
JSS Journal of Statistical Software
September 2022, Volume 104, Issue 2. doi: 10.18637/jss.v104.i02

ParMA: Parallelized Bayesian Model Averaging for
Generalized Linear Models

Riccardo (Jack) Lucchetti
Università Politecnica delle Marche

Luca Pedini
Università Politecnica delle Marche

Abstract

This paper describes the gretl function package ParMA, which provides Bayesian
model averaging (BMA) in generalized linear models. In order to overcome the lack
of analytical specification for many of the models covered, the package features an im-
plementation of the reversible jump Markov chain Monte Carlo technique, following the
original idea by Green (1995), as a flexible tool to model several specifications. Particular
attention is devoted to computational aspects such as the automatization of the model
building procedure and the parallelization of the sampling scheme.

Keywords: BMA, GLM, RJMCMC, parallelization, gretl.

1. Introduction

The issue of model uncertainty has become a prominent topic in modern Statistics and Econo-
metrics; in order to deal with the matter, two diverging strands of literature have developed
over the past fifty years: model selection techniques and, more recently, model averaging
techniques.
In the former approach, first a statistical model is chosen among the possible alternatives and
then one or more quantities of interests are computed; in doing so, however, model uncertainty
(Chatfield 1995), i.e., the impossibility of recognizing whether the selected model is really true
is implicitly ignored. Therefore, inference is performed without taking into proper account
the conditioning on the selected model.
With model averaging, instead, the quantities of interest are averaged over the whole model
space, i.e., the set containing every specifications, with weights reflecting the adherence of the
correspondent model to the data. In particular, Bayesian model averaging (BMA), thanks
to its flexibility and great potential in terms of interpretability and inferential analysis, has

https://doi.org/10.18637/jss.v104.i02
https://orcid.org/0000-0002-0401-3445
https://orcid.org/0000-0001-5381-3935

2 ParMA: Parallelized Bayesian Model Averaging for GLMs

become the leading approach1: the basic idea, dating back to the work by Madigan and
Raftery (1994), starts from the definition of a quantity of interest β. In principle, β could be
any quantity pertaining to a parametric statistical model: a parameter, a hypothesis test, a
forecast. However, in the brief exposition that follows, we will assume for simplicity that it
is a model parameter. The posterior distribution of β is

P (β | y) =
m∑

i=1
P (β | Mi, y) P (Mi | y) (1)

where y represents the data, Mi the i-th model from a model set M = {M1, . . . , Mm}, which
in a Bayesian framework becomes an additional parameter; P (β | Mi, y) identifies the model
specific posterior distribution for β and P (Mi | y) the so-called posterior model probability.
In other words, Equation 1 defines a mixture distribution, where in order to account for model
uncertainty, the model specific posterior of β is averaged across the set of models, with weight
equal to the posterior model probability.
Two related quantities are the posterior model averaging expected value and the posterior
model averaging variance given by:

E (β | y) =
m∑

i=1
E (β | y, Mi) P (Mi | y) (2)

VAR (β | y) =
m∑

i=1

[
VAR (β | y, Mi) + E (β | y, Mi)2]P (Mi | y) − E (β | y)2 (3)

with E (β | Mi, y) , VAR (β | Mi, y) as, respectively, the posterior expected value and variance
of the parameter in the i-th model.
Finally, the posterior model probability is obtained via Bayes’ rule as follow:

P (Mi | y) = p(y | Mi)P (Mi)∑m
j=1 p(y | Mi)P (Mi)

where p(y | Mi) is the marginal data density (also referred to as marginal likelihood) and
P (Mi) the prior probability for Mi. The classical application of BMA computes Equations 2
and 3 directly, often ignoring Equation 1: when closed formula for both posterior moments
and posterior model probabilities are available, both summations can be easily derived with
the only computational burden given by the cardinality of the model set: in a typical nesting
scenario, where Mi is a conditional model with up to k possible covariates, the model space
cardinality equals 2k.
In the literature, two main mechanics have been provided to circumvent the problem: the
first one, known as Occam’s window (Madigan and Raftery 1994) aims to reduce the model
space by removing too much complex and redundant specifications in terms of their posterior
model probability. Actually, the true benefit derives only in the computation of moments for
a small set of models: in order to perform the procedure properly, the a priori computation
of model posterior for every specifications is necessary, a not negligible effort. This leads to
the second possibility devised by Madigan, York, and Allard (1995): Markov chain Monte
Carlo model composition (MC3). If analytical posterior moments and model posteriors are

1For a comprehensive review of the topic, see Steel (2020).

Journal of Statistical Software 3

available, a standard Markov chain Monte Carlo (MCMC) sampler, such as the Metropolis-
Hastings (Hastings 1970) scheme, can be adopted to sample models from the model space: in
this way posterior model probabilities (which are actually the target distribution of the sim-
ulation) are obtained avoiding the computation of the normalizing constant and Equations 2
and 3 are computed accordingly on the sampled models only.
However, analytical formulations exist only for a handful of cases, notably the linear one,
while non-linear alternatives such as binary or count models pose several questions on how
to apply model averaging efficiently with as few approximations as possible. The issue is still
open, and several proposals have been put forward and implemented in software.
For linear models, for instance, several R packages (R Core Team 2022) exist: BMA by Raftery,
Hoeting, Painter, Volinsky, and Yeung (2022) exploits both Occam’s window or MCMC
with the Bayesian information criterion (BIC) approximation for model posteriors; BMS
by Zeugner and Feldkircher (2015) which, in turn, performs model averaging by MCMC on
the model space with great flexibility in the choice of priors and model proposal kernels; BAS
by Clyde, Ghosh, Littman, Li, and Van de Bergh (2022) which introduces Bayesian adap-
tive sampling (BAS) as an alternative to MCMCs; mombf by Rossell (2022), that allows to
perform Bayesian model selection or averaging with the so-called non-local priors (Johnson
and Rossell 2010, 2012); BayesVarSel by Garcia-Donato and Forte (2018), which is mainly
concerned in the computation of Bayes factors providing several tools for model selection and
averaging with different prior choices.2

In the gretl eco-system, BMA for linear models is implemented in the package BMA by Błaże-
jowski and Kwiatkowski (2015), which makes use of the MCMC design with the addition
of jointness measures; Błażejowski and Kwiatkowski (2018) introduces, instead, the BACE
package, which runs Bayesian average of classical estimates (Sala-I-Martin, Doppelhofer, and
Miller 2004) for linear and time series (augmented distributed lags) models.
Generalized linear models (GLMs) do not generally yield closed formula for posterior mo-
ments and model probabilities, so BMA is problematic. It is not a mere coincidence that
model averaging in these kind of models has been considered much less often, despite the
wide applicability of GLMs in social sciences. Among the R packages mentioned above,
GLMs can be handled by BMA, which considers maximum-likelihood (ML) estimators for
posterior moments and BIC approximation for model posteriors; BAS, which uses again ML
estimators and Laplace approximation for model posteriors; and mombf, which considers only
the computation of Bayes factor in probit models using again approximations around the ML
estimators.
In this paper, we introduce a gretl package for performing BMA on the GLM: following
the original idea by Green (1995, 2003) and in particular the subsequent work by Lamnisos,
Griffin, and Steel (2009) in probit models, we use a reversible jump Markov chain Monte Carlo
(RJMCMC) scheme, i.e., a MCMC simulation in which both parameters of interest and models
are sampled jointly, with great benefits with respect to standard MCMCs alternatives both in
terms of flexibility, as the same sampling scheme is adopted for different types of GLMs, and
in terms of interpretability, since Equation 1 can be readily computed via parameter sampling
and the quantities in Equation 2 and 3 follow directly from the sample counterparts.

2For a comprehensive comparison between R packages see Amini and Parmeter (2011).

4 ParMA: Parallelized Bayesian Model Averaging for GLMs

Compared to the three R packages listed above, the advantage of our approach is that the
RJMCMC scheme does away with much of the need for approximations. Of course, RJMCMC
has its drawbacks too: the sampling scheme proposed here is rather demanding in terms of
CPU time, but we tackle down the issue by introducing parallelization.
As for available RJMCMC software, the original Fortran program AutoRJ by Green (2003)
or its C version by Hastie and Green (2012) only deals with some common model explo-
ration problems. Other official releases were not directly available until the appearance of the
R package rjmcmc by Gelling, Schofield, and Barker (2019); this package exploits the modi-
fied framework by Barker and Link (2013) to provide some model selection interest quantities
(e.g., Bayes factor) and reaches a tremendous flexibility in terms of model specification al-
lowing even more customizable cases than standard GLMs. However, the package requires
the a priori availability of posterior sampled parameters for each model involved, obtainable
by some extra code or software, as the package does not provide such individual sampling
scheme. Our package, on the other hand, circumvents this problem by sampling parameters
and models together, which also provides model averaging quantities directly.
The R package spikeSlabGAM by Scheipl (2011) covers a range of techniques known as
stochastic search variable selection (SVSS, see George and McCulloch 1993): as we will see
later, SVSS is the main alternative to RJMCMC for the joint sampling of models and param-
eters, and in spikeSlabGAM the main focus is on variable selection for (spatial) generalized
additive mixed regression models. The probabilities of inclusion for each regressor are com-
puted also taking into account functions of the original covariates, such as interactions or
polynomials; in order to mitigate the computational burden, SVSS also provides the option
of parallelizing the chain. The main differences with the package we are describing here
are:

• Our package is more heavily oriented towards the model averaging philosophy instead
of variable selection, although of course ParMA can be also used for variable selection
and spikeSlabGAM can be used for model averaging.

• ParMA targets simple generalized linear models instead of generalized additive models
and offers a larger selection of link functions.

• spikeSlabGAM is focused on spike and slab priors, while the RJMCMC technique used
in ParMA is closer to the original MCMC approach.

• Last but not least, spikeSlabGAM is an R package, while ParMA is a gretl package.
Although R and gretl both belong to the free software ecosystem and R packages are
relatively easy to use from within the gretl interface, the two communities are relatively
distinct, so the two packages cater for different audiences.

The rest of the paper is organized as follows: Section 2 lays down the statistical background for
GLMs and RJMCMC; Section 3 describes the Bayesian algebraic representation of models;
Section 4 deals with parallelization and convergence; in Section 5 we discuss in detail the
package and its main features; Section 6 provides three empirical applications of the package
on different GLMs; finally, Section 7 concludes.

Journal of Statistical Software 5

2. Statistical background

2.1. GLMs

As is well known, the GLM is a statistical framework that includes as special cases several
models widely used in the statistical and econometric practice. Let y1, . . . , yn be n observa-
tions of a dependent variable from the exponential family with density function f(y):

f(yi) = exp
[

yiθi − b(θi)
ai(ϕ) + c(yi, ϕ)

]
,

where θi is the canonical (location) parameter, ϕ is a dispersion parameter, and a(·), b(·), c(·)
are known functions. It can be shown that E (yi) = ∂b(θi)

∂θi
and VAR (yi) = ∂2b(θi)

∂θ2
i

ai(ϕ)

It is assumed that the conditional expectation of yi given a set of k covariates xi, E (yi | xi) =
µi is a continuous transformation of a linear combination:

l(µi) = ηi = x⊤
i β

where l(·) is known as the link function.
ML estimation of GLMs can be carried out, in a frequentist framework, via iterative weighted
least squares (IWLS) on the transformed variable zi = ηi + (yi − µi) ∂ηi

∂µi
, where the weights

wi are defined as:

wi =
[

∂2b(ηi)
∂η2

i

(
∂ηi

∂µi

)2]−1

In this way the ML estimator of β can be defined as:

β̂ = (X⊤WX)−1X⊤Wz

where X is the n × k matrix of covariates and W is the n × n diagonal weight matrix with
elements wi.
The above was adapted by Gamerman (1997) to a Bayesian set-up by means of a MCMC
scheme: assuming to be interested in the posterior distribution of β, f(β | y) ∝ f(y | β)f(β),
where f(y | β) designates the likelihood function and f(β) the prior, which in this case is
equal to β ∼ N(m0, V0), then a suitable sampling scheme is the following:

1. Set as initialization β(0).

2. At the i-th iteration, draw β(i) from the proposal density q(β | β(i−1)) = N(m(i), V (i)),
where:

V (i) = (V −1
0 + X⊤W (β(i−1))X)−1 (4)

m(i) = V (i)(V −1
0 m0 + X⊤W (β(i−1))z(β(i−1))); (5)

where z(β(i−1)) and W (β(i−1)) defines respectively the transformed variable z and the
weight matrix W computes with β(i−1).

