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Abstract

This article presents the NeuralSens package that can be used to perform sensitivity
analysis of neural networks using the partial derivatives method. The main function of the
package calculates the partial derivatives of the output with regard to the input variables
of a multi-layer perceptron model, which can be used to evaluate variable importance
based on sensitivity measures and characterize relationships between input and output
variables. Methods to calculate partial derivatives are provided for objects trained using
common neural network packages in R, and a ‘numeric’ method is provided for objects
from packages which are not included. The package also includes functions to plot the
information obtained from the sensitivity analysis.

The article contains an overview of techniques for obtaining information from neural
network models, a theoretical foundation of how partial derivatives are calculated, a de-
scription of the package functions, and applied examples to compare NeuralSens functions
with analogous functions from other available R packages.
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1. Introduction
As the volume of available information increases in various fields, the number of situations
where data-intensive analysis can be applied also grows simultaneously (Philip Chen and
Zhang 2014; Valduriez et al. 2018).This analysis can be used to extract useful information
and supports decision-making (Sun, Sun, and Strang 2018).
Machine-learning algorithms are commonly used in data-intensive analysis (Hastie, Tibshi-
rani, and Friedman 2001; Butler, Davies, Cartwright, Isayev, and Walsh 2018; Vu et al.
2018), as they are able to detect patterns and relations in the data without being explicitly
programmed. Artificial neural networks (ANN) are one of the most popular machine-learning
algorithms due to their versatility. ANNs were designed to mimic the biological neural struc-
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tures of animal brains (McCulloch and Pitts 1943) by “learning” to perform tasks by consid-
ering examples and modifying their structure through iterative algorithms (Rojas 1996). The
form of ANN that is discussed in this paper is the feed-forward multilayer perceptron (MLP,
Rumelhart, Hinton, and Williams 1986). MLPs are one of the most popular form of ANNs
and have been used in a wide variety of applications (Mosavi, Salimi, Faizollahzadeh Ardabili,
Rabczuk, Shamshirband, and Varkonyi-Koczy 2019; Smalley 2017; Hornik, Stinchcombe, and
White 1989). This model consists of interconnected units, called nodes or perceptrons, that
are arranged in layers. The first layer consists of inputs (or independent variables), the final
layer is the output layer, and the layers in between are known as hidden layers (Özesmi and
Özesmi 1999). Assuming that there is a relationship between the outputs and the inputs, the
goal of the MLP is to approximate a non-linear function to represent the relationship between
the output and the input variables of a given dataset with minimal residual error (Hornik
1991; Cybenko 1989).
Neural networks provide predictive advantages when compared to other models, such as the
ability to implicitly detect complex non-linear relationships between dependent and inde-
pendent variables. However, the complexity of neural networks makes it difficult to obtain
information on how the model uses the input variables to predict the output. Finding meth-
ods for extracting information on how the input variables affect the response variable has
been a recurrent topic of research in neural networks (Olden, Joy, and Death 2004; Zhang,
Beck, Winkler, Huang, Sibanda, and Goyal 2018). Some examples are:

1. Neural interpretation diagram (NID) as described by Özesmi and Özesmi (1999) for
plotting the ANN structure. A NID is a modified version of the standard representation
of neural networks which changes the color and thickness of the connections between
neurons based on the sign and magnitude of its weight.

2. Garson’s method for variable importance (Garson 1991). It consists of summing the
product of the absolute value of the weights connecting the input variable to the response
variable through the hidden layer. Afterwards, the result is scaled relative to all other
input variables. The relative importance of each input variable is given as a value from
zero to one.

3. Olden’s method for variable importance (Olden et al. 2004). This method is similar
to Garson’s, but it uses the real value instead of the absolute value of the connection
weights and it does not scale the result.

4. Input perturbation (Scardi and Harding 1999; Gevrey, Dimopoulos, and Lek 2003). It
consists of adding an amount of white noise to each input variable while maintaining
the other inputs at a constant value. The resulting change in a chosen error metric for
each input perturbation represents the relative importance of each input variable.

5. Profile method for sensitivity analysis (Lek, Delacoste, Baran, Dimopoulos, Lauga, and
Aulagnier 1996). Similar to the input perturbation algorithm, it changes the value of one
input variable while maintaining the other variables at a constant value. These constant
values are different quantiles of each variable, therefore a plot of model predictions across
the range of values of the input is obtained. A modification of this algorithm is proposed
in Beck (2018). To avoid unlikely combinations of input values, a clustering technique
is applied to the training dataset and the center values of the clusters are used instead
of the quantile values.
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6. Partial derivatives method for sensitivity analysis (Dimopoulos, Bourret, and Lek 1995;
Dimopoulos, Chronopoulos, Chronopoulou-Sereli, and Lek 1999; Muñoz and Czernichow
1998; White and Racine 2001). It performs a sensitivity analysis by computing the
partial derivatives of the ANN outputs with regard to the input neurons evaluated on
the samples of the training dataset (or an analogous dataset).

7. Partial dependence plot (PDP, Friedman 2001; Goldstein, Kapelner, Bleich, and Pitkin
2015). PDPs help visualize the relationship between a subset of the input variables
and the response while accounting for the average effect of the other inputs. For each
input, the partial dependence of the response with regard to the selected input is calcu-
lated following two steps. Firstly, individual conditional expectation (ICE) curves are
obtained, one for each sample of the training dataset. The ICE curve for sample k is
built by obtaining the model response using the input values at sample k, except for
the input variable of interest, whose value is replaced by other values it has taken in
the training dataset. Finally, the PDP curve for the selected variable is calculated as
the mean of the ICE curves obtained.

8. Local interpretable model-agnostic explanations (Ribeiro, Singh, and Guestrin 2016).
The complex neural network model is explained by approximating it locally with an
interpretable model, such as a linear regression or a decision tree model.

9. Forward stepwise addition (Gevrey et al. 2003). It consists of rebuilding the neural
network by sequentially adding an input neuron and its corresponding weights. The
change in each step in a chosen error metric represents the relative importance of the
corresponding input.

10. Backward stepwise elimination (Gevrey et al. 2003). It consists of rebuilding the neural
network by sequentially removing an input neuron and its corresponding weights. The
change in each step in a chosen error metric represents the relative importance of the
corresponding input.

These methods help with neural network diagnosis by retrieving useful information from the
model. However, these methods have some disadvantages: NID can be difficult to interpret
given the amount of connections in most networks, Garson’s and Olden’s algorithms only
account for the weights of the input variable connections in the hidden layer, and Lek’s profile
method may present analyses of input scenarios not represented by the input training data
or require other methods like clustering (using the center of the clusters instead of the range
quantiles of the input variables) with its inherent disadvantages (Xu and Tian 2015). Partial
dependence plots have a similar disadvantage as they might provide misleading information
if the value of the output variable depends not only on the variable of interest but also on
compound effects of input variables. Local linearization is useful for interpreting the input
variable importance in specific regions of the dataset, but it does not give a quantitative
importance measure for the entire dataset. Forward stepwise addition and backward stepwise
elimination perform a more exhaustive analysis, but are computationally expensive and may
produce different results based on the order in which the inputs are added/removed and the
initial training conditions of each model.
The partial derivatives method overcomes these disadvantages by analytically calculating the
derivative of each output variable with regard to each input variable evaluated on each data
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sample of a given dataset. The contribution of each input is calculated in both magnitude and
sign taking into account not only the connection weights and the activation functions, but
also the values of each input. By using all the samples of the dataset, the effect of the input
variables in the response is calculated for the real values of the data, avoiding information loss
due to clustering. Analytically calculating the derivatives results in more robust diagnostic
information, because it depends solely on how well the neural network predicts the output. As
long as the neural network predicts the output variable with enough precision, the derivatives
will be the same regardless of the training conditions and the structure of the network (Beck
2018).

