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Abstract

The basic idea underpinning the theory of spatially balanced sampling is that units
closer to each other provide less information about a target of inference than units farther
apart. Therefore, it should be desirable to select a sample well spread over the population
of interest, or a spatially balanced sample. This situation is easily understood in, among
many others, environmental, geological, biological, and agricultural surveys, where usually
the main feature of the population is to be geo-referenced. Since traditional sampling
designs generally do not exploit the spatial features and since it is desirable to take
into account the information regarding spatial dependence, several sampling designs have
been developed in order to achieve this objective. In this paper, we present the R package
Spbsampling, which provides functions in order to perform three specific sampling designs
that pursue the aforementioned purpose. In particular, these sampling designs achieve
spatially balanced samples using a summary index of the distance matrix. In this sense,
the applicability of the package is much wider, as a distance matrix can be defined for
units according to variables different than geographical coordinates.

Keywords: finite population, spatial dependence, spatial balance index, MCMC.

1. Introduction

Recently, the availability of spatial data has strongly increased, e.g., GIS technologies and
satellites orbiting around the Earth provide a huge amount of geo-referenced information.
This type of data is, among others, the basis of environmental, geological, biological, and
agricultural survey-based statistics. For example, we can be interested in estimating the av-
erage level of a pollutant in a specific area, the acidity of a population of lakes, the number
of trees in a region for forest inventory purposes, crop average and yield estimation (Miller
2007; Benedetti, Piersimoni, and Postiglione 2015). Moreover, nowadays, National Statistical
Offices can obtain the exact or estimated location of statistical units, such as businesses and
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households, and this information provides new possibilities for enhancing the design of surveys
focused on such units. For instance, if we are interested in the average price of residential
houses in a city, we can think that the spatial location of the houses has auxiliary informa-
tion for the target variable. This kind of data usually implies a significant amount of spatial
dependence or the presence of a spatial trend or both. Therefore, taking into account this
spatial information when designing a survey could improve the efficiency of our estimates.
Here, we focus on the use of this information in the design phase of a survey, which is the
phase where we select a sample in order to collect the data. In the literature, several sampling
designs have been developed to fulfill this need, which we refer to as spatial sampling designs
(Benedetti et al. 2015). Among them, spatially balanced sampling designs achieve samples
well spread over the population of interest, or spatially balanced samples. The first example
of a spatially balanced sample is the one obtained using the generalized randomized tessel-
lation stratified method (Stevens and Olsen 2004), which is based on a function that maps
the two-dimensional space onto a one-dimensional space. More recently, spatially correlated
Poisson sampling (Grafstrom 2012) and the local pivotal method (Grafstrom, , Lundstrom,
and Schelin 2012) have been introduced, that are adaptations of correlated Poisson sampling
(Bondesson and Thorburn 2008) and the pivotal method (Deville and Tille 2000), respec-
tively. Balanced acceptance sampling (Robertson, Brown, Mcdonald, and Jaksons 2013) uses
a random-start Halton sequence while the product within distance method (Benedetti and
Piersimoni 2017b) is based on a summary index of a distance matrix. For a detailed review,
see Benedetti et al. (2015) and Benedetti, Piersimoni, and Postiglione (2017b). Spatially
balanced samples are desirable because they yield more efficient estimates than estimates ob-
tained from samples lacking spatial balance (Benedetti et al. 2017b). A problem that usually
arises in real surveys with spatially unbalanced data in the presence of spatial autocorrelation
is the problem of “pseudo-replicates” in the samples (Hurlbert 1984; Heffner, Butler, and
Reilly 1996).

In this paper we present package Spbsampling (Pantalone, Benedetti, and Piersimoni 2022)
for the R environment for statistical computing and graphics (R Core Team 2022) which is
available from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.
org/package=Spbsampling. The package implements three spatially balanced sampling de-
signs and some related functions. The package is based on Benedetti and Piersimoni (2017a)
and Benedetti and Piersimoni (2017b), where these sampling designs are introduced and il-
lustrated in more detail. These methods use a distance matrix of the population as synthesis
of the spatial information. Such a matrix contains the distances between all pairs of units and
can be computed by any distance function. The target of these methods is to achieve a sample
that is spread according to these distances. In order to do that, an iterative procedure is put
in place, where at each step a candidate sample is updated according to an acceptance rule
that is based on a summary index of the distance matrix and promotes spread samples over
non-spread samples. Since these methods could be very computationally intensive, particu-
larly if the target population is very large, in order to boost the performance of the algorithms
the implementation has been done in C++, along with the Armadillo library (Sanderson and
Curtin 2016), and integrated in the R environment through the use of the R packages Repp
(Eddelbuettel and Balamuta 2017) and ReppArmadillo (Eddelbuettel and Sanderson 2014).
Nevertheless, in case of large grid data the computational burden could be significant. One
possible solution could be to resample the raster data to a coarser scale in order to reduce
the population size, which in turn eases the computation.
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The paper is organized as follows. Section 2 introduces spatially balanced sampling designs;
Section 3 introduces the methods implemented in the Spbsampling package; Section 4 pro-
vides an overview of the package, and Section 5 illustrates the usage of the package through
examples based on real data. Finally, Section 6 provides conclusions and future developments.

