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Abstract

High frequency data typically exhibit asynchronous trading and microstructure noise,
which can bias the covariances estimated by standard estimators. While a number of
specialized estimators have been proposed, they have had limited availability in open
source software. HighFrequencyCovariance is the first Julia package which implements
specialized estimators for volatility, correlation and covariance using high frequency fi-
nancial data. It also implements complementary algorithms for matrix regularization.
This paper presents the issues associated with exploiting high frequency financial data
and describes the volatility, covariance and regularization algorithms that have been im-
plemented. We then demonstrate the use of the package using foreign exchange market
tick data to estimate the covariance of the exchange rates between different currencies.
We also perform a Monte Carlo experiment, which shows the accuracy gains that are
possible over simpler covariance estimation techniques.
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1. Introduction
A common problem in financial econometrics is the estimation of covariance and correlation
matrices between the price series of different assets. These matrices are frequently used by
financial institutions. For example, they allow traders and investors to understand the risk
characteristics of the portfolios they hold and what assets to buy or sell to better hedge their
position. These matrices can also be applied in algorithmic trading strategies, in pricing al-
gorithms for derivatives, in mean-variance portfolio selection (Markowitz 1952) or for better
understanding the macroeconomic relationships between different assets in the economy. De-
spite their wide array of applications, few open source software packages exist to consistently
estimate covariance matrices using high frequency data. This package aims to fill that gap.
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Covariance and correlation matrices can be more accurately estimated utilizing high frequency
data than is possible with lower frequency data. If observations of covariance are observed
over long intervals such as an hour there are few observations of price movements per trading
day. On the other hand, if price movements can be measured in the space of a few seconds
then a daily covariance matrix can be estimated using thousands of observations and thus
can achieve more accurate estimates. There are however three major statistical complications
with exploiting high frequency financial data to estimate covariance matrices. The first is
that we observe updated prices (typically obtained from realized trades or updated quotes)
for different assets asynchronously and at different frequencies. If one uses a short duration
between returns, some assets might not have an updated price within some intervals which
leads to bias in estimating covariance. The simplest remedy of using longer return durations
forgoes the efficiency gains that high frequency data makes possible. The second difficulty is
“microstructure” noise. If trade prices are used, there is generally some noise depending on
where an asset trades between the bid and the ask price. If quote prices are used (for instance
using the mid price halfway between the bid and the ask), then there may be small jumps
as the bid and ask move by discrete amounts (or “ticks”) rather than moving continuously.
Adding to this issue is the possibility that microstructure noise may be correlated with the
underlying price process which can introduce additional bias. The third difficulty is that
an estimated matrix may not be positive semidefinite (PSD) which can happen for several
reasons. These reasons include the use of different datasets that estimate covariances between
different asset pairs as well as the application of econometric techniques that do not guarantee
a PSD result. These cases require regularization techniques to ensure that the resultant
covariance matrix does not imply mutually impossible correlations.

The HighFrequencyCovariance package (Baumann and Klymak 2021) is the first package in
Julia (Bezanson, Edelman, Karpinski, and Shah 2017) that aims at averting all of these issues
thus allowing for consistent and efficient estimation of correlation matrices and volatilities.
First, we implement two algorithms to estimate volatility and the variance of microstructure
noise. Second, we include five covariance estimation techniques that can be used in the
face of microstructure noise and nonsynchronous trading. Third, our package includes four
regularization techniques. Finally, the package offers several convenience functions to work
with covariance matrices. These include functions for combining different covariance matrices
as well as functions for estimating covariances between different asset pairs separately and
then combining the result into a unified PSD covariance matrix.

To our knowledge, there are no other open source packages implemented in Julia that provide
high frequency covariance estimation techniques. For some of the algorithms implemented, we
believe HighFrequencyCovariance provides the first open source implementation in any lan-
guage. The closest package to ours is highfrequency in R (Boudt, Cornelissen, Payseur, Kleen,
and Sjoerup 2022). While the goal of highfrequency appears to be similar to our package’s
goal, which is to support the estimation of covariance and volatility using high frequency data,
the set of functionalities implemented by each package is quite different. On the one hand,
highfrequency offers eigenvalue regularization, but it does not implement Higham’s (2002)
nearest correlation matrix technique or Ledoit and Wolf’s (2001) identity matrix regulariza-
tion. It also does not implement the spectral local-method-of-moments covariance estimation
method or a convenient way to perform blockwise estimation of covariance matrices. While
highfrequency offers several statistical tests for jumps (Aït-Sahalia and Jacod 2009), our Julia
package currently does not.
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This paper first defines the covariance matrices that we seek to estimate in Section 2. We
then describe the algorithms that have been implemented in HighFrequencyCovariance for
overcoming the econometric issues in volatility and covariance estimation in Section 3 and
Section 4. We focus on providing some brief intuition to guide the choice of what algorithm
to use and avoid mathematical and convergence proofs (readers interested in a more formal
presentation can find these details in the cited papers). Section 5 discusses the implemented
regularization algorithms. Section 6 discusses the software design choices of the package. The
use of the package is then illustrated first in the simple setting of using Monte Carlo generated
data in Section 7 and is then demonstrated on real foreign exchange (FX) data in Section 8.
Section 9 uses a Monte Carlo experiment to show the accuracy gains (and consistency) of
the covariance estimation techniques that HighFrequencyCovariance implements. Section 10
concludes the paper.

2. The covariance estimation problem
To clearly define the goal of our estimation and our notation, we will consider that the data
generation process can be modeled by the stochastic integral:

Yt =
∫ T

t0
σtdWt,

where Wt is a vector of independent Brownian motions, σt is a càdlàg volatility matrix
process and t is the time index.
Yt reflects a vector of “underlying” prices for every asset; however, it cannot be observed
directly. Instead, we can see a price for each asset corrupted by market microstructure noise
at asynchronous times. If we observe an asset (with index k) at a tick1 (with index j so it is
the jth observation for this asset) at time tk

j then we observe the price Xk
j :

Xk
j = Y k

tk
j

+ ϵk
j ,

where ϵk
j is an expectation zero random variable that reflects microstructure noise. It is

subscripted by j rather than tk
j reflecting that it is different for each tick and does not move

continuously with time as Yt does. For an asset k the time of the first tick is denoted tk
1, the

number of ticks is nk and the time of the last tick is tk
nk

. We will define the first and last
times across all assets as t0 = mink tk

1 and T = maxk tk
nk

respectively.
Our goal is to estimate the integrated covariance matrix over the time period for which we
have data:

Σ =
∫ T

t0
σtσt

⊤dt.