6 ParMA: Parallelized Bayesian Model Averaging for GLMs

3. Accept the new draw with probability α(β(i−1), β(i)), defined via a standard Metropolis-
Hastings scheme as:

α(β(i−1), β(i)) = min
[

f(β(i) | y)q(β(i−1) | β(i))
f(β(i−1) | y)q(β(i) | β(i−1))

; 1
]

where q(β(i) | β(i−1)) is a normal density evaluated at β(i) with mean and variance,
respectively, computed with Equations 4 and 5.

2.2. BMA in GLMs

As already stated in Section 1, the main difficulty in the Bayesian treatment of GLMs is
analytical intractability; in the BMA context, this problem is made even worse because model
posteriors also have to be specified.
Common routines applied in practice involve the use of the standard BMA paradigm with
the Occam’s window or MCMCs but at the cost of several approximations which ranges from
ML estimators and the corresponding variance as proxies for posterior moments, to the use
of Laplace or BIC approximations for posterior model probabilities. Nevertheless, all of these
shortcuts heavily rely on some regularities conditions which may not be met in practice.
For a generalization of the standard paradigm, there are several possibilities: Chen, Huang,
Ibrahim, and Kim (2008), for instance, use conjugate priors (Chen and Ibrahim 2003) and
define model probabilities in a very appealing way via the Bayes factor by using two MCMCs:
one from the posterior distribution and one from the prior distribution of the parameters under
the unrestricted model. In this way, model averaging quantities can also be derived with the
notable advantage of the conjugate prior set-up.
The previously mentioned SSVS technique by George and McCulloch (1993) is another al-
ternative: parameters and models are sampled jointly using the Gibbs sampler via data
augmentation. Parameters are sampled from their posterior distributions conditioned on the
model, which in turn are used to sample the model from the posterior model probability
conditioned on the parameters; parameters are always drawn from the full model, avoiding
any transdimensional transformation and in case a variable is likely to be absent, its related
sampled parameter is set near zero. Nevertheless, the definition of the conditional posterior
model distribution is far from being simple, and depends heavily on the link function of the
GLMs.3

The route chosen in this paper follows the RJMCMC framework by Green (1995) instead.
RJMCMC can be thought of as a modification of the original MCMC framework for model
exploration where, instead on focusing only on models, the parameter βi and the related model
Mi are jointly sampled using transdimensional transformations: at each step a specification is
proposed and the corresponding parameters are attached not using another sampling scheme,
but simply transforming the ones of the previous step via an ad-hoc function. The problem
of potentially different number of parameters between models is taken into account through
to the so-called matching variable, which acts as a substitute parameter in order to balance
the overall dimension. Moreover, Green (2003); Hastie and Green (2012) extend the general
framework to consider model selection and automated procedure; whereas Holmes and Held

3Frühwirth-Schnatter and Wagner (2006); Frühwirth-Schnatter and Frühwirth (2007, 2010); Frühwirth-
Schnatter and Wagner (2010) are some examples of SVSS in GLMs.

Journal of Statistical Software 7

(2006); Fouskakis, Ntzoufras, and Draper (2009); Lamnisos et al. (2009) propose some notable
contribution in GLMs.
Clearly, SVSS and RJMCMC are close in spirit: for example, both procedures compute the
model averaging posterior quantities as the sample equivalents of the simulated parameters.
However, they have different pros and cons: the Gibbs sampling technique makes SVSS faster,
but less flexible. In RJMCMC, the same sampling scheme can be applied to different kinds
of GLMs and the definition of proposal distributions for the MCMC turns out to be simpler,
especially in the framework proposed here.

2.3. The RJMCMC framework

One of main advantages of RJMCMC is that it makes it possible to sample a vector of param-
eters β, whose size can be different from one iteration to the next: this feature is especially
valuable in a context like ours, where for example the Markov chain may jump from a fairly
general model with many covariates to a restricted one with few, or vice versa. Consider two
MCMC iterations, i and j: the indices i and j implicitly refer to the corresponding model
specification, so βi and βj should be understood as shorthand for βMi and βMj , respectively.
Therefore, the dimensions of the two vectors may be different.
The sampling is accomplished by introducing a differentiable function (βj , uj) = g(βi, ui)
which maps the current βi, of dimension ki, into a different space of dimension kj , which
corresponds to βj . In this way, it is possible to connect drawings with different size, which
is something usually not called for in classic MCMC applications. The variable ui is the
so-called matching variable: it is assumed to be a random variable (a standard normal or
a Student t), whose purpose is guaranteeing that the total dimension of the space given by
(βi, ui) is equal to the dimension of (βj , uj). As a consequence, the variable ui contains the
potential parameters which are deleted or added in order to have the size of βi match that
of βj .
For example, suppose that βi is a vector of 2 elements (βi1, βi2), and that we want to jump
to a 3-element vector βj = (βj1, βj2, βj3) via βj = g(βi). Since the size of βj is greater than
the size of βi, we need to add to βi a variable u whose dimension is 3 − 2 = 1. Therefore,
βj = g(βi1, βi2, ui1).
The general framework starts from the definition of the target distribution, P (βi, Mi | y):

P (βi, Mi | y) ∝ p(y | Mi, βi)P (β | Mi) P (Mi)

where p(y | Mi, βi) is the likelihood of model Mi; P (β | Mi) the prior on the parameter
conditioned on the model, and finally P (Mi) the prior distribution of the specification.
The RJMCMC algorithm samples the couple (βj , Mj), given the current state (βi, Mi) firstly
proposing a model movement from Mi to Mj with probability given by the kernel q(Mj | Mi),
and then deterministically computing (βj , uj) = g(βi, ui). The required matching variables
are generated accordingly, and the overall acceptance probability of the movement is4:

ρ = min
[

P (βj , Mj | y) f(uj)q(Mi | Mj)
P (βi, Mi | y) f(ui)q(Mj | Mi)

·
∣∣∣∣∂g(βi, Mi; ui)

∂(βi, Mi; ui)

∣∣∣∣; 1
]

(6)

4In Godsill (2001, 2003) some additional considerations and remarks regarding RJMCMCs are provided.

8 ParMA: Parallelized Bayesian Model Averaging for GLMs

where f(·) denotes density functions, ∂g(βi,Mi;ui)
∂(βi,Mi;ui) the Jacobian of the transformation g(·) which

is requested in order to take into account the change of measurement from (βi, ui) to (βj , uj).
Great attention should be devoted to the choice of correct proposal kernels and transformation
functions: as pointed out by Green (2003), this choice is crucial and the closer they are to the
real posteriors, the more efficient the chain is5. Unfortunately, this choice is often troublesome,
but a fair compromise is provided in Section 2.4, following the idea of a plausible automated
method for RJMCMCs.
The move from model Mi to model Mj can be accomplished in many ways; here, we consider
two: in the simple procedure by Madigan et al. (1995), the difference between Mi and Mj is
given by addition or deletion of one variable. Alternatively, in the same spirit to a proposal
by Lamnisos et al. (2009), at each iteration the number of variables to change p is drawn from
a binomial distribution, with parameters k′ and ω, as in(

k′

p

)
ωp(1 − ω)k′−p (7)

and then the direction of the move (add, swap or delete) is chosen. Finally, the final proposed
model is chosen uniformly from the subset of models accessible given the selected move.

2.4. An automated RJMCMC sampler

In Green (2003); Hastie and Green (2012) and, especially in Lamnisos et al. (2009); Lamnisos,
Griffin, and Steel (2013) we find a particularly suitable function g(·) for GLMs6: assume that
the parameter βi has posterior mean µi and variance Vi, then the transformation function
from (βi, Mi) to (βj , Mj) = g(βi, Mi) could be

βj = g(βi, Mi, ui) = µj + Bjυ (8)

where B is the Cholesky decomposition of the correspondent covariance matrix, µj and Vj

the posterior mean and variance of βj and υ is defined as:

υ =

[RB−1

i (βi − µi)]kj if kj < ki,

RB−1
i (βi − µi) if kj = ki,

R

(
B−1

i (βi − µi)
u

)
if kj > ki,

with k as the number of variables, R a random permutation matrix; the notation [...]kj

indicates the first kj elements of the vector and finally u, a kj − ki vector of random numbers
with density f(·), in general of a standard normal or a Student’s t distribution. Notice that
the parameter β is treated as a multivariate normal, which in a first step gets standardized
and then corrected via the mean and covariance matrix of the new model. The normal choice
could be objectionable, but Green (2003) shows how this proposal is a good compromise
between efficiency of the chain and simplicity.

5Some contributions in this direction are Brooks, Giudici, and Roberts (2003) and Barker and Link (2013):
the former extends the framework considering efficient proposal distribution, whereas the latter transforms the
RJMCMC into a Gibbs sampling with potential tremendous advantages in computational terms.

6Another interesting approach for only binary data is provided by Holmes and Held (2006).

Journal of Statistical Software 9

The probability in Equation 6 becomes:

ρ = min
[

P (βj , Mj | y) q(Mi | Mj)
P (βi, Mi | y) q(Mj | Mi)

· | Bj |
| Bi |

· G; 1
]

(9)

with q(Mj | Mi) as the model transitional kernel, where we implicitly assume independence
from the sampling of β, and:

G =

f(u) if kj < ki,

1 if kj = ki,

f(u)−1 if kj > ki.

If the kernel is independent from the parameters, the model movements are determined inde-
pendently from those of the parameters. Therefore, we can select the new model Mj first, and
its corresponding parameter vector βj next, via the function g(·). The permutation matrix
R makes the movements to lower dimensional models stochastic and actually plays no role in
the acceptance ratio.
Notice that, in the special case where the posterior parameter distributions P (βi | Mi, y) are
normal, Equation 9 reduces to the ordinary MCMC acceptance rate:

ρ = min
[P (Mj | y) q(Mi | Mj)

P (Mi | y) q(Mj | Mi)
; 1
]

on account of the fact that P (βi, Mi | y) = P (βi | Mi, y) P (Mi | y).

2.5. Prior choices and other technicalities

The sample scheme defined here provides a general solution for model building problems, but
its actual effectiveness depends on the regularity of the data, the computation of µi and Vi,
and, of course, the choice of the prior distributions.
The latter element always plays an important role, but in our context this is made even
more crucial since the acceptance probability from Equation 9 depends on these via the joint
posterior P (βi, Mi | y) and the Jacobian term. It could easily happen that a particular prior
choice for a particular GLM may performs rather poorly in a GLM of a different kind.
The definition of priors proposed here follows common practice in the BMA literature:

βi | Mi ∼ N(µ0,i, V0,i)

that is the prior of β on model Mi, with respectively, prior mean µ0,i and prior variance V0,i.
Some clarifications, however, are needed: in general, the parameter for the constant term has
a separated (improper) prior distribution, following the argument put forward by Fernández,
Ley, and Steel (2001a) for linear models. The constant is to be included always, and in
practice this is accompanied by centering all other regressors, so as to make them orthogonal
to the constant. In linear models, if α denotes the intercept parameter, we assume P (α) ∝ 1.
The same argument, however, cannot be fully applied to other GLMs due to the nonlinearity of
the link function. A solution is proposed in Lamnisos et al. (2009), who follows the suggestion

10 ParMA: Parallelized Bayesian Model Averaging for GLMs

by Brown, Vannucci, and Fearn (1998); Sha et al. (2004) of a standard normal distribution
with large variance of the following form:

α ∼ N(0, h) →
(

α
βi

)
∼ N

([
0

µ0,i

]
,

[
h 0⊤

0 V0,i

])

where h is set to a large number7 (Lamnisos et al. 2009) and 0 is suitably sized vector of zeros.
Using this second possibility implicitly assumes that the constant is always present in every
specification, and all the other regressors have to be demeaned as in the original framework.
Several alternatives exist for the prior covariance matrix V0,i: two common ones are the (a)
ridge prior cI, with c > 0 or (b) the Zellner-g prior, i.e., g(X⊤

i Xi)−1 with g > 0.8 The ridge
prior does not allow for prior correlation among regressors as the Zellner-g prior does, and
tends to produce a more evident shrinkage effect, i.e., more parsimonious models are preferred,
even though it is heavily affected by the measurement scale of the variables; for this reason
when such prior is used the a priori standardization of the regressors is almost mandatory.
Lamnisos et al. (2009, 2013) provide examples of Bayesian model selection procedure with
probit models using ridge priors.
As for the Zellner-g alternative, a well-known modification for non-linear GLMs is gn(X⊤

i Xi)−1,
where n is the number of observations: this reflects more directly how the covariance should
be derived from the unit information prior (UIP) covariance matrix by Kass and Wasserman
(1995), which is generally the most common choice.9

Notice that in case of linear models the additional parameter related to variance of the error
term, σ2, is assumed to have a diffuse prior, P

(
σ2) ∝ 1

σ2 .
For the model prior, we use the binomial distribution:

P (Mi) =
k∏

j=1
π

δij

j (1 − πj)1−δij (10)

where k is the total number of covariates considered, 0 ≤ πj ≤ 1 is the prior probability that
the j-th variable is significant and δij is an indicator of the variable inclusion.10 Turning the
discussion on the posterior mean µi and covariance matrix Vi of the parameters of interest,
these can be determined in various ways ranging from Laplace method to more advanced
techniques: Green (2003) suggested to run previous MCMCs on each model to detect cor-
rect estimates; Hastie and Green (2012) introduces, instead, the use of mixture distributions.
In Lamnisos et al. (2009, 2013) a wide variety of methods is exposed: from Laplace approxi-
mation, to Gamerman (1997) IWLS or more complex solutions such as the efficient proposal
to maximize acceptance rate by Brooks et al. (2003). In the end, the IWLS seems to be an

7Usually, h = 100.
8Possibly, a hyper-prior can be adopted for c and/or g, but that of course increases the computational

cost, so in practice, these parameters are kept fixed: the ridge prior c is commonly chosen via grid-search or
cross-validation approaches (Lamnisos, Griffin, and Steel 2012), whereas for g, some proposed values are g = n
or g = k2, with k as the total number of covariates.