As stated before, the main objective of the proposed methods is to extract information from a
given neural network model. For example, unnecessary inputs may lead to a higher complexity
of the neural structure and prevent finding the optimal model, thus, affecting the performance
of the neural network. Several researchers defend the ability of the partial derivatives method
to determine whether an explanatory variable is irrelevant for predicting the response of the
neural network (White and Racine 2001; Zurada, Malinowski, and Cloete 1994; Engelbrecht,
Cloete, and Zurada 1995). Pruning the neural network of these irrelevant inputs improves the
capability of the neural network to model the relationship between response and explanatory
variables and, consequently, the quality of information that can be extracted from the model.

Using the partial derivatives method has some disadvantages that should be noted. The
operations required to calculate partial derivatives are time-consuming when compared to
other methods such as Garson’s and Olden’s. The computing time grows as the size of the
neural network or the size of the database used to calculate the partial derivatives increases.
Additionally, the input variables should be normalized when using this method, as otherwise
the value of the partial derivatives may depend on the scale of each variable and produce
misleading results. However, its advantages with regard to other methods make sensitivity
analysis a very useful technique for interpreting and improving neural network models.

This article describes the NeuralSens package (Portela, Muñoz, and Pizarroso 2022) for R
(R Core Team 2021) which can be used to perform sensitivity analysis of MLP neural net-
works using partial derivatives. The main function of the package includes methods for MLP
objects from the most popular neural network packages available in R. To the authors’ knowl-
edge, there is no other R package that calculates the partial derivatives of a neural network.
The NeuralSens package is available at the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=NeuralSens, and the development version is main-
tained as a GitHub repository at https://github.com/JaiPizGon/NeuralSens. It should
be mentioned that other algorithms to analyze neural networks are already implemented in
R: NID, Garson’s, Olden’s and Lek’s profile algorithms are implemented in NeuralNetTools
(Beck 2018), the partial dependence plots method is implemented in pdp (Greenwell 2017)
and local linearization is implemented in lime (Pedersen and Benesty 2021).

The rest of this article is structured as follows. Section 2 describes the theory of the functions
in the NeuralSens package, along with references to general introductions to neural networks.
Section 3 presents the architecture details of the package. Section 4 shows applied examples
for using the NeuralSens package, comparing the results with packages currently available in
R. Finally, Section 5 concludes the article.

https://CRAN.R-project.org/package=NeuralSens
https://github.com/JaiPizGon/NeuralSens
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2. Theoretical foundation
The NeuralSens package has been designed to calculate the partial derivatives of the output
with regard to the inputs of a MLP model in R. The remainder of this section explains the
theory of multilayer perceptron models, how to calculate the partial derivatives of the output
of this type of model with regard to its inputs and some sensitivity measures proposed by the
authors.

2.1. Multilayer perceptron

A fully-connected feed-forward MLP has one-way connections from the units of one layer
to all neurons of the subsequent layer. Each time the output of one unit travels along one
connection to another unit, it is multiplied by the weight of the connection. At each unit the
inputs are summed and a constant, or bias, is added. Once all the input terms of each unit
are summed, an activation function is applied to the result.
Figure 1 shows the scheme of a neuron in a MLP model and represent graphically the opera-
tions in Equation 1.
For each neuron, the output yl

k of the k-th neuron in the l-th layer can be calculated by:

yl
k = ϕl

k

(
zl

k

)
= ϕl

k

nl−1∑
j=1

wl
kj · yl−1

j + wl
k0 · bl

 (1)

where zl
k refers to the weighted sum of the neuron inputs, nl−1 refers to the number of neurons

in the (l − 1)-th layer, wl
kj refers to the weight of the connection between the j-th neuron in

the (l − 1)-th layer and the k-th neuron in the l-th layer, ϕl
k refers to the activation function

of the k-th neuron in l-th layer, bl refers to the bias in the l-th layer and · refers to the scalar
product operation. For the input layer thus holds l = 1, y1−1

j = xj , w1
kj = 1 and b1 = 0.

Figure 1: Scheme of the k-th neuron in the l-th layer of a MLP model. ϕl
k represent the

activation function of the neuron, bl represent the bias of the l-th layer, yl−1
j represent the

output of the j-th neuron in the previous layer and wl
jk represent the weight of the connection

between the neuron and the j-th neuron of the previous layer.
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Figure 2: General multilayer perceptron structure with L layers. ϕi
j represent the activation

function of the j-th neuron in the i-th layer, bi represent the bias of the i-th layer, xk represent
the input variables and yk represent the output variables.

Figure 2 can be treated as a general MLP model. A MLP can have L layers, and each layer
l (1 ⩽ l ⩽ L) has nl (nl ⩾ 1) neurons. n1 stands for the input layer and nL for the output
layer. For each layer l the input dimension is equal to the output dimension of layer (l − 1).
For a neuron i (1 ⩽ i ⩽ nl) in layer l, its input vector, weight vector and output are ybl−1 =(
bl, yl−1

1 , · · · , yl−1
nl−1

)
, wl

i =
(
wl

i0, wl
i1, · · · , wl

inl−1

)⊤
and yl

i = ϕl
i

(
zl

i

)
= ϕl

i

(
ybl−1 · wl

i

)
re-

spectively, where ϕl
i : R → R refers to the neuron activation function and · refers to the

matrix multiplication operator. For each layer l, its input vector is ybl−1, its weight matrix
is Wl =

[
wl

1 · · · wl
nl

]
and its output vector is yl =

(
yl

i, · · · , yl
nl

)
= Φl

(
zl

)
= Φl

(
ybl−1 · Wl

)
,

where Φl : Rnl → Rnl is a vector-valued function defined as Φl(z) = (ϕl
1(z1), · · · , ϕl

nl(znl)).
Weights in the neural structure determine how the information flows from the input layer
to the output layer. Identifying the optimal weights that minimize the prediction error of a
dataset is called training the neural network. There are different algorithms to identify these
weights, being the most used the backpropagation algorithm described in Rumelhart et al.
(1986). Explaining these training algorithms are out of the scope of this paper.

2.2. Partial derivatives

The sensitivity analysis performed by the NeuralSens package is based on the partial deriva-
tives method. This method consists in calculating the derivative of the output with regard
to the inputs of the neural network. These partial derivatives are called sensitivity, and are
defined as:

sik

∣∣
xn

= ∂yk

∂xi
(xn)

where xn refers to the n sample of the dataset used to perform the sensitivity analysis and
sik

∣∣
xn

refers to the sensitivity of the output of the k-th neuron in the output layer with
regard to the input of the i-th neuron in the input layer evaluated in xn. We calculate these
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sensitivities applying the chain rule to the partial derivatives of the inner layers (derivatives
of Equation 1 for each neuron in the hidden layers). The partial derivatives of the inner layers
are defined following the next equations:

• Derivative of zl
k (input of the k-th neuron in the l-th layer) with regard to yl−1

i (output
of the i-th neuron in the (l − 1)-th layer). This partial derivative corresponds to the
weight of the connection between the k-th neuron in the l-th layer and the i-th neuron
in the (l − 1)-th layer:

∂zl
k

∂yl−1
i

= wl
ki (2)

• Derivative of yl
k (output of the the k-th neuron in the l-th layer) with regard to zl

i (input
of the i-th neuron in the l-th layer):

∂yl
k

∂zl
i

∣∣∣∣∣
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i
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k

∂zl
i

(
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i

)
(3)

where ∂ϕl
k

∂zl
i

refers to the partial derivative of the activation function of the k-th neuron
in the l-th layer with regard to the input of the k-th neuron in the l-th layer evaluated
for the input zl

i of the i-th neuron in the l-th layer.