We can then estimate each element of the correlation matrix (with row and column indices
r, c) by:

Corrr,c = Σr,c√
Σr,r

√
Σc,c

. (1)

1In the literature the same word “tick” is used to denote the minimum increment for prices in the orderbook
and also for individual observations in a time series database. We will generally mean the latter meaning of
“tick” throughout this paper except for mentioning the effect of minimum quote increments as a source of
microstructure noise.
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Finally, the volatility, νq, for the asset q can be estimated by:

νq =
√

Σq,q√
T − t0

(2)

Note that our calculated volatilities will be scaled to the same time units as the input data.
The central structure implemented in our package, CovarianceMatrix, stores the correlation
matrix and the vector of volatilities separately. This is because the variance of the stochastic
price process increases with time and in most applied settings a covariance matrix will be
desired over a different duration than the training data. In our package, an actual covariance
matrix can be calculated for any desired duration by combining the correlation matrix and
volatilities stored in the CovarianceMatrix structure.

3. Volatility estimation
For every covariance estimation technique that we implement, we can get an estimate of the
volatility from the covariance matrix through Equation 2. In addition to this, HighFrequen-
cyCovariance implements two techniques that purely estimate volatility. These can be used
as an alternative way of estimating volatility. The most basic method (implemented in the
simple_volatility method) is to add up the quadratic variation of the logarithmic price
series. Thus, if we have a series X, then we get the quadratic variation as

∑N−1
j=1 (Xk

j+1 −Xk
j )2.

We then convert it to volatility by dividing it by the duration of the returns tk
nk

− tk
1 and then

taking the square root.
However, microstructure noise causes severe biases in estimating volatilities with this simple
method. As the time between two ticks goes to zero, the variation in the continuous price
process can be small, but it will still have the microstructure noise. In the extreme case
when there are infinitely many ticks in a finite time interval, the simple volatility estimation
technique is a consistent estimator for the variance of the noise process E[(ϵk)2] rather than
the volatility of the clean price process (Zhang, Mykland, and Aït-Sahalia 2005).
The simplest solution to this problem is tick subsampling so that there is a price every 15
minutes (or some suitable duration). Over this longer period, the impact of microstructure
noise is hopefully negligible compared to the continuous variation in Y k

t . This has the disad-
vantage, however, of an efficiency loss through throwing away data. In addition, there is no
natural estimate of the variance of the microstructure noise, which is useful in its own right
and is also an input to some covariance estimation techniques.
Zhang et al. (2005) provide a different solution for estimating volatility. In their method, two
time scales are used to estimate volatility, one using all the ticks (a short time scale) and one
using different subsamplings of the tick data at a longer timescale. They then combine these
two estimates to provide a consistent estimator for the volatility of the price process.
Given an accurate estimate of the volatility of the price process, the quadratic variation that
would theoretically be expected over the duration of the data can be determined. The amount
that measured quadratic variation in Xk

j exceeds this theoretical quadratic variation can be
ascribed to microstructure noise. We can thus use this to find an estimate of the variance of
the noise process.
This algorithm is implemented in the two_scales_volatility method of the package which
returns estimates of both the volatility of the price process and the variance of the noise.
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4. Covariance estimation

The first covariance estimation technique implemented in HighFrequencyCovariance is the
simple_covariance method. In this method, we loop over each pair of assets k, k′ with prices
as of some grid of time periods that we choose t1, t2, t3, ..., tN and estimate the covariance as:

COV(Xk, Xk′) = 1
N

N∑
l=1

(Xk
lk − X̄k)(Xk′

lk′ − X̄k′),

where lk := argmaxh(tk
h)1tk

h
<tl

is the most recent tick for asset k before time tl.

This method has several advantages. It is easy to implement and is a fast running algorithm.
The resultant matrix is guaranteed to be PSD and this method is already known to most
people with basic statistical training.
There are several issues associated with high frequency financial data that can lead to co-
variance estimates from the simple method being inconsistent or inefficient. The first issue is
that using too fine a time grid with this standard technique will result in downwards biased
correlation estimates due to assets trading asynchronously. This is sometimes termed the
Epps (1979) effect and it is best illustrated with a simple example. Consider that we have
two perfectly correlated assets and we observe both prices at time 0. We observe the first
asset’s price at time 1 at which time it has returned α. Then at time 2, we observe the second
asset which has returned αβ over the period between 0 and 2. If we use returns between
times 0 and 1 then the first asset returned α while the second returned 0. Between 1 and
2 we measure the first asset as having returned zero while the second returned αβ. While
these assets are perfectly correlated, we will estimate a correlation of zero in this case which
comes about entirely due to a lack of synchronicity of observations. The second issue is that
microstructure noise can bias covariance estimates in the same way as it can bias volatili-
ties. To address these shortcomings, we implemented four additional covariance estimation
techniques that are more robust to asynchronous observations and microstructure noise.

4.1. Multivariate realized kernel

The second estimation method is the multivariate realized kernel (Barndorff-Nielsen, Hansen,
Lunde, and Shephard 2011). Sometimes called the BNHLS method after the authors, the
multivariate realized kernel is an algorithm designed to provide consistent PSD covariance
estimates despite settings where there is microstructure noise (that may not be independent
of the underlying price process) and asynchronously traded assets. It is a refinement of an
earlier algorithm, the univariate realized kernel estimator (Barndorff-Nielsen, Hansen, Lunde,
and Shephard 2008), which is faster converging but relies on an assumption of independence
between microstructure noise and the underlying price process.
The BNHLS estimator uses refresh time sampling. This means we take a time grid defined
by a recursive pattern where each subsequent time is defined as the time by which every asset
has an updated price since the previous time:

tl+1 = max
k

(
tk
l,min

)
where tk

l,min = min
j

tk
j |tk

j > tl.
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Given this time grid, we then estimate returns based on the most recent price for each asset
at each refresh time. We construct a h-th realized autocovariance matrix:

Γh =
n∑

j=h+1
XjX⊤

j−h for h ≥ 0,

Γh = Γ⊤
−h for h < 0.