9Some specific values for g are g = 1 which directly reflects the UIP covariance matrix; g = 4 as suggested
by Fouskakis et al. (2009) for logistic regressions; g = 9.87/k by Hanson, Branscum, and Johnson (2014).
Another important reference for g-prior choices is Gelman, Jakulin, Pittau, and Su (2008).

10The choice πj = 0.5 leads to the uniform distribution; in the limiting case πj = 1 variable j is always
included in every model, on the contrary, when πj = 0 it is never included.

Journal of Statistical Software 11

optimal compromise between efficiency and computational complexity, so we will exploit this
choice for our framework, with some modifications explained below.

2.6. The RJMCMC sampler in a nutshell

The basic MCMC scheme is summarized in Lamnisos et al. (2013):

1. Set the initial βi, relative to model Mi (normally, the full specification).

2. Propose a new model Mj from a transitional kernel q(Mj | Mi) and compute its βj as
in Equation 8.

3. Accept the move with probability from Equation 9, otherwise stay in (βi, Mi).

4. Repeat from 2 till convergence.

Notice that in our case the posterior mean µi and covariance matrix Vi are obtained via
Equations 5 and 4 via a single iteration on the ML estimator. In the case of linear models we
can substitute this approximation with its analytical counterpart.
The above scheme, however, may be modified to deal with a potential problem that arises
when dominant specifications appear: in this case, the probability of jumping from model Mi

to a different model Mj may be small. In this case, it is advisable to re-sample the parameter
vector β anyway, to avoid undesirable consequences for the posterior distribution.
Therefore, a resampling step (the so-called within move) is introduced when a new couple
(βj , Mj) is rejected; in this case, a new βi, which corresponds exactly to an iteration of
Gamerman’s MCMC, is sampled. The corresponding µi and Vi for the new sampled parameter
may be updated with Equations 5 and 4 obtained in the resampling step.
In short:

1. Set the initial βi related to the model Mi, in general the full specification.

2. Propose a new model Mj from a transitional kernel q(Mj | Mi) and compute its βj as
in Equation 8.

3. Accept the move with probability from Equation 9, otherwise propose a resampling of
βi in Mi following a single iteration of Gamerman procedure.

4. Repeat from 2, till convergence.

3. Algebraic representation of models
The common Bayesian analysis of a variable selection scenario considers a model Mi as an
additional parameter of interest; clearly an algebraic representation for such an object is
called for.
A straightforward representation uses binary vectors: given k potential regressors, a specific
model is a k × 1 vector, where each element corresponds to one regressor, and is 1 when that
variable is included in the model and 0 otherwise. Clearly, each model can also be represented

12 ParMA: Parallelized Bayesian Model Averaging for GLMs

by an integer, by taking each entry of that vector as a binary digit. For example, in a model
with 4 potential covariates, x1, x2, x3, x4, the full model is,

Mi = {x1, x2, x3, x4} →
[
1 1 1 1

]
→ 15 (hex 0f)

whereas a different model Mj , where x2 is omitted would be

Mj = {x1, x3, x4} →
[
1 0 1 1

]
→ 11 (hex 0b)

Storing information for each model, such as the posterior mean µ and covariance matrix V
(see Section 2.4), could in principle be accomplished by defining an array of suitable memory
structures, indexed by model id. This, however, creates a problem when the set of possible
covariates exceeds 32, since the number of possible models exceeds 232 and handling structures
of that size becomes technically problematic.
In ParMA, we circumvented the issue by exploiting the fact that, although the model space
can be potentially very large, only a small subset is going to be actually visited by the MCMC
iterations, and we only need to store it as an element of an associative array (known in gretl as
a “bundle”), using the hexadecimal representation of the model id as the key.
The hexadecimal representation is preferred to the decimal representation, because gretl lacks
an integer type, and therefore when the number of models is very large, numerical accuracy
can be an issue. Moreover, storing models in a bundle has the advantage that once the
information on a model is stored, this does not need to be recomputed each time the related
model appears, leading to considerable time saving. This method rests on the possibility
of storing the bundle in RAM, but this should not be a problem as long as the number of
regressors is the one commonly found in real-world applications.

4. Parallelization in MCMCs
Parallelization in simple Monte Carlo experiments is a well established practice in computa-
tional statistics: instead of computing the whole simulation in a single core of the processor
or in a single machine, splitting simulations across cores or several networked computers and
aggregating the result accordingly leads to a massive CPU time gain. The key requirements
is independence in sample drawings.
Apparently, there seems to be little room for parallelization in MCMCs, where the Markov
property is used to set up a sequential process. In fact, parallelization is possible, but special
attention is required: splitting a MCMC across several cores could lead to failure if con-
vergence to the stationary state is not reached by each single MCMC and the burn-in time
required is large if compared to the total amount of iterations (Amdahl 1967; Rosenthal 2000).
A plausible guideline is provided by Gelman and Rubin (1992); Brooks and Gelman (1998),
who introduce some indices to monitor the convergence rate of multiple chains.
When these requirements are met, parallelization can still bring about large computational
efficiency gains, although the benefits in terms of CPU time may not scale linearly with the
number of cores or networked computers, as in the standard independent Monte Carlo.
Notice, moreover, that splitting a MCMC in several ones in parallel can improve the explo-
ration of the parameter space too: when the target distribution is multimodal, a single chain

Journal of Statistical Software 13

may get stuck in local maximum points; running the same MCMC in parallel, possibly with
different starting points, may help overcome the problem.
This kind of parallelization in MCMCs, often labeled as “vertical” or “embarrassing paral-
lelizable” is the one we chose for our software package. In the next Sections, technical details
will be explained more fully.11

4.1. Convergence in parallel
The idea of running the same MCMC on different cores, splitting the total number of iterations
and combining the single contribution as if it was the sampling result of a unique MCMC
requires two main conditions, namely the convergence of the chains and a small burn-in
time. In fact, these two requirements are closely linked, as a small burn-in size, in general, is
appropriate where convergence is fast, so what is required is a measure of divergence between
chains.
A rigorous solution to this problem is provided by Gelman and Rubin (1992): the authors
analyze the scenario of a univariate parameter β simulated n times in c parallel chains (or
cores) starting from overdispersed points. Given an unbiased estimator β̄ of E (β), the between
(intra core) variance B and the within (inside the same core) variance W defined as,

B = n

c − 1

c∑
i=1

(β̄i − β̄)2 (11)

W = 1
c(n − 1)

c∑
i=1

n∑
j=1

(βji − β̄i)2 (12)

where βij is the sampled parameter at iteration j in core i; β̄i = 1
n

∑n
j=1 βji and β̄ = 1

c

∑c
i=1 β̄i;

the Gelman-Rubin convergence measure is given by:

R̂ = V̂

W
(13)

where
V̂ = n − 1

n
W +

(
c + 1

c

)
B

n

Clearly, the closer Equation 13 is to 1, the more similar the chain are in terms of β, so
convergence is deemed to be achieved when R ≃ 1.12. The extension to a multivariate set-up
is given in Brooks and Gelman (1998), where a generalization of R̂ is proposed given β as a
k × 1 parameter vector: define the matrices

B = n

c − 1

c∑
j=1

(β̄j − β̄)(β̄j − β̄)⊤

W = 1
c(n − 1)

c∑
j=1

n∑
i=1

(βij − β̄j)(βij − β̄j)⊤

11It is worth noting that other approaches for parallel computing in MCMC exist: notably, the so-called
“horizontal” MCMCs. With this technique, a single chain is run, but some of the inner components are
parallelized. In general, this approach may provide more effective gains than its vertical counterpart, but
requires more stringent conditions from a theoretical point of view.

12In their paper Gelman and Rubin (1992) propose other different indices either build as modification of
Equation 13 or on different quantities such as quantiles.

14 ParMA: Parallelized Bayesian Model Averaging for GLMs

as multivariate versions of Equation 11 and 12; then the new convergence statistics is:

R̃ = n − 1
n

+ c + 1
c

λ (14)

where λ is the maximum eigenvalue of W−1B/n. Again, convergence is reached when Equa-
tion 14 is close to 1; a commonly used threshold is R̃ ≤ 1.2.
In practical situations, the Brooks and Gelman statistics should be backed up by some addi-
tional diagnostics: the previous ones, as already pointed out in Brooks and Gelman (1998),
consider the heterogeneity of each parallel chain as a whole, but actually initial samples may
diverge quite remarkably especially if insufficient burn-in time is provided. For this purpose,
the convergence should be also analyzed graphically, by visualizing the sequence of the sam-
pled parameters as well as the running mean plot for both the parallel chains and the resulting
single one.
In addition, Geweke (1992) and Heidelberger and Welch (1983) propose two distinct diagnostic
tests for assessing convergence: the former is a robust univariate test on the mean difference
between a parameter sample coming from the starting 0.1n replications (sub-sample A) of
the chain and another sample given by the ending 0.5n replications (sub-sample B), n being
the number of MCMC iterations. For a generic parameter β, the test is simply given by

Z = β̄A − β̄B√
(S(0)A/nA) + (S(0)B/nB)

∼ N(0, 1)

where β̄ is the sample mean, the subscripts identify the related sub-sample, and finally S(0)
is the spectral density at 0 (long-run variance) of the parameters.
In Heidelberger and Welch’s test, the following quantity is defined:

Bn = (∑nt
i=1 βi − ⌊nt⌋β̄)√

nS(0)
, 0 ≤ t ≤ 1 (15)

where again, β is a univariate parameter sampled n times and S(0) the spectral density at 0.
Equation 15 is asymptotically distributed as a Brownian bridge and the Cramer-von Mises
statistic can be used to test the stationarity of the univariate parameter sequence. In case
of rejection, the first α items in the chain are discarded and the test is re-computed. This
process is iterated for α = 0.1, 0.2, . . . until the test is accepted, or α reaches 0.5 and the test
still fails. In the latter case, we can conclude that stationarity is not achieved.

