
UComp for Matlab/Octave

User guide

Authors: Nerea Urbina & Diego J. Pedregal

31 May 2021

Contents

1 Overview 3

2 List of files 3

3 Before using the toolbox 5
3.1 Information to consider . 5
3.2 How to build MEX files . 5
3.3 Helpful links . 6

4 Unobserved Components Models 7
4.1 Trend components . 7
4.2 Cyclical components . 7
4.3 Seasonal components . 8
4.4 Irregular components . 8
4.5 Input-output relations . 8
4.6 Overall model . 9

5 Function reference 10
5.1 UC . 11
5.2 UCsetup . 14
5.3 UCmodel . 15
5.4 UCestim . 16
5.5 UCvalidate . 18
5.6 UCfilter . 19
5.7 UCsmooth . 20
5.8 UCdisturb . 21
5.9 UCcomponents . 22
5.10 UChp . 23
5.11 getp0 . 24
5.12 coef . 25

1

6 Examples 26

2

1 Overview

UComp is a set of functions for the modelling, identification, validation and fore-
casting of time series based on univariate structural Unobserved Components models
(UC), firstly proposed in a seminal work by [1] and expanded later by many others
(see e.g., [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]). This software allows for a compre-
hensive analysis of time series with a few functions. The software includes a number
of novelties with respect to other libraries, but the star novelty is the automatic
identification of models along a wide range of possible combinations of UC models
(up to 47 different combinations). The library includes cycles, exogenous variables
and allows for automatic detection of outliers.

The core functions are written in C++ using Armadillo library for linear algebra.
The rest are a number of wrapping functions written in Matlab and Octave that
allows for the use of the library as a standard Matlab toolbox by the use of MEX
functions.

The work-flow consists of creating an UComp object as a struct data type in
Matlab/Octave, and then, working on the different fields it is composed of. Such ob-
jects may be created by functions UCsetup, UCmodel or UC (see detailed information
in Section 5). Compulsory inputs to any of these functions are the time series data
and its seasonal period (number of observations per year). The user would option-
ally be able to set the rest of parameters that belongs to any UComp object, such
as outlier detection, forecast horizon, selecting the information criterion for model
selection, etc. (see reference for UCsetup). The value of these input parameters will
handle the behaviour of the rest of functions.

The remaining functions operate directly on UComp structures, modifying the
properties through a number of functions that perform standard operations, like
filtering and smoothing necessary for detrending, seasonal adjustment, signal ex-
traction, etc.

2 List of files

The included files are divided into four groups: C++ files, Matlab/Octave functions,
worked examples and additional files.

• C++ files

armaMex.hpp Armadillo’s wrapper for Matlab/Octave integration through MEX

armaMexOct.hpp Armadillo’s wrapper for Octave integration through MEX
(modified version of armaMex.hpp)

ARMAmodel.h Stationary ARMA models with zero mean

BSMmodel.h Basic Structural models

DJPTtools.h Several auxiliary functions for general purposes

3

optim.h Quasi-Newton estimation with BFGS inverse Hessian approximation

SSpace.h State Space systems class

stats.h Statistical tests and other useful statistical functions

UCompCMatlab.cpp C++ wrapper for UCompC MEX function for Matlab

UCompCOctave.cpp C++ wrapper for UCompC MEX function for Octave

• Matlab/Octave functions

UC.m Runs all relevant functions for UC modelling

UCmodel.m Estimates and forecasts UC general univariate models

UCsetup.m Sets up UC general univariate models

UCestim.m Estimates and forecasts UC models

UCvalidate.m Shows a table of estimation and diagnosis results for
UC models

UCfilter.m Runs the Kalman Filter for UC models

UCsmooth.m Runs the Fixed Interval Smoother for UC models

UCcomponents.m Estimates components of UC models

UCdisturb.m Runs the Disturbance Smoother for UC models

mexUComp.m Compiles and link the necessary files to build MEX files

UChp.m Computes the cycle by the Hodrick-Prescott filter

getp0.m Extracts initial conditions for parameter estimation

coef.m Extracts coefficients of estimated model

• Data examples in data folder

airpas.mat Foreign arrivals by air in Spain in thousands of passengers (y).
Easter and Business day dummy variables for airpas data (u).

USairpas.mat US air passengers (from [15]).

ch4.mat Methane concentration at Cape Grim in Australia.

OECDgdp.mat Seasonally adjusted quarterly OECD real gross domestic product.

USgdp.mat Seasonally adjusted quarterly US real gross domestic product.

• Additional files

README.txt Important information about MEX files

libblas.lib precompiled BLAS library for Windows

liblapack.lib precompiled LAPACK library for Windows

4

3 Before using the toolbox

3.1 Information to consider

• Help about any function is available in the usual way, i.e., by typing help

function (e.g., help UCestim).

• Adding the folder where the toolbox is located to the current path is re-
commended by using the command: addpath(folderName) (for example,
addpath(‘libs’)).

• Functions have an input format check, make sure to respect all data types.

• If the MEX function receives any parameter that does not conform to what is
expected by the C++ files, an error not identified by Matlab/Octave will be
issued and probably the program had a fatal crash.

3.2 How to build MEX files

MEX files are compiled with function mexUComp.m, intended to run as an automatic
installer. However, in case it does not work, editing this file is recommended to see
how to build MEX files by hand.