This is implemented in the bnhls_covariance method which uses a weighted summation
of these realized autocovariance matrices with a kernel function to determine how much
to weigh each one. By default HighFrequencyCovariance uses the Parzen kernel, but the
quadratic spectral, Fejer, Tukey-Hanning and BNHLS (2008) kernels that are discussed in
Barndorff-Nielsen et al. (2011, Table 1) are also available.
The use of refresh time sampling here means that the number of returns that can be used
to calculate a covariance is governed by the slowest asset to update. As a result, it may be
natural to pair this estimator with a blocking and regularization technique (Hautsch, Kyj,
and Oomen 2012). In this case, we bunch assets by their trading frequency. The covari-
ances between rapidly trading assets can be calculated at a high frequency while calculat-
ing covariances involving a slow trading asset at a slower frequency. HighFrequencyCovari-
ance supports this procedure with the put_assets_into_blocks_by_trading_frequency
and blockwise_estimation functions. The problem is that this procedure by necessity will
use a different dataset for different covariances and as a result regularization may be required
to get a PSD estimate of the covariance matrix.

4.2. Preaveraging of returns

The third estimation method we implement is the preaveraging method by Christensen, Podol-
skij, and Vetter (2013). These authors argue that refresh time sampling throws away data
in the cases when some assets trade multiple times within a refresh time interval. While
blocking is one answer to this, the suggestion of Christensen et al. (2013) is that more use
of the data can be made if multiple returns can be aggregated together. They first assemble
preaveraged returns for each asset by averaging together different tick-to-tick returns within a
sliding time window. The covariance between two assets k, k′ can then be estimated using the
preaveraged returns. Specifically, we calculate the integrated covariance between two assets
by multiplying together returns from each asset that are in a time window that overlaps.
Then we add up the products of all such return pairs that share a window before we rescale
this sum for the size of the time window and the weighting function used in preaveraging.
This is implemented in the preaveraged_covariance method. It has the advantage of re-
ducing the impact of microstructure noise through averaging. It also allows the use of all
data points and can consistently estimate the covariance matrix despite the Epps effect. A
disadvantage of this method is that the resultant covariance matrix may not be PSD and
thus regularization would be required. In small samples, it is also possible to estimate covari-
ance matrices that have negative variances. In addition, the use of preaveraging means that
volatility estimates from preaveraged returns are downwards biased. As a result of this last
point, the HighFrequencyCovariance implementation uses the preaveraging technique’s im-
plied correlation matrix but reports volatilities yielded from the two scales volatility method.
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4.3. Spectral local method of moments

The fourth estimation method we implement is the spectral local method of moments tech-
nique (Bibinger, Hautsch, Malec, and Reiss 2014, 2019). This algorithm starts by breaking
the trading period into equally sized subintervals. Given each subinterval, we compute a
spectral statistic matrix by using a weighted summation of the returns within that interval.
We calculate these weights by means of an orthogonal sine function with some spectral fre-
quency j. Then we gather many different spectral statistic matrices by doing this repeatedly
with various spectral frequencies. Our estimate of the covariance matrix is then calculated as
the average2 of the spectral statistic matrices plus an adjustment for microstructure noise.3
If a covariance matrix is desired calculated from the entire day (rather than a subinterval),
this can be done by averaging over the CovarianceMatrix estimates for each subinterval.4
We implement this in the spectral_covariance method. It has a similar advantage as the
preaveraging method in that it uses all observations. However, the resultant matrix is not
guaranteed to be PSD.

4.4. Two scales covariance

The final method of this package infers correlation between two assets based on their linear
combination. Given two time series Xk and Xk′ we have the identity:

COV(Xk, Xk′) = 1
4γ(1 − γ)

(
VAR(γXk + (1 − γ)Xk′) − VAR(γXk − (1 − γ)Xk′)

)
(3)

for some 0 < γ < 1. This can be converted to a correlation with the equation:

Corr(Xk, Xk′) = COV(Xk, Xk′)√
VAR(Xk)

√
VAR(Xk′)

This is the approach that Aït-Sahalia, Fan, and Xiu (2010) take. Rather than directly es-
timating covariances, they generated different combinations of the time series for different
assets and use that to infer the covariance. This package implements a similar method,
two_scales_covariance, to estimate the correlation matrix. The key difference between
this package’s implementation and Aït-Sahalia et al.’s (2010) method is that they calculate
variances using a maximum likelihood technique while this paper uses the two scales volatil-
ity technique. We made this change to avoid the complications of iterative optimization.
Aït-Sahalia et al. (2010) also suggest that rather than using refresh time sampling of the
respective time series, instead the refresh times should be calculated and then using an arbi-
trary (rather than the final) tick between subsequent refresh times. This is followed in the
HighFrequencyCovariance implementation.

2While the paper finds that equal weighting will consistently estimate the covariance matrix, it recommends
on efficiency grounds to optimally weight them according to the Fisher information. This is not implemented in
this package as it requires matrix inversions which have a substantial computational cost and present stability
challenges.

3A Dict describing the microstructure noises can be input to the algorithm if it is known. If this is not
provided the two scales volatility estimates of microstructure noise will be used.

