli 516

K. pneumoniae 108
Klebsiella pneumoniae 102
klepne 116

S. aureus 247

S. pneumoniae 151

staaur 240

10 Staphylococcus aureus 243
11 Streptococcus pneumoniae 139
12 strpne 136

© 00 NO O WN -

The data contains 3,000 observations of 8 variables from 3 hospitals. The bacteria variable
comprises 12 unique elements. However, they appear to encode the same information in dif-
ferent formats ("E. coli", "K. pneumoniae", "S. aureus", "S. pneumoniae", "klepne",
"strpne", ‘'"esccol", '"staaur", "Escherichia coli", "Staphylococcus aureus",
"Streptococcus pneumoniae", "Klebsiella pneumoniae"). We can use the as.mo() func-
tion to standardize the bacterial codes and add a variable with the official scientific name.
The correct transformation of the bacterial codes can be reviewed by calling the
mo_uncertainties() function.

17
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R> data <- data }>}, mutate(
+ bacteria = as.mo(bacteria), bacteria_name = mo_name (bacteria))
R> mo_uncertainties ()

Matching scores are based on pathogenicity in humans and the
resemblance between the input and the full taxonomic name. See
“?mo_matching_score’.

"E. coli" -> Escherichia coli (B_ESCHR_COLI, 0.688)

Also matched: Entamoeba coli (0.079)

"K. pneumoniae" -> Klebsiella pneumoniae (B_KLBSL_PNMN, 0.786)

Also matched: Klebsiella pneumoniae ozaenae (0.707), Klebsiella
pneumoniae pneumoniae (0.688) and Klebsiella pneumoniae
rhinoscleromatis (0.658)

"S. aureus" -> Staphylococcus aureus (B_STPHY_AURS, 0.690)

Also matched: Staphylococcus aureus aureus (0.643), Streptomyces
aureus (0.355) and Stentor aureus (0.052)

"S. pneumoniae" -> Streptococcus pneumoniae (B_STRPT_PNMN, 0.750)
Also matched: Spirabiliibacterium pneumoniae (0.700)

R> data J>}, count(bacteria, bacteria_name)

bacteria bacteria_name n
1 B_ESCHR_COLI Escherichia coli 1518
2 B_KLBSL_PNMN Klebsiella pneumoniae 326
3 B_STPHY_AURS Staphylococcus aureus 730
4 B_STRPT_PNMN Streptococcus pneumoniae 426

In a next step, we can further enrich the data with additional microbial taxonomic data based
on the bacteria variable, such as Gram-stain and microorganism family.

R> data <- data 7>} mutate(
+ gram_stain = mo_gramstain(bacteria), family = mo_family(bacteria))
R> data 7>7, count(gram_stain)

gram_stain n
1 Gram-negative 1844
2 Gram-positive 1156

R> data >}, count(family)

family n
1 Enterobacteriaceae 1844
2 Staphylococcaceae 730
3  Streptococcaceae 426
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The variables AMX, AMC, CIP, and GEN contain antimicrobial susceptibility test results. The
abbreviations stand for the tested antimicrobial agent. The official names and additional
information about the antimicrobial agents can be checked with the ab_info () function from

the AMR package.

R> ab_info ("AMX")

$ab

[1] IIAMXII

$cid

[1] 33613

$name

[1] "Amoxicillin"
$group

[1] "Beta-lactams/penicillins"

$atc

[1]

"JO1CAO4"

$atc_groupl

[1] "Beta-lactam antibacterials, penicillins"
$atc_group2

[1] "Penicillins with extended spectrum"
$tradenames

[1] "actimoxi" "amoclen" "amolin"

[4] "amopen" "amopenixin" "amoxibiotic"

[7] "amoxicaps" "amoxicilina" "amoxicillin"
[10] "amoxicilline" "amoxicillinum" "amoxiden"
[13] "amoxil" "amoxivet" "amoxy"

[16] "amoxycillin" "anemolin" "aspenil"
[19] "biomox" "bristamox" "cemoxin"
[22] "clamoxyl" "delacillin" "dispermox"
[25] "efpenix" "flemoxin" "hiconcil"
[28] "histocillin" "hydroxyampicillin" "ibiamox"
[31] "imacillin" "lamoxy" "metafarma capsules"
[34] "metifarma capsules" "moxacin" "moxatag"
[37] "ospamox" "pamoxicillin" "piramox"
[40] "robamox" "sawamox pm" "tolodina"
[43] "unicillin" "utimox" "vetramox"
$loinc