Equations 2 and 3 have been implemented in the package in matrix form to reduce compu-
tational time following the next equations:
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where W∗l is the reduced weight matrix of the l-th layer and Jl

l is the Jacobian matrix of the
outputs in the l-th layer with respect to the inputs in the l-th layer.
Following the chain rule, the Jacobian matrix of the outputs in the l-th layer with regard to
the inputs in the (l − j)-th layer can be calculated by:

Jl
l−j[nl×nj ]

=
l−1∏
h=j

(Jh
h[nh×nh]

· W∗(h+1)
[nh×nh+1]) · Jl

l[nl×nl]
(4)
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where 1 ⩽ k ⩽ (l − 1) and 2 ⩽ l ⩽ L. Using this equation with l = L and j = 1, the partial
derivatives of the outputs with regard to the inputs of the MLP are obtained.

2.3. Sensitivity measures

Once the sensitivity has been obtained for each variable and observation, different measures
can be calculated to analyze the results. The authors propose the following sensitivity mea-
sures to summarize the information obtained by evaluating the sensitivity of the outputs for
all the input samples Xn of the provided dataset:

• Mean sensitivity of the output of the k-th neuron in the output layer with regard to the
i-th input variable:

Savg
ik =

∑N
j=1 sik

∣∣
xj

N
(5)

where N is the number of samples in the dataset.

• Sensitivity standard deviation of the output of the k-th neuron in the output layer with
regard to the i-th input variable:

Ssd
ik = σ

(
sik

∣∣
xj

)
; j ∈ 1, . . . , N (6)

where N is the number of samples in the dataset and σ refers to the standard deviation
function.

• Mean squared sensitivity of the output of the k-th neuron in the output layer with regard
to the i-th input variable (Yeh and Cheng 2010; Zurada et al. 1994):

Ssq
ik =

√√√√∑N
j=1

(
sik

∣∣
xj

)2

N
(7)

where N is the number of samples in the dataset.

In case there are more than one output neuron, such as in a multi-class classification problem,
these measures can be generalized to obtain sensitivity measures of the whole model as follows:

• Mean sensitivity with regard to the i-th input variable:

Savg
i =

∑nL

k=1 Savg
ik

nL
(8)

• Sensitivity standard deviation with regard to the i-th input variable:

Ssd
i =

√√√√∑nL

k=1

((
Ssd

ik

)2 +
(
Savg

ik − Savg
i

)2
)

nL
(9)

• Mean squared sensitivity with regard to the i-th input variable (Yeh and Cheng 2010):

Ssq
i =

∑nL

k=1

√
Ssq

ik

nL

2

(10)
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Methods in NeuralSens to calculate the sensitivities of a neural network and the proposed
sensitivities measures were written for several R packages that can be used to create MLP neu-
ral networks: class ‘nn’ from neuralnet package (Fritsch, Guenther, and Wright 2019), class
‘nnet’ from nnet package (Venables and Ripley 2002), class ‘mlp’ from RSNNS (Bergmeir and
Benítez 2012), classes ‘H2ORegressionModel’ and ‘H2OMultinomialModel’ from h2o package
(LeDell et al. 2022), ‘list’ from neural package (Nagy 2014) and classnnetar from forecast
package (Hyndman and Khandakar 2008). The same methods are applied to neural network
objects created with the train() function from the caret package (Kuhn 2008) only if these
‘train’ objects inherit from the available packages the “class” attribute. Methods have not
been included in NeuralSens for other packages that can create MLP neural networks, al-
though further developments of NeuralSens could include additional methods. An additional
method for class ‘numeric’ is available to use with the basic information of the model (weights,
structure and activation functions of the neurons). Examples on how to use this ‘numeric’
method can be found in Appendix A.

3. Package structure
The functionalities of the package NeuralSens is based on the new R class ‘SensMLP’ defined
inside the package itself. NeuralSens includes four main functions based on this class to
perform the sensitivity analysis of a MLP model described in the previous section:

• SensAnalysisMLP(): S3 method to perform the sensitivity analysis using partial deriva-
tives of the outputs with regard to the inputs of the MLP model. This function returns
a ‘SensMLP’ object with the results of the sensitivity analysis.

• SensitivityPlots(): Graphically represent the sensitivity measures of a ‘SensMLP’
object.

• SensFeaturePlot(): Graphically represent the relation between the sensitivities of a
‘SensMLP’ object and the value of the input variables.

• SensTimePlot(): Graphically represent the evolution among time of the sensitivities
of a ‘SensMLP’ object.

Each of these functions are detailed in the rest of this section. The output of the last three
functions are plots created with ggplot2 package functions (Wickham 2016).

3.1. The R class ‘SensMLP’

The NeuralSens package defines an S3 object called ‘SensMLP’ as a list with the following
components:

• sens: ‘list’ of ‘data.frames’, one per neuron in the output layer, with the Savg
ik , Ssd

ik

and Ssq
ik sensitivity measures described in Section 2.3 (Equations 5, 6 and 7). Each row

of the data.frame contains the sensitivity measures with regard to a specific input.

• raw_sens: ‘list’ of ‘matrixes’, one per neuron in the output layer, with the sensitivities
calculated following Equation 4 with l = L and j = 1. Each column of each ‘matrix’
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contains the sensitivities of the output with regard to a specific input and each row
contains the sensitivities with regard to all the inputs corresponding to the same row of
the trData component.

• mlp_struct: ‘numeric’ ‘vector’ indicating the number of neurons in each layer of the
MLP model.

• trData: Typically a ‘data.frame’ which contains the dataset used to calculate the
sensitivities.

• coefnames: ‘character’ ‘vector’ with the names of the input variables of the MLP
model.

• output_name: ‘character’ ‘vector’ with the names of the output variables of the MLP
model.

Functions described in Sections 3.3 (SensitivityPlots()), 3.4 (SensTimePlot()) and 3.5
(SensFeaturePlot()) can be accessed through the plot method of the ‘SensMLP’ object.
print() and summary() methods are also available for obtaining information on the sen-
sitivities and sensitivity measures of the ‘SensMLP’ object. Examples of these methods are
presented in the remaining sections.