2. Spatially balanced sampling

Suppose we have a target finite population, U = {1, ..., N}, with a set of k auxiliary variables
known for every unit in the population, x; = {z1,..., 2}, and a set of coordinates h; =
{hi1, ..., hin}, where usually h = 2. Denote with S the set of all possible subsets of U, which
has cardinality 2. A sample without replacement is an element s € S. A sampling design is
a probability distribution on S such that

p(s) >0 and Zp(s) =1.
s€ES

The support of the sampling design is the set {s € S : p(s) > 0} C S. The probability of
selecting unit ¢ is called first-order inclusion probability, denoted by m;, and given by

T ZZP(S),

while the probability of selecting unit ¢ and j in the same sample is called second-order
inclusion probability, denoted by 7;;, and given by

Tij = Z p(s).

s2{i,j}

In the design-based approach the variable of interest y is considered deterministic (and not
as a realization of a stochastic process as in the model-based approach; Brus and DeGruijter
1993). The only source of randomness comes from the selection of the sample s from all
possible samples. In this framework, we can estimate the total of y, t, = Zfil yi, through
the Horvitz-Thompson estimator (Horvitz and Thompson 1952)

Yi
ty T = E —,
— T

1€8

which has the property to be unbiased with respect to the design when m; > 0 for all i € U.
The variance of ¢, g7 is given by

where 7;; = m;; if i = j, and it can be estimated by

V(ty,HT):ZZ%&M~ (1)

1€s jESs i Tij

The idea behind spatially balanced sampling is that the population units that are closer
provide less information about a population parameter than units that are farther apart.
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Therefore, during the design of a sample, a good strategy would be to select a sample well
spread over the population of interest, which is referred to in the literature as spatially balanced
sample. More technically, a well spread sample has a number of selected units on every part of
the study region close to what it is expected on average. For example, if we divide our region
of interest in h strata and assign equal inclusion probabilities to the units, then we expect that
a well spread sample has 1/h units from each stratum (Grafstrom and Lundstrém 2013). In
this way, it is possible to capture the spatial heterogeneity and exploit the spatial information
in the population. Therefore, we are interested in selecting from the given population U a
probability sample that is well spread.

In order to analyze this scenario, we can use a model for spatial dependence and take insights
from it. In particular, we can assume that a linear model holds for y;, given the known
auxiliaries x;, for each unit of U, that is:

yi =x; B+

Cim (€, €5) = 0i0;pij

where E,, and C,, denote expectation and covariance with respect to the model, respectively,
B is a vector of regression coefficients, ¢; is a zero-mean random variable with variance o2,
and p;; is an autocorrelation parameter for ¢ # j and such that p;; = 1 if i = j. This
model, through the use of the anticipated variance (AV; Isaki and Fuller 1982), can help us
understand how to take the spatial information into account at the design phase. The AV for

a generic parameter of interest # and a generic estimator 0 is given by

A A~

AV (0 — 0) = En[E[(0 — 0)%)] — [En[E[0 — 0]]]%,

where E denotes expectation with respect to the sampling design. Note that this is equivalent
to an expected mean squared error, but since the HT estimator is unbiased with respect to
the design it is usually called anticipated variance in the survey literature. Under the working
model (2), the AV of the HT estimator of the total ¢, is given by:

T 2

N N
S
Bl +>.) oiojp——, (3)

i=1j=1 T

, N
AV (ty ur) = EEn(tynr—t,)*> = E (Z — - in>

ics 't i=1

see Grafstrom and Tille (2013). From Equation 3 we can see that the uncertainty about the
estimate can be split into two components: the estimation error on the total of the auxiliary
variables and the dependence of observed units. We can reduce the first term by selecting
units in such a way that the HT estimates of the total of the auxiliary variables will be equal
(or approximately equal) to the known totals t, = Siv; x;, that is 3;c, T~ ty. Such a
sample is called balanced (on the variable x) and can be obtained by a balanced sampling
design, such as the cube method (Deville and Tille 2004). The second term requires an
assumption about p;;. If p;; decreases as the distance d;; increases (an assumption that
reflects our previous discussion), then selecting units far apart (therefore altering the second-
order inclusion probabilities 7;;) reduces the second component. Therefore the use of spatially
balanced samples can reduce the second term. Grafstrom and Lundstrém (2013) provide some
conditions on which a spatially balanced sample is also a balanced sample. In this case, the
former decreases both terms of (3).
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Spatially balanced sampling designs necessarily set the second order inclusion probabilities of
nearby units close, or equal, to zero. Moreover, the computation of 7;;s is usually prohibitive.
Therefore, we are not able to compute the general variance estimator (1), which requires the
knowledge of the m;;s. Some solutions to this problem have been proposed in the literature.
Stevens and Olsen (2003) propose a local mean variance estimator, while Grafstrom and
Schelin (2014) use a modification of that proposal. Both of these estimators do not require
the knowledge of the m;;s.