5. The package
The methods outlined in the previous Sections are implemented as a gretl function pack-
age called ParMA (parallelized model averaging). ParMA is available on the gretl function
packages archive at http://gretl.sourceforge.net/current_fnfiles/ParMA.zip. For in-
structions on how to access the gretl package repository the primary reference is Cottrell and
Lucchetti (2022), but a brief account can also be found in Lucchetti and Pigini (2017).
The command
? pkg install ParMA.zip

will install the package from the official online repository. Alternatively, if the package has
already been downloaded and is present as a local file, the following alternative can be used:

http://gretl.sourceforge.net/current_fnfiles/ParMA.zip

Journal of Statistical Software 15

? pkg install /path/to/local/ParMA.zip --local

where of course /path/to/local has to be substituted with the appropriate file path. Once
this is done, the package is loaded using the include command:

? include ParMA.gfn

The ParMA package provides a main function, called bma_glm, and three auxiliary functions,
bma_printout, marginal_graph and mcmc_checks. The bma_glm function performs the nu-
merical computation, and it is illustrated in the next Section, with a special attention to the
settings used to parallelize the algorithm effectively. The other functions are used, respec-
tively, for pretty-printing the main results, plotting the posterior distribution for the model
parameters as well as additional diagnostic analysis, and are described in Section 5.3.
Parallelization is implemented by using the Message Passing Interface (MPI) specification,
which has been used in gretl since 2014 alongside other technology, such as OpenMP. As Gropp,
Lusk, Doss, and Skjellum (1996) say, “MPI [...] is a specification for a standard library for
message passing that was defined by the MPI Forum, a broadly based group of parallel com-
puter vendors, library writers, and applications specialists.”. MPI is an extremely effective
parallelization architecture, and has been previously used in gretl in the johansensmall pack-
age (Schreiber and Jensen 2021) for bootstrap computation of p values for the Johansen
cointegration test.
The ability of gretl scripts to use MPI depends on a series of prerequisites: the preliminary
installation of a suitable MPI package is surely the major one13, although a lot depends
on the operating system too. For Windows and Mac OS X users, for example, running a
gretl snapshot version is enough to assure the correct working of MPI commands, once the
MPI package is correctly installed. The software, in fact, will automatically detect the binaries
needed for parallelization. In Linux platforms, instead, it is required to build gretl from the
git source enabling the parallelization option.14

However, the technicalities of the MPI implementation are totally transparent to the user of
the ParMA package, and the only step that is needed to enable parallelization (of course, on
suitable hardware) is to set the mpi scalar in the options bundle to a number greater than 1
(see Section 5.2). Notice that even though each unit of MPI parallelization, known as process,
can in principle employ one or more threads, in gretl each process employs a single thread of
the machine as a default option and in ParMA this is always the case. For this reason, even
if we are working with MPI processes, the term “thread” has to be intended as a synonym of
process.
Users, finally, should be aware that CPU time is not a straightforward function of the number
of processors used. Section 6.2 provides an illustration of the impact of parallelization in a
real-life example.

5.1. The main function
The public function which performs the BMA procedure is bma_glm, and its signature is:

function bundle bma_glm(series y, list X, string glm_type,
int ndraw, int burn, bundle params)

13For Windows the MS-MPI toolkit; whereas for Linux or Mac OS X the choice is Open MPI or MPICH.
14For further details we refer to Cottrell and Lucchetti (2022, 2021).

16 ParMA: Parallelized Bayesian Model Averaging for GLMs

The function returns a “bundle”, which is the term used in gretl for an associative array,
holding the results.
The function arguments are defined as follows:

• series y: The dependent variable.

• list X: The list of covariates.

• string glm_type: Type of model; at present, the recognized options are:

– "linear" for linear models;
– "probit" for binary models;
– "logit" for binary models;
– "cloglog" for binary models;
– "poisson" for count models.

• int ndraw: Total number of MCMC iterations.

• int burn: Burn-in iterations (per thread).

• bundle params: A bundle for extra optional settings (described below). This argument
can be omitted, in which case default choices will be used.

A constant term, if absent, will be automatically added to the covariates list X.15 As for
the number of MCMC iterations, note that the ndraw setting refers to the total number of
drawings, that will be automatically split across threads, after the burn-in stage. On the
contrary, the burn-in parameter burn is kept fixed for each parallel chain. Therefore, each
thread will execute a number of draws d that is equal to

d = burn + ndraw
c

where c is the number of threads used. For example, if ndraw and burn were 10000 and 1000,
respectively, using 4 parallel processes will cause each thread to perform 3500 Monte Carlo
iterations (3500 = 1000 + 10000/4).
The elements of the output bundle are:

• sampled_coeff: Matrix array containing the sampled coefficients β.

• sampled_binmodel: Matrix array holding the sampled models in binary notation.

• sampled_var: Matrix array holding the covariance matrices for the β coefficients.

• sampled_mean: Matrix containing the means of sampled β coefficients (one column per
thread).

• sampled_pip: Matrix containing the posterior inclusion probability (PIP) for each vari-
able (one column per thread).

15For linear models, the intercept may be excluded by giving it a diffuse prior set-up; see Section 2.5.

Journal of Statistical Software 17

• sampled_modelid: Matrix array containing the summary of the sampled model along
with the number of times they have appeared on the related thread simulation.

• best_models: A bundle containing the best specifications in terms of model posteri-
ors. The number of models is determined by the option params.threshold (see next
section).

• GB: Matrix (vector) containing as first entry the multivariate Gelman and Brooks statis-
tics as in Equation 14; the remaining elements are the univariate convergence statistics
from Equation 13 for each parameter.

• opt_for_print: Bundle containing additional information to be passed into the printing
function (bma_printout).

• nrep_x_thread, burnin, thinning: Scalars; the numbers of replications per threads,
the burn-in iterations, the thinning interval, respectively.

All the matrix arrays in the output bundle contain as many elements as threads. Therefore, if
necessary to join them up into a single matrix, the standard gretl function flatten can be used.
The posterior inclusion probability is defined as the frequency of a covariate being retained
through the MCMC iterations after the burn-in.

5.2. Additional options

The arguments listed in the previous Section determine the main aspect of the RJMCMC
procedure used to implement BMA. However, the behavior of the function can be tuned more
finely by passing a bundle with additional options. The keys recognized at the moment are:

• focus, list: A list of covariates that have to be always kept in every proposed specifi-
cation; this list may be a subset of X, or contain extra variables. Default: A void list.

• pm, matrix: Prior mean for β. In general, pm should be a k × 1 matrix, k being the
number of total regressors excluding the constant, ordered with focus first and then X.
However, a shorthand option is allowed: if pm is a 1 × 1 matrix, then the same prior
mean will be used for all covariates. Default: 0.

• pv, string: Choice of prior covariance matrix for β. Three options are available: ridge
for the ridge prior, Zellner for the Zellner prior and custom for a user-defined matrix.
See below for the scaling factor. Default: params.pv = "Zellner".

• pv_scaling, matrix: Its meaning depends on the pv option:

– If params.pv = "ridge", then pv_scaling is interpreted as the scalar shrinkage
coefficient c and the prior variance is cI.

– If params.pv = "Zellner" then pv_scaling is interpreted as the scalar shrinkage
coefficient g and the prior variance is g(X⊤

i Xi)−1.
– If params.pv = "custom" then custom pv_scaling must be a k × k covariance

matrix provided by the user.

Default: The number of observations n.

18 ParMA: Parallelized Bayesian Model Averaging for GLMs

• phi, matrix: Individual prior variable inclusion probabilities πj as per Equation 10. In
general, phi should be a k × 1 matrix, but a shorthand option is allowed like for pm (see
above). Default: 0.5 (uniform prior).

• start, matrix: The binary representation of the initial model from which the Markov
chain starts. Each column should contain binary entries as explained in Section 3, and
have as many rows as the number of variables that are allowed to be included/excluded
during the RJMCMC (no constant and no focus variables). The matrix should have as
many columns as threads. If, however, start is a 1 × 1 matrix, then the same setting
is understood to be applied to the entire matrix, so if start equals 0 or 1, each chain
will start from the null or full model, respectively.
Note that it is the user’s responsibility to ensure that the starting points are suitably
overdispersed. However, this point may, in empirical applications, be less crucial than
it seems: the proposal kernel of the chain is primarily concerned with models, so even
starting from a single model specification a thorough exploration of the model space
should be guaranteed when many covariates are present. Default: 1.

• kernel, scalar: Choice for the kernel (see discussion at the end of Section 2.3); 0 gives
the simpler choice à la Madigan et al. (1995). 1 is used for the more sophisticated
alternative. Default: 0.

• change_regr, scalar: Only used if kernel is 1. The integer k′ in Equation 7.

• prob_regr, scalar: Only used if kernel is 1. The probability ω in Equation 7.

• resamp, Boolean: Enables the resampling step (within move), when a new parameter
and model proposal is rejected. Default: resamp = 0.

• center, scalar: Prior regularization of the covariates. 0: no modification, 1: centering,
2: standardization. Default: 1.

• mpi, integer: Number of threads used to parallelize the Markov chains. Default: if MPI
is enabled in gretl, the number of available physical cores, as reported by the ncores
key in the $sysinfo bundle; otherwise 1.

• thinning, scalar: The so-called “thinning interval”, for discarding draws during the
execution of the MCMC. For example, if the thinning interval is 2, then every third
draw is retained; if it’s 0, all draws are kept. Default: 0.

• seed, integer: Random number generator seed. Default: none.

• display, Boolean: Prints directly the output via bma_printout. Default: 1.

• threshold, scalar: Defines the best models in the related output bundle and it primarily
applies to the printout of the procedure. Only models whose posterior probability
exceeds threshold will be stored and printed. Default: 0.1.

5.3. Auxiliary functions
The package provides three auxiliary function for further processing: bma_printout and
marginal_graph are used for displaying the output, while mcmc_checks offers a selection of
diagnostic procedures.

Journal of Statistical Software 19

The bma_printout function takes as its only input the bundle created by the main function
bma_glm and prints it out. Note that the printout is enabled by default when you run
bma_glm but can be switched off by using the display extra option (see Section 5.2). The
bma_printout can be useful if you decide to estimate the model quietly, store it away and
print out the results at a later time.
The public function marginal_graph is used to plot the marginal posterior distribution of
the chosen parameter β; the syntax is the following:

function void marginal_graph(bundle b, list X, string save)

where b is the output bundle from bma_glm; X the list of variables for which the plot is
wanted; save is a string used for saving the plot to a file. If save is an empty string or
is omitted, the plot will be displayed on screen; otherwise, the plot will be saved under file
name specified by save. Note that the format will be dictated by the file extension.16 This
function computes the kernel density estimate using Gaussian kernels as well as histograms of
the sampled parameter β for the variables contained in X: notice that the results are obtained
conditioning the sample upon the inclusion of the variable in the specifications.
Finally, the function mcmc_checks provides additional diagnostics: the main function bma_glm
provides directly only the Brooks and Gelman statistics for convergence, which of course are of
interest in case of parallel computing, but often need to be supported by additional measures.
The function signature is

function bundle mcmc_checks(bundle b, string what, bundle opt)

where, again, b is the output bundle from bma_glm; what indicates which diagnostic procedure
is desired: at present, the available choices are "plot", "ESS", "Geweke", "Heidelberg".
See later in this section for a description.
The opt argument may contain a bundle for additional options, such as the opt.chain option,
i.e., a Boolean flag which takes the value 1 for computing the desired statistic on each parallel
chain separately.
The "plot" diagnostic option produces a plot of the sequence of sampled parameters for the
variables contained in opt.plotlist, along with their autocorrelation function plot (ACF)
and their running mean plot. Note that although visual inspection can be a useful tool to
detect stationarity, convergence and autocorrelation of the parameters, it should be noted
that, in RJMCMC experiments of this kind, autocorrelation tends to be artificially high.
This is due to the fact that the primary target of the sampling scheme are models, and their
parameters follow in a second step; in this way it is quite common for a parameter to remain
stuck on a single value for many iterations. This can happen in two cases: first, when the
related variable is included in the model but the parameter is not changing because model
moves are rejected (this is common when few models dominate the posterior probability); the
second one, instead, when the variable is excluded and its parameter is thus set implicitly to
0. While in the first case enabling thinning or within moves is sufficient, in the second case
an alternative solution may be inspecting the same plots, conditional on parameter inclusion.
The available options for the "plot" command are:

• opt.condition, Boolean flag: Produce a conditional plot if 1.
16For the list of recognized formats, see the reference to the gretl command plot.

20 ParMA: Parallelized Bayesian Model Averaging for GLMs

• opt.lag: Lag order for ACF plot.

• opt.display: Display plot on screen if 1.

• opt.namesave: If opt.display is 0, this is a string which identifies the file name and
format for the plot file; by default it is saved in the current working directory using the
variable name and the PDF extension.