In most systems mexUComp only needs the first input that tells the folder where
Armadillo library lives. If necessary, a second input tells where libraries LAPACK
and BLAS or substitutes live. Folder cpp includes some pre-compiled versions of
these libraries for Windows systems.

For a correct compilation Armadillo, LAPACK and BLAS libraries must be
installed or accessible in some way in the system. In Windows, the user has several
options: i) use the pre-compiled libraries included in cpp folder; ii) use the libraries
provided by Armadillo; iii) use the libraries provided by Matlab/Octave; or iv) use
some of those in the links in Section 3.3.

MAC/Linux users have more chances to get installer mexUComp working, but
visiting the installation notes of Armadillo to get information about LAPACK/BLAS
libraries would help as well.

The previous paragraphs show actually the road followed by the authors to build
the MEX file. Nevertheless, it is highly recommended to visit the following link:
https://es.mathworks.com/help/matlab/matlab_external/before-you-run-

a-mex-file.html?lang=en. Also follow this steps:

1. Download Armadillo from http://arma.sourceforge.net/download.html

The user will find information about LAPACK/BLAS libraries dependencies
for each OS in the section named Installation Notes of the website.

2. Download a compatible compiler with Matlab: https://es.mathworks.com/
support/requirements/supported-compilers.html

3. In the command window, type: mex -setup cpp. With this command the
user should be able to choose a compiler.

5

https://es.mathworks.com/help/matlab/matlab_external/before-you-run-
a-mex-file.html?lang=en
http://arma.sourceforge.net/download.html
https://es.mathworks.com/support/requirements/supported-compilers.html
https://es.mathworks.com/support/requirements/supported-compilers.html

4. Build the MEX file linking the source file with Armadillo and LAPACK /
BLAS / OpenBLAS libraries. To link files and include folders, use mexUComp

as stated above or the commands -I[path], -L[path], -l[library name].

The typical case is to write in the command window: mex -Ipath to armadi

llo include -Lpath to libraries -llapack -lblas file.cpp. Depend-
ing on the platform, file.cpp is replaced by either UCompCMatlab.cpp or
UCompCOctave.cpp, that has been previously copied and renamed into the
main folder.

Octave and Mac users can use the lapack/blas libraries provided by their respect-
ive platforms (replace step 4 with the command: mex -Ipath to armadillo includ

e -llapack -lblas UCompC.cpp) or link to your own libraries as explained above.

3.3 Helpful links

• MEX files functions (Matlab): https://es.mathworks.com/help/matlab/

call-mex-file-functions.html?lang=en

• MEX files functions (Octave): https://octave.org/doc/v5.2.0/Mex_002d

Files.html#Mex_002dFiles

• Building MEX files: https://es.mathworks.com/help/matlab/matlab_ext

ernal/build-c-mex-programs.html?lang=en

• Invalid MEX file errors: https://es.mathworks.com/help/matlab/matlab_
external/invalid-mex-file-error.html?lang=en

• Run MEX file you receive from someone else: https://es.mathworks.com/

help/matlab/matlab_external/before-you-run-a-mex-file.html?lang=

en

• MEX Platform Compatibility: https://es.mathworks.com/help/matlab/

matlab_external/platform-compatibility.html?lang=en

• MEX Version Compatibility: https://es.mathworks.com/help/matlab/mat
lab_external/version-compatibility.html?lang=en

• Armadillo library: http://arma.sourceforge.net/

• LAPACK libraries: http://www.netlib.org/lapack/

• BLAS libraries: http://www.netlib.org/blas/

• Pre-compiled LAPACK and BLAS libraries for Windows platforms: https:

//icl.cs.utk.edu/lapack-for-windows/lapack/

6

https://es.mathworks.com/help/matlab/call-mex-file-functions.html?lang=en
https://es.mathworks.com/help/matlab/call-mex-file-functions.html?lang=en
https://octave.org/doc/v5.2.0/Mex_002d
Files.html#Mex_002dFiles
https://es.mathworks.com/help/matlab/matlab_ext
ernal/build-c-mex-programs.html?lang=en
https://es.mathworks.com/help/matlab/matlab_external/invalid-mex-file-error.html?lang=en
https://es.mathworks.com/help/matlab/matlab_external/invalid-mex-file-error.html?lang=en
https://es.mathworks.com/help/matlab/matlab_external/before-you-run-a-mex-file.html?lang=en
https://es.mathworks.com/help/matlab/matlab_external/before-you-run-a-mex-file.html?lang=en
https://es.mathworks.com/help/matlab/matlab_external/before-you-run-a-mex-file.html?lang=en
https://es.mathworks.com/help/matlab/matlab_external/platform-compatibility.html?lang=en
https://es.mathworks.com/help/matlab/matlab_external/platform-compatibility.html?lang=en
https://es.mathworks.com/help/matlab/mat
lab_external/version-compatibility.html?lang=en
 http://arma.sourceforge.net/
http://www.netlib.org/lapack/
http://www.netlib.org/blas/
https://icl.cs.utk.edu/lapack-for-windows/lapack/
https://icl.cs.utk.edu/lapack-for-windows/lapack/

