Journal of Statistical Software

April 2022, Volume 102, Issue 2. doi: 10.18637/jss.v102.i02

Multivariate Normal Variance Mixtures in R:
The R Package nvmix

Erik Hintz Marius Hofert Christiane Lemieux
University of Waterloo University of Waterloo University of Waterloo
Abstract

We present the features and implementation of the R package nvmix for the class of
normal variance mixtures including Student ¢ and normal distributions. The package pro-
vides functionalities for such distributions, notably the evaluation of the distribution and
density function as well as likelihood-based parameter estimation. The distributional fam-
ily is specified through the quantile function of the underlying mixing random variable.
The R package nvmix thus allows one to model multivariate distributions well beyond
the classical multivariate normal and ¢ case. Additional functionalities include graphical
goodness-of-fit assessment, the estimation of the risk measures value-at-risk and expected
shortfall for univariate normal variance mixture distributions and functions to work with
normal variance mixture copulas, such as sampling and the evaluation of normal variance
mixture copulas and their densities. Furthermore, the package nvmix also provides func-
tionalities for the evaluation of the distribution and density function as well as random
variate generation for the more general class of grouped normal variance mixtures.

Keywords: multivariate normal variance mixtures, Student ¢, Gauss, distribution function,
density, random number generation.

1. Introduction

The class of multivariate normal variance mixtures including the multivariate normal and the
(Student) ¢ distributions, belongs to the most widely used classes of multivariate distribu-
tions in applications in statistics, finance, insurance and risk management. A d-dimensional
random vector X = (Xi,...,Xy) follows a normal variance mixture, denoted by X ~
NVMy(p, X, Fyy), if, in distribution,

X =p+VWAZ, (1)

https://doi.org/10.18637/jss.v102.i02
https://orcid.org/0000-0003-0046-3120
https://orcid.org/0000-0001-8009-4665
https://orcid.org/0000-0002-6711-602X

2 nvmix: Multivariate Normal Variance Mixtures in R

where p € R denotes the location (vector), ¥ = AAT (for A € R%**) is the scale (matrix)
(a covariance matrix), and W ~ Fyy is a non-negative random variable independent of Z ~
N (0, I;) (where I}, € R¥** denotes the identity matrix); see, for example, McNeil, Frey, and
Embrechts (2015, Section 6.2). As AZ ~ Ny(0,%) for any matrix A satisfying AAT = 3,
(1) is a valid definition irrespective of the particular choice of the matrix A. Note that this
definition also allows for ¥ to be a singular matrix. For some applications, however, such as
computing the log-density function or studying the Mahalanobis distance of X from p with
respect to X as discussed below, we do need that X has full rank.

It is easy to see from (1) that X | W ~ Ngy(p, W), so that W indeed “mixes” the covariance
matrix of a multivariate normal distribution. The mixing variable W can be viewed as a shock
affecting the (co)variance matrix of all components in X. If E(v/W) < oo, then E(X) = p.
If E(W) < 0o, then COV(X) = E(WX) 4 COV(u+vVW0) = E(W)X, so that CORR(X) = P,
the correlation matrix corresponding to 3.

It is well known that components of a multivariate normal random vector are independent
if and only if they are uncorrelated. The multivariate normal distribution is in fact the only
normal variance mixture distribution with this property as can be seen from (1): if A (and
therefore) is a diagonal matrix, i.e., when the components of X are uncorrelated, they are
independent if and only if W is constant almost surely so that X is multivariate normal; see
McNeil et al. (2015, Lemma 6.5) for a proof. A big advantage of normal variance mixtures is
that they can achieve a large range of multivariate distributions well beyond the multivariate
normal, with different (joint and marginal) tail behavior, including tail dependence, while
keeping some of the desirable properties of the multivariate normal, such as closedness with
respect to linear combinations; see McNeil et al. (2015, Section 6.2).

If ¥ has full rank, the distribution of the squared Mahalanobis distance of X in (1) given by
DX p,%) = (X —)T (X — p) 2)

can be useful for statistical purposes, such as graphical goodness-of-fit assessment. Note that
D} X;u, %) | W ~ TI'(d/2,2W) where T'(a,3) denotes a gamma distribution with shape
a > 0 and scale 8 > 0. We therefore refer to D?(X; u,¥) in (2) as a gamma mixture model.
The R (R Core Team 2021) package nvmix (Hofert, Hintz, and Lemieux 2022), available from
the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=
nvmix, provides functionalities for working with multivariate normal variance mixtures spec-
ified via the quantile function Fyj; of W which for u € (0,1) is defined by Fyj; (u) = inf{w :
Fy (w) > u}. In particular, package nvmix can, among other things, be used to perform the
four main tasks for multivariate distributions:

1. Sampling from X based on (1).
2. Evaluating the cumulative distribution function (cdf) of X in (1).
3. Evaluating the (log-)density function of X in (1).