In order to measure the spatial balance of a sample, we resort to the approach of Stevens
and Olsen (2004) and use a spatial balance index (SBI) based on Voronoi polygons. Given
a sample s, we can construct a Voronoi polygon for each unit ¢ in the sample such that it
includes all population units closer to ¢ than to any other sample unit j. Then, the SBI takes
the following form:

SBI(s) = - 3" (vs — 1)%, (4)

n 1€S

where v; is the sum of the inclusion probabilities of all units in the ith Voronoi polygon.
Since the union of Voronoi polygons makes a partition of the population and the sample size
is equal to n, > ;e v = Zévzl 7j = n. Hence, for any sample unit ¢ we have E(v;) = 1. For
a spatially balanced sample, v; =~ 1 for every ¢, so that values of SBI close to zero correspond
to more spread samples. Moreover, if we select B samples by means of a sampling design,
then 25:1 SBI,/B indicates how well the sampling design produces well spread samples.

Given the above discussion, we see that the lower the SBI, the higher the spread, the lower the
second term in (3). Therefore, we could be tempted to select the most spread sample in order
to minimize the second term as much as possible. The problem with this approach is that
it does not take into account the randomization assumption of the design-based approach,
which states that the only source of randomness is due to the selection of the sample. In
particular, if we select every time the most spread sample, we would have no randomization,
i.e., the support of the sampling design would be composed by just one sample, and we would
select it with certainty (Benedetti and Palma 1995). Hence, the design-based inference would
be no longer valid.

Usually, we measure the randomness of a sampling design through the use of an entropy
index, such as

I(s) ==Y _ p(s)logp(s),

seS

(Shannon 1948). Note that high entropy sampling designs are more robust because they
produce highly randomized samples. By robust we mean that the sampling design performs
well even if the assumption on the correlation between y and x does not hold well. For more
details on the relationship between entropy and robustness, see Grafstrom (2010). Moreover,
regarding the HT estimator, the asymptotic convergence of the estimates towards the normal
distribution depends on the entropy: the higher it is, the higher the rate of convergence
(Berger 1998a,b). Therefore, the main objective of a spatially balanced sampling design is,
on one hand, to obtain a sample well spread over the population of interest, and, on the
other hand, to keep the selection random in order not to reduce substantially the entropy. In
practice, we are facing a trade-off between spreadness and entropy.

Different spatially balanced sampling designs have been proposed in the last few years and
then implemented in R. The generalized random tessellation stratified (GRTS) design (Stevens
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and Olsen 2004) selects samples with fixed size n, mapping the two-dimensional spatial popu-
lation into one dimension, while preserving some spatial relationships between the units. This
design is implemented in the R package spsurvey (Kincaid, Olsen, and Weber 2022). The
package also implements the local mean variance estimator of Stevens and Olsen (2003). The
spatially correlated Poisson sampling (SCPS) design (Grafstrom 2012) is a modification of
correlated Poisson sampling (Bondesson and Thorburn 2008) and is based on a list sequential
criterion of random decisions, i.e., starting from a list of units, the sampling outcome is first
decided for the first unit in the list, then for the second, and so on. It is implemented in the R
package BalancedSampling (Grafstrom and Lisic 2022). In this package, the variance estima-
tor of Grafstrom and Schelin (2014) is implemented as well. The local pivotal method (LPM;
Grafstrom et al. 2012) is a derivation of the pivotal method (Deville and Tille 2000), which
consists in updating at each step the inclusion probability for two units so that the sampling
outcome is decided for at least one of the two units. Two versions of this design are imple-
mented in the R package BalancedSampling (Grafstrom and Lisic 2022). Finally, it is worth
noting that a common technique used in environmental surveys is the use of stratified random
sampling, where one unit is selected for each stratum. Walvoort, Brus, and De Gruijter (2010)
proposed two algorithms that do not follow the spatially balanced sampling literature, but
they share the same concept of spatial coverage. They are based on k means cluster analysis
(Hartigan 1975) of a grid of the region of interest, and the obtained partition of the grid can
be used as strata in stratified random sampling. Such algorithms are implemented in the R
package spcosa (Walvoort, Brus, and de Gruijter 2021). The main difference between this
approach and spatially balanced sampling is how distances are taken into account. In the
former, the distances are used in order to construct clusters, which are later used as strata;
in the latter, the distances are directly taken into account when selecting units, through the
second-order inclusion probabilities. Therefore, when using compact geographical strata two
close units lying in two different adjacent strata have the same probabilities to be selected to-
gether as two far units lying in the same two adjacent strata. This does not generally happen
in spatially balanced sampling, since the second-order inclusion probabilities are determined
as functions of the distance between units (Benedetti, Piersimoni, and Postiglione 2017a).