4This is one advantage of storing correlation matrices separately from volatilities. If integrated covariance
matrices were stored directly then in order to average two together the durations over which each was estimated
would need to be accounted for. This complication does not arise with correlations and volatilities stored
separately as long as the time units of the volatility are accounted for.
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5. Regularization
Many of the covariance estimators in this package do not come with a guarantee that the
result will be PSD. Thus, we employ regularization techniques in the event an estimated
correlation matrix is not PSD.
One of the simplest methods for regularising a covariance matrix that is to linearly inter-
polate it with the identity matrix. This is the approach of Ledoit and Wolf (2001) who
provide expressions for mixing between an estimated matrix and the identity matrix. These
expressions give an optimal solution in the sense of minimising the expected distance (in the
squared Frobenius norm) between the estimated matrix and the true covariance matrix. This
is implemented in the identity_regularisation method.
Eigenvalue filtering is another approach that has been considered in the literature (Laloux,
Cizeau, Bouchaud, and Potters 1999; Tola, Lillo, Gallegati, and Mantegna 2008). This is
implemented by first taking an eigenvector decomposition of the sample covariance matrix.
We then calculate the Marchenko-Pastur distribution of eigenvalues we would expect given
a random matrix of equal dimensions to the estimated matrix. Given this distribution, we
choose a cutoff along the same lines as suggested by Hautsch, Kyj, and Malec (2015). We
do not change any eigenvalues of greater size than this cutoff. For all eigenvalues below
this cutoff, we average the positive eigenvalues and replace all of the eigenvectors below this
cutoff with this average. This process reduces the impact of the corresponding eigenvectors
while averaging them (rather than setting them to zero) means that we still get a full rank
correlation matrix when we reassemble the eigenvalues and eigenvectors. This is implemented
in the eigenvalue_clean method.
One solution for regularising correlation matrices is to project them to the nearest (by some
metric) valid correlation matrix in the space of valid correlation matrices. This is the ap-
proach of Higham (2002) who suggests an iterative algorithm where we map a matrix to the
nearest PSD matrix. We then map that matrix to the nearest unit diagonal matrix with
off-diagonal entries less than one (in absolute value). We then map the result to the near-
est PSD matrix and so on. Eventually, we converge to the nearest valid PSD correlation
matrix. This is implemented in the nearest_correlation_matrix method. The function
nearest_psd_matrix is also implemented which just maps a Hermitian matrix to the nearest
PSD matrix (without then mapping to the space of unit diagonal correlation matrices). This
can be used for covariance matrices.
HighFrequencyCovariance allows regularization to be applied in two places. The first is
that for every covariance estimation method a regularization method can be specified which
will be applied to map an estimated covariance matrix to a regularized one. The second is
that regularization can be applied to the CovarianceMatrix structure in which case it can
optionally be applied to the correlation matrix or the covariance matrix.5 A user might want
to do this to reduce noise. For this objective, the first two regularization algorithms are well
suited. One justification for mixing with the identity matrix is that this shrinks a correlation
matrix towards a Bayesian prior of no correlation (Ledoit and Wolf 2001). Eigenvalue filtering
is also a widely used technique for reducing noise by effectively deleting the impact of the
least informative eigenvectors in a matrix.

5In this case the covariance matrix is constructed from the correlations and volatilities, regularized, then
the regularized covariance matrix is split into correlations and volatilities and placed in a CovarianceMatrix
structure.
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6. HighFrequencyCovariance design
There are two main structures (also referred to as structs) that are used in the package. The
first is the SortedDataFrame which wraps a DataFrame containing the price update ticks for a
collection of assets. The purpose of a SortedDataFrame is to increase the speed of subsequent
calculations by pre-sorting the ticks and segmenting them by asset. In an applied setting
with real data, we would have a DataFrame with numeric columns for time and price and a
symbol column to identify the asset. This can be converted to a SortedDataFrame using the
constructor with the names of the columns containing the time, asset and price information
being input to the constructor along with the DataFrame itself and a Dates.Period object
which describes the temporal units of the numeric time column.6 This struct is immutable.
The second main struct is CovarianceMatrix which contains four members. The first is
a Hermitian correlation matrix. The second is a vector of volatilities and the third is a
vector of symbols that label the correlation matrix and volatility vector.7 The final member
is a Dates.Period object which details the length of time that the volatilities correspond
to. The covariance estimation functions of the package all return results in the form of a
CovarianceMatrix struct.
The design philosophy of this package prioritizes obtaining estimates easily and without
requiring users to have a deep understanding of the underlying algorithms. In most cases, the
default parameters will provide good covariance estimates without the need for fine tuning.
Advanced users might want to fine tune parameters to improve their estimates. This is possible
as most parameters detailed in the papers proposing each algorithm can be customized in
HighFrequencyCovariance.
For each estimation technique, two user interfaces are provided. The first is provided by
the estimate_volatility, estimate_microstructure_noise, estimate_covariance and
regularise functions. These allow for estimation and regularization using one function
with the method being specified by a symbol argument of these functions. Alternatively
and equivalently, each method can also be called directly using a different function for each
method. These method specific functions have the same name as the method and include
two_scales_volatility and spectral_covariance among others.

7. Using HighFrequencyCovariance
HighFrequencyCovariance is a registered package and can be installed using Julia standard
package manager Pkg.jl (Julia Programming Language 2022):

julia> using Pkg
julia> Pkg.add("HighFrequencyCovariance")

Before introducing the core estimation functions, it is worthwhile to discuss an inbuilt function
that facilitates Monte Carlo generation of time series data. The package has a function,

6For instance, a period of one hour indicates that one unit in the time column corresponds to one hour.
7While the microstructure noise variance can also be estimated using the two_scale_volatility method

this is intentionally not included in the CovarianceMatrix struct as it is an artifact of the data rather than of
the assets. For instance, we might expect that the level of noise would decrease if we moved from using trade
data to using quote data, but this will not affect the correlations or the volatilities of the true underlying price
processes.
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generate_random_path which generates a Monte Carlo timeseries of prices for a chosen
number of assets. The assets have random volatilities (from a uniform distribution) and a
random correlation matrix (from an inverse Wishart distribution).8 Each asset has a different
rate of trading which is encapsulated by an exponential distribution (with a random rate as
drawn from a uniform distribution) modeling the waiting time until the subsequent tick. There
is also random microstructure noise for each asset (each noise term is drawn from a normal
distribution with standard deviation drawn, for each asset, from a uniform distribution).9

We now use this function to make some example data with four assets to show the capabilities
and user interface of the package.10

julia> using DataFrames, Dates, LinearAlgebra, StableRNGs
julia> using HighFrequencyCovariance
julia> dims = 4
julia> ticks = 100000
julia> rng = StableRNG(100)
julia> time_period_per_unit = Second(1)
julia> ts_data, true_covar, true_micro_noise, true_update_rates =

generate_random_path(dims, ticks; rng = rng,
time_period_per_unit = time_period_per_unit)

where ts_data is a SortedDataFrame struct, true_covar is a CovarianceMatrix struct,
true_micro_noise and true_update_rates are Dicts containing microstructure noise vari-
ances and the update rates. This time series data can be visualized by using the show method
of SortedDataFrame:

julia> show(ts_data)

SortedDataFrame with 100000 rows.
Row Time Name Value

Float64 Symbol Float64

1 1.06098 asset_1 0.000605886
2 1.89955 asset_4 -0.000531824
3 2.43674 asset_4 -5.28007e-5

99998 51667.3 asset_4 -0.000475006
99999 51668.5 asset_4 0.000206461

100000 51668.7 asset_4 8.27579e-5

We start the analysis by estimating the volatility of each asset with both methods implemented
by the package.

8After drawing a PSD matrix from the Wishart distribution, we do a similar procedure as in Equation 1
to get a correlation matrix.