4 Unobserved Components Models

The UC models aims at decomposing a time series into meaningful components. A
common decomposition is shown in equation (1), where Tt, Ct, St, and It stand for a
trend, cycle, seasonal, irregular components, respectively. The model allows also for
linear relationships with k exogenous variables xi,t affected by a set of parameters
βi, (i = 1, . . . , k).

zt = Tt + Ct + St + It +
k∑
i=1

βixi,t (1)

In many practical situations, a simplified version of this model is enough for a
good representation of the data, see equation (2).

zt = Tt + St + It (2)

Structural methods take equations (1) or (2) as the base model (they are actually
the observation equation of a State Space (SS) system, see below) and directly
specify the dynamic models for each of the components, for which there is a wide
range of possibilities. In general, all components are assumed to be stochastic,
trends must be non-stationary by definition, seasonal and cyclical components must
show sinusoidal behavior, and irregular components are generally specified as white
or coloured noises. The particular models chosen in this paper for each component
stem from a long tradition, see e.g., [1, 2, 3, 7].

4.1 Trend components

All trends considered in UComp are particular cases of the Generalised Random
Walk model (or Damped Trend, DT) shown in equation (3), where T ∗

t is usually
referred to as the trend ‘slope’, 0 ≤ α ≤ 1, ηT,t and η∗T,t are independent Gaussian
white noise sequences with variances σ2

ηT
and σ2

η∗T
, respectively.[

Tt+1

T ∗
t+1

]
=

[
1 1
0 α

] [
Tt
T ∗
t

]
+

[
ηT,t
η∗T,t

]
(3)

This model subsumes the following particular cases: i) Random Walk (RW),
setting α = 0, σ2

η∗T
= 0 and T ∗

1 = 0; ii) RW with drift, same as previous, but with

T ∗
1 6= 0; iii) Integrated Random Walk (IRW) with α = 1 and σ2

ηT
= 0; iv) Local

Linear Trend (LLT) with α = 1.

4.2 Cyclical components

Cycles are taken from [1] and obey equation (4). Here, C∗
t is an additional state

necessary to define the model; ρ is a damping factor taking values between 0 and 1; ω
is the frequency of the cycle, namely ω = 2π/P , where P is the period (the number
of observations per one full oscillation); and ηt and η∗t are mutually independent
Gaussian white noises with common variance σ2

η.

7

[
Ct+1

C∗
t+1

]
= ρ

[
cosω sinω
−sinω cosω

] [
Ct
C∗
t

]
+

[
ηt
η∗t

]
(4)

4.3 Seasonal components

Seasonal components considered in this paper are of the trigonometric class pro-
posed by [1]. The formulation is essentially the same as the cycle with ρ = 1 and
adding all the harmonics of the fundamental frequency/period. Calling s the known
seasonal period (the number of observations per year), the number of harmonics in
general is [s/2] = s/2 for even s numbers, and [s/2] = (s−1)/2 for uneven s numbers.

The overall seasonal component is then the sum of all the sinusoidal harmonics
Sj,t in equation (5), where ωj = 2πj/s is the frequency of each harmonic, S∗

j,t is
an additional state necessary for the specification, and ηj,t and η∗j,t are independent
white noises with common variance σ2

j .

St =
∑[s/2]

j=1 Sj,t[
Sj,t+1

S∗
j,t+1

]
=

[
cosωj sinωj
−sinωj cosωj

] [
Sj,t
S∗
j,t

]
+

[
ηj,t
η∗j,t

]
(5)

4.4 Irregular components

The irregular component in UComp is usually considered as a residual component
obtained after the extraction of the rest of components. Very often, it is just serially
independent white noise with constant variance σ2

I . But sometimes it exhibits some
remaining autocorrelation. In such cases, coloured irregular components may be
considered in the form of ARMA(p, q)

It =
(1 + θ1B + θ2B

2 + · · ·+ θqB
q)

(1 + φ1B + φ2B2 + · · ·+ φqBp)
ηI,t

where ηI,t is a Gaussian white noise with constant variance σ2
I ; B is the back-shift

operator such that Blzt = zt−l; and φi (i = 1, 2, . . . , p) and θj (j = 1, 2, . . . , q) are
unknown parameters that ought to be estimated from the data. The roots of both
numerator and denominator polynomials should be outside the unit circle to ensure
stationarity and invertibility of the ARMA process.

4.5 Input-output relations

The UC model may include relations with exogenous variables naturally. But this
should be done with care, since identification problems may appear especially in
cases where the inputs themselves are affected by trend or seasonality. Such problems
usually do not appear when the inputs are stationary (i.e., they do not mingle with
the trend component) and non-seasonal (i.e., there is no confusion with the seasonal
component). Typically, deterministic variables, such as calendar variables, moving

8

festivals, or general intervention variables to deal with outlying observations are
ideal candidates to consider.

4.6 Overall model

Once any particular combination of the above components are chosen, the overall
State Space system is composed of the block concatenation of the individual sub-
systems.

Consider the example shown in equation (6), that is composed of a trend, sea-
sonal and irregular components. The equations in matrix form on top are the so
called ‘state equations’ that establish the dynamic mechanism of the unobserved
state vector (αt), by relating it in two consecutive time stamps. The equation at
the bottom is the ‘observation equation’ and is just a selection of state elements to
replicate the model in equation (1).