Note that in order to produce the plots, the gretl multiplot package (Schreiber and Tarassow
2020) is required.
The ESS yields the numerical standard errors, the effective sample size for each parameter as
well as the multivariate version. The computation follows the batch mean approach by Vats,
Flegal, and Jones (2019). Notice that effective sample size is inversely related to autocorre-
lation, so similar arguments to the ones above apply here too. The option available for this
command is opt.batchsize which, as its name suggests, is used to set the batch size. The
default value is the square root of the number of replications.
The option Geweke computes Geweke’s convergence diagnostic (Geweke 1992) as per Sec-
tion 4.1. By default, the statistic is computed for each parameter and the p value, using a
standardized normal distribution, is provided. It is possible to change the fraction of starting
and ending sample to use, which is by default set to 0.1 and 0.5, via opt.Gewekesample.17

The Heidelberg option, instead, computes the Heidelberg and Welch convergence diagnos-
tic (again, see Section 4.1): the p values for each sample proportion are displayed for the
parameters.
The Geweke and Heidelberg options rely on the computation of the long-run variance (also
known as the spectral density at 0); internally, this is handled via the built-in function lrvar,
which uses a Bartlett kernel with an adjustable window size.
Further details will be provided in the empirical illustration section.

6. Empirical illustrations
In this section, we will provide three empirical applications in order to illustrate the ParMA
package: a well-known BMA example from the economic growth literature (Fernández, Ley,
and Steel 2001b), an example of Poisson regression from Cameron and Trivedi (2013) and
finally an experiment in binary models using the Mroz (1987) dataset.
In the former our aim is to show how the ability of the RJMCMC algorithm to replicate the
benchmark results in a linear model framework: linear models, as already pointed out, present
the advantage of analytical tractability, so common routines can adopt a straightforward
MCMC method on the model space. RJMCMC, on the other hand, can also be applied to
non-linear models due to its greater flexibility. Of course, given it greater computational
cost, we are not advocating the use of RJMCMC for linear models, but we are providing this
example here as a robustness check.
In the latter example, instead, we will directly test the performance of our code on a count
data model, fully exploiting the parallelization of the process: great attention will be given to

17When the test is performed on the whole chain, by aggregating of the parallel ones, the proportion of the
samples to use is computed from the initial and ending parts of the single chains and then aggregated.

Journal of Statistical Software 21

the impact of parallelization in CPU time and the convergence of the chains using the Brooks
and Gelman statistics as a diagnostic check (see Section 4.1).
The final example will provide a detailed analysis on the Brooks and Gelman multivariate
statistic and its behavior for several number of drawings. Additional diagnostic analyses are
provided too.

6.1. Linear regression example

The article by Fernández et al. (2001b) is considered a milestone in the Econometrics literature
for what concerns BMA applications: the underlying idea was to refine, by introducing model
uncertainty via BMA, the previous analysis by Sala-I-Martin (1997) on the economic growth
of 140 countries using a set of heterogeneous covariates ranging from economic development
indicators to socio-cultural features. In particular, the original authors considered a smaller
dataset of n = 72 countries with k = 41 regressors, and defined a BMA experiment using
MCMC technique.
The original set-up was as follows:

• For the intercept, a diffuse prior was adopted.

• For all other parameters, the normal prior was used, with mean zero and Zellner-g
covariance matrix (see Section 2.5), with g = k2.

• For the models, a uniform prior was used.

• Finally, the MCMC chain length was set to 2000000, with an extra 1000000 iterations
as burn-in.

In the following, we are going to replicate the same design using RJMCMC with just two
slightly modifications: in order to save time we parallelize the algorithm to 4 cores and we
run 200000 drawings after a burn-in of 50000.
The gretl script is reported below

? open growth_BMA.gdt --quiet
? include ParMA.gfn
? list X = 2..42
? modeltype = "linear"
? n_iter = 200000
? burn_in = 50000

As for the bundle of additional options, we will use the package defaults, with only these
modifications:

? bundle param
? param.pv_scaling = nelem(X)^2
? param.mpi = 4
? param.seed = 1234567

The function call is:

22 ParMA: Parallelized Bayesian Model Averaging for GLMs

? b = bma_glm(GDP_growth, X, modeltype, n_iter, burn_in, param)

Execution produces the following output:

--
Bayesian Model Averaging with Generalized Linear Model
--
Type of specification: Linear model
Model Prior: P(M) ~ Uniform
Model dynamics: MCMCMC - add/delete (1)var
Resampling allowed: No
MPI - threads: 4
Number of iterations/burn-in/thinning: 200000/50000/0

Overall sampling statistics

mean std.err. pip c. mean c. se BGstat
AbsoluteLat 0.00000 0.00003 0.04748 0.00000 0.00015 1.00052

SpanishColony 0.00019 0.00155 0.05661 0.00341 0.00562 1.00144
FrenchColony 0.00018 0.00114 0.04911 0.00368 0.00367 1.00080

BritishColony -0.00006 0.00063 0.03489 -0.00183 0.00283 1.00119
War -0.00035 0.00137 0.09076 -0.00390 0.00263 1.00257

LatinAmerica -0.00197 0.00432 0.22889 -0.00859 0.00495 1.00099
SubSahara -0.01233 0.00839 0.77239 -0.01597 0.00575 1.00057

OutwarOrient -0.00006 0.00053 0.03265 -0.00174 0.00235 1.00031
Area -0.00000 0.00000 0.03189 -0.00000 0.00000 1.00081

PrScEnrollment 0.00399 0.00917 0.20025 0.01993 0.01012 1.00101
LifeExpectancy 0.00082 0.00035 0.92036 0.00089 0.00026 1.00265

GDP60 -0.01604 0.00322 0.99740 -0.01608 0.00311 1.00308
Fr_Mining 0.01905 0.02352 0.46204 0.04124 0.01681 1.00475

DegreeCapital 0.00125 0.00146 0.47280 0.00264 0.00091 1.00354
YrsOpenEco 0.00679 0.00792 0.47642 0.01426 0.00501 1.00674

Age -0.00000 0.00002 0.09003 -0.00005 0.00003 1.00010
Fr_Buddhist 0.00255 0.00579 0.20154 0.01266 0.00621 1.00181
Fr_Catholic -0.00043 0.00296 0.12793 -0.00333 0.00767 1.00193

Fr_Confucian 0.05587 0.01432 0.99035 0.05641 0.01328 1.00101
EthnoLingFract 0.00036 0.00187 0.06123 0.00586 0.00499 1.00169

Fr_Hindu -0.00314 0.01101 0.11767 -0.02673 0.02000 1.00091
Fr_Jewish -0.00019 0.00275 0.03385 -0.00558 0.01389 1.00147
Fr_Muslim 0.00816 0.00757 0.61024 0.01337 0.00494 1.00088

PrimaryExport -0.00095 0.00349 0.09760 -0.00977 0.00620 1.00232
Fr_Protestants -0.00572 0.00716 0.44944 -0.01273 0.00498 1.00056

RuleofLaw 0.00757 0.00839 0.50472 0.01500 0.00528 1.00279
Growth_pop 0.00511 0.04626 0.03307 0.15466 0.20395 1.00097

WorkPop -0.00023 0.00216 0.04553 -0.00507 0.00885 1.00064
SizeLabForce 0.00000 0.00000 0.07225 0.00000 0.00000 1.00064

HighEnrollment -0.00146 0.01007 0.04551 -0.03199 0.03535 1.00018
PublEdupct 0.00081 0.02593 0.03827 0.02113 0.13092 1.00214

Journal of Statistical Software 23

Revolution -0.00003 0.00094 0.02749 -0.00106 0.00555 1.00063
PoliticalRights -0.00014 0.00055 0.08822 -0.00159 0.00109 1.00257

CivilLiberty -0.00028 0.00087 0.12527 -0.00223 0.00129 1.00025
Fr_EnglishLan -0.00058 0.00229 0.08743 -0.00667 0.00441 1.00336
Fr_ForeignLan 0.00022 0.00127 0.06424 0.00348 0.00374 1.00160
ExchRateDist -0.00000 0.00002 0.07699 -0.00005 0.00004 1.00140

EquipInv 0.16046 0.06805 0.92494 0.17348 0.05243 1.00168
NotEquipInv 0.02421 0.03161 0.42363 0.05716 0.02181 1.00392
SDBlackMkt -0.00000 0.00000 0.04553 -0.00001 0.00001 1.00064

BlackMkt -0.00147 0.00344 0.19112 -0.00771 0.00372 1.00281

Gelman & Brooks multivariate R: 1.025

Best specifications (Posterior > 0.10):

No model posteriors exceed the chosen threshold of 0.10.
The best model detected is 000000046845800c - P(M|y) = 0.006885
Covariates: SubSahara LifeExpectancy GDP60 DegreeCapital Fr_Confucian

Fr_Muslim Fr_Protestants RuleofLaw EquipInv NotEquipInv

Figure 1 compares the covariate posterior inclusion probabilities obtained via our function
and the original ones by Fernández et al. (2001b): as it can be seen, the results are similar
even using far fewer iterations18.
It is interesting to examine the univariate and multivariate versions of the Gelman and Brooks
statistic: each statistic is far below the usual 1.1 threshold (note that the usual value in the
literature is 1.2). This can be taken to imply that the four parallel Markov chains have
converged to the target distribution.
In Figure 2 we plot the marginal posterior densities for the coefficients of GDP60, SubSahara,
Fr_Catholic, AbsoluteLat. The plot can be produced through following lines of code:

? list for_marg = GDP60 SubSahara Fr_Catholic AbsoluteLat
? marginal_graph(b, for_marg, "")

where b is the output bundle from the bma_glm function.

6.2. Poisson regression example

Here we perform BMA on the the popular count model example provided by Cameron and
Trivedi (2013) on doctor visits: the dataset is provided in the standard gretl installation
under the name rac3d.gdt and provides n = 5190 observations from the Australian Health
Survey 1977-1978. The dependent variable DVISITS contains the number of consultations
with doctors in the last two weeks; we use the original list of covariates, that is socioeconomic
characteristics (SEX, AGE, AGESQ, INCOME), health insurance status indicators (LEVYPLUS,
FREEPOOR, FREEREPA), health status measures (ILLNESS, ACTDAYS) and long-term status
measures (HSCORE, CHCOND1, CHCOND2).

18Of course, it is possible to obtain a more precise result by increasing the number of iterations: with 500000
drawings and a burn-in of 100000 the differences between the benchmark and ParMA are negligible.

24 ParMA: Parallelized Bayesian Model Averaging for GLMs

BlackMkt

SDBlackMkt

NotEquipInv

EquipInv

ExchRateDist

Fr_ForeignLan

Fr_EnglishLan

CivilLiberty

PoliticalRights

Revolution

PublEdupct

HighEnrollment

SizeLabForce

WorkPop

Growth_pop

RuleofLaw

Fr_Protestants

PrimaryExport

Fr_Muslim

Fr_Jewish

Fr_Hindu

EthnoLingFract

Fr_Confucian

Fr_Catholic

Fr_Buddhist

Age

YrsOpenEco

DegreeCapital

Fr_Mining

GDP60

LifeExpectancy

PrScEnrollment

Area

OutwarOrient

SubSahara

LatinAmerica

War

BritishColony

FrenchColony

SpanishColony

AbsoluteLat

 0 0.2 0.4 0.6 0.8 1

C
o

v
a

ri
a

te
s

Posterior Probability of Inclusion (PIP)

benckmark
ParMA

Figure 1: Comparison in posterior probability of inclusion (PIP) between Fernández et al.
(2001b) and ParMA.

Journal of Statistical Software 25

��

���

���

���

���

����

����

����

����� ������ ����� ������ ����� ������

�
�
�
�
���

�������������������

����
������

��

���

���

���

���

���

���

���

���

����� ����� ����� ����� ��

�
�
�
�
���

�����������������������

����
������

��

���

���

���

���

���

���

���

���

����� ����� ����� �� ����� �����

�
�
�
�
���

�������������������������

����
������

��

����

�����

�����

�����

�����

�����

�����

������� ������� ������� �� ������� ������� �������

�
�
�
�
���

�������������������������

����
������

Figure 2: Marginal kernel densities and histograms (conditional on model inclusion) for the
posteriors of GDP60, SubSahara, Fr_Catholic, AbsoluteLat parameters.