3.2. MLP sensitivity analysis

The SensAnalysisMLP() function calculates the partial derivatives of a MLP model. This
function consists of an S3 method (Chambers and Hastie 1992) to extract the basic infor-
mation of the model (weights, structure and activation functions) based on the model class
attribute and to pass this information to the default method. This default method calculates
the sensitivities of the model as described in Section 2, and creates a SensMLP object with the
result of the sensitivity analysis. SensAnalysisMLP() function performs all operations using
matrix calculus to reduce the computational time.
In the current version of NeuralSens (version 1.0.0), the accepted activation functions are
shown in Table 1. To calculate the sensitivities, the function assumes that all the neurons in
a defined layer has the same activation function.
In order to show how SensAnalysisMLP() is used, we use a simulated dataset to train an
MLP model of class ‘nn’ (RSNNS). The dataset consists of a ‘data.frame’ with 1500 rows of
observations and four columns for three input variables (X1, X2, X3) and one output variable
(Y). The input variables are random observations of a normal distribution with zero mean
and standard deviation equal to 1. The output Y is created following Equation 11 based on
X1 and X2:

Y = (X1)2 − 0.5 · X2 + 0.1 · ε (11)
where ε is random noise generated using a normal distribution with zero mean and standard
deviation equal to 1. X3 is given to the model for training and a proper fitted model would
find no relation between X3 and Y .
?NeuralSens::simdata can be executed to obtain more information about the data. The
library is loaded by executing the following code:

R> library("NeuralSens")
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Name Function Derivative
sigmoid f(z) = 1

1+e−z
∂f
∂z (z) = 1

1+e−z ·
(
1 − 1

1+e−z

)
tanh f(z) = tanh (z) ∂f

∂z (z) = 1 − tanh (z)

linear f(z) = z f ′(z) = 1

ReLU f(z) =
{

0 when z ⩽ 0
z when z > 0

∂f
∂z (z) =

{
0 when z ⩽ 0
1 when z > 0

arctan f(z) = arctan (z) ∂f
∂z (z) = 1

1+ez

softplus f(z) = ln (1 + ez) ∂f
∂z (z) = 1

1+e−z

softmax fi(z) = ezi∑
k

(ezk )
∂fi
∂zj

(z) =
{

fi(z) · (1 − fj(z)) when i = j

−fj(z) · fi(z) when i ̸= j

Table 1: Accepted activation functions and their derivatives in SensAnalysisMLP(), where z
refers to the input value of the neuron as described in Equation 1 and z refers to the vector
of input values of the neuron layer.

To test the functionality of the SensAnalysisMLP() function, mlp() function from RSNNS
package trains a neural network model using the simdata dataset.

R> library("RSNNS")
R> set.seed(150)
R> mod1 <- mlp(simdata[, c("X1", "X2", "X3")], simdata[, "Y"], maxit = 1000,
+ size = 10, linOut = TRUE)

SensAnalysisMLP() is used to perform a sensitivity analysis to mod1 using the same dataset
as in training:

R> sens <- SensAnalysisMLP(mod1, trData = simdata, output_name = "Y",
+ plot = FALSE)

sens is a ‘SensMLP’ object and methods of that class can be used to explore the sensitivity
analysis:

R> class(sens)

[1] "SensMLP"

R> summary(sens)

Sensitivity analysis of 3-10-1 MLP network.

Sensitivity measures of each output:
$Y
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mean std meanSensSQ
X1 -0.005406908 1.94524276 1.94476390
X2 -0.485564931 0.06734504 0.49021056
X3 -0.003200699 0.02971083 0.02987535

summary() method prints the sensitivity measures of the output with regard to the inputs
of the model. These measures are calculated using the sensitivities displayed when using
the print() method described below. The mean column (Savg

ik ) shows the mean effect of the
input variable on the output. The std column (Ssd

ik ) shows the variance of the input variable’s
effect on the output along the input space. These columns provide information on the relation
between inputs and output variables:

• If both mean (Savg
ik ) and std (Ssd

ik ) are near zero, it indicates that the output is not
related to the input, because for all the training data the sensitivity of the output with
regard to that input is approximately zero.

• If mean (Savg
ik ) is different from zero and std (Ssd

ik ) is near zero, it indicates that the
output has a linear relationship with the input, because for all the training data the
sensitivity of the output with regard to that input is approximately constant.

• If std (Ssd
ik ) is different from zero, regardless of the value of mean (Savg

ik ), it indicates that
the output has a non-linear relationship with the input, because the relation between
the output and the input vary depending on the value of the input.

Setting an upper bound for std to be considered close to zero so that the relationship between
output and input can be considered as linear is a non-trivial endeavor. The authors are
working on a statistic to test whether the functional relationship between an input and an
output variable can be considered linear and, if successful, it will be included in a future
version of the package.
In the example, the mean and std values show:

• X1 has mean ≈ 0 and standard deviation ≈ 2. This means it has a non-constant,
i.e., non-linear effect on the response variable.

• X2 has mean ≈ 0.5 and standard deviation ≈ 0. This means it has a constant, i.e., linear
effect on the response variable.

• X3 has mean ≈ 0 and standard deviation ≈ 0. This means it has no effect on the
response variable.

An input variable may be considered significant if their sensitivities sik

∣∣
xj

are significantly
different from zero, whether they are positive or negative. In other words, a variable is
considered to be significant when changes in the input variable produce significant changes
in the output variable of the model. White and Racine (2001) conclude that the statistic(
Ssq

ik

)2 =
∑N

j=1

(
sik

∣∣
xj

)2

N is a valid indicator to identify if a variable is irrelevant. Moreover,
Ssq

ik is a measure of the changes in the output due to local changes in the input. Thus, Ssq
ik can

be defined as a measure of the importance of the input variables from a perturbation analysis
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point of view, in the sense that small changes in that input will produce larger changes in the
output.
‘SensMLP’ class has also a print() method to show the sensitivities of the output with regard
to the inputs evaluated in each of the rows of the trData component of the sens object. A
second argument n may be used to specify how many rows to display (by default n = 5).

R> print(sens, n = 2)

Sensitivity analysis of 3-10-1 MLP network.

2000 samples

Sensitivities of each output (only 2 first samples):
$Y

X1 X2 X3
[1,] 2.08642384 -0.4462707 -0.044063158
[2,] -0.34976334 -0.3547381 0.014188363

3.3. Visualizing neural network sensitivity measures

Sensitivity measures of the output variables are useful for quantitative analysis. However,
it can be difficult to compare sensitivity metrics when a large number of input variables are
used. In order to visualize information on the calculated sensitivities, the authors propose
the following plots:

1. Label plot representing the relationship between Savg
ik (x-axis) and Sstd

k (y-axis).

2. Bar plot that shows Ssq
k for each input variable.

3. Density plot that shows the distribution of output sensitivities with regard to each input
(Muñoz and Czernichow 1998):

• The narrow distribution of sensitivity values for X2 (corresponding to a constant
sensitivity) indicates a linear relationship between this input and the output of the
neural net.

• The wide distribution of sensitivity values for X1 (corresponding to a variable
sensitivity) indicates a non-linear relationship between this input and the output.

When the height of at least one of the distributions is greater than 10 times the height of
the smallest distribution, then an extra plot is created using the facet_zoom() function
of the ggforce package (Pedersen 2021). These plots provides a better representation of
the sensitivity distributions.

These plots can be obtained using the SensitivityPlots() function and a ‘SensMLP’ object
calculated using SensAnalysisMLP(). To obtain the plots of Figure 3:

R> SensitivityPlots(sens)
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Figure 3: Example from the SensitivityPlots() function showing plots specified in Sec-
tion 3.3. First plot shows the relation between the mean and standard deviation of the
sensitivities, the second plot shows the square of the sensitivities and the third and fourth
plots show the distribution of the sensitivities.

Or they can be generated using the plot() method of the ‘SensMLP’ object:

R> plot(sens)

In this case, the first plot of Figure 3 shows that Y has a negative linear relationship with X2
(std ≈ 0 and mean < 0), no relationship with X3 (std ≈ 0 and mean ≈ 0) and a non-linear
relationship with X1 (std different from 0). The second plot shows that X3 barely affects the
response variable, being X1 and X2 the inputs with most effect on the output.