9The function default distributions of volatilities, microstructure noise variances and update rates have
been set to roughly resemble large cap stocks with annualized volatility between 10% and 50%. There are new
ticks for each asset every 0.5-5 seconds (in expectation). Microstructure noise variance is by default set to
roughly equal to the variance of 5 minutes returns given the input volatility distribution.

10Note that while we use a StableRNG for reproducibility reasons, MersenneTwister can also be used from
the Random module.
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julia> assets = get_assets(ts_data)
julia> simple = estimate_volatility(ts_data, assets, :simple_volatility)
julia> two_scales = estimate_volatility(ts_data, assets,

:two_scales_volatility)

The level of microstructure noise can also be estimated for each asset. Note that this mi-
crostructure noise is a variance per tick and not a volatility per unit time.

julia> micro_noise = estimate_microstructure_noise(ts_data, assets)

Now we can print a table showing each of these estimated values together with the true values
for both volatility and microstructure noise.

julia> println(vcat(
DataFrame(sort(simple)...,(:estimation=> "Simple Method")),
DataFrame(sort(two_scales)..., (:estimation=> "Two Scales")),
DataFrame(Dict(true_covar.labels .=> true_covar.volatility)...,

(:estimation => "True Values"))))

3x5 DataFrame
Row asset_1 asset_2 asset_3 asset_4 estimation

Float64 Float64 Float64 Float64 String

1 0.000282689 0.000256263 0.000262538 0.000105329 Simple Method
2 0.000188386 0.000127892 0.00014807 0.000143707 Two Scales
3 9.23524e-5 7.61032e-5 9.63553e-5 5.08742e-5 True Values

The two scales method here outperforms the simple method overall. The simple method is
particularly inaccurate for assets 1,2 and 3. A reason for this might be that this asset’s price
is measured with higher levels of microstructure noise relative to others. In this Monte Carlo
setting we can investigate for this:

julia> println(vcat(DataFrame(sort(micro_noise)...,
(:estimation => "Est. Microstructure Noise")),
DataFrame(true_micro_noise...,
(:estimation => "True Microstructure Noise"))))

2x5 DataFrame
Row asset_1 asset_2 asset_3 asset_4 estimation

Float64 Float64 Float64 Float64 String

1 5.3443e-6 3.3526e-6 3.9558e-6 1.2152e-6 Est. Microstructure Noise
2 5.2941e-6 3.3103e-6 3.9466e-6 1.2148e-6 True Microstructure Noise

It can be seen here that we have a large degree of accuracy in estimating microstructure
noise. We can also see that microstructure noise is high for assets 1, 2 and 3. The low level
of microstructure noise in asset 4 is likely why the simple method was effective in this case.



12 HighFrequencyCovariance: Estimating Covariance Matrices in Julia

Now we can also estimate covariance matrices. We will do this with several of the methods
of the package. In the below function calls we set the regularization option to missing, which
means regularization will not be performed. A regularization method can alternatively be
specified here, in which case regularization is applied after estimation.

julia> simple = estimate_covariance(ts_data, assets, :simple_covariance;
regularisation = missing)

julia> preav = estimate_covariance(ts_data, assets, :preaveraged_covariance;
regularisation = missing)

julia> two_scales = estimate_covariance(ts_data, assets,
:two_scales_covariance;
regularisation = missing)

julia> bnhls = estimate_covariance(ts_data, assets, :bnhls_covariance;
regularisation = missing)

We can examine one of the covariance matrices. This can be done using the show function
(where the second/third arguments give how many significant figures/decimal places to print
for volatility/correlation respectively).

julia> show(two_scales, 4, 4)

Volatilities per time interval of 1 second
:asset_1 :asset_2 :asset_3 :asset_4

0.0001884 0.0001279 0.0001481 0.0001437

Correlations
:___ :asset_1 :asset_2 :asset_3 :asset_4
:asset_1 1.0 -0.1178 0.0277 0.0613
:asset_2 -0.1178 1.0 -0.2271 -0.0582
:asset_3 0.0277 -0.2271 1.0 -0.1617
:asset_4 0.0613 -0.0582 -0.1617 1.0

We may be concerned that one of the estimates, for instance the bnhls estimate, is not PSD.
We can test this:

julia> valid_correlation_matrix(bnhls)

false

Unfortunately, this bnhls estimate is not PSD. However, we can regularize it using the nearest
correlation matrix method of the regularise function:

julia> regularised_bnhls = regularise(bnhls, ts_data,
:nearest_correlation_matrix)

For the sake of exposition, we will proceed considering the user has a preference for the
preaveraging and two scales estimation techniques and only wants to use these two estimates.
The user would like to take an elementwise combination of both estimates which is easy to
achieve by using the combine_covariance_matrices function.
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julia> matrices = [preav, two_scales]
julia> weights = [1,1]
julia> combined = combine_covariance_matrices(matrices, weights)

This averaging is done elementwise given our input weights for each CovarianceMatrix.
We can compare how close each of the estimates is to the true correlation matrix. We do
this by examining the mean absolute elementwise difference between the true and estimated
correlations and volatilities.

julia> calculate_mean_abs_distance(true_covar, combined)

(Correlation_error = 0.17717743, Volatility_error = 7.309e-5)

julia> calculate_mean_abs_distance(true_covar, simple)

(Correlation_error = 0.44381242, Volatility_error = 0.00013228)

julia> calculate_mean_abs_distance(true_covar, preav)

(Correlation_error = 0.12252518, Volatility_error = 7.309e-5)

julia> calculate_mean_abs_distance(true_covar, two_scales)

(Correlation_error = 0.26168133, Volatility_error = 7.309e-5)

In this case, the correlation matrix calculated with preaveraging performed the best, and the
two scales covariance method performed second best. The simple method was particularly
inaccurate, which is likely a result of the need to throw away many ticks in order to avert the
high frequency bias issues related in this paper’s introduction.11

Before moving on to an example with real data, we will demonstrate how to use one of our
estimated CovarianceMatrixs to calculate an actual covariance matrix over some interval.
For an 8 hour interval we do this with the following code:

julia> covariance_interval = Hour(8)
julia> covar = covariance(combined, covariance_interval, combined.labels)
julia> covar

4x4 Hermitian{Float64, Matrix{Float64}}:
0.00102209 -0.000125527 3.3856e-5 9.08782e-5

-0.000125527 0.000471065 -0.000209126 -5.02195e-5
3.3856e-5 -0.000209126 0.00063143 -0.000176454
9.08782e-5 -5.02195e-5 -0.000176454 0.000594767

11Note the volatility error of the preaveraging and the two scales method are the same, as both use the two
scales volatility method for volatilities.
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Note that while the CovarianceMatrix contains volatilities that are appropriate for one
second and while the returns in the tick data are over various durations, we can use the
covariance method to estimate matrices over any duration. The labelling of this Hermitian
covariance matrix is as per the combined.labels vector input to the covariance function.