3. Product within distance and sum within distance designs

In this section we focus on two sampling designs introduced by Benedetti and Piersimoni
(2017b) and implemented in the Spbsampling package. These methods select a sample with
fixed size n and are based on an iterative procedure that uses a distance matrix and a summary
index. The distance matrix Dy = {d;;;¢ =1,...,N;j=1,..., N} contains the distances for
all the pairs of units in the population. Such distances can be computed with any metric, in
any dimension (e.g., Euclidean distance, Manhattan distance, or some similarity measure).
This provides high flexibility, as it allows for different spatial frameworks characterized by
different distances, and to spread the sample in a covariates space through the use of some
ad hoc distances. When the units are points, the computation is straightforward. If not, as
in the case of irregular polygons, then distances between centroids can be used. Moreover,
note that when using spatial distances expressed as latitude and longitude, the coordinates
need to be projected and not geographic. Let M (D;) be an index of the distance matrix of a
given sample s that summarizes the distances of the sample units. We expect that the higher
M (Dy), the lower the SBI. We consider
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=11 Il (5)

€S G JES
and
=y D dy. (6)
1€s j£i JES
Denote with s® = ={l1,...,l,} the configuration at iteration ¢, that is a vector of unit labels.

Note that a conﬁguratlon is indeed a sample. The algorithm starts from a simple random
sample of dimension n, s(®). Then, each iteration ¢ is composed of the following steps:

1. Select two units randomly: one inside and one outside the current configuration s®.

(t)

2. Define a new configuration, say s¢’, in such a way that units ¢ and j selected in the

(t)

previous step are interchanged. Therefore, s and s¢’ differ only for one unit.

3. Update to sg) or retain the current configuration s*), according to an acceptance rule.

(t)

In particular, update to the new configuration s¢’ with probability:

B
p = min |1, (JW(DSS))) , (7)

M (D)

where 3 is a known constant. Note that the higher the index M(D_ (t)) the higher the
overall distance of the new configuration, the higher the probabﬂlty of updating the
configuration to the new state. Therefore, the acceptance rule gives more chance to
stay in configurations that are relatively more spread. Moreover, the parameter § € R
regulates the amount of spread: the higher its value is, the more spread the sample will
be. Hence, this parameter allows us to choose a priori the level of spread desired, if
any. We dedicated Section 5.2 on the role of 5.

4. Tterate Steps 1, 2 and 3 for NV times.

The algorithm runs for t = 1,...T iterations, for a total of T' x N steps, unless at iteration
t < T no updates occurred, in that case the algorithm is stopped. The larger the number T
of iterations (and therefore the number of steps), the better the convergence of the algorithm,
the slower the algorithm. A suitable value for T to face this trade-off is empirically found
to be 10. Indeed, we observed by means of several applications of this algorithm to real and
simulated populations that it never reaches the 10th iteration.

Due to this procedure, we are able to achieve a random outcome from a multivariate proba-
bility p (s) proportional to the specific index M (D) used in the acceptance rule (7), that is
p(s) =M (Ds) /> scs M (Ds).

In theory, any summary index can be used in (7). The sampling designs implemented in the
package differ according to the index M (Dy) used. In particular, we refer to these sampling
designs with the term PWD (product within distance) when we use (5), and with the term
SWD (sum within distance) if we use (6).

Essentially, the algorithm is based on a Markov chain Monte Carlo (MCMC) scheme, where
at each iteration, a new configuration is defined based on the previous one, and it is accepted
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according to an acceptance rule, which is the Metropolis-Hasting criterion (Metropolis, Rosen-
bluth, Rosenbluth, Teller, and Teller 1953; Hastings 1970). By means of this procedure, we
want to obtain independent samples from the unknown target distribution p(s) with proba-
bility proportional to the index used in (7).

If we perform this procedure using the distance matrix as it is, the selection mechanism
has unknown inclusion probabilities, which is a problem since we cannot compute the HT
estimator. Fortunately, we can regulate the first-order inclusion probabilities by means of
standardization of the distance matrix. Indeed, Benedetti and Piersimoni (2017b) found that

the m;s follow the rule
k2

N
=k | [[di] (8)
j=1

where k1 and ko are parameters that depend mainly on N and n, and #; is an empirical
estimate of m; given by the relative frequency of the selection of unit ¢ obtained by a Monte
Carlo simulation. From (8) we can note that the m;s depend on the d;;s, therefore we can
regulate the m;s by means of standardization of the distance matrix. Specifically, in order to
achieve equal first-order inclusion probabilities, which are equal to n/N, in the case of SWD
we iteratively constrain the row (or column) sums of the matrix to known totals (e.g., 1),
and in the case of PWD we iteratively constrain the row (or column) sums of the logarithmic
transformed matrix to known totals (e.g., 0), see Benedetti and Piersimoni (2017b). Note that
in order to preserve the symmetry of the matrix we perform an average with its transpose at
each iteration. Moreover, we believe that a modification of the aforementioned standardization
procedure can lead to a selection mechanism with unequal inclusion probabilities m; set a
priori. This is a current topic of investigation.