αt+1 =


Tt+1

S1,t+1

S∗
1,t+1

S2,t+1

S∗
2,t+1

 =


1 0 0 0 0
0 cosω1 sinω1 0 0
0 −sinω1 cosω1 0 0
0 0 0 cosω2 sinω2

0 0 0 −sinω2 cosω2




Tt
S1,t

S∗
1,t

S2,t

S∗
2,t

+


ηT,t
η1,t
η∗1,t
η2,t
η∗2,t


zt =

[
1 1 0 1 0

]
αt + It

(6)
The trend is the first element of the state vector (Tt) and is affected by a Gaus-

sian white noise (ηT,t) with constant variance σ2
T dynamically as a random walk

(RW). The rest of the elements in the state vector define the seasonal component,
that is actually the sum of two terms (S1,t + S2,t, see how the observation equation
collects these two elements from the state vector in one single component) and their
definition involves two frequencies, ω1 and ω2 that are assumed to play the role
of the frequency associated to the fundamental seasonal periodicity and one of its
harmonics. The seasonal components involves four Gaussian noises (η1,t, η

∗
1,t, η2,t,

η∗2,t) that in usual formulations are mutually independent with common variance σ2
S.

The final element is the irregular component (It) that is simply white noise with
constant variance σ2

I .

Given the previous system the main problem is to obtain optimal estimates
of the state vector and its covariance matrix, conditioned to the particular model
and to all available information. This is usually achieved by well-known recursive
algorithms such as the Kalman filter, Fixed Interval and Disturbance Smoothers.
Before running these algorithms, the system matrices must be known and therefore
the estimation of the unknown parameters must be carried out in some way, usually
by Maximum Likelihood.

There are many issues related to the identification and estimation of this class
of models covered in many excellent references, such as [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14].

9

5 Function reference

There are two sets of functions included in UComp. On the one hand, functions
that set up UComp objects from scratch by using a long list of options that control
the way the toolbox is going to work. These functions are: UCsetup, UCestim and UC.

On the other hand, the rest of the functions work directly on the objects and
allow to get different outputs of interest. The syntax of all these additional function
is very simple, since they only require as an input an UComp object.

Table 1 summarises the functions available in UComp.

UC Overall function that runs all the rest
UCsetup Creates an UComp object and sets all input options

controlling how the rest of functions work
UCmodel Runs UCsetup and UCestim

UCestim Identifies UC model, estimates it by Maximum Likelihood
and computes forecasts

UCvalidate Validates UC model estimated
UCfilter Optimal Kalman filtering of UC models
UCsmooth Optimal Fixed Interval Smoother
UCdisturb Optimal Disturbance Smoother
UCcomponents Components estimation
UChp Hodrick-Prescott filter estimation
getp0 Get initial conditions for parameter estimation
coef Extracts coeficients from estimated model

Table 1: Main functions of UComp.

10

5.1 UC

Description

Runs all relevant functions for UC modelling in this order: UCsetup, UCestim,
UCdisturb, UCvalidate and UCcomponents.

Usage

m = UC(y, frequency)

m = UC(y, frequency, ...

‘optionalvar1’, optvar1, ...

‘optionalvarN’, optvarN)

Inputs

y A time series to forecast. Required input.

frequency Fundamental period (number of observations per year). Required input.

periods Vector of fundamental period and its harmonics. If not entered as input,
it will be calculated from frequency.

u A matrix of input time series. If the output wanted to be forecast,
matrix u should contain future values of inputs. Default value: []

model The model to estimate. It is a single string indicating the type of model
for each component. It allows two formats ‘trend/seasonal/irregular’
or ‘trend/cycle/seasonal/irregular’. The possibilities available for each
component are:

• Trend: ? / none / rw / irw / llt / dt

• Seasonal: ? / none / equal /different

• Irregular: ? / none / arma(0,0) / arma(p,q) - with p and q integer
positive orders

• Cycles: ? / none / combination of positive or negative numbers.
Positive numbers fix the period of the cycle while negative values
estimate the period taking as initial condition the absolute value
of period supplied. Several cycles with positive or negative values
are possible and if a question mark is included, the model test for
the existence of the cycles specified.

Default value: ‘?/none/?/?’
outlier Critical level of outlier tests. If NaN, it does not carry out any outlier

detection (default). A negative value indicates critical minimum t test
for one run of outlier detection after identification. A positive value
indicates the critical minimum t test for outlier detection in any model
during identification. Default value: NaN

stepwise Stepwise identification procedure (true/false). Default value: false

11

tTest Augmented Dickey Fuller test for unit roots (true/false). The number
of models to search for is reduced, depending on the result of this test.
Default value: false

p0 Initial condition for parameter estimates. Default value: NaN

h Forecast horizon. If the model includes inputs h is not used, the length
of u is used instead. Default value: NaN

criterion Information criterion for identification (‘aic’, ‘bic’ or ‘aicc’). Default
value: ‘aic’

verbose Intermediate results shown about progress of estimation (true/false).
Default value: false

arma Check for arma models for irregular components (true/false). Default
value: true

Output

An object of class UComp. It is a structure with fields including all the inputs and
the fields listed below as outputs:

After running UCestim:

p Estimated parameters

v Estimated innovations (white noise correctly specified models)

yFor Forecasted values of output

yForV Variance of forecasted values of output

criteria Value of criteria for estimated model

grad Gradient at estimated parameters

iter Number of iterations in estimation

covp Covariance matrix of parameters

After running UCdisturb:

yFit Fitted values of output

yFitV Variance of fitted values of output

a State estimates

P Variance of state estimates

eta State perturbations estimates

eps Observed perturbations estimates

After running UCvalidate:

table Estimation and validation table
v Residuals

12

After running UCcomponents:

comp Estimated components in table form

compV Estimated components variance in table form

Authors

Nerea Urbina & Diego J. Pedregal

Examples

load data/USairpas

m = UC(log(USairpas), 12);

m = UC(log(USairpas), 12, ‘model’, ‘llt/equal/arma(0,0)’)

See also UCsetup, UCmodel, UCestim, UCvalidate, UCfilter, UCsmooth, UCdis-
turb, UCcomponents, UChp

13

5.2 UCsetup

Description

Sets up UC general univariate models with a number of control variables that govern
the way the rest of functions will work.

Usage

m = UCsetup(y, frequency)

m = UCsetup(y, frequency, ...

‘optionalvar1’, optvar1, ...

‘optionalvarN’,optvarN)

Inputs

Same as UC.

Outputs

Same as UC.

Authors

Nerea Urbina & Diego J. Pedregal

Examples

load data/USairpas

m = UCsetup(log(USairpas), 12);

m = UCsetup(log(USairpas), 12, ‘model’, ‘llt/equal/arma(0,0)’);

m = UCsetup(log(USairpas), 12, ‘outlier’, 4);

See also UC, UCsetup, UCmodel, UCestim, UCvalidate, UCfilter, UCsmooth,
UCdisturb, UCcomponents, UChp

14

5.3 UCmodel

Description

Function for modelling and forecasting univariate time series with UC models. It
sets up the model with a number of control variables that govern the way the rest
of functions in the package will work. It also estimates the model parameters by
Maximum Likelihood and forecasts the data.

Usage

m = UCmodel(y, frequency)

m = UCmodel(y, frequency, ...

‘optionalvar1’, optvar1, ...

‘optionalvarN’, optvarN)

Inputs

Same as UC.

Output

An object of class UComp. It is a structure with fields including all the inputs and
the fields listed below as outputs:

p Estimated parameters

v Estimated innovations (white noise correctly specified models)

yFor Forecasted values of output

yForV Variance of forecasted values of output

criteria Value of criteria for estimated model

Authors

Nerea Urbina & Diego J. Pedregal

Examples

load data/USairpas

m = UCmodel(log(USairpas), 12);

m = UCmodel(log(USairpas), 12, ‘model’, ‘llt/equal/arma(0,0)’);

See also UC, UCsetup, UCestim, UCvalidate, UCfilter, UCsmooth, UCdisturb,
UCcomponents, UChp

15

5.4 UCestim

Description

Estimates and forecasts a time series using UC models The optimization method
is a BFGS quasi-Newton algorithm with a backtracking line search using Armijo
conditions. Parameter names in output table are the following:

Damping: Damping factor for DT trend
Level: Variance of level disturbance
Slope: Variance of slope disturbance
Rho(#): Damping factor of cycle #
Period(#): Estimated period of cycle #
Var(#): Variance of cycle #
Seas(#): Seasonal harmonic with period #
Irregular: Variance of irregular component
AR(#): AR parameter of lag #
MA(#): MA parameter of lag #
AO#: Additive outlier in observation #
LS#: Level shift outlier in observation #
SC#: Slope change outlier in observation #
Beta(#): Beta parameter of input #

Usage

sys = UCestim(sys)

Input

sys Structure of type UComp created with UCsetup or UCmodel

Output

The same input structure with the appropriate fields filled in, in particular:

p Estimated parameters

v Estimated innovations (white noise correctly specified models)

yFor Forecasted values of output

yForV Variance of forecasted values of output

criteria Value of criteria for estimated model

Authors

Nerea Urbina & Diego J. Pedregal

16

Examples

load data/USairpas

m = UCsetup(log(USairpas), 12);

m = UCestim(m);

See also UC, UCsetup, UCmodel, UCvalidate, UCfilter, UCsmooth, UCdisturb,
UCcomponents, UChp

17

5.5 UCvalidate

Description

Shows a table of estimation and diagnosis results for UC models

Usage

sys = UCvalidate(sys)

Input

sys Structure of type UComp created with UCmodel

Output

The same input structure with the appropiate fields filled in, in particular:

table Estimation and validation table
v Estimated innovations

Authors

Nerea Urbina & Diego J. Pedregal

Examples

load data/USairpas

m = UCmodel(log(USairpas), 12);

m = UCvalidate(m);

See also UC, UCsetup, UCmodel, UCestim, UCfilter, UCsmooth, UCdisturb, UC-
components, UChp

18

5.6 UCfilter

Description

Runs the Kalman filter for UC models

Usage

sys = UCfilter(sys)

Input

sys Structure of type UComp created with UCmodel

Output

The same input structure with the appropiate fields filled in, in particular:

yFit Fitted values of output

yFitV Variance of fitted values of output

a State estimates

P Variance of state estimates

Authors

Nerea Urbina & Diego J. Pedregal

Examples

load data/USairpas

m = UCmodel(log(USairpas), 12);

m = UCfilter(m);