8. Estimating covariance between FX rates
Now we consider the case of using the package to estimate covariances using real FX data.
We will use publicly available FX tick data from Dukascopy (2021).12 We use all quote ticks
in the TickStory database for all FX pairs that include the United States Dollar (USD). Our
data will be from 9:00 until 17:00 on 2021-06-21.13 Once we have our data, we start by loading
some packages and reading the data:

julia> using CSV, DataFrames, Dates, Distributions, KernelDensity, Statistics
julia> using HighFrequencyCovariance
julia> path = @__DIR__
julia> data = CSV.read(joinpath(path, "data.csv"), DataFrame)

As we loaded from a CSV, we do some conversions of data types before starting our analysis.

julia> data[!,:ticker] = Symbol.(data[:,:ticker])
julia> assets = sort(unique(data[:,:ticker]))
julia> dateformat = DateFormat("yyyy-mm-dd HH:MM:SS.sss")
julia> data[!,:stamp] = DateTime.(data[:,:stamp], Ref(dateformat))
julia> data[!,:Times] = Time.(data[:,:stamp])
julia> data[!,:Dates] = Date.(data[:,:stamp])

Before we start estimating a CovarianceMatrix, we first check that there are ticks through-
out our entire interval of time. If some assets did not have ticks for some hours of the
trading interval, then it might make sense to segment the time interval and perform separate
estimations.

julia> data[!,:Hours] = parse.(Int, Dates.format.(data[:,:Times], "H"))
julia> data = transform(groupby(data, :ticker), nrow => :all_ticks)
julia> data = transform(groupby(data,[:ticker, :Hours]),nrow => :hour_ticks)
julia> plotdata = combine(groupby(data, [:ticker, :Hours, :all_ticks]),

nrow => :hour_ticks)
julia> plotdata[!,:HourDensity] = plotdata[:,:hour_ticks] ./

plotdata[:,:all_ticks]
julia> using Gadfly

12This is accessible through Tickstory (2021) which is a tick database that provides free access to the data.
13This data can be assembled by downloading a CSV file for each FX pair including the USD in the TickStory

GUI. Once each asset is selected you can use the option to “export to file” and then select the Output Format
“Generic tick format (comma delimited)”. Once all CSVs are downloaded they can be combined (by vertical
concatenation) and a mid column calculated as 0.5 * bid_price + 0.5 * ask_price and a ticker column
containing the name of each FX pair. The resulting DataFrame will be equivalent to the data contained in the
file data.csv in this code block.
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Figure 1: Density of ticks over the trading day.

julia> plt = Gadfly.plot(plotdata, x=:Hours, y=:HourDensity, color=:ticker,
Geom.line, Guide.xlabel("Hours in the day (UAT)"),
Guide.ylabel("Density of ticks"),
style(key_position = :right))

The plot generated in the above code is replicated in Figure 1. We can see that there are
ticks for all assets over the whole period. Before it is possible to input this DataFrame into
a SortedDataFrame we must perform two tasks. The first task is to make a Real column
to represent time. The second task is to create a Dates.Period object that defines what
duration each unit in the numeric time column corresponds to. We will make a numeric time
with a time interval of a second measured from the time of the earliest tick in our sample.14

julia> min_time = minimum(data[:,:stamp])
julia> data[!,:SecsFromBase] = map(x -> x.value,

(data[:,:stamp] .- min_time))./1000
julia> timeperiod = Second(1)

Movements in FX rates (along with many financial assets) tend to be multiplicative rather
than additive. As a result, we will take the log of the FX rate and calculate correlations and
covariance with respect to log returns.

julia> data[!,:logmid] = log.(data[:,:mid])

Now we create a SortedDataFrame by putting the names of the variables we have created
together with the time period into the SortedDataFrame constructor.

julia> ts = SortedDataFrame(data, :SecsFromBase, :ticker, :logmid,
timeperiod)

14Note that subtracting DateTimes results in milliseconds so we divide by 1000 to get seconds.
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Next, we will estimate covariance with the preaveraging method, the two scales method and
the spectral method. Default regularization will be applied. This default regularization is the
nearest_psd_matrix in the case of the preaveraging and spectral method (as regularization
is done at the level of the covariance matrix), and the nearest_correlation_matrix in the
case of the two scales method (as regularization is done directly on the correlation matrix).

julia> preav_estimate = estimate_covariance(ts, assets,
:preaveraged_covariance;
regularisation = :default)

julia> twoscales_estimate = estimate_covariance(ts, assets,
:two_scales_covariance;
regularisation = :default)

julia> spectral_estimate = estimate_covariance(ts, assets,
:spectral_covariance;
regularisation = :default)

Now as a starting point we may want to see if all three CovarianceMatrixs are PSD and
generate similar predictions:

julia> valid_correlation_matrix(preav_estimate)

true

julia> valid_correlation_matrix(twoscales_estimate)

true

julia> valid_correlation_matrix(spectral_estimate)

true

julia> calculate_mean_abs_distance(preav_estimate, twoscales_estimate)

(Correlation_error = 0.11493703, Volatility_error = 0.0)

julia> calculate_mean_abs_distance(spectral_estimate, twoscales_estimate)

(Correlation_error = 0.06101978, Volatility_error = 6.1e-7)

julia> calculate_mean_abs_distance(preav_estimate, spectral_estimate)

(Correlation_error = 0.14429151, Volatility_error = 6.1e-7)

We can see that all three estimation techniques deliver reasonably similar correlation and
volatility estimates which is reassuring. In addition, they are all PSD. Without any reliable
method of determining which of these estimates is the most accurate, we will average over all
three:
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julia> covar = combine_covariance_matrices([preav_estimate,
twoscales_estimate, spectral_estimate])

Now that we have an estimate, we will perform several sanity checks to ensure our estimated
CovarianceMatrix is credible. As it is not possible to fit the entire CovarianceMatrix on
the page we will use the rearrange function to subset the matrix and show only five pairs:

julia> show(rearrange(covar,[:USDDKK, :EURUSD, :USDHKD, :GBPUSD, :AUDUSD]),
4, 4)