3.1. A fast selection of spatially balanced samples

The two procedures described so far could have a high computational burden because they
have at least a computational cost of order N2. When the target population is very large
or we are interested in selecting a large number of samples (for example when performing a
simulation) or both, these methods could be very computationally intensive. In this situation,
the use of the HPWD (heuristic product within distance) sampling design (Benedetti and
Piersimoni 2017a) can address the problem, because it is a drawn-by-drawn algorithm that in
at most n steps selects a spatially balanced sample of fixed dimension n through a sequence
of n random selections of size one with varying selection probabilities, which will be updated
in each step depending on the unit selected in the previous step. Particularly, the algorithm
uses a greedy heuristic, which means that for each step it always makes the local optimal
choice (Cormen, Leiserson, Rivest, and Stein 2009). It starts with a random selection of a
unit ¢ with equal probability. Then, at every step ¢t < n the selection probabilities 7rj(-t)s for
all the other units j of the population are updated according to the rule

Vg
77]@: J ! \j=1...Nandj #1, (9)
N (t=1)
Zj:l;j;éi Ty dij

where 7 is the unit randomly selected in the step ¢ — 1, and Eij =¢ (d’g),

dardization applied to Dy in order to have known and fixed products by row (and column),

where ¢ is a stan-
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as we have seen for the case of PWD in the previous section, and (8 is a known constant and
has the same role observed previously for the SWD and PWD designs. Note that d;; = 0
by definition, so that units already selected in the sample have m; = 0, therefore the ran-
dom selection is without replacement. The greedy heuristic used in (9) slightly resembles
the acceptance rule in the PWD algorithm, and the empirical m;s obtained by Monte Carlo
simulation for the HPWD are close to the empirical 7;s obtained by Monte Carlo simulation
for the PWD (Benedetti and Piersimoni 2017a).

4. Package Spbsampling

Package Spbsampling implements spatially balanced sampling designs. In particular, the
implemented designs are PWD, SWD, and HPWD, which we have illustrated in the previous
section, and they are implemented by pwd (), swd (), and hpwd (), respectively. Other functions
perform distance matrix standardization and compute the spatial balance index.

The functions pwd () and swd() require the following arguments:

o dis: distance matrix of the target population (of dimension N x N);

n: sample size;
e beta: parameter 3 for the algorithm, set by default to 10;
e nrepl: number of samples to draw, set by default to 1;

e niter: maximum number of iterations for the algorithm, set by default to 10.

Both functions return a list with the object s, which is a matrix of dimension nreplxn that
contains the nrepl selected samples, each of them stored in a row (in particular, the bth row
contains all labels of units selected in the bth sample), and the object iterations, which is
a vector of length nrepl where the bth element contains the number of iterations run by the
algorithm in order to select the bth sample.

The function hpwd () uses the same arguments than pwd() and swd (), apart from niter. The
output is a matrix of selected samples, as described for the object s of the pwd () and swd ()
output.

As mentioned earlier, the distance matrix standardization has important implications in these
sampling designs. The functions used to perform this task are stprod(), designed for PWD
and HPWD design, and stsum(), designed for SWD design. They have the same following
parameters:

o mat: distance matrix to be standardized (of dimension N x N);

o con: constraints, of length N (because we have a constraint for each row/column of the
distance matrix);

o differ: maximum accepted difference between the sums of the rows/columns of the
distance matrix and the required constraints; by default set equal to 1e-15;

e niter: maximum number of iterations; by default set equal to 1000.
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The output is a list with the objects mat, iterations, and conv, which are the standardized
matrix, the number of iterations run by the algorithm, and the convergence reached, respec-
tively. It is necessary to point out that the standardization of the distance matrix through
the use of function stprod() could take some minutes, especially when the population size
N is large.

Finally, the function sbi() allows to compute the spatial balance index given by (4). The
inputs required are:

e dis: distance matrix;
e pi: vector of the first order inclusion probabilities of the units in the population;

e s: vector of sampled units labels.

5. Examples

In order to illustrate the functionalities of the package, we use the following three datasets:
(i) lucas_abruzzo from package Spbsampling, which contains data regarding land use/cover
of the Italian region Abruzzo and provided by the European field survey program (called
LUCAS, which stands for land use/cover area frame statistical survey) funded and executed
by Eurostat, (ii) meuse.grid and (iii) meuse from package sp (Pebesma and Bivand 2005).
The latter contains data collected in a flood plain of the river Meuse near the village of Stein,
Netherlands, and regards topsoil heavy metal concentrations (along with a number of soil
and landscape variables at the survey locations), the former is a dataset with points for a
grid that covers the Meuse study area. For illustration, we use these datasets as if they were
populations and select samples from them. Therefore, the population size is 2699 for the
lucas_abruzzo dataset, 3103 for the meuse.grid dataset, and 155 for the meuse dataset. In
Figure 1 the two study areas are plotted.

We proceed as follows: In Section 5.1 we provide an overview of the usage of the sampling
designs using the lucas_abruzzo dataset, in Section 5.2 we give a brief analysis of the effect
of the parameter § in the selected samples through the use of the meuse.grid dataset, and
finally in Section 5.3 we illustrate one scenario where we spread the sample on the covariates
space with the use of meuse dataset.

5.1. Overview of the package use

The classic procedure for the selection of a sample through these designs is generally composed
by:

1. Computation of the distance matrix Dy;

2. Standardization of the distance matrix, through the function stprod or stsum according
to which sampling design is used (if equal probabilities are desired);

3. Selection of the sample using the corresponding function.

We can compute the distance matrix using the function dist (), which is part of the base R
distribution. By default the function computes the Euclidean distance and the main argument
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Figure 1: Population lucas_abruzzo on the left, meuse grid on the right.

required is a matrix containing the coordinates of the points. Through the parameter method
it is possible to use a different distance function, e.g., "manhattan". For our example we use
the Euclidean distance and we compute the distance matrix as below.