[1] "16365-9" "25274-2" "3344-9" "80133-2"
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$ddd

$ddd$oral
$ddd$oral$amount
[1] 1.5

$ddd$oral$units
[1] ngn

$ddds$iv
$ddd$iv$amount
[1] 3

$ddd$iv$units
[1] llg"

In a data set containing antimicrobial names or codes (e.g., antimicrobial prescription data),
the as.ab() function can be used to transform all values to valid antimicrobial codes. Extra
columns with the official name and the defined daily dose (DDD) for intravenous administra-
tion could be added using ab_name () and ab_ddd ().

R> ab_example <- data.frame(agents = c("AMX", "Ceftriaxon", "Cipro"))
R> ab_example 7>}, mutate(

+ agents = as.ab(agents), agent_names = ab_name (agents),

+ ddd_iv = ab_ddd(agents, administration = "iv"))

agents agent_names ddd_iv

1 AMX  Amoxicillin
CRO  Ceftriaxome

3 CIP Ciprofloxacin

O N Wi
0 O O

Coming back to the cleaning of the data, the columns for the antimicrobial susceptibility test
results (“AMX”, “AMC?”, “CIP”, “GEN”) need to be checked to contain only standard values
(“R”’ “S”7 “I??).

R> data %>
+ select (AMX:GEN) )>}

+ pivot_longer (everything(), names_to = "antimicrobials",
+ values_to = "interpretation") 7>,
+ count (interpretation)
# A tibble: 4 x 2
interpretation n
<chr> <int>
1<0.58 143
21 1105
3R 4607
4 S 6145
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The values contain some mixed values. The as.rsi() function can be used to clean these
values and to assign a new class (‘rsi’) for further use of AMR functions.

R> data <- data }>)
+ mutate_at (vars (AMX:GEN), as.rsi)
R> data %>}

+ select (AMX:GEN) 7>7,
+ pivot_longer(everything(), names_to = "antimicrobials",
+ values_to = "interpretation") 7>,
+ count (interpretation)
# A tibble: 3 x 2
interpretation n
<rsi> <int>
18 6288
21 1105
3 R 4607

After this transformation, the eucast_rules() function can be applied to apply the latest
resistance reporting guidelines.

R> data <- data }>) eucast_rules()
The output to the console lists the changes made to data:

The rules affected 508 out of 3,000 rows, making a total of 657 edits
=> added O test results

=> changed 657 test results

11 test results changed from "S" to "I"
473 test results changed from "S" to "R"

- 85 test results changed from "I" to "R"
- 19 test results changed from "I" to "S"
- 33 test results changed from "R" to "I"
- 36 test results changed from "R" to "S"

The data is now clean and ready for further analysis, for example, the identification of multi-
drug resistant microorganisms. In this example, we use the Dutch guideline to determine
multi-drug resistance (Werkgroep Infectiepreventie 2011).

R> data <- data >}, mutate(mdro = mdro(., guideline = "nl"))
R> data }>}, count (bacteria_name, mdro)

bacteria_name mdro n
1 Escherichia coli Negative 1123
2 Escherichia coli Positive 395
3 Klebsiella pneumoniae Negative 237
4 Klebsiella pneumoniae Positive 89
5 Staphylococcus aureus Negative 730
6 Streptococcus pneumoniae Negative 426

21



22 AMR: Working with Antimicrobial Resistance Data in R

According to the Dutch guideline, 484 multi-drug resistant microorganisms were found in
3,000 tested isolates. No multi-drug resistance was found in Staphylococcus aureus and Strep-
tococcus pneumoniae.