Volatilities per time interval of 1 second
:USDDKK :EURUSD :USDHKD :GBPUSD :AUDUSD

1.463e-5 1.454e-5 8.686e-7 1.842e-5 2.228e-5

Correlations
:___ :USDDKK :EURUSD :USDHKD :GBPUSD :AUDUSD
:USDDKK 1.0 -0.9936 -0.0043 -0.5787 -0.6728
:EURUSD -0.9936 1.0 0.0123 0.5824 0.6854
:USDHKD -0.0043 0.0123 1.0 -0.0833 -0.0404
:GBPUSD -0.5787 0.5824 -0.0833 1.0 0.6518
:AUDUSD -0.6728 0.6854 -0.0404 0.6518 1.0

It can be seen that the correlation between USDDKK and EURUSD is quite large in magni-
tude at −0.9936. While this is a valid correlation, in many settings a correlation like this may
raise concerns. In this setting however, there is an economic justification for such a strongly
negative correlation. The Danish Krone is pegged by the Danish central bank at a rate such
that 746 DKK is worth 100 EUR (Danmarks Nationalbank 2022). This means that when
the USDDKK increases (so that DKK is worth less in terms of USD) then the EURUSD
should go down (so the EUR is also worth less in terms of USD). Therefore, the closeness of
this correlation to −1.0 is encouraging for the accuracy of the correlation matrix. Another
implication of this peg is that the volatility of the USDDKK should be close to the volatility
of the EURUSD. We can see that this is the case, with the volatility of the USDDKK being
slightly higher (which may reflect volatility of the Danish Krone around its peg). A further
implication is that the pairwise correlation between EURUSD and another pair should be
close to the negative of the correlation between USDDKK and that other pair. This can be
tested:

julia> USDDKK_correlations = get_correlation.(Ref(covar), :USDDKK,
setdiff(assets, [:USDDKK, :EURUSD]))

julia> EURUSD_correlations = get_correlation.(Ref(covar), :EURUSD,
setdiff(assets, [:USDDKK, :EURUSD]))

julia> Statistics.cor(USDDKK_correlations, EURUSD_correlations)

-0.9998844432559166

This results in the expected strongly negative correlation between these two series of pairwise
correlations.
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One other notable peg is the peg of the Hong Kong Dollar to the United States Dollar.
This implies that the volatility of the USDHKD will be small as the Hong Kong Monetary
Authority intervenes to target a rate of 7.75 HKD per USD (Hong Kong Monetary Authority
2021). We can see that this is the case with the volatility of the USDHKD pair being around
ten times lower than the next least volatile pair which is USDCNH. We can also see that
the pairwise correlations between USDHKD and other assets are small. This makes sense
if deviations in USDHKD are driven by market frictions and changes in exchange rate peg
credibility. These forces are likely to be orthogonal to the macroeconomic factors driving
changes in the other exchange rates.
While the preceding sanity checks have exploited information about the underlying assets’
fundamental relationships, there are more general sanity checks we can also conduct. We
may want to test how our covariance matrix performs out of sample. To do this, we take all
half-hourly returns between 9:00 to 17:00 from 2021-06-22 to 2021-06-26, the days after our
training date. These returns are from the first tick after 9:00, to the last tick before 9:30 for
each asset and each day. For the next time interval, the returns are from the first tick after
9:30 to the last tick before 10:00 for each asset and day and so on. As the total duration is
quite close to 30 minutes for each return, we will ignore any small incongruencies and take
the same 30 minute duration for the analysis of all returns.

julia> future_returns= CSV.read(joinpath(path,"data_nextday.csv"),DataFrame)
julia> future_returns[!, :ticker] = Symbol.(future_returns[:, :ticker])
julia> println(first(future_returns, 4))

4x4 DataFrame
Row ticker interval log_return duration

Symbol String31 Float64 String31

1 AUDUSD 2021-06-22 09:00:00.000000 0.000227 0 days 00:29:59.504000
2 AUDUSD 2021-06-22 09:30:00.000000 -0.000147 0 days 00:29:59.685000
3 AUDUSD 2021-06-22 10:00:00.000000 0.000906 0 days 00:29:59.251000
4 AUDUSD 2021-06-22 10:30:00.000000 0.000233 0 days 00:29:59.518000

Now that our data is loaded, we might first want to see how the volatility of the 30 minute
returns corresponds to the volatilities implied by our covariance matrix. We also want to
see if our estimated correlations correspond to realized correlations over subsequent days.
We can do this by using the 30 minute returns to calculate the realized covariance matrix
via the simple method with the function simple_covariance_given_returns. Then we can
split it into volatilities and correlations as per Equation 1 and Equation 2 in the cov_to_cor
function.

julia> future_rets_wide = unstack(future_returns, :interval, :ticker,
:log_return)

julia> future_rets_mat = Float64.(Matrix(future_rets_wide[:,covar.labels]))
julia> future_rets_covar = simple_covariance_given_returns(future_rets_mat)
julia> correl, sds = cov_to_cor(future_rets_covar)
julia> vols = sds / sqrt(30*60)

For testing the volatilities we use:
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julia> Statistics.cor(vols, covar.volatility)

0.8850266961604603

julia> Statistics.mean(vols ./ covar.volatility)

0.9695290869008333

Similarly, for testing correlations:

julia> Statistics.mean(abs.(correl .- covar.correlation))

0.13124848487418406

We can see that our estimated volatilities are highly correlated with the realized volatilities
from subsequent days. The scale of our estimated volatilities also matches. Our correlations
are also similar to the realized correlations from these subsequent days.
We can see how much of an improvement this method is compared to if we had estimated
covariance with the simple covariance method.15

julia> simple_estimate = estimate_covariance(ts, assets, :simple_covariance;
regularisation = :default)

julia> Statistics.cor(vols, simple_estimate.volatility)

0.8933722898678813

julia> Statistics.mean(vols ./ simple_estimate.volatility)

0.9457959505163285

julia> Statistics.mean(abs.(correl .- simple_estimate.correlation))

0.1517847273323817

We can see that the volatilities and correlations estimated with the high frequency techniques
are more correlated with the realized volatilities and correlations for subsequent days. When
it is considered that some of the gaps between training values and subsequent day realized
values is likely to be due to intertemporal changes in these quantities (which is irreducible
error), it appears that a substantial fraction of the reducible error is reduced by the use of
high frequency techniques.