R> library("Spbsampling")
R> data("lucas_abruzzo", package = "Spbsampling")
R> dis_la <- as.matrix(dist(cbind(lucas_abruzzo$x, lucas_abruzzo$y)))

Note that we can also compute the distance matrix by means of the st_distance () function
of the package sf (Pebesma 2018). One advantage is that it calculates the distance matrix in
meters unit even when the coordinates are expressed in latitude and longitude.

R> lucas_abruzzo_sf <- st_as_sf(lucas_abruzzo, coords = c("x", "y"))
R> dis_la_sf <- st_distance(lucas_abruzzo_sf)

Product within distance (PWD)

Assume we want inclusion probabilities equal to n/N. The first step is the standardization
of the distance matrix. When using the PWD design we need to constrain the row (or
column) sums of the logarithmic transformed matrix to a known constant (e.g., 0). The
function stprod is specifically designed for this, and we perform it with constraints equal to
0, through the following code:

R> con <- rep(0, nrow(dis_la))
R> stand_dist_la_pwd <- stprod(mat = dis_la, con = con)$mat

11
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Now, since we have the standardized matrix, we perform the selection of one sample of
dimension 10 by means of pwd(). The call is:

R> set.seed(42)
R> s_pwd_la <- pwd(dis = stand_dist_la_pwd, n = 10)$s
R> s_pwd_la

(,11 (.21 [,3] [,4] [,8] [,6] [,71 [,8] [,9] [,10]
[1,] 659 1362 1951 2244 3838 178 1120 1833 1369 2342

In the output we have all the labels of the selected units. Note that if we need the spatial
coordinates of the selected points the following code can be used.

R> lucas_abruzzol[s_pwd_lal[1l, ], c("x", "y")]

x y
41251 1914000 4710000
42950 1856000 4686000
44101 1924000 4666000
44854 1866000 4654000
40374 1862000 4724000
39545 1890000 4736000
42419 1894000 4690000
43919 1964000 4668000
42968 1946000 4686000
45170 1898000 4654000

As last step, we compute the SBI with the use of the function sbi(). We need the inclusion
probabilities, which are all equal to n/N since we have standardized the matrix, and the
labels of the selected units. Hence, the code is:

R> pi <- rep(10 / nrow(lucas_abruzzo), nrow(lucas_abruzzo))
R> sbi(dis = dis_la, pi = pi, s = s_pwd_lal[1, ])

[1] 0.02130354

Recall that the lower the SBI, the higher the spread in the sample. We plot the obtained
sample in Figure 2.

If we want more than one sample, we can use the parameter nrepl. For example, selecting
two samples instead of one can be done using

R> set.seed(42)
R> s2 pwd_la <- pwd(dis = stand_dist_la_pwd, n = 10, nrepl = 2)$s
R> s2 pwd_la

[’1] [,2] [:3] [;4] [,5] [’6] [;7] [,8] [’9] [;10]
[1,] 659 1362 1951 2244 388 178 1120 1833 1369 2342
[2,] 1061 2073 2511 248 1594 1340 229 552 1232 2637
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Noting that the replications are independent, in the first row we have the labels of the units
selected in the first sample, and in the second row we have the labels of the units selected in
the second sample.

If dependent replications are of interest, e.g., two samples with an overlapping portion of units
need to be selected, then coordination of spatially balanced samples needs to be employed.
This means that the m;s are controlled for both the units in each sample and between the
samples. Toward this end, an interesting proposal based on the logic of permanent random
numbers was suggested by Grafstrom and Matei (2018). Moreover, the PWD algorithm can
be adapted to handle this setting. Indeed, it should be enough to define as starting sample
of the algorithm the configuration we want to coordinate with, and that the algorithm keeps
swapping units until a prefixed rate of overlapped units has been achieved. This procedure
could allow to control dependence between and within replications, and it could be useful in
a potentially appealing application such as cross-validation, where usually a control of this
aspect is needed.

Sum within distance (SWD)

As in the previous example, we select one sample of dimension 10. The distance matrix
is the same computed before, so we need only to obtain the standardized one, this time
keeping in mind the different sampling design. That means that we have to constrain the row
(or column) sums of the matrix to a known constant (e.g., 1), using function stsum() and
constraints equal to 1.

R> con <- rep(1, nrow(dis_la))
R> stand_dist_la_swd <- stsum(mat = dis_la, con = con)$mat

We use the function swd() to select the sample

R> set.seed(42)
R> s_swd_la <- swd(dis = stand_dist_la_swd, n = 10)$s
R> s_swd_la

[’1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 2061 1020 655 2099 1879 2679 385 134 1738 545

and, as before, we compute the spatial balance index using the following code

R> pi <- rep(10 / nrow(lucas_abruzzo), nrow(lucas_abruzzo))
R> sbi(dis = dis_la, pi = pi, s = s_swd_lal[1, ])

(1] 0.096017

and plot the sample in Figure 2.