See also UC, UCsetup, UCmodel, UCestim, UCvalidate, UCsmooth, UCdisturb,
UCcomponents, UChp

19

5.7 UCsmooth

Description

Runs the Fixed Interval Smoother for UC models

Usage

sys = UCsmooth(sys)

Input

sys Structure of type UComp created with UCmodel

Output

The same input structure with the appropiate fields filled in, in particular:

yFit Fitted values of output

yFitV Variance of fitted values of output

a State estimates

P Variance of state estimates

Authors

Nerea Urbina & Diego J. Pedregal

Examples

load data/USairpas

m = UCmodel(log(USairpas), 12);

m = UCsmooth(m);

See also UC, UCsetup, UCmodel, UCestim, UCvalidate, UCfilter, UCdisturb,
UCcomponents, UChp

20

5.8 UCdisturb

Description

Runs the Disturbance Smoother for UC models

Usage

sys = UCdisturb(sys)

Input

sys Structure of type UComp created with UCmodel

Output

The same input structure with the appropiate fields filled in, in particular:

yFit Fitted values of output

yFitV Variance of fitted values of output

a State estimates

P Variance of state estimates

eta State perturbations estimates

eps Observed perturbations estimates

Authors

Nerea Urbina & Diego J. Pedregal

Examples

load data/USairpas

m = UCmodel(log(USairpas), 12);

m = UCdisturb(m);

See also UC, UCsetup, UCmodel, UCestim, UCvalidate, UCfilter, UCsmooth,
UCcomponents, UChp

21

5.9 UCcomponents

Description

Estimates components of UC models

Usage

sys = UCcomponents(sys)

Input

sys Structure of type UComp created with UCmodel

Output

The same input structure with the appropiate fields filled in, in particular:

comp Estimated components in table form

compV Estimated components variance in table form

Author

Nerea Urbina & Diego J. Pedregal

Examples

load data/USairpas

m = UCmodel(log(USairpas), 12);

m = UCcomponents(m);

See also UC, UCsetup, UCmodel, UCestim, UCvalidate, UCfilter, UCsmooth,
UCdisturb, UChp

22

5.10 UChp

Description

Estimates the cycle by the Hodrick-Prescott filter depending on the λ smoothing
constant.

Usage

cycle = UChp(y, frequency)

cycle = UChp(y, frequency, lambda)

Inputs

y Time series data

frequency Number of observations per year

lambda Smoothing constant (1600 by default)

23

5.11 getp0

Description

Provides initial parameters of a given model for the time series. They may be
changed arbitrarily by the user to include as an input p0 to UC or UCmodel func-
tions (see example below). There is no guarantee that the model will converge and
selecting initial conditions should be used with care.

Usage

p0 = getp0(y, frequency, model)

p0 = getp0(y, frequency, model, periods)

Inputs

y Time series data

frequency Number of observations per year

model A valid UComp model

periods A valid periods input to UC function

Examples

load data/USairpas

p0 = getp0(log(USairpas), model = "llt/equal/arma(0,0)");

p0(1) = 0; % p0(1) = NaN

m = UCmodel(log(USairpas), model = "llt/equal/arma(0,0)", p0 = p0);

See also UC, UCsetup, UCmodel, UCestim, UCvalidate, UCfilter, UCsmooth,
UCdisturb, UCcomponents, UChp

24

5.12 coef

Description

Extracts model coefficients of UComp object.

Usage

p = coef(m)

Inputs

m UComp model

Examples

load data/USairpas

m = UC(log(USairpas), 12);

p = coef(m);

See also UC, UCsetup, UCmodel, UCestim, UCvalidate, UCfilter, UCsmooth,
UCdisturb, UCcomponents, UChp

25

6 Examples

Some simple examples are shown here to illustrate UComp working in practice.
Mind that the examples are kept to a minimum simplicity to enhance the easi-
ness of use of the toolbox. Much more complicated examples involving many more
parameters coming from cycles, outliers, exogenous inputs, etc. are possible.

All examples run on the well-known US airpassengers data from [15], included in
file data/USairpas.mat and shown in Figure 1. The data consists of 144 monthly
observations taken between 1949 and 1961.

Figure 1: Airline Passengers time series

The following listing shows two ways to set up the object on the logs of this time
series. There are only two compulsory inputs to the functions, namely the time
series itself and the frequency of the data (actually the number of observations per
year, 12 in this particular case, since the data is monthly). A full list of inputs and
outputs are listed in the reference chapter 5.

% A call with compulsory inputs

m1 = UCsetup(log(USairpas), 12);

% Another call with verbose output

m2 = UC(log(USairpas),12,‘verbose’,true);

The UCsetup just creates an UComp object and sets up all the options for the
future way the toolbox is working. UCmodel runs UCsetup internally and UCestim,
i.e., it creates the object and estimates and forecasts the time series. Since no
particular model is supplied, the full identification algorithm is run on the data,
selecting the most appropriate model according to the Akaike Information Criterion
(default option). The truncated output is shown in the following listing.