3.4. Visualizing neural network sensitivity over time
A common application of neural networks is time series forecasting. Analyzing how sensitivi-
ties evolve over time can provide a better understanding of the effect of explanatory variables
on the output variables.
SensTimePlot() returns a sequence plot of the raw sensitivities calculated by the function
SensAnalysisMLP(). The x-axis is related to a numeric or Posixct/Posixlt variable con-
taining the time information of each sample. The y-axis is related to the sensitivities of the
output with regard to each input.
In order to show how this function can be used, the DAILY_DEMAND_TR dataset is used to
create a model of class ‘train’ from caret package (Kuhn 2008). This dataset is similar to
the elecdaily dataset from fpp2 R package (Hyndman 2020). However, DAILY_DEMAND_TR
contains almost five years of daily data (elecdaily only one year), which makes it more
suitable for training a neural network. It is composed of the following variables:

• DATE: Date of the sample, one per day from 2007-07-02 to 2012-11-30.
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Figure 4: Relation between the output variable, DEM, and the input TEMP of DAILY_DEMAND_TR
database.

• TEMP: Mean daily temperature in ◦C in Madrid, Spain.

• WD: Working day, continuous parameter which represents the effect on the daily con-
sumption of electricity as a percentage of the expected electricity demand of that day
with regard to the demand of the reference day of the same week Moral-Carcedo and
Vicéns-Otero (2005). In this case, Wednesday is the reference day (WDW ed ≈ 1).

• DEM: Total daily electricity demand in GWh for Madrid, Spain.

The following code creates the plot in Figure 4:

R> library("ggplot2")
R> ggplot(DAILY_DEMAND_TR) + geom_point(aes(x = TEMP, y = DEM))

Figure 4 shows the relationship between the electricity demand and the temperature. A
non-linear effect can be observed, where the demand increases for low temperatures (due to
heating systems) and for high temperatures (due to air conditioners).
The following code scales the data, create a train neural network model and apply the
SensTimePlot() function to two years of the data:

R> DAILY_DEMAND_TR[, 4] <- DAILY_DEMAND_TR[, 4]/10
R> DAILY_DEMAND_TR[, 2] <- DAILY_DEMAND_TR[, 2]/100
R> library("caret")
R> set.seed(150)
R> mod2 <- train(form = DEM~TEMP + WD, data = DAILY_DEMAND_TR,
+ method = "nnet", linout = TRUE, maxit = 250, metric = "RMSE",
+ tuneGrid = data.frame(size = 5, decay = 0.1),
+ preProcess = c("center", "scale"), trControl = trainControl())
R> SensTimePlot(mod2, DAILY_DEMAND_TR[1:(365*2), ], output_name = "DEM",
+ date.var = DAILY_DEMAND_TR[1:(365*2), 1], facet = TRUE)
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Figure 5: Example from the SensTimePlot() function, showing how the sensitivities for each
of the inputs evolve over time.

Figure 5 shows that the temperature variable has a seasonal effect on the response variable.
In summer, the temperature is higher and cooling systems demand more electricity, therefore
the demand is directly proportional to the temperature. In winter, the temperature is lower
and heating systems demand more electricity, hence the demand is inversely proportional to
the temperature. The sensitivity of the output with regard to WD has also a seasonal effect,
with higher variance in winter than in summer and greater sensitivity in weekends. Figure 5
can also be generated using the plot() method of a ‘SensMLP’ object:

R> sens2 <- SensAnalysisMLP(mod2, trData = DAILY_DEMAND_TR[1:(365*2),],
+ output_name = "DEM", plot = FALSE)
R> plot(sens2, plotType = "time", facet = TRUE,
+ date.var = DAILY_DEMAND_TR[1:(365*2), 1])

3.5. Visualizing the sensitivity relation as a function of the input values
Sometimes it is useful to know how the value of the input variables affects the sensitivity
of the response variables. The SensFeaturePlot() function produces a violin plot to show
the probability density of the output sensitivities with regard to each input. It also plots
a jitter strip chart for each input, where the width of the jitter is controlled by the density
distribution of the data (Pedersen 2021). The color of the points is proportional to the value
of each input variable, which display whether the relation of the output with the input is
relatively constant within a range of input values.
The following code produce the plot of Figure 6:

R> SensFeaturePlot(mod2, fdata = DAILY_DEMAND_TR[1:(365*2),])
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Figure 6: Example from the SensFeaturePlot() function, showing the relationship of the
sensitivities with the value of the inputs.

It can also be generated using the plot() method of a ‘SensMLP’ object:

R> plot(sens2, plotType = "features")

In accordance with the information extracted from Figure 5, Figure 6 shows that the sensi-
tivity of the output with regard to the temperature is negative when the temperature is low
and positive when the temperature is high. It also shows that the sensitivity of the output
with regard to WD is higher in the weekends (lower values of WD).

3.6. Extending package functionalities to other MLP models

The current version of NeuralSens package (version 1.0.0), includes methods of
SensAnalysisMLP() function for ‘nn’ (neuralnet), ‘nnet’ (nnet), ‘H2ORegressionModel’ and
‘H2OMultinomialModel’ (h2o), ‘mlp’ (RSNNS), ‘list’ (neural), ‘nnetar’ (forecast) and
‘train’ (caret) (only if the object inherits the class attribute from another of the available
packages). Additionally, a ‘numeric’ method is available to perform sensitivity analysis of a
new neural network model using only the weights of the model, its neural structure, and the
activation function of the layers and their derivatives. The first information that must be
extracted from the model are the weights of the connections between layers. These weights
must be passed to the first argument of the SensAnalysisMLP() function as a ‘numeric’
‘vector’, concatenating the weights of the layers in order from the first hidden layer (l = 2)
to the output layer (l = L). The bias weight should be added to the vector before the weights
of the same layer, following the equation below:

wts = [b2, w2
11, w2

21, . . . , w2
n2n1 , b3, w3

11, . . . , bL, wL
11, . . . , wL

nLnL−1 ] (12)
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If the model has no bias, the bias weights must be set to 0 (bl = 0).
The second information is the neural structure of the model. The structure of the model must
be passed to the mlpstr argument as a ‘numeric’ ‘vector’ equal in length to the number of
layers in the network. Each number specifies the number of neurons in each layer, starting
with the input layer and ending with the output layer:
The last information that must be provided are the activation functions of each layer and
their derivatives. If the activation function of a layer is one of those provided by the package
(shown in Table 1), the function can be specified using its name. If the activation function is
not one of those provided in the package, it should be passed as a function. The same applies
to the derivative of the activation function. The activation function Φl(zl) of a layer l and its
derivative ∂(Φl(zl))

∂(zl) must meet the following conditions:

• Φl(zl) must return a ‘vector’ with the same length as zl. The activation function of
each neuron may be different, as long as this condition is met:

Φl(zl) =


ϕl

1(zl
1)

ϕl
2(zl

2)
...

ϕl
nl(zl

nl)


• ∂(Φl(zl))

∂(zl) must return a square ‘matrix’ with the derivative of Φl(zl) with regard to each
component of zl:

∂(Φl(zl))
∂(zl) =
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
Examples of how to use the SensAnalysisMLP() function with new packages can be found
in Appendix A.

3.7. Effect of network structure and training conditions

An important advantage of sensitivity analysis based on partial derivatives is the robustness of
the analysis results regardless of the model’s neural structure. Other methods such as Olden
rely heavily on the neural structure and the initial starting weights. A similar analysis to the
one performed on olden() in Beck (2018) has been performed on the SensAnalysisMLP()
function. To observe the effect of the neural structure on the sensitivity metrics, these metrics
have been calculated for models with 1, 10 and 20 neurons in the hidden layer. For each neuron
level, 50 models with different random initial weights are trained. If the neural structure and
the initial starting weights have no effect on the sensitivity metrics, these metrics should be
the same for all the models. simdata dataset is used to train the models.
Figure 7 shows the mean value of the sensitivity metrics from the 50 models for each neural
structure. It also shows the minimum and maximum value of the metric to display the effect



Journal of Statistical Software 19

Figure 7: Robustness analysis of sensitivity metrics for three neural network models with
different number of neurons in the hidden layer. Fifty different models for each neuron level are
trained with random initial weights. geom_bar shows the mean value of the sensitivity metrics
and geom_errorbar shows the minimum and maximum value of the sensitivity metrics.

of the neural structure and the initial weights values. An important conclusion that can be
derived from Figure 7 is that with enough neurons in the hidden layer, i.e., if the model
can predict the output with enough precision; variance of sensitivity metrics is negligible
compared to the value of the metric.