8.1. Financial applications
There are countless financial applications for covariance matrices. For a given portfolio we
can use a CovarianceMatrix to estimate the variance of the portfolio’s value. First, we make
a struct to represent our portfolio:

15Note that the default covariance method uses a subsample of the ticks to avoid the Epps effect. Therefore,
these results should be similar to the results of the common tactic of estimating covariance over 15 or 30 minute
returns.
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julia> struct Portfolio{R<:Real}
weights::Vector{R}
labels::Vector{Symbol}

end

Now assume we have exposure to three futures contracts on [:EURUSD, :GBPUSD, :AUDUSD]16

and our portfolio weights are [1,1,1]. We can now estimate the variance of our portfolio
over an 8 hour trading day:

julia> function portfolio_variance(port::Portfolio, cov::CovarianceMatrix,
duration::Dates.Period)

cov2 = covariance(rearrange(cov, port.labels), duration)
return transpose(port.weights) * cov2 * port.weights

end
julia> our_portfolio = Portfolio([1,1,1], [:EURUSD, :GBPUSD, :AUDUSD])
julia> trading_day_duration = Hour(8)
julia> portfolio_variance(our_portfolio, preav_estimate, trading_day_duration)

6.923304662274563e-5

We may also be interested in determining the optimal portfolio to hedge one asset (for instance
:USDHUF) given a portfolio of other assets (for instance :GBPUSD, :AUDUSD, :USDJPY and
:USDNOK).
We can do this by using the conditional distribution of the multivariate Gaussian. This gives
us the expected return of our traded asset after conditioning on the realized returns of other
assets. As the expression for this expectation is a weighted sum of the returns of the other
assets, we can take the negative of these weights to find a hedging portfolio.

"""
Given a CovarianceMatrix, an asset of interest and returns for assets to
condition on, this function estimates the (univariate) distribution of the
asset of interest after conditioning on the returns of the other assets.
"""
julia> function get_conditional_distribution(covar::CovarianceMatrix,

asset::Symbol,
conditioning_assets::Vector{Symbol},
conditioning_asset_returns::Vector{<:Real},
data_return_interval = covar.time_period_per_unit)

covariance_labels = covar.labels
covar_matrix = covariance(covar, data_return_interval)
asset_index = findall(asset .== covariance_labels)
conditioning_indices = map(x -> findfirst(==(x), covariance_labels),

conditioning_assets)
# Segmenting the covariance matrix.
sigma11 = covar_matrix[asset_index,asset_index]

16For simplicity we ignore any drift rates and any collateral posting.
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sigma12 = covar_matrix[asset_index,conditioning_indices]
sigma21 = covar_matrix[conditioning_indices,asset_index]
sigma22 = covar_matrix[conditioning_indices,conditioning_indices]
mu1 = zeros(length(asset_index))
mu2 = zeros(length(conditioning_indices))
weights = sigma12 / sigma22
conditional_mu = mu1 + weights * (conditioning_asset_returns - mu2)
conditional_sigma = sigma11 - weights * sigma21
dist = Normal(conditional_mu[1], sqrt(conditional_sigma[1,1]))
return dist, weights

end

The code below calculates such a hedging portfolio with the result we should go long on
:GBPUSD, :AUDUSD and short on :USDJPY, :USDNOK to the indicated weights.

julia> asset = :USDHUF
julia> other_assets = [:GBPUSD, :AUDUSD, :USDJPY, :USDNOK]
julia> covar_subsetted = rearrange(covar, vcat(asset, other_assets))

Now we only want the weights and they do not depend on the correlated asset returns we
will feed in zeros for this argument.

julia> _, weights = get_conditional_distribution(covar_subsetted, asset,
other_assets,
zeros(length(other_assets)))

julia> hedging_portfolio = -weights

1x4 Matrix{Float64}:
0.226729 0.200199 -0.117004 -0.197586

9. Accuracy
We assess the accuracy of each implemented covariance matrix by repeating the general
Monte Carlo procedure from Section 7 and comparing the estimated correlation matrices and
volatilities to their true values. We start by generating data exhibiting asynchronous price
updates with microstructure noise. We do this two times, once for 4 assets and once for
16 assets. In each case and for each technique, the default estimation and regularization
settings are applied.
We measure the accuracy of each algorithm by the mean absolute difference between the
corresponding elements of the estimated and the true correlation matrices and volatilities.
The results are presented in Figure 2 where each point gives the average accuracy from the
4 asset and the 16 asset Monte Carlo samples. The top panels show accuracy in estimating
correlations while the bottom panels show accuracy in estimating volatilities. In each panel,
the x axis shows how many ticks of data are used and the y axis shows the average (across
100 generated paths) mean absolute error for each estimated volatility and correlation.
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Figure 2: Accuracy of correlation and volatility estimates. In each panel, the x axis shows the
average number of updates per assets and the y axis shows the average (across 100 generated
paths) mean absolute error for each estimated volatility and correlation.

We can see that the simple_covariance method generally performs poorly. While it does
improve with more data,17 it is generally always outperformed by the other methods both in
volatility and correlation estimation.

Looking at the more advanced methods, we can see that the number of ticks that we have is
important in choosing a method and that no method is dominant in all situations. In cor-
relation estimation, the best performing technique is the preaveraged_covariance method
for a lower number of ticks, but this is overtaken by the spectral_covariance method for a
higher number of ticks.18

When we consider accuracy in estimating volatilities, the most effective technique appears
to be the bnhls_covariance technique for when there are few ticks; however, this is again
overtaken by the spectral_covariance when there is a large amount of data.

10. Conclusion

HighFrequencyCovariance is the first openly available Julia package that provides algorithms
to estimate covariance matrices using high frequency data. For many of these algorithms,
it is the first open source package implementation in any language. In total, we implement
two volatility estimators, five covariance estimators and four regularization techniques. The
package has a simple interface that enables users to quickly generate reasonable covariance
matrix estimates without a detailed knowledge of the package or the underlying algorithms.

17Note that the simple_covariance by default throws away many ticks so that it has appropriately long
intervals. As a result, it does not succumb to the biases discussed in the introduction.

18Note that the spectral_covariance case failed to generate predictions in this case for 16 dimensions when
it had less than 500 observations (on average) per asset.
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