26

--

Identification started WITHOUT outlier detection

--

Model AIC BIC AICc

--

none/none/none/arma(0,0): 1.2554 1.2760 1.2554

none/none/equal/none: 3.3487 3.5756 3.3626

none/none/equal/arma(0,0): 1.7350 1.9825 1.7489

none/none/different/none: 0.8451 1.1545 0.8659

...

dt/none/different/none: -2.7987 -2.4068 -2.7570

dt/none/different/arma(0,0): -2.8969 -2.4844 -2.8552

--

Identification time: 0.54018 seconds

--

The input parameters to UCsetup, UCmodel or UC undergo an input check of data
type, meaning that if a wrong format is entered, the command is not executed. The
following listing shows a wrong example.

%Example of wrong format input

m3 = UCsetup(log(USairpas), 12, ‘model’, "llt/equal/arma(0,0)");

The output is:

Error using UCsetup (line 114)

The value of ‘model’ is invalid. It must satisfy the function: ischar

The model selected depends on the information criterion. The following listing
shows that the model selected by the Akaike Information Criterion (AIC) is different
to the one selected by the Bayesian or the corrected AIC (BIC and AICc, respect-
ively). The best model according to AIC is llt/different/arma(0,0), while the
rest of more parsimonious criteria select llt/equal/arma(0,0).

mAIC = UC(log(USairpas), 12, ‘criterion’, ‘aic’);

mBIC = UC(log(USairpas), 12, ‘criterion’, ‘bic’);

mAICc = UC(log(USairpas), 12, ‘criterion’, ‘aicc’);

UCvalidate function shows the parameter estimates and some diagnositc check-
ing on the innovations, that should be Gaussian white noise. The table itself is
returned in field table of the output. For example, for the model identified with
the AIC criterion

mAIC = UCvalidate(mAIC);

The output is

27

Concentrated Maximum-Likelihood

Model: llt/none/different/arma(0,0)

Periods: 12.0 / 6.0 / 4.0 / 3.0 / 2.4

Q-Newton: Function convergence

(*) concentrated out parameters

(**) constrained parameters during estimation

Param asymp.s.e. |T| |Grad|

Level: 2.34e-04 8.71e-05 2.6834 8.69e-05

Slope: 0.0000**

Seas(12.0): 1.10e-05 1.86e-05 0.5929 3.41e-05

Seas(6.0): 5.18e-06 2.13e-05 0.2431 5.61e-05

Seas(4.0): 0.0000**

Seas(3.0): 2.19e-06 2.06e-05 0.1063 2.22e-06

Seas(2.4): 1.23e-06 9.69e-06 0.1266 7.46e-06

Irregular: 3.48e-04*

AIC: -2.9035 BIC: -2.5116 AICc: -2.8618

Log-Likelihood: 228.0492

Summary statistics:

Missing data:

Q(1): 0.0193 Q(4): 1.3367

Q(8): 2.9641 Q(12): 8.1627

Bera-Jarque: 5.0282 P-value: 0.0809

H(46): 0.5498 P-value: 0.0452

This model shows some pecularities: i) it does not include the harmonic corres-
ponding to the Nyquist frequency; ii) the trend is actually a RW with drift because
the variance of the second estate equation is constrained to zero during estimation;
iii) variances for all harmonics are different and the one corresponding to period 4
is actually constrained to zero in the estimation process.

Once the model is considered adequate it can be used for testing the forecasts,
estimate the components, detrend the data, signal extraction, etc. Figure 2 shows
both actual and forecasted data, stored in the yFor field of the output object.

UCcomponents estimates the unobserved components of the model, usually the
trend, cycles, seasonal, irregular (shown in Figure 3). In case exogenous variables
or outliers are considered, they also appear as components. All the components are
stored in the fields mAIC.comp and their variances in field mAIC.compV. The call to
this function is

28

mAIC = UCcomponents(mAIC);

Figure 2: Airline Passengers time series with forecasted data

Figure 3: Components of Airline Passengers

UComp also deals with exogenous inputs as regression terms. The following
listing shows how to estimate with artificial inputs added. In this case the code is
simplified by running UC directly that produces all the outputs in one run.

u = zeros(3, 144);

u(1, 100:120) = 1;

u(2, 50) = 1;

u(3, 30) = 1;

m4 = UC(log(USairpas), 12, ‘u’, u, ‘verbose’, true);

29

Outliers may be automatically detected by turning on the qualifier ‘outlier’

in the call to UC. Such qualifier is assigned a positive value indicating the minimum
value for the corresponding dummy variable t-test to be considered an outlier. A
value of 4 is recommended, though lower values may be used with care, because the
number of outliers increases as this constant decreases.

m5 = UC(log(USairpas), 12, ‘verbose’, true, ‘outlier’, 4);

The output is similar to the previous one, but with a heading indicating that
outliers are detected for each model. The output is

--

Identification started WITH outlier detection

--

Model AIC BIC AICc

--

none/none/none/arma(0,0): 1.2554 1.2760 1.2554

none/none/equal/none: 3.3487 3.5756 3.3626

none/none/equal/arma(0,0): 1.7350 1.9825 1.7489

...

dt/none/different/none: -2.7987 -2.4068 -2.7570

dt/none/different/arma(0,0): -2.8969 -2.4844 -2.8552

--

Identification time: 2.04738 seconds

--

In all the previous examples the standard identification algorithm has been run,
meaning that all possible have been estimated and the best selected with a par-
ticular criterion value. However, execution time can be reduced in situation where
computation times are important, by selecting the stepwise or stepwise with unit
roots algorithms.

m6 = UC(log(USairpas), 12, ‘verbose’, true, ‘outlier’, 4, ...