4. Further examples and comparison with other methods
This section contains several examples in which the functions of the NeuralSens package
are compared with similar functions from other R packages. Section 4.1 trains an MLP
for classification to compare SensAnalysisMLP() with olden(), garson() (Beck 2018) and
plot_explanations() (Pedersen and Benesty 2021). Section 4.2 trains an MLP for regression
to compare SensAnalysisMLP() and SensFeaturePlot() with lekprofile() (Beck 2018)
and partial() (Greenwell 2017).
Topics such as data pre-processing or network architecture should be considered before model
development. Discussions about these ideas have been already held (Cannas, Fanni, See, and
Sias 2006; Amasyali and El-Gohary 2018; Maier and Dandy 2000; Lek et al. 1996) and are
beyond the scope of this paper.
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(a) Sepal-related variables. (b) Petal-related variables.

Figure 8: (a) geom_point plot representing the variables Sepal.Length and Sepal.Width,
(b) geom_point plot representing the variables Petal.Length and Petal.Width.

4.1. Multilayer perceptron for classification

In this example a multilayer perceptron is trained using the well-known iris dataset included
in R. Figure 8 shows two scatterplots comparing the petal-related and sepal-related variables
of the flowers in the dataset. It can be seen that setosa species have a smaller petal size than
the other two species and a shorter sepal. It also shows that virginica and versicolor
species have a similar sepal size, but the latter has a slightly smaller petal size.
The train() function from the caret package creates a new neural network model to predict
the species of each flowers based on petal and sepal dimensions.

R> set.seed(150)
R> mod3 <- caret::train(Species~., data = iris, preProcess = c("center",
+ "scale"), method = "nnet", linout = TRUE, trControl = trainControl(),
+ tuneGrid = data.frame(size = 5, decay = 0.1), metric = "Accuracy")

SensAnalysisMLP() function calculates the sensitivities of the model, providing information
of the relationships between each output class and each input variable.

R> sens4 <- SensAnalysisMLP(mod3)
R> summary(sens4)

Sensitivity analysis of 4-5-3 MLP network.

Sensitivity measures of each output:
$setosa

mean std meanSensSQ
Sepal.Length -0.01346027 0.02698245 0.03007287
Sepal.Width 0.03116669 0.05055589 0.05924712
Petal.Length -0.07133925 0.10172196 0.12396638
Petal.Width -0.06846395 0.09654030 0.11808983

$versicolor
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mean std meanSensSQ
Sepal.Length 0.035833076 0.02252307 0.04228375
Sepal.Width -0.002101449 0.03925762 0.03918294
Petal.Length -0.099221391 0.17568963 0.20126091
Petal.Width -0.093949654 0.16300239 0.18766775

$virginica
mean std meanSensSQ

Sepal.Length -0.01803139 0.02742334 0.03274380
Sepal.Width -0.04199856 0.05663125 0.07035338
Petal.Length 0.20543515 0.28413548 0.34985476
Petal.Width 0.19731097 0.27236735 0.33559057

The sensitivity metrics for each of the output provides information on how the neural network
uses the data to predict the output:

• The setosa class has a greater probability when Petal.Length, Petal.Width and
Sepal.Length variables decrease, or the Sepal.Width variable increases.

• The versicolor class has a greater probability when Petal.Length and Petal.Width
variables decrease, or the Sepal.Length variable increases.

• The virginica class has a greater probability when the Petal.Length and Petal.Width
variables increase, and Sepal.Length and Sepal.Width variables decrease.

This information corresponds to what is observed in Figure 8, where setosa class is char-
acterized by a low value of Petal.Length, Petal.Width and Sepal.Length variables, and
versicolor and virginica classes are differentiated by the value of the Petal.Length and
Petal.Width variables.
garson() and olden() method from the NeuralNetTools package (Beck 2018) provide infor-
mation on input importance. As they provide information related to the first output neuron,
the comparison with SensAnalysisMLP() is done using the sensitivity measures for the first
output class.

R> SensitivityPlots(sens, der = FALSE, output = "setosa")
R> garson(mod3)
R> olden(mod3)

Figure 9a shows the sensitivity metrics calculated by SensAnalysisMLP(), Figure 9b shows
garson()’s importance metrics for the input variables and Figure 9c shows olden()’s impor-
tance metrics for the input variables. The mean value of the sensitivities in the top chart of
Figure 9a is similar to olden()’s metrics observed in 9c, and the Ssq

ik values in the barplot
of Figure 9a are similar to garson()’s values observed in Figure 9b. It must be noted that
values from SensAnalysisMLP() are more robust against changes in the neural structure and
initial weights as stated in Section 3.7 and Beck (2018).
The lime (Pedersen and Benesty 2021) package can also be used to obtain information on
the neural network model. In this case, lime() and explain() functions train a decision
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(a) Model 3, SensitivityPlots().

(b) Model 3, garson().

(c) Model 3, olden().

Figure 9: (a) Global sensitivity measures plots of mod3 for the iris dataset using
SensitivityPlots(), (b) variable importance using garson() from NeuralNetTools, (c) vari-
able importance using olden() from NeuralNetTools.

tree model using the entire dataset to interpret how the neural network predicts the class of
three different samples (one for each iris species) using all the features in the training dataset.
plot_explanations() function shows graphically the information given by the decision tree.

R> library("lime")
R> plot_explanations(explain(iris[c(1, 51, 101),], lime(iris, mod3),
+ n_labels = 3, n_features = 4))

Figure 10 confirms the relationships between the inputs and the output variable. However,
this method does not provide a quantitative measure for the importance of each input. Due
to the lack of quantitative measures for input importance this method can not be directly
compared to the other methods exposed in this section (Figure 9).
Sometimes it may be more interesting to obtain global importance measures instead of mea-
sures for each output variable. NeuralSens allows us to obtain global measures using the
CombineSens() function. It computes the sensitivity measures of the whole model following
Equations 8, 9 and 10. These global measures are an indicator of how much, on average, the
output probabilities change when an input variable changes.
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Figure 10: Faceted heatmap-style plots generated by applying the plot_explanations()
function to mod3 for three selected samples of iris dataset. Each plot represents the contri-
bution (positive or negative) of each feature to the probability of a specific class of iris[,
"Species"] for the specified data samples.

R> summary(CombineSens(sens))

Sensitivity analysis of 4-5-3 MLP network.

Sensitivity measures of each output:
$Combined

mean std meanSensSQ
Sepal.Length 0.001447138 0.03545616 0.03484419
Sepal.Width -0.004311108 0.05770054 0.05547536
Petal.Length 0.011624836 0.24404886 0.21535630
Petal.Width 0.011632454 0.23246026 0.20434926

4.2. Multilayer perceptron for regression

The Boston dataset from the MASS (Ripley 2022) package is used to train an nnet (Venables
and Ripley 2002) model. This dataset contains information collected by the U.S. Census
Service on housing in the suburbs of Boston (run ?MASS::Boston to obtain more information
about the dataset).
The objective of the model is to predict the nitric oxides concentration (parts per 10 million),
stored in the nox variable. The input variables of the model are zn (proportion of residential
land zoned for lots over 25,000 sq.ft.), rad (index of accessibility to radial highways) and
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lstat (lower status of the population (percent)). scale() function standardizes the input
variables. SensFeaturePlot(), SensAnalysisMLP(), lekprofile() (NeuralNetTools, Beck
2018) and pdp() (pdp, Greenwell 2017) functions analyze the relationships of the output with
regard to the inputs.