Our major item of interest in this application is monitoring the performance of parallelization
together with the convergence of the chains: to do so, we define a standard set-up, that is, a
uniform model prior; a normal prior for the parameters with zero mean and Zellner-g prior
(g = n); add/delete proposal kernel and 200000 draws after a burn-in of 20000.
We estimate the model with different degrees of parallelization, from 1 to 32 threads. Of
course, we keep the burn-in fixed, so each parallel chain will be trained over the 20000 burn-
in iterations, and the number of desired replications (200000) will be split over the various
threads. The experiment is performed on a machine with 20 physical cores: the RJMCMC
runs on more than 20 threads use hyper-threading.
The gretl script is as follows:

? open rac3d.gdt --quiet
? include ParMA.gfn

? list X = SEX AGE AGESQ INCOME LEVYPLUS FREEPOOR FREEREPA
ILLNESS ACTDAYS HSCORE CHCOND1 CHCOND2

? modeltype = "poisson"
? bundle param
? param.seed = 1234567

26 ParMA: Parallelized Bayesian Model Averaging for GLMs

Threads
1 2 4 8 12 16 20 21 22 32

Time (sec.) 1334.99 468.49 169.81 96.01 77.60 71.60 67.70 109.02 106.35 103.50
Multivariate R 1.000 1.002 1.013 1.009 1.009 1.012 1.022 1.023 1.021 1.027

Posterior model probabilities for top three models
Model c5c 0.173 0.182 0.172 0.173 0.180 0.169 0.175 0.177 0.178 0.180
Model c1c 0.135 0.135 0.132 0.133 0.131 0.125 0.132 0.133 0.132 0.131
Model a5c 0.111 0.106 0.116 0.116 0.112 0.114 0.109 0.108 0.110 0.111

Posterior inclusion probabilities
SEX 0.939 0.943 0.948 0.944 0.947 0.941 0.943 0.941 0.945 0.944
AGE 0.617 0.629 0.608 0.605 0.615 0.592 0.602 0.617 0.609 0.617
AGESQ 0.352 0.342 0.365 0.368 0.358 0.380 0.367 0.351 0.364 0.358
INCOME 0.212 0.208 0.201 0.205 0.199 0.205 0.206 0.208 0.204 0.203
LEVYPLUS 0.088 0.079 0.079 0.084 0.087 0.084 0.089 0.085 0.085 0.083
FREEPOOR 0.601 0.606 0.598 0.600 0.604 0.599 0.603 0.603 0.603 0.606
FREEREPA 0.047 0.045 0.042 0.049 0.045 0.048 0.050 0.048 0.049 0.045
ILLNESS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ACTDAYS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
HSCORE 0.772 0.776 0.774 0.775 0.776 0.770 0.778 0.781 0.785 0.777
CHCOND1 0.041 0.046 0.041 0.039 0.039 0.039 0.043 0.046 0.043 0.043
CHCOND2 0.053 0.053 0.054 0.054 0.053 0.052 0.053 0.057 0.060 0.054

Table 1: Comparison of multi-thread performance of bma_glm in Poisson regression. Results
which report more than 20 threads use hyperthreading.

? param.threshold = 0.08
? cores = seq(1,32)
? loop i = 1..32 --quiet
> n_iter = 200000
> burn_in = 20000
> param.mpi = cores[i]
> b=bma_glm(DVISITS, X, modeltype, n_iter,burn_in, param)
> endloop

Table 1 reports the main results of the experiment for selected values of the number of
cores19: for each specific case the elapsed CPU time and the multivariate R statistic are
shown, alongside with the posterior model probabilities of the best three specifications and
the posterior inclusion probabilities for each covariate.
As can be inferred from the convergence statistics, each parallel chain reached its stationary
state; as a further confirmation, the model posteriors of the three best models (which cover
about 40% of the total model posterior) and the individual PIPs for the covariates are close
to each other across the different scenarios.
A more immediate overview of the fact is provided in Figure 3, where the multivariate conver-
gence statistics are plotted as a function of the number of threads used: at a first glance, each
value reported is below 1.03, way below the customary threshold of 1.2. Again, a positive

19We decided to omit a few columns for the sake of clarity. Results for the omitted columns are available
upon request, but are practically identical to what one would get by interpolation.

Journal of Statistical Software 27

Model Covariates
Model c5c const, SEX, AGE, FREEPOR, ILLNESS, ACTDAYS, HSCORE
Model c1c const, SEX, AGE, ILLNESS, ACTDAYS, HSCORE
Model a5c const, SEX, AGESQ, FREEPOR, ILLNESS, ACTDAYS, HSCORE

Table 2: Description of the three best models detected via bma_glm. Model labels are the
internal hexadecimal representation of the model.

��

������

�����

������

�����

������

�����

�� ��� ��� ��� ��� ���

�
�
���
�
�
��
�
��
��

������������

Figure 3: Multivariate R obtained in bma_glm for the Poisson example as a function of the
used threads.

relationship between convergence measure and number of threads is quite evident: as the
number of parallel chains grows, the measure grows as well, because splitting the number of
desired drawings over a larger number of threads results in shorter chains. The fact that even
with many threads the statistics remains far below 1.20 is due to the fixed burn-in.
CPU times are depicted in Figure 4, where elapsed time in seconds is plotted versus the
number of threads. At a first glance, a hyperbolic decay pattern seems to emerge, as is
reasonable. However, when the number of threads exceed that of physical cores performance
deteriorates: employing more than 20 chains leads to an average execution time above 100
seconds.

6.3. An experiment on convergence

The Brooks and Gelman multivariate statistics is a very useful tool in parallel MCMC exper-
iments to assess whether the Markov chain convergence has taken place. Therefore it may be
of interest to study its behavior for a fixed number of threads and an increasing number of
drawings.

28 ParMA: Parallelized Bayesian Model Averaging for GLMs

��

����

����

����

����

�����

�����

�����

�� ��� ��� ��� ��� ���

�
��
�
��
�
�
�
��

������������

Figure 4: CPU time elapsed by bma_glm for the Poisson example as a function of the used
threads.

To this end, we will use the famous dataset from Mroz (1987) (natively supplied with gretl un-
der the name mroz87), and we will set up a probit model of labor market participation for
married women, using as covariates the woman’s socio-economic characteristics (WA, WE, AX,
MTR), as well as her husband’s (HA, HE, HW), together with some indications on the household
(KL6, CIT) and on unemployment in the county of residence (UN).
As for the experiment set-up, we will perform BMA on 8 parallel chains, with a number of
draws going from 1000 up to a million. The burn-in size will be set to the 10% of the total of
drawings. For all other settings, we use the default values (see Sections 5.1 and 5.2).
In the spirit of the original paper by Brooks and Gelman (1998), we will employ different
starting points for each chain using the additional option param.start:

(1) (2) (3) (4) (5) (6) (7) (8)
KL6 1 1 1 1 1 1 1 0
WA 0 0 1 0 1 1 0 1
WE 0 0 0 1 0 0 0 0
HA 0 0 0 1 1 1 1 0
HE 1 1 1 0 1 1 0 0
HW 1 0 0 0 0 1 1 0
MTR 0 0 0 0 1 0 1 0
UN 1 1 0 0 1 0 1 1
CIT 0 1 1 0 0 0 1 1
AX 0 0 1 0 0 0 0 0

this matrix identifies the starting model for each thread (column).
The script is the following:

Journal of Statistical Software 29

Drawings (total) Burn-in R BG Mod 399 Mod 3b9

1000 100 8.238 0.576 0.183
2500 250 3.673 0.434 0.348
5000 500 1.501 0.495 0.316
7500 750 1.556 0.548 0.271
10000 1000 1.398 0.544 0.283
25000 2500 1.110 0.521 0.297
50000 5000 1.058 0.528 0.286
75000 7500 1.015 0.525 0.301
100000 10000 1.033 0.529 0.284
250000 25000 1.014 0.531 0.289
500000 50000 1.005 0.524 0.292
750000 75000 1.008 0.528 0.288
1000000 100000 1.003 0.526 0.291

Table 3: Comparison of convergence statistics across several scenarios using 8 parallel chains.

? open mroz87.gdt --quiet
? include ParMA.gfn
? list X = KL6 WA WE HA HE HW MTR UN CIT AX
? starting = {1, 1, 1, 1, 1, 1, 1, 0;

0, 0, 1, 0, 1, 1, 0, 1;
0, 0, 0, 1, 0, 0, 0, 0;
0, 0, 0, 1, 1, 1, 1, 0;
1, 1, 1, 0, 1, 1, 0, 0;
1, 0, 0, 0, 0, 1, 1, 0;
0, 0, 0, 0, 1, 0, 1, 0;
1, 1, 0, 0, 1, 0, 1, 1;
0, 1, 1, 0, 0, 0, 1, 1;
0, 0, 1, 0, 0, 0, 0, 0}

? modeltype = "probit"
? bundle param = defbundle("start", starting, "mpi", 8, "seed", 271828)
? matrix iters = {1, 2.5, 5, 7.5, 10, 25, 50,

75, 100, 250, 500, 750, 1000}*1000
? loop j = 1 .. nelem(iters) --quiet
> n_iter = iters[j]
> burn_in = iters[j]*0.1
> b = bma_glm(LFP, X, modeltype, n_iter,burn_in, param)
> endloop

The results are collected in Table 3: the multivariate Brooks and Gelman statistic is reported
in column 3; using 8 threads requires at least 25000 iterations to deem that convergence has
taken place: when parallel draws are too few20 even after the burn-in phase the chains are quite
heterogeneous, as shown by the convergence measure. As further evidence, the fourth and

20Remember that the burn-in is fixed and the total amount of iteration is actually split across the threads.

30 ParMA: Parallelized Bayesian Model Averaging for GLMs

Model Covariates
Model 399 const KL6 WA WE HW MTR AX
Model 3b9 const KL6 WA WE HE HW MTR AX

Table 4: Description of the two best models using the binary example from the mroz87.gdt
dataset.

��

��

��

��

��

��

��

��

��

��

����� ������ ������� ������

�
�
���
�
�
��
�
��
��
�
��
��
�

���������������������������

�����

����

�����

����

�����

����

�����

����

�����

����

����� ������ ������� ������

�
�
�
�
��
�
�
�
��
��
�
�

���������������������������

������
������

Figure 5: Left panel: Brooks and Gelman multivariate statistics across different iterations.
Right panel: posterior model probabilities of the two best models across different iterations.

fifth columns report the posterior probability for two models21: again, the numbers stabilize
only after the 25000 iterations threshold. These two numerical measures are also plotted
for clarity in Figure 5, with convergence statistics in the left-hand pane an the posterior
probability for the two best model in the right-hand pane.
As an example of the additional statistics described in Section 4.1, consider the case with
100000 replications, for which the convergence statistic is 1.033. Since this number is quite
close to 1, it can be concluded that each parallel chain produces values for β that are similarly
distributed. However, it may happen that the initial drawings may be come from a different
posterior distribution than the final ones. By considering additional statistics such as the
Geweke or Heidelberg tests one may shed some light on this aspect and gain better insight
as to the homogeneity of the whole chain. In addition, graphical inspection of the parameter
sequences, together with the ACF plot, may be also useful for analyzing the mixing properties
of the chain.
In ParMA this is accomplished via the auxiliary function mcmc_checks: if we call b the
bma_glm output bundle for the 100000 replications,
? c = mcmc_checks(b, "plot", _(plotlist = "HW"))
? c = mcmc_checks(b, "ESS")
? c = mcmc_checks(b, "Geweke")
? c = mcmc_checks(b, "Heidelberg")

the code above sequentially calls the plot for the HW variable, the effective sample size, Geweke
and Heidelberg tests, with no options different from the default ones.22

21Table 4 describes the two specifications.
22The notation _(key = object) is a shorthand for the defbundle function.

Journal of Statistical Software 31

�����
�����
�����
�����
����

�����
�����
�����
�����

��

�� ������ ������ ������ �������������

�
�

����������

����������������

��
����
����
����
����
����
����
����
����
����
��

�� ��� ��� ��� ��� ���

�
�
��
�
�
��
�
��
���
�

����

���

������

�����

������

������

������

������

�����

������

�� �������������������������������

�
�
�
�

����������

������������������������������

Figure 6: Sequence of sampled parameters for HW (top-left), autocorrelation function plot
(top-right) and running mean plot (bottom-left).