‘stepwise’, true);

The output is

--

Identification started WITH outlier detection

--

Model AIC BIC AICc

--

none/none/equal/none: 3.3487 3.5756 3.3626

none/none/equal/arma(0,0): 1.7350 1.9825 1.7489

...

dt/none/different/arma(0,0): -2.8969 -2.4844 -2.8552

llt/none/different/arma(1,0): -2.8915 -2.4790 -2.8498

--

Identification time: 3.77010 seconds

--

30

No outliers are detected and therefore models m5, m6 and mAIC are the same. Two
artificial outliers at observations 40 and 100 are added to test whether UComp is
able to detect them, see Figure 4 and the following listing. The components are
shown in Figure 5, where the two outliers can be easily seen.

yMod = USairpas;

yMod(40) = 400;

yMod(100) = 600;

m7 = UC(log(yMod), 12, ‘verbose’, true, ‘outlier’, 4);

Figure 4: Airline Passengers with outliers

Figure 5: Components of Airline Passengers with outliers

31

Cycles may be introduced as an additional component to the model (as the
second component). If a question mark is included the cycle existence is tested as
the rest of components. Positive or negative numbers may be added using it as a
fixed period (if positive) or as an initial value to start the search (if negative). For
example, the following are valid model specifications: ‘?/?/?/?’ (cycle is tested with
initial period set by the toolbox), ‘?/24/?/?’ (all models will include a cycle of 24
observations per cycle), ‘?/-24/?/?’ (cycle will include a cycle with an estimated
period starting on 24 observations per cycle), ‘?/24?/?/?’ (a 24 period cycle is tested
among the rest of components), ‘?/-24?/?/?’ (a cycle is tested with unknown cycle
starting on 24 period), ‘?/-48+24/?/?’ (two cycles are present in all models, one
with a period of 24 observations and another one with unknown period estimated
by the toolbox starting on 48 observations per cycle). Cycles must be specified in
the input model, as shown in the followint example.

m8 = UC(log(USairpas),12, ‘u’, u, ‘verbose’, true, ‘outlier’, 4, ...

‘model’, ‘llt/-48?/eq/?’);

32

References

[1] A. C. Harvey. Forecasting, Structural Time Series Models and the Kalman
Filter. Cambridge university press, 1989.

[2] P de Jong. The diffuse kalman filter. Annals of Statistics, 19:1073–83, 1991.

[3] P. C. Young, D. J. Pedregal, and W. Tych. Dynamic Harmonic Regression.
Journal of Forecasting, 18(6):369–394, 1999.

[4] D J Pedregal and P C Young. Statistical approaches to modeling and forecasting
time series. In A Companion to Economic Forecasting, pages 69–104. Blackwell
Publishing Ltd, 2002.

[5] C. J. Taylor, D. J. Pedregal, P. C. Young, and W. Tych. Environmental Time
Series Analysis and Forecasting with the Captain Toolbox. Environmental
Modelling & Software, 22(6):797–814, 2007.

[6] T. Proietti. Structural time series models for business cycle analysis. In Mills T.
C. and Patterson K., editors, Handbook of Econometrics, pages 385–433. Pal-
grave Macmillan, London, 2009.

[7] J. Durbin and S. J. Koopman. Time Series Analysis by State Space Methods.
Oxford University Press, 2nd edition, 2012.

[8] T. Proietti and A. Luati. Maximum likelihood estimation of time series models:
the kalman filter and beyond. In Handbook of research methods and applications
in empirical macroeconomics, pages 334–362. Edward Elgar Publishing Ltd.,
2013.

[9] M Pelagatti. Time Series Modelling with Unobserved Components. Chapman-
Hall / CRC, 2015.

[10] J Casals, A Garcia-Hiernaux, M Jerez, S Sotoca, and A Trindade. State-
Space Methods for Time Series Analysis: Theory, Applications and Software.
Chapman-Hall / CRC Press, 2016.

[11] T Proietti and E. Hillebrand. Seasonal changes in central england temperat-
ures. Journal of the Royal Statistical Society: Series A (Statistics in Society),
180(3):769–791, 2017.

[12] M A Villegas and D J Pedregal. Sspace: A toolbox for state space modelling.
Journal of Statistical Software, 87-5:1–26, 2018.

[13] Marco A. Villegas and Diego J. Pedregal. Automatic selection of unobserved
components models for supply chain forecasting. International Journal of Fore-
casting, 35(1):157 – 169, 2019. Special Section: Supply Chain Forecasting.

[14] D J Pedregal. State space modeling for practitioners. Foresight, 54:21–25, 2019.

[15] G. E. P. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung. Time Series
Analysis: Forecasting and Control. John Wiley & Sons, 5th edition, 2015.

33

	Overview
	List of files
	Before using the toolbox
	Information to consider
	How to build MEX files
	Helpful links

	Unobserved Components Models
	Trend components
	Cyclical components
	Seasonal components
	Irregular components
	Input-output relations
	Overall model

	Function reference
	UC
	UCsetup
	UCmodel
	UCestim
	UCvalidate
	UCfilter
	UCsmooth
	UCdisturb
	UCcomponents
	UChp
	getp0
	coef

	Examples