R> data("Boston", package = "MASS")
R> Boston <- as.data.frame(scale(Boston[, c("zn", "rad", "lstat", "nox")]))
R> set.seed(150)
R> mod4 <- nnet::nnet(nox ~ ., data = Boston, size = 15, decay = 0.1,
+ maxit = 150)
R> library("NeuralNetTools")
R> lekprofile(mod4, group_vals = 6)
R> lekprofile(mod4, group_vals = 6, group_show = TRUE)
R> library("pdp")
R> pdps <- list()
R> for (i in 1:3) {
+ pdps[[i]] <- autoplot(partial(mod4, pred.var = names(Boston)[i],
+ train = Boston, ice = TRUE), train = Boston,
+ center = TRUE, alpha = 0.2, rug = TRUE) +
+ theme_bw() + ylab("nox")
+ }
R> gridExtra::grid.arrange(grobs = pdps, nrow = 1)
R> SensFeaturePlot(mod4, fdata = Boston, output_name = "nox")
R> SensAnalysisMLP(mod4, trData = Boston, output_name = "nox")

Figures 11a and 11b display the results of Lek’s profile method from the NeuralNetTools
package. To prevent the analysis of non-representative scenarios in the input dataset, a k-
means clustering with 6 clusters has been applied to the dataset. Each subplot in Figure 11a
shows the evolution of the output variable when varying the input variable of interest across a
range of values corresponding to the center of the k-means clusters. The other inputs remain
constant in their values in the center of each k-means cluster. Figure 11b shows the value of
the input variables at each of the cluster centers.
Figure 11c shows the PDP and ICE plots of mod4 output with regard to each input variable.
An ICE curve is calculated by maintaining the input variable of interest xi at a value xik,
where xik is the value of xi in the k row of the dataset, and varying all other inputs across
their values in the dataset. For a given dataset with N samples, there would be N ICE curves
for each input variable. The PDP curve can be calculated as the mean of these ICE curves.
PDP shows the marginal effect a given input variable has on the response variable of the
neural network model, averaging the effects of the rest of the input variables.
Calculating all ICE curves shows how the output variable change in the entire input space
of the dataset. This comes at a large computational cost, since the number of curves that
must be calculated are directly proportional to the number of samples and number of input
variables. The computational time can be reduced by calculating only the PDP or a reduced
number of ICE curves, but in that case some important scenarios might be ignored.
SensFeaturePlot() function performs an analysis similar to Lek’s and pdp by plotting the
sensitivity of the output with regard to the input colored proportionally to the value of the
input variable. On the one hand, lekprofile() function indicates that lstat and rad have
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(a) Model 4, lekprofile().

(b) Cluster grouping of lekprofile().

(c) Model 4, pdp and ICE plots.

(d) Model 4, SensFeaturePlot(). (e) Model 4, SensAnalysisMLP() plots.

Figure 11: (a) Sensitivity analysis of a neural network using lekprofile() from Neural-
NetTools. (b) Values at which explanatory variables are held constant for each cluster in
lekprofile(). (c) Partial dependence plots (red) and individual conditional expectation
plots (black) of mod4. (d) SensFeaturePlot() applied to mod4. (e) SensAnalysisMLP()
applied to mod4.
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a direct relationship with the output and zn has an inverse relationship with the output.
Figure 11a also suggests that all the input variables have a non-linear relationship with the
output. On the other hand, Figure 11d shows that the sensitivity of the output has an
approximately linear relationship with zn, and a non-linear relationship with the other two
inputs. In this case, the lekprofile() function gives more information about the model, but
it can be difficult to understand how the value of the input variables in each group affects the
output variable.
SensAnalysisMLP() can be used to obtain more information on variable importance and
relationships between variables. In this case, the rad variable affects the output the most,
information which can be difficult to extract from the other functions.

4.3. Computational cost

As the size of neural network models increase exponentially to solve more complex tasks,
performing a sensitivity analysis of a model could become an intensive computational task.
Sensitivity analysis using partial derivatives requires matrix calculus where the size of the
matrices is directly proportional to the size of the hidden layers. As the number of neurons
in hidden layers increase, the time to perform these calculations grows rapidly.
A comparison of how much time is required by a sensitivity analysis using the different meth-
ods included in Section 4 has been performed. This comparison has been carried out using
the YearPredictionMSD dataset (Dua and Karra Taniskidou 2017). This dataset consists of
90 input variables and 515345 samples. The authors propose to measure the computational
time when varying the number of input variables, the number of samples and the size of the
hidden layer of a single hidden layer MLP model.
This analysis has been performed on a computer with the following specs: processor Intel(R)
Core(TM) i7-8700 @3.20 GHz, 32 GB of RAM memory, R version 3.6.3 (2020-02-29), platform
x86_64-w64-mingw32/x64 (64-bit) and running under Windows 10 x64 (build 18362).
Figure 12 shows the computational time of each function varying the number of training
samples, the number of input variables and the number of neurons in the hidden layer. Some
conclusions can be reached from this figure:

• The fastest functions are the olden() and garson() functions from the NeuralNetTools
package, because they only perform a sum of the weight matrices of the model. As it does
not depend of the number of samples, the computational time is directly proportional
to the size of the neural network layers (input and hidden layers).

• lekprofile() from NeuralNetTools and SensAnalysisMLP() from NeuralSens need
of the similar computational times.h SensAnalysisMLP() is affected by the number
of neurons in the hidden layer and the number of samples, as the size of the matrices
increases with the number of neurons and the number of matrices multiplication increase
with the number of samples. lekprofile() is more affected by the number of input
variables, because the number of curves to be created increase with the number of input
variables. However, due to the fact that it uses only a fixed number of scenarios it does
not depend on the number of samples. Since the number of neurons in the hidden layer
barely affects the computational time to predict the output variable in each scenario,
this parameter does not affect the computational time of lekprofile.
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(a) Computational time using 1000 training samples.

(b) Computational time using 5000 training samples.

(c) Computational time using 10000 training samples.

Figure 12: Computational time of the different sensitivity analysis methods with different
number of training samples (1000, 5000 and 10000 training samples), number of input vari-
ables (from 5 to 90 input variables) and number of neurons in the hidden layer (10, 30, 50
and 100 neurons).
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• The slowest function is the partial() function from the pdp package when calculating
all ICE curves. Calculating all ICE curves instead of only the PDP curves adds a
noticeable amount of computational time. However, if the form of the ICE curves is
not constant throughout the samples of the dataset (as in Figure 11c), showing only the
PDP curve gives misleading information as the form of the PDP curve does not resemble
all the ICE curves. The computational time for partial() is directly proportional to
the number of samples and the number of input variables, because the number of curves
to be calculated increase exponentially as these parameters increase.

In addition to these conclusions, it must be mentioned that this analysis has been performed
using a model with only one output variable. If there were several output variables, to
obtain analogous information as SensAnalysisMLP() the other functions must be called
once for each output. Because of this, the computational time of all the functions except
SensAnalysisMLP() must be multiplied by the number of output variables of the model in
order to obtain an approximate idea of the computational time they require.