HPWD

The usage of the function hpwd () follows closely that of pwd (). Hence, we should standardize
the distance matrix with the same procedure as before. Since we have already done that,
we can directly proceed to draw one sample of dimension 10 using the stand_dist_la_pwd
matrix and the hpwd () function:

13
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PWD SWD HPWD

SR

Figure 2: Samples drawn from the lucas_abruzzo population by means of the implemented
sampling designs.

R> set.seed(42)
R> s_hpwd_la <- hpwd(dis = stand_dist_la_pwd, n = 10)
R> s_hpwd_1la

[51] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [39] [,10]
[1,] 2470 1082 206 2252 1298 352 2164 636 1913 1352

The SBI index is computed by

R> pi <- rep(10 / nrow(lucas_abruzzo), nrow(lucas_abruzzo))
R> sbi(dis = dis_la, pi = pi, s = s_hpwd_lal1l, ])

[1] 0.1814763

and the sample is plotted in Figure 2.
Computing time

As previously discussed, the standardization matrix is an important step. Indeed, it allows us
to select samples with equal first-order inclusion probabilities. Therefore, the time required
to standardize the distance matrix is an aspect we should consider when planning any spatial
survey. To this end we report in Table 1 the elapsed time for the standardization of distance
matrices simulated with different population sizes. It can be noticed that the stprod()
function is significantly slower than the stsum() function. This is due to the fact that in
stprod() the accuracy is related to the logarithm of products, which is more difficult to
reach. The differences between the two functions increase as N increases. Therefore, if the
target population is very huge, it is recommended to use the SWD design, which requires the
stsum() standardization function. Note that the time needed for the selection of one sample
is negligible. If simulation with large number of samples is of interest, then HPWD is better
suited since it is more computationally efficient. In terms of spatial balance, PWD performs
better than SWD, while HPWD provides similar results to PWD (Benedetti and Piersimoni
2017a,b).

5.2. The role of

Now, we analyze the effect that the value of 8 has in these sampling designs and consequently
on the selected samples. Toward this end, we select from the dataset meuse.grid different
samples, with sample size n = 20 and different values of 5 € {1,5,10}, and then through the
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N =1000 N =2000 N =3000 N =4000 N =5000

stsum() 1.26 5.80 12.34 26.77 37.82
stprod () 10.47 64.20 133.31 326.52 429.30

N =6000 N =7000 N =8000 N =9000 N = 10000
stsum() 99.27 74.95 103.92 126.77 155.42
stprod () 711.70 884.69 1334.55 1517.31 1943.91

Table 1: Time expressed in seconds to standardize a distance matrix (on a 2.3Ghz Dual Core)
by means of stsum() and stprod() when the population size N varies.

use of SBI we inspect the spread of the samples. Plots are also displayed (with axes aspect
ratio equal to 1). The role of (3 is crucial in these sampling designs since it controls the spread
of the selected sample; the higher 5 is the more spread the sample is expected to be. Also, it
is worth noting that for negative values of 8 these sampling designs provide cluster samples.
Since in this paper we are interested in well spread samples, we do not consider such [ values.
Moreover, for § = 0 we observe that these sampling designs behave approximately like the
simple random sampling method.

First, we compute the distance matrix for this population
R> library("sp")
R> data("meuse.grid", package = "sp")

R> dis_m <- as.matrix(dist(cbind(meuse.grid$x, meuse.grid$y)))

and we start with the PWD and HPWD designs because they require the same standardized
distance matrix that we obtain with

R> con <- rep(0, nrow(meuse.grid))
R> stand_dist_m_pwd <- stprod(mat = dis_m, con = con)$mat

With this standardized matrix, we can perform the selection of the samples using

R> set.seed(42)

R> s_pwdl <- pwd(dis = stand_dist_m_pwd, n = 20, beta = 1)8$s
R> set.seed(42)
R> s_pwd5 <- pwd(dis = stand_dist_m_pwd, n = 20, beta = 5)8s

R> set.seed(42)
R> s_pwd10 <- pwd(dis = stand_dist_m_pwd, n = 20, beta = 10)$s

The function sbi() is used for computing the relative index.

R> pi <- rep(20 / nrow(meuse.grid), nrow(meuse.grid))
R> sbi(dis = dis_m, pi = pi, s = s_pwd1[1, ])

[1] 0.1696672
R> sbi(dis = dis_m, pi = pi, s = s_pwd5[1, 1)

[1] 0.04192714
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R> sbi(dis = dis_m, pi = pi, s = s_pwd10[1, ])
[1] 0.03573681

We can see that the higher we set 3, the lower is SBI, which in turn implies that the sample
is more spread. We do the same for the HPWD design:

R> set.seed(42)

R> s_hpwdl <- hpwd(dis = stand_dist_m_pwd, n = 20, beta = 1)
R> set.seed(42)
R> s_hpwd5 <- hpwd(dis = stand_dist_m_pwd, n = 20, beta = 5)

R> set.seed(42)

R> s_hpwd10 <- hpwd(dis = stand_dist_m_pwd, n = 20, beta = 10)
R> pi <- rep(20 / nrow(meuse.grid), nrow(meuse.grid))