The output provided for the plot option is reported in Figure 6; the rest of the command
output follows:

------Univariate Effective Sample Size--------
ESS nse

const 2641 0.017952
KL6 2567 0.041130
WA 1989 0.003401
WE 3811 0.010641
HA 12382 0.000496
HE 8405 0.005355
HW 3269 0.006170
MTR 1588 0.472773
UN 11633 0.000638
CIT 8911 0.005600
AX 3255 0.002308

------Multivariate Effective Sample Size------
mESS = 5487
--

----Geweke Univariate Convergence Statistics----
|Z| pvalue

32 ParMA: Parallelized Bayesian Model Averaging for GLMs

const 0.2644 0.7915
KL6 2.4173 0.0156
WA 0.8525 0.3939
WE 0.2909 0.7712
HA 1.7999 0.0719
HE 0.9533 0.3405
HW 0.6489 0.5164
MTR 0.5494 0.5827
UN 0.5733 0.5665
CIT 0.5056 0.6131
AX 0.7424 0.4578

----Heidelberg-Welch Convergence Statistics----
Full 90% 80% 70% 60% 50%

const 0.107 0.166 0.271 0.056 0.288 0.218
KL6 0.000 0.002 0.003 0.003 0.037 0.001
WA 0.000 0.000 0.000 0.000 0.000 0.000
WE 0.243 0.151 0.176 0.385 0.137 0.252
HA 0.221 0.294 0.269 0.198 0.299 0.270
HE 0.048 0.012 0.040 0.010 0.014 0.055
HW 0.000 0.000 0.001 0.001 0.010 0.017
MTR 0.000 0.000 0.001 0.003 0.020 0.021
UN 0.575 0.754 0.739 0.479 0.230 0.110
CIT 0.043 0.060 0.046 0.254 0.407 0.509
AX 0.004 0.002 0.000 0.003 0.012 0.021

By visual inspection of the sequence, the variable considered seems to be stationary, although
autocorrelation seems substantial. This is confirmed by the effective sample size statistics
(both univariate and multivariate) and this is also partly reflected by the Heidelberg-Welch
statistics23 where the stationarity test is rejected at size 0.05 for the same variables for which
the effective sample size is smallest. Geweke’s test, conversely, seems to indicate convergence
for all coefficients bar one. The conclusion that can be drawn is that convergence is probably
achieved, despite a possible autocorrelation problem; this is due to having two models which
dominate the posterior model probability.
In order to illustrate the effect of the resamp option, we re-run the experiment with the
param.resamp option set to 1:

? n_iter = 100000
? burn_in = 10000
? param.resamp = 1
? b = bma_glm(LFP, X, modeltype, n_iter,burn_in, param)
? c1 = mcmc_checks(b, "plot", _(plotlist = "HW", namesave = "resamp_HW.pdf"))
? c1 = mcmc_checks(b, "ESS")
? c1 = mcmc_checks(b, "Geweke")
? c1 = mcmc_checks(b, "Heidelberg")

23For the Heidelberg-Welch statistics the p values for each sample dimension are reported.

Journal of Statistical Software 33

The new output is reported below:

------Univariate Effective Sample Size--------
ESS nse

const 58079 0.003839
KL6 51326 0.009127
WA 31164 0.000865
WE 9542 0.006682
HA 15288 0.000502
HE 8370 0.005366
HW 53513 0.001470
MTR 39160 0.093438
UN 38059 0.000362
CIT 28987 0.002911
AX 59160 0.000548

------Multivariate Effective Sample Size------
mESS = 35438
--

----Geweke Univariate Convergence Statistics----
|Z| pvalue

const 0.9358 0.3494
KL6 0.1061 0.9155
WA 0.1752 0.8609
WE 0.9043 0.3658
HA 0.2506 0.8021
HE 0.1671 0.8673
HW 0.5258 0.5990
MTR 1.1652 0.2439
UN 1.0713 0.2840
CIT 0.6548 0.5126
AX 2.2407 0.0250

----Heidelberg-Welch Convergence Statistics----
Full 90% 80% 70% 60% 50%

const 0.439 0.667 0.772 0.531 0.546 0.388
KL6 0.260 0.358 0.329 0.408 0.435 0.698
WA 0.403 0.473 0.445 0.733 0.778 0.686
WE 0.818 0.899 0.438 0.167 0.334 0.533
HA 0.697 0.561 0.364 0.575 0.539 0.412
HE 0.755 0.762 0.851 0.583 0.612 0.606
HW 0.519 0.619 0.814 0.865 0.877 0.913
MTR 0.569 0.775 0.542 0.508 0.533 0.468
UN 0.682 0.815 0.690 0.381 0.244 0.215
CIT 0.861 0.925 0.895 0.960 0.908 0.694
AX 0.493 0.781 0.690 0.469 0.395 0.176

34 ParMA: Parallelized Bayesian Model Averaging for GLMs

�����
�����
�����
�����
����

�����
�����
�����
�����

��

�� ������ ������ ������ �������������

�
�

����������

����������������

�����

��

�����

����

�����

����

�����

�� ��� ��� ��� ��� ���

�
�
��
�
�
��
�
��
���
�

����

���

������

����

������

�����

������

�����

������

�� �������������������������������

�
�
�
�

����������

������������������������������

Figure 7: Sequence of sampled parameters for HW (top-left), autocorrelation function plot
(top-right) and running mean plot (bottom-left) introducing within-moves.

As can be seen, results are greatly improved under all the metrics considered. Figure 7 reports
the sequence plot, the ACF along with the running mean plot; graphical inspection confirms
the better autocorrelation properties.

7. Conclusion
The ParMA package implements BMA for generalized linear models using the RJMCMC ar-
chitecture in gretl. By doing so, it offers the practitioner a flexible tool for performing Bayesian
model averaging on a range of models that are commonly applied in econometrics practice.
The package exploits the MPI architecture for parallelization, and does so in a remarkably
simple and transparent way. In other words, the package aims to offer a user-friendly solu-
tion for parallelizing a CPU-intensive task such as the RJMCMC. Apart from the obvious
benefits in terms of CPU time, this choice leads to many advantages in terms of the quality
of information one can extract from the MCMC drawings, from detailed data about the pos-
terior densities to the Brooks and Gelman statistic and other additional diagnostic statistics
to assess the quality of convergence.

Computational details
The result in this paper are obtained using gretl in the 2020d version. Previous versions of the
program are not suitable. As for the MPI architecture, Open MPI and MPICH are equally
valid choices; for additional details we refer to Cottrell and Lucchetti (2021).

Journal of Statistical Software 35

References

Amdahl GM (1967). “Validity of the Single Processor Approach to Achieving Large Scale
Computing Capabilities.” In Proceedings of the April 18–20, 1967, Spring Joint Computer
Conference, pp. 483–485. Association for Computing Machinery. doi:10.1145/1465482.
1465560.

Amini SM, Parmeter CF (2011). “Bayesian Model Averaging in R.” Journal of Economic and
Social Measurement, 36(4), 253–287. doi:10.3233/jem-2011-0350.

Barker RJ, Link WA (2013). “Bayesian Multimodel Inference by RJMCMC: A Gibbs Sam-
pling Approach.” The American Statistician, 67(3), 150–156. doi:10.1080/00031305.
2013.791644.

Błażejowski M, Kwiatkowski J (2015). “Bayesian Model Averaging and Jointness Measures
for gretl.” Journal of Statistical Software, 68(5), 1–24. doi:10.18637/jss.v068.i05.

Błażejowski M, Kwiatkowski J (2018). “Bayesian Averaging of Classical Estimates (BACE)
for gretl.” Technical report, Universita’ Politecnica delle Marche (I), Dipartimento di Scienze
Economiche e Sociali.

Brooks SP, Gelman A (1998). “General Methods for Monitoring Convergence of Iterative
Simulations.” Journal of Computational and Graphical Statistics, 7(4), 434–455. doi:
10.1080/10618600.1998.10474787.

Brooks SP, Giudici P, Roberts GO (2003). “Efficient Construction of Reversible Jump Markov
Chain Monte Carlo Proposal Distributions.” Journal of the Royal Statistical Society B,
65(1), 3–39. doi:10.1111/1467-9868.03711.

Brown PJ, Vannucci M, Fearn T (1998). “Multivariate Bayesian Variable Selection and
Prediction.” Journal of the Royal Statistical Society B, 60(3), 627–641. doi:10.1111/
1467-9868.00144.

Cameron CA, Trivedi PK (2013). Regression Analysis of Count Data, volume 53. 2nd edition.
Cambridge University Press, Cambridge.

Chatfield C (1995). “Model Uncertainty, Data Mining and Statistical Inference.” Journal of
the Royal Statistical Society A, 158(3), 419–466. doi:10.2307/2983440.

Chen MH, Huang L, Ibrahim JG, Kim S (2008). “Bayesian Variable Selection and Com-
putation for Generalized Linear Models with Conjugate Priors.” Bayesian Analysis, 3(3),
585–614. doi:10.1214/08-BA323.

Chen MH, Ibrahim JG (2003). “Conjugate Priors for Generalized Linear Models.” Statistica
Sinica, 13(2), 461–476.

Clyde MA, Ghosh J, Littman ML, Li Y, Van de Bergh D (2022). BAS: Bayesian Variable
Selection and Model Averaging Using Bayesian Adaptive Sampling. R package version 1.6.2,
URL https://CRAN.R-project.org/package=BAS.

https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.3233/jem-2011-0350
https://doi.org/10.1080/00031305.2013.791644
https://doi.org/10.1080/00031305.2013.791644
https://doi.org/10.18637/jss.v068.i05
https://doi.org/10.1080/10618600.1998.10474787
https://doi.org/10.1080/10618600.1998.10474787
https://doi.org/10.1111/1467-9868.03711
https://doi.org/10.1111/1467-9868.00144
https://doi.org/10.1111/1467-9868.00144
https://doi.org/10.2307/2983440
https://doi.org/10.1214/08-BA323
https://CRAN.R-project.org/package=BAS

36 ParMA: Parallelized Bayesian Model Averaging for GLMs

Cottrell A, Lucchetti R (2021). gretl + MPI. URL https://sourceforge.net/projects/
gretl/files/manual/gretl-mpi.pdf.

Cottrell A, Lucchetti R (2022). gretl User’s Guide. URL http://gretl.sourceforge.net/
gretl-help/gretl-guide.pdf.

Fernández C, Ley E, Steel MFJ (2001a). “Benchmark Priors for Bayesian Model Averaging.”
Journal of Econometrics, 100(2), 381–427. doi:10.1016/s0304-4076(00)00076-2.

Fernández C, Ley E, Steel MFJ (2001b). “Model Uncertainty in Cross-Country Growth
Regressions.” Journal of Applied Econometrics, 16(5), 563–576. doi:10.1002/jae.623.

Fouskakis D, Ntzoufras I, Draper D (2009). “Bayesian Variable Selection Using Cost-Adjusted
BIC, with Application to Cost-Effective Measurement of Quality of Health Care.” The
Annals of Applied Statistics, 3(2), 663–690. doi:10.1214/08-aoas207.

Frühwirth-Schnatter S, Frühwirth R (2007). “Auxiliary Mixture Sampling with Applications
to Logistic Models.” Computational Statistics & Data Analysis, 51(7), 3509–3528. doi:
10.1016/j.csda.2006.10.006.

Frühwirth-Schnatter S, Frühwirth R (2010). “Data Augmentation and MCMC for Binary
and Multinomial Logit Models.” In Statistical Modelling and Regression Structures, pp.
111–132. Springer-Verlag. doi:10.1007/978-3-7908-2413-1_7.

Frühwirth-Schnatter S, Wagner H (2006). “Auxiliary Mixture Sampling for Parameter-Driven
Models of Time Series of Counts with Applications to State Space Modelling.” Biometrika,
93(4), 827–841. doi:10.1093/biomet/93.4.827.

Frühwirth-Schnatter S, Wagner H (2010). “Stochastic Model Specification Search for Gaussian
and Partial Non-Gaussian State Space Models.” Journal of Econometrics, 154(1), 85–100.
doi:10.1016/j.jeconom.2009.07.003.

Gamerman D (1997). “Sampling from the Posterior Distribution in Generalized Linear Mixed
Models.” Statistics and Computing, 7(1), 57–68. doi:10.1023/a:1018509429360.

Garcia-Donato G, Forte A (2018). “Bayesian Testing, Variable Selection and Model Averaging
in Linear Models Using R with BayesVarSel.” The R Journal, 10(1), 155–174. doi:10.
32614/RJ-2018-021.

Gelling N, Schofield MR, Barker RJ (2019). rjmcmc: Reversible-Jump MCMC Using
Post-Processing. R package version 0.4.5, URL https://CRAN.R-project.org/package=
rjmcmc.

Gelman A, Jakulin A, Pittau MG, Su YS (2008). “A Weakly Informative Default Prior
Distribution for Logistic and Other Regression Models.” The Annals of Applied Statistics,
2(4), 1360–1383. doi:10.1214/08-aoas191.