As described in Section 4.1, the identification of first isolates is essential for the reporting of
resistance patterns. Using the filter_first_isolate() function and proportion_df () in
combination with group_by(), we get a complete resistance analysis per hospital, bacteria,
first isolate, and tested antimicrobial agent in one call:

R> resistance_proportion <- data %>},
+ filter first _isolate() ¥>Y%

+ group_by (hospital) 7>7

+ proportion_df ()

R> head(resistance_proportion)

hospital antibiotic interpretation value
1 A Amoxicillin SI 0.5796253
2 A Amoxicillin R 0.4203747
3 A Amoxicillin/clavulanic acid SI 0.8103044
4 A Amoxicillin/clavulanic acid R 0.1896956
5 A Ciprofloxacin SI 0.7974239
6 A Ciprofloxacin R 0.2025761

From the console we get the information how many first isolates were identified and used in
the filter.

From here on, the data is ready for further analysis with functions for plotting (e.g., the
ggplot2 package Wickham 2016), AMR extension functions for base R (e.g., summary(),
plot()), or AMR helper functions for plotting and basic modelling (e.g., ggplot_rsi(),
geom_rsi(), resistance_predict()).

8. Discussion

For the first time, a free and open source software solution is available to cover all aspects
of working with antimicrobial resistance data. The AMR package provides functionalities
that enable standardized and reproducible workflows from raw laboratory data to publish-
able results, for research and clinical workflows alike. In the field of clinical microbiology and
infectious diseases, research and clinical workflows are closely linked. For example, a per-
formed research study on the prevalence of antimicrobial-resistant bacteria can have direct
implications on the choice of antimicrobial agents for the treatment of patients. The AMR
package was developed to be used in any research or clinical setting where the data analysis
on microorganisms, antimicrobial resistance, antimicrobial agents is required.

Both, researchers and clinicians rely on the data from electronic laboratory information sys-
tems (LIS) where laboratory test results are processed, stored, and archived. Although some
commercial solutions exist to conduct medical microbiological data analysis, these solutions
are not comprehensive enough to apply antimicrobial resistance analysis for any clinical or
research setting. Costs of these tools are a further constraint in resource-limited settings.
Moreover, researchers and clinicians that require data from multiple LIS sources to be used in
multi-center studies experience major barriers which cannot be solved by available commercial
solutions.
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Firstly, simple codes for microorganisms show substantial differences between different LIS
and presumably correct taxonomic names are often misspelled or outdated. We analyzed the
taxonomic names of bacteria used in reports from seven different public health institutions
that perform microbiological diagnostics in the Netherlands and compared them with an of-
ficial scientific up-to-date source for microbial taxonomy, the Catalogue of Life (Banki et al.
2022). These institutions cover microbiological diagnostics for hospitals and primary care
for 15% of the total Dutch population. All institutions reported outdated taxonomic names
with a maximum lag ranging between 34 and 41 years. Given that antimicrobial resistance
guidelines are strongly based on the microbial taxonomy (some rules only apply to a specific
genus, other rules apply to a specific family), it is crucial that this information is correct and
timely updated. All institutions admitted that there was no standard operating procedure to
maintain their taxonomic reference data. Implementing and maintaining the taxonomic data
for these and other institutions has been challenging, since no common machine-readable, re-
liable and up-to-date resource for the microbial taxonomy was publicly available. For reliable
reference data about antimicrobial agents, this also holds true. The AMR package provides
machine-readable reference data files for the complete microbial taxonomy and for more than
500 antimicrobial agents. Using functions starting with mo_* and ab_*, names of microorgan-
isms and antimicrobial agents can be translated between different LIS codes or other forms
of text codes for microorganisms and consequently allows to merge data sets from different
sites with little effort.

Secondly, antimicrobial resistance interpretation guidelines (Leclercq et al. 2013; Clinical and
Laboratory Standards Institute 2014) and taxonomic definitions of microorganisms are under
constant change and are continually published in dedicated peer-reviewed journals. This
is further complicated by differences between local, regional, and national guidelines. Yet,
comparability and reproducibility across setting and time are key in research and clinics. The
AMR package functions eucast_rules() (to apply guidelines to data), mdro() (to check for
multi-drug resistance according to guidelines), or first_isolate() (to determine first isolates
according to guidelines) address the needs to standardize comparability, and empower data
analysts beyond the capabilities of their local LIS. The AMR package can be used as an extra
layer of data validation when retrieving raw data from a LIS. Overall, the functionality of the
AMR package has the potential to improve data validity in clinical settings, to ease multi-
center study workflows, and to foster research reporting practices. The inherent global nature
of antimicrobial resistances requires researchers, clinicians, and policy makers to reach beyond
the borders of their local laboratory. The AMR package can build the bridge to link these
sources and further encourages open science principles through its open source approach.