5. Conclusions
The NeuralSens package provides functions to extract information from a fitted feed-forward
MLP neural network in R. These functions can be used to obtain the partial derivatives of
the neural network response variables with regard to the input variables and to generate plots
to obtain different information on the network using these partial derivatives. Methods are
available for the following CRAN packages: ‘nn’ (neuralnet), ‘nnet’ (nnet), ‘mlp’ (RSNNS),
‘H2ORegressionModel’ and ‘H2OMultinomialModel’ (h2o), ‘list’ (neural), ‘nnetar’ (fore-
cast) and ‘train’ (caret) (only if the object inherits the class attribute from another package).
An additional method for class ‘numeric’ is available to use with the basic information of the
model (weights, structure and activation functions of the neurons).
The main objective of the package is to help the user to understand how the neural network
uses the inputs to predict the output. This information may be useful for simplifying the
neural network structure by eliminating the inputs which have no effect on the output. It could
also provide a deeper understanding on the problem and the relationship among variables.
NeuralSens is another tool among several other methods for exploratory data analysis and
model evaluation, and it can be used with other packages (Beck 2018; Greenwell 2017) to
obtain more information on the neural network model. Nevertheless, it must be noted that
sensitivity analysis using partial derivatives provides information about variable relationships
such as PDP or ICE plots significantly faster. Moreover, it also provides variable importance
measures like Garson’s or Olden’s methods and these measures are independent of the neural
structure and training conditions of the model as long as it predicts the output with enough
precision.
Improving the information given by these methods will have value for exploratory data-
analysis and characterization of relationships among variables. Future versions of the package
may include additional functionalities as:

• Parallelizing the sensitivity calculations when workers registered to work in parallel are
detected.

• Calculating the sensitivities of the output variables with regard to the output of hidden
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neurons, in order to obtain the importance of each hidden neuron and helping to select
the optimal network structure.

• Calculating the sensitivities of other neural network models such as probabilistic radial
basis function network (PRBFN) or Recurrent Neural Network (RNN).

• Calculating the second order partial derivatives of an MLP model to analyze the effect
of interactions between two input variables.

• Develop a statistic to determine if the relationship between the output and input is
linear.
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A. Examples of SensAnalysisMLP() ‘numeric’ method
The R packages monmlp (Cannon 2017) and tensorflow (Allaire and Tang 2021) is used in
this section to illustrate how the ‘numeric’ method of SensAnalysisMLP() function can be
applied to new models. The simdata dataset described in Section 3.2 is used to train the
MLP models in this appendix.

R> library("monmlp")
R> set.seed(150)
R> monmlp_model <- monmlp.fit(x = data.matrix(simdata[, 1:3]),
+ y = data.matrix(simdata[, 4]), hidden1 = 5, iter.max = 250,
+ silent = TRUE)

The weights of the model are extracted and ordered as described in Equation 12:

R> W1 <- rbind(monmlp_model[[1]]$W1[4,], monmlp_model[[1]]$W1[1:3,])
R> W2 <- c(monmlp_model[[1]]$W2[6,], monmlp_model[[1]]$W2[1:5,])
R> wts <- c(as.vector(W1), as.vector(W2))

The activation functions of the hidden and output layers and their derivatives are provided
in the ‘Th’, ‘To’, ‘Th.prime’ and ‘To.prime’ attribute of the model respectively. However, the
derivative functions does not meet the condition of returning a square ‘matrix’ so it must be
modified before using SensAnalysisMLP():

R> Actfunc <- c("linear", attr(monmlp_model, "Th"),
+ attr(monmlp_model, "To"))
R> Deractfunc <- c("linear",
+ function(v) {diag(attr(monmlp_model, "Th.prime")(v))},
+ function(v) {diag(attr(monmlp_model, "To.prime")(v))})

The last information that must be passed to SensAnalysisMLP() is the neural structure:

R> mlpstruct <- c(3, 5, 1)

Since monmlp.fit() automatically scales the variables when training the model, the input
variables must be scaled before calculating the sensitivities.

R> x <- data.matrix(simdata[, 1:3])
R> x.center <- attr(monmlp_model, "x.center")
R> x.scale <- attr(monmlp_model, "x.scale")
R> x <- sweep(x, 2, x.center, "-")
R> x <- sweep(x, 2, x.scale, "/")
R> x <- cbind(data.frame(x), Y = simdata[, 4])

Once all the information has been prepared, the ‘numeric’ method of SensAnalysisMLP()
can be used to perform a sensitivity analysis of the model:

R> sens_monmlp <- SensAnalysisMLP(wts, trData = x, mlpstr = mlpstruct,
+ coefnames = c("X1", "X2", "X3"), output_name = "Y",
+ actfunc = Actfunc, deractfunc = Deractfunc, plot = FALSE)
R> summary(sens_monmlp)
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Sensitivity analysis of 3-5-1 MLP network.

Sensitivity measures of each output:
$Y

mean std meanSensSQ
X1 -1.741261e-02 1.972087796 1.971671603
X2 -4.828116e-01 0.010075281 0.482916667
X3 -7.807139e-05 0.005014291 0.005013646

summary() method shows the same relationships between input variables X1, X2 and X3 and
output variable Y as in Sections 3.2 and 3.3.
Sensitivity analysis of a tensorflow MLP model can be performed extracting analogous infor-
mation as in the previous example. As the popularity of this package is growing rapidly, a
specific guide on how to extract the information seems necessary.
The following code is used to load the tensorflow and keras (Allaire and Chollet 2021) libraries
and to train a MLP model with two hidden layers:

R> library("tensorflow")
R> library("keras")
R> keras_model <- keras_model_sequential() %>%
+ layer_dense(units = 16, activation = "relu", input_shape = 3) %>%
+ layer_dense(units = 8, activation = "relu") %>%
+ layer_dense(units = 1) %>%
+ compile(loss = "mse", optimizer = optimizer_rmsprop(),
+ metrics = list("mean_absolute_error"))
R> history <- keras_model %>% fit(data.matrix(simdata[, 1:3]),
+ array(simdata[, 4]), epochs = 500, verbose = 0)

Now that the model is trained, the weights and neural structure of the model can be obtained
using the get_weights() function:

R> model_weights <- get_weights(keras_model)
R> wts <- c()
R> neural_struct <- c(nrow(model_weights[[1]]))
R> for (i in seq(2, length(model_weights), 2)) {
+ neural_struct <- c(neural_struct, dim(model_weights[[i]]))
+ lyr_wgts <- rbind(model_weights[[i]], model_weights[[i - 1]])
+ wts <- c(wts, unname(do.call(c, as.data.frame(lyr_wgts))))
+ }

Since all the activation functions are already implemented in NeuralSens, they can be defined
as a ‘character’ ‘vector’.

R> actfunc <- c("linear", "ReLU", "ReLU", "linear")

The SensAnalysisMLP() function can already be used with all the information obtained.
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R> sens_keras <- SensAnalysisMLP(wts, trData = simdata,
+ mlpstr = neural_struct, coefnames = names(simdata)[1:3],
+ output_name = names(simdata)[4], actfunc = actfunc, plot = FALSE)
R> summary(sens_keras)

Sensitivity analysis of 3-16-8-1 MLP network.

Sensitivity measures of each output:
$Y

mean std meanSensSQ
X1 -0.000817390 1.96281649 1.96232590
X2 -0.509612746 0.05305515 0.51236568
X3 -0.003731768 0.03125266 0.03146691

Again, the summary() method shows the same relationships between input variables X1, X2
and X3 and output variable Y as in Sections 3.2 and 3.3.
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