R> sbi(dis = dis_m, pi = pi, s = s_hpwd1[1, ])

[1] 0.1215474

R> sbi(dis = dis_m, pi = pi, s = s_hpwd5[1, ])

[1] 0.07120709
R> sbi(dis = dis_m, pi = pi, s = s_hpwd10[1, ])
[1] 0.04609553

and also in this case the behavior is the same. Finally, we turn the attention to the SWD
design. We compute the standardized matrix

R> con <- rep(1, nrow(meuse.grid))
R> stand_dist_m_swd <- stsum(mat = dis_m, con = con)$mat

and the samples

R> set.seed(42)

R> s_swdl <- swd(dis = stand_dist_m_swd, n = 20, beta = 1)$s
R> set.seed(42)
R> s_swd5 <- swd(dis = stand_dist_m_swd, n = 20, beta = 5)$s

R> set.seed(42)
R> s_swd10 <- swd(dis = stand _dist m swd, n = 20, beta = 10)$s

Finally, the SBI values obtained are

R> pi <- rep(20 / nrow(meuse.grid), nrow(meuse.grid))
R> sbi(dis = dis_m, pi = pi, s = s_swd1[1, ])

[1] 0.3359212
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PWD beta=1 PWD beta=5 PWD beta = 10

HPWD beta=1 HPWD beta=5 HPWD beta = 10
SWD beta=1 SWD beta =5 SWD beta = 10

Figure 3: Samples drawn from the meuse population by means of the implemented sampling
designs and for different 8 values.

R> sbi(dis = dis_m, pi = pi, s s_swd5[1, 1)

[1] 0.292

R> sbi(dis = dis_m, pi = pi, s = s_swd10[1, ])

[1] 0.07203216

As expected, the values of sbi () show the same pattern previously observed. In Figure 3 we
can see the selected samples. It is important to recall the trade-off between spatial balance
and entropy of the sampling design mentioned in Section 2. Here, we could set extremely
high values of 8 in order to select the most spread samples, but the entropy of the selection
would be substantially reduced, with the consequence of failing to have asymptotic normality
of the HT estimator (Berger 1998a,b).

5.3. Spread on the covariates space

In the following example we briefly illustrate one feature of this methodology, that is the
possibility to spread the sample in the covariates space. In fact, as previously described,
the flexibility of the distance matrix allows to work in different frameworks, e.g., the distance
matrix can be defined for units according to variables different than geographical coordinates.
We consider the space generated by the covariates copper, lead, and zinc, which are observed
levels of chemicals. Therefore, we have a triple of coordinates for each unit. The distance
considered is the Euclidean distance. The distance matrix is given by

17
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Figure 4: Sample drawn from the meuse population by means of PWD, with selected units
in red. x-axis: copper; y-axis: lead; z-axis: zinc.

R> data("meuse", package = "sp")
R> dis_m_3 <- as.matrix(dist(cbind(meuse$copper, meuse$lead, meuse$zinc)))
We perform the PWD design. Hence, first, the distance matrix is standardized using

R> con <- rep(0, nrow(meuse))
R> stand_dis_m_3 <- stprod(mat = dis_m_3, con = con)$mat

Finally, the sample is selected by

R> set.seed(42)
R> s <- pwd(dis = stand_dis_m_3, n = 10)$s

and SBI computed through

R> sbi(dis = dis_m_3, pi = rep(10 / nrow(meuse), nrow(meuse)), s = s)
[1] 0.0751532

In Figure 4 we plot the selected sample. Note that the idea of spread the sample on the
space generated by non-geographically covariates cannot be based on the spatial correlation
observed in Equation 3. This calls for more investigation and is a topic for future research.

6. Conclusion

In this paper we presented the R package Spbsampling, introducing the implementation for
three new spatially balanced sampling designs. For an overview of this type of methodology see
Benedetti et al. (2015) and Benedetti et al. (2017b), while for the new methods implemented
see Benedetti and Piersimoni (2017a) and Benedetti and Piersimoni (2017b). In spatial
survey statistics, the advantages of using this kind of sampling designs are firmly established
(Benedetti et al. 2017b). The major advantage that comes from the proposed methods is
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the flexibility, since we can (i) perform the algorithms over any kind of space or domain,
even in dimension higher than two, (ii) use any distance function in order to face different
spatial settings, and even a similarity measure, in order to spread the sample on the covariates
space, and (iii) set a priori a parameter for the level of spread required. Moreover, Benedetti
and Piersimoni (2017a) and Benedetti and Piersimoni (2017b) showed that the methods
implemented in the package usually perform better in terms of spatial balance than the
majority of the other spatially balanced sampling designs implemented in R. In particular,
they showed that the PWD design with a value of 8§ = 10 performs better than the GRTS
(Stevens and Olsen 2004), SCPS (Grafstrom 2012), and LPM (Grafstrom et al. 2012) designs.
A possible drawback is the need of a standardized distance matrix as input, which could take
a considerable time to compute in case of a large population. Regarding the package itself,
it is worth noting the implementation in C4++ with the use of the Armadillo library. Future
developments will be the implementation of functions useful to achieve unequal first order
inclusion probabilities.
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