Gelman A, Rubin DB (1992). “Inference from Iterative Simulation Using Multiple Sequences.”
Statistical Science, 7(4), 457–472. doi:10.1214/ss/1177011136.

George EI, McCulloch RE (1993). “Variable Selection via Gibbs Sampling.” Journal of
the American Statistical Association, 88(423), 881–889. doi:10.1080/01621459.1993.
10476353.

https://sourceforge.net/projects/gretl/files/manual/gretl-mpi.pdf
https://sourceforge.net/projects/gretl/files/manual/gretl-mpi.pdf
http://gretl.sourceforge.net/gretl-help/gretl-guide.pdf
http://gretl.sourceforge.net/gretl-help/gretl-guide.pdf
https://doi.org/10.1016/s0304-4076(00)00076-2
https://doi.org/10.1002/jae.623
https://doi.org/10.1214/08-aoas207
https://doi.org/10.1016/j.csda.2006.10.006
https://doi.org/10.1016/j.csda.2006.10.006
https://doi.org/10.1007/978-3-7908-2413-1_7
https://doi.org/10.1093/biomet/93.4.827
https://doi.org/10.1016/j.jeconom.2009.07.003
https://doi.org/10.1023/a:1018509429360
https://doi.org/10.32614/RJ-2018-021
https://doi.org/10.32614/RJ-2018-021
https://CRAN.R-project.org/package=rjmcmc
https://CRAN.R-project.org/package=rjmcmc
https://doi.org/10.1214/08-aoas191
https://doi.org/10.1214/ss/1177011136
https://doi.org/10.1080/01621459.1993.10476353
https://doi.org/10.1080/01621459.1993.10476353

Journal of Statistical Software 37

Geweke J (1992). “Evaluating the Accuracy of Sampling-Based Approaches to the Calcula-
tion of Posterior Moments.” In JM Bernardo, JO Berger, AP Dawid, AFM Smith (eds.),
Bayesian Statistics, volume 4, pp. 169–193. Clarendon Press, Oxford.

Godsill SJ (2001). “On the Relationship Between Markov Chain Monte Carlo Methods for
Model Uncertainty.” Journal of Computational and Graphical Statistics, 10(2), 230–248.
doi:10.1198/10618600152627924.

Godsill SJ (2003). “Proposal Densities and Product-Space Methods.” In Highly Structured
Stochastic System, pp. 199–202. Oxford University Press.

Green PJ (1995). “Reversible Jump Markov Chain Monte Carlo Computation and Bayesian
Model Determination.” Biometrika, 82(4), 711–732. doi:10.1093/biomet/82.4.711.

Green PJ (2003). “Trans-Dimensional Markov Chain Monte Carlo.” In Highly Structured
Stochastic System, pp. 179–198. Oxford University Press.

Gropp W, Lusk E, Doss N, Skjellum A (1996). “A High-Performance, Portable Implementa-
tion of the MPI Message Passing Interface Standard.” Parallel Computing, 22(6), 789–828.
ISSN 0167-8191. doi:10.1016/0167-8191(96)00024-5.

Hanson TE, Branscum AJ, Johnson WO (2014). “Informative g-Priors for Logistic Regres-
sion.” Bayesian Analysis, 9(3), 597–612. doi:10.1214/14-ba868.

Hastie DI, Green PJ (2012). “Model Choice Using Reversible Jump Markov Chain Monte
Carlo.” Statistica Neerlandica, 66(3), 309–338. doi:10.1111/j.1467-9574.2012.00516.x.

Hastings KW (1970). “Monte Carlo Sampling Methods Using Markov Chains and Their
Applications.” Biometrika, 57(1), 97–109. doi:10.1093/biomet/57.1.97.

Heidelberger P, Welch PD (1983). “Simulation Run Length Control in the Presence of an
Initial Transient.” Operations Research, 31(6), 1109–1144. doi:10.1287/opre.31.6.1109.

Holmes CC, Held L (2006). “Bayesian Auxiliary Variable Models for Binary and Multinomial
Regression.” Bayesian Analysis, 1(1), 145–168. doi:10.1214/06-ba105.

Johnson VE, Rossell D (2010). “On the Use of Non-Local Prior Densities in Bayesian
Hypothesis Tests.” Journal of the Royal Statistical Society B, 72(2), 143–170. doi:
10.1111/j.1467-9868.2009.00730.x.

Johnson VE, Rossell D (2012). “Bayesian Model Selection in High-Dimensional Set-
tings.” Journal of the American Statistical Association, 107(498), 649–660. doi:
10.1080/01621459.2012.682536.

Kass RE, Wasserman L (1995). “A Reference Bayesian Test for Nested Hypotheses and Its
Relationship to the Schwarz Criterion.” Journal of the American Statistical Association,
90(431), 928–934. doi:10.2307/2291327.

Lamnisos D, Griffin JE, Steel MFJ (2009). “Transdimensional Sampling Algorithms for
Bayesian Variable Selection in Classification Problems with Many More Variables than
Observations.” Journal of Computational and Graphical Statistics, 18(3), 592–612. doi:
10.1198/jcgs.2009.08027.

https://doi.org/10.1198/10618600152627924
https://doi.org/10.1093/biomet/82.4.711
https://doi.org/10.1016/0167-8191(96)00024-5
https://doi.org/10.1214/14-ba868
https://doi.org/10.1111/j.1467-9574.2012.00516.x
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1287/opre.31.6.1109
https://doi.org/10.1214/06-ba105
https://doi.org/10.1111/j.1467-9868.2009.00730.x
https://doi.org/10.1111/j.1467-9868.2009.00730.x
https://doi.org/10.1080/01621459.2012.682536
https://doi.org/10.1080/01621459.2012.682536
https://doi.org/10.2307/2291327
https://doi.org/10.1198/jcgs.2009.08027
https://doi.org/10.1198/jcgs.2009.08027

38 ParMA: Parallelized Bayesian Model Averaging for GLMs

Lamnisos D, Griffin JE, Steel MFJ (2012). “Cross-Validation Prior Choice in Bayesian Probit
Regression with Many Covariates.” Statistics and Computing, 22(2), 359–373. doi:10.
1007/s11222-011-9228-1.

Lamnisos D, Griffin JE, Steel MFJ (2013). “Adaptive Monte Carlo for Bayesian Variable
Selection in Regression Models.” Journal of Computational and Graphical Statistics, 22(3),
729–748. doi:10.1080/10618600.2012.694756.

Lucchetti R, Pigini C (2017). “DPB: Dynamic Panel Binary Data Models in gretl.” Journal
of Statistical Software, 79(8), 1–33. ISSN 1548-7660. doi:10.18637/jss.v079.i08.

Madigan D, Raftery AE (1994). “Model Selection and Accounting for Model Uncertainty in
Graphical Models Using Occam’s Window.” Journal of the American Statistical Association,
89(428), 1535–1546. doi:10.1080/01621459.1994.10476894.

Madigan D, York J, Allard D (1995). “Bayesian Graphical Models for Discrete Data.” Inter-
national Statistical Review, 63(2), 215–232. doi:10.2307/1403615.

Mroz TA (1987). “The Sensitivity of an Empirical Model of Married Women’s Hours of
Work to Economic and Statistical Assumptions.” Econometrica, 55(4), 765–799. doi:
10.2307/1911029.

Raftery AE, Hoeting J, Painter IS, Volinsky CT, Yeung KY (2022). BMA: Bayesian Model
Averaging. R package version 3.18.17, URL https://CRAN.R-project.org/package=BMA.

R Core Team (2022). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rosenthal JS (2000). “Parallel Computing and Monte Carlo Algorithms.” Far East Journal
of Theoretical Statistics, 4(2), 207–236.

Rossell D (2022). mombf: Bayesian Model Selection and Averaging for Non-Local and Local
Priors. R package version 3.1.3, URL https://CRAN.R-project.org/package=mombf.

Sala-I-Martin X (1997). “I Just Ran Two Million Regressions.” The American Economic
Review, 87(2), 178–183. URL https://www.jstor.org/stable/2950909.

Sala-I-Martin X, Doppelhofer G, Miller RI (2004). “Determinants of Long-Term Growth: A
Bayesian Averaging of Classical Estimates (BACE) Approach.” The American Economic
Review, 94(4), 813–835. doi:10.1257/0002828042002570.

Scheipl F (2011). “spikeSlabGAM: Bayesian Variable Selection, Model Choice and Regu-
larization for Generalized Additive Mixed Models in R.” Journal of Statistical Software,
43(14), 1–24. doi:10.18637/jss.v043.i14.

Schreiber S, Jensen AN (2021). johansensmall: Johansen Cointegration Test in Small Sam-
ple. gretl package version 3.3, URL http://gretl.sourceforge.net/current_fnfiles/
unzipped/johansensmall.pdf.

Schreiber S, Tarassow A (2020). The multiplot Function. gretl package version 0.2, URL
http://gretl.sourceforge.net/current_fnfiles/multiplot.gfn.

https://doi.org/10.1007/s11222-011-9228-1
https://doi.org/10.1007/s11222-011-9228-1
https://doi.org/10.1080/10618600.2012.694756
https://doi.org/10.18637/jss.v079.i08
https://doi.org/10.1080/01621459.1994.10476894
https://doi.org/10.2307/1403615
https://doi.org/10.2307/1911029
https://doi.org/10.2307/1911029
https://CRAN.R-project.org/package=BMA
https://www.R-project.org/
https://CRAN.R-project.org/package=mombf
https://www.jstor.org/stable/2950909
https://doi.org/10.1257/0002828042002570
https://doi.org/10.18637/jss.v043.i14
http://gretl.sourceforge.net/current_fnfiles/unzipped/johansensmall.pdf
http://gretl.sourceforge.net/current_fnfiles/unzipped/johansensmall.pdf
http://gretl.sourceforge.net/current_fnfiles/multiplot.gfn

Journal of Statistical Software 39

Sha N, Vannucci M, Tadesse MG, Brown PJ, Dragoni I, Davies N, Roberts TC, Contestabile
A, Salmon M, Buckley C, et al. (2004). “Bayesian Variable Selection in Multinomial Probit
Models to Identify Molecular Signatures of Disease Stage.” Biometrics, 60(3), 812–819.
doi:10.1111/j.0006-341x.2004.00233.x.

Steel MFJ (2020). “Model Averaging and Its Use in Economics.” Journal of Economic
Literature, 58(3), 644–719. doi:10.1257/jel.20191385.

Vats D, Flegal JM, Jones GL (2019). “Multivariate Output Analysis for Markov Chain Monte
Carlo.” Biometrika, 106(2), 321–337. doi:10.1093/biomet/asz002.

Zeugner S, Feldkircher M (2015). “Bayesian Model Averaging Employing Fixed and Flexible
Priors: The BMS package for R.” Journal of Statistical Software, 68(4), 1–37. doi:
10.18637/jss.v068.i04.

Affiliation:
Riccardo (Jack) Lucchetti, Luca Pedini
Department of Economics and Social Sciences (DiSES)
Faculty of Economics
Università Politecnica delle Marche
60121 Ancona, Italy
E-mail: r.lucchetti@univpm.it, l.pedini@staff.univpm.it
URL: https://www.univpm.it/riccardo.lucchetti

Journal of Statistical Software https://www.jstatsoft.org/
published by the Foundation for Open Access Statistics https://www.foastat.org/

September 2022, Volume 104, Issue 2 Submitted: 2020-08-12
doi:10.18637/jss.v104.i02 Accepted: 2021-12-29

https://doi.org/10.1111/j.0006-341x.2004.00233.x
https://doi.org/10.1257/jel.20191385
https://doi.org/10.1093/biomet/asz002
https://doi.org/10.18637/jss.v068.i04
https://doi.org/10.18637/jss.v068.i04
mailto:r.lucchetti@univpm.it
mailto:l.pedini@staff.univpm.it
https://www.univpm.it/riccardo.lucchetti
https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v104.i02

	Introduction
	Statistical background
	GLMs
	BMA in GLMs
	The RJMCMC framework
	An automated RJMCMC sampler
	Prior choices and other technicalities
	The RJMCMC sampler in a nutshell

	Algebraic representation of models
	Parallelization in MCMCs
	Convergence in parallel

	The package
	The main function
	Additional options
	Auxiliary functions

	Empirical illustrations
	Linear regression example
	Poisson regression example
	An experiment on convergence

	Conclusion