The AMR package also has limitations. It does not introduce novel statistical tests or mod-
els, nor does it add additional analytical approaches for AMR research. The calculation of
the proportion of susceptibility for more than one antimicrobial agent simultaneously (see
Section 5.1) seems simple but is subject to unclear reporting in clinical practice (Schechner,
Temkin, Harbarth, Carmeli, and Schwaber 2013; Ma et al. 2017). The lack of clearly defined
algorithms can lead to the effect that co-resistance rates for more than one antimicrobial agent
are dropped altogether (Baur et al. 2017). The inclusion of isolates that are tested for some
agents (only_all_tested = FALSE) or only isolates tested for all agents (only_all_tested
= TRUE) can have an imminent clinical impact on patient care, if one combination of an-
timicrobial agents is preferred over another. Therefore, the AMR package provides different
algorithms to standardize this crucial calculation. Unfortunately, unambiguous methodol-
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ogy for determining the right algorithm is lacking in scientific literature. An analysis on the
algorithms used in the AMR package and their clinical impact is in preparation.

Reliable information about antimicrobial resistance is vital for clinical decision-making in
infectious diseases, since the outcome of local antimicrobial resistance analyses support med-
ical professionals/clinicians in the treatment choices for their patients. Moreover, when this
information can be reliably stratified by, for example, year, hospital, and type of patients,
new information can lead to new insights for choosing the best antimicrobial therapy for
patients suffering from infections. The AMR package enables this by providing all required
analysis tools and can therefore empower decision-making in infectious management. The
AMR package is already being applied to this end in six hospitals in the Netherlands. The
choice of empirical antimicrobial treatment (meaning; choosing the initial therapy at a time
of not knowing the infection-causing pathogen) for septic non-post-surgical patients has been
altered in at least one Dutch hospital, by analyzing antimicrobial resistance data with the
AMR package. The clinical effect of this adjustment is being studied at the moment. To
improve the quality of such analyses, planned future developments comprise the implementa-
tions of an imputation algorithm specifically for antimicrobial agents, and method guidance
for applying prediction modelling in a health care setting based on patient-specific properties.

Since the first package release, users from different public and private settings have been sug-
gesting additional functionalities, in particular, the incorporation of country- or time-specific
guidelines (e.g., Magiorakos et al. 2012). This community-centered development will be con-
tinued and maintained by researchers at the University Medical Center Groningen and data
scientists at Certe Medical Diagnostics and Advice, both non-profit public health organiza-
tions located in Groningen, the Netherlands. Moreover, a group of contributors from five
different Dutch health care institutions has been formed at the Dutch Association for Med-
ical Microbiology (Nederlandse Vereniging voor Medische Microbiologie - NVMM) that also
peer-review major changes to the package, including the implementation of guideline updates.
This way, updates required for scientific developments as well as maintaining consistent repro-
ducibility are ensured. Updates to databases and guidelines included in the AMR package
are incorporated on a regular and automated basis, while preserving version control. Any
function making use of guidelines (e.g., eucast_rules()) refers to the latest implemented
version of the guideline by default.

The aim of the AMR package is to provide a comprehensive toolbox of solutions for antimi-
crobial resistance data processing and analysis on an institution- and country-independent
scale for clinical practice and research that are required according to international standards,
but were not available to date.

9. Summary

This paper demonstrates the AMR package and its use for working with antimicrobial re-
sistance data. It can be used to clean, enhance, and analyze such data according to (in-
ter)national recommendations and guidelines while incorporating scientifically reliable refer-
ence data on microbiological laboratory test results, antimicrobial agents, and the biological
taxonomy of microorganisms. Consequently, it allows for reproducible analyses, regardless of
the many possible ways in which raw and uncleaned data are stored in laboratory information
systems.
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While the burden of antimicrobial resistance is increasing worldwide, reliable data and data
analyses are needed to better understand current and future developments. Open source
approaches, such as the AMR package for R, have the potential to help democratizing the
required tools in the field for researchers, clinicians, and policy makers alike. In organizations
or countries with very limited resources, this free and open-source package could also over-
come a financial limitation that would otherwise hinder antimicrobial resistance analysis in
these settings. Across settings, we believe the AMR package can be used to support clinical
decision-making in infection management by providing improved insight into current local
and regional resistance levels. Furthermore, data analysis approaches based on individual
patient or microbiological data, which the AMR package enables, fosters empowerment of
laboratory staff, infection control practitioners, and public health services.

Computational details

The results in this paper were obtained using R 4.2.0 in RStudio 2022.07.1 (RStudio, PBC
2022) with the AMR package 1.8.2, running under macOS Monterey 12.5.
R itself and all packages used are available from the CRAN at https://CRAN.R-project.

org/. All development versions of the AMR package are available at https://github.com/
msberends/AMR/.
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A. Included data sets

e microorganisms

A ‘data.frame’ containing 70,760 (sub)species with 16 columns comprising their com-
plete microbial taxonomy according to the Catalogue of Life (Béanki et al. 2022). In-
cluded microorganisms and their complete taxonomic tree of all included (sub)species
from kingdom to subspecies with year of scientific publication and responsible author(s):

— All 59,024 (sub)species from the kingdoms of Archaea, Bacteria, Chromista and
Protozoa.

— All 9,582 (sub)species from these orders of the kingdom of Fungi: Eurotiales, Ony-
genales, Pneumocystales, Saccharomycetales, Schizosaccharomycetales and Tremel-
lales.

— All 2,153 (sub)species from 47 other relevant genera from the kingdom of Animalia
(like Strongyloides and Taenia).

All 14,338 previously accepted names of included (sub)species that have been taxo-
nomically renamed. The kingdom of Fungi is a very large taxon with almost 300,000
different (sub)species, of which most are not microbial (but rather macroscopic, such
as mushrooms). Therefore, not all fungi fit the scope of the AMR package. By only
including the aforementioned taxonomic orders, the most relevant fungi are covered
(such as all species of Aspergillus, Candida, Cryptococcus, Histoplasma, Pneumocystis,
Saccharomyces and Trichophyton).

antibiotics

A ‘data.frame’ containing 464 antibiotic agents with 14 columns. All entries in this data
set have three different identifiers: a human readable EARS-Net code (as used by ECDC
(European Centre for Disease Prevention and Control 2010) and WHONET (WHO
Collaborating Centre for Surveillance of Antimicrobial Resistance 2019) and primarily
used by this package), an ATC code (as used by the WHO, WHO Collaborating Centre
for Drug Statistics Methodology 2018), and a CID code (Compound ID, as used by
PubChem, Kim et al. 2019). The data set contains more than 5,000 official brand names
from many different countries, as found in PubChem. Other properties in this data set
are derived from one or more of these codes, such as official names of pharmacological
and chemical subgroups, and defined daily doses (DDD).

antivirals

A ‘data.frame’ containing 102 antiviral agents with 9 columns. Like the antibiotics
data set, it contains ATC codes (as used by the WHO, WHO Collaborating Centre
for Drug Statistics Methodology 2018), and a CID code (Compound ID, as used by
PubChem, Kim et al. 2019), as well as the official name and defined daily dose (DDD)
for each antiviral agent.

example_isolates

A ‘data.frame’ containing test results of 2,000 microbial isolates. The data set reflects
real patient data and can be used to practice AMR analysis. It is structured in the
typical format of laboratory information systems with one row per isolate and one
column per tested antimicrobial agent (i.e., an antibiogram).
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e example_isolates_unclean

A ‘data.frame’ containing test results of 3,000 microbial isolates that require cleaning
up before they can be used for analysis. This data set can be used to practice AMR
analysis and is featured in Section 7.

e WHONET

A ‘data.frame’ containing 500 observations and 53 columns, with the exact same struc-
ture as an export file from WHONET 2019 software (WHO Collaborating Centre for
Surveillance of Antimicrobial Resistance 2019). Such files can be used with the AMR
package, as this example data set demonstrates. The antibiotic test results are from
the example_isolates data set. All patient names are created using online surname
generators and are only in place for practice purposes.
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