4. Likelihood-based estimation of the parameters p, 3 and the parameters of W given an
independent and identically distributed (iid) sample X1, ..., X,, from NVMy(u, X, Fiy).

https://CRAN.R-project.org/package=nvmix
https://CRAN.R-project.org/package=nvmix

Journal of Statistical Software 3

The first task is straightforward based on (1) and the Cholesky factor of ¥. The sampling
procedure is implemented in the function rnvmix(). The remaining tasks, however, are
typically challenging. FEvaluating the distribution function, for instance, requires numerical
approximation of a d-dimensional integral. In the R package nvmix, randomized quasi-Monte
Carlo (RQMC) and adaptive algorithms that were derived in Hintz, Hofert, and Lemieux
(2021) are implemented to perform the three remaining tasks following the conventional syn-
tax [r/p/d/fitjnvmix(). The quantile function of the mixing random variable W can be
passed to these functions via the argument gmix. Here is a first example for the tasks 1)
to 4):

R> library("nvmix")

R>d <- 3

R> scale <- diag(d)

R> loc <- rep(0, d)

R> df <- 4.1

R> n <- 200

R> x <- 1:d

R> gmix <- function(u, df) 1 / qgamma(1l-u, shape = df/2, rate = df/2)
R> rt <- rnvmix(n, gmix = gmix, loc = loc, scale = scale, df = df)
R> pt <- pnvmix(x, gmix = gmix, loc = loc, scale = scale, df = df)
R> dt <- dnvmix(x, gmix = gmix, loc = loc, scale = scale, df = df)
R> fit_t <- fitnvmix(rt, qmix = qmix, mix.param.bounds = c(0.5, 10))

Here, gmix is the quantile function of an inverse-gamma distribution with shape and rate
parameter df/2, so that the resulting mixture is multivariate ¢ with df degrees of freedom;
see page 13. By default, the function fitnvmix() uses the variable name nu for parameters
of the mixing distribution. That is, the variable nu in the fit_t object corresponds to the
estimated degrees of freedom.

In order to work with the squared Mahalanobis distance D?(X;u,Y) in (2), the package
nvmix also provides the functions [p/d/q/r|gammamix () which can be used to evaluate the
distribution, density and quantile function of gamma-mixture models as well as for sampling.

We highlight that with the functionalities provided by package nvmix, one can investigate
various normal variance mixture models by merely specifying a quantile function for the
mixing distribution. This saves the work of manually implementing lengthy fitting routines
and estimation procedures for the distribution and density function tailored to the mixture
under consideration. Furthermore, crude estimation procedures for the distribution function
(for instance, based on sampling from the normal variance mixture and accepting points that
fall within the desired range) typically provide much less efficient estimators, as demonstrated
in Genz and Bretz (2002) for the multivariate ¢ distribution.

The remainder of this paper is organized as follows: Section 2 provides a brief overview of
other R packages related to nvmix. Section 3 explains the algorithms implemented in the more
involved functions dnvmix (), pnvmix() and fitnvmix(). Section 4 illustrates how package
nvmix can be used through various examples. Section 5 includes an example of an application
to a financial dataset. Section 6 defines grouped normal variance mixtures and illustrates how
package nvmix can be used to work with this class of distributions while Section 7 concludes
this paper.

4 nvmix: Multivariate Normal Variance Mixtures in R

2. R packages for multivariate ¢t and related distributions

For estimating multivariate normal and ¢ probabilities in particular, various packages are
available, such as the R package mnormt (Azzalini and Genz 2020) or the R package mvtnorm
(Genz, Bretz, Miwa, Mi, and Hothorn 2021). The latter is one of the most widely used
packages according to reverse depends (Eddelbuettel 2012) and provides methods for the
distribution, density, and equicoordinate quantile functions as well as a sampling procedure.
However, evaluating the multivariate ¢ with non-integer degrees of freedom is not possible in
mvtnorm, and neither is fitting. Another software package focusing on evaluating multivariate
normal and ¢ probabilities is the R package tlrmvnmvt (Cao, Genton, Keyes, and Turkiyyah
2022). The focus of this package lies on evaluating very high dimensional normal and ¢
probabilities by exploiting low-rank covariance structures. The R packages sn (Azzalini 2021)
and tmvtnorm (Wilhelm and Manjunath 2015) provide functionalities for skew and truncated
normal and ¢ distributions, respectively.

The parameters of a multivariate ¢ distribution are typically estimated using expectation-
maximization-like algorithms. For instance, an ECME (expectation constrained maximization
either) algorithm for estimating the location p, scale ¥ and degrees of freedom v is provided by
the function fit.mst () in the R package QRM; see Pfaff and McNeil (2020). The R package
MVT (Osorio 2015) provides the function studentFit () which allows one to estimate p and
> for given degrees of freedom.

To the best of our knowledge, there has not been any software available for the R environment
for statistical computing and graphics that can be used to perform the four important tasks
of sampling, evaluating the density and distribution function as well as fitting for the class
of multivariate normal variance mixture distributions when only the quantile function of the
mixing random variable W is available in the form of a “black box”.

3. The underlying algorithms

This section provides a high-level description of the algorithms underlying the main functions
pavmix (), dnvmix () and fitnvmix () of the R package nvmix. For a more detailed derivation
and theoretical treatment, see Hintz et al. (2021).

3.1. Estimating probabilities

The function pnvmix () can be used to estimate the cdf and, more generally, quadrant prob-
abilities of X ~ NVMy(u, X, Fiyy). Here, we are interested in estimating

F(a,b):P(a<X§b):P(a1<X1Sbl,...,ad<Xd§bd)

for vectors a,b € RY = (RU {—o00,00})¢ and @ < b componentwise. Note that the cdf of X
is recovered by setting @ = (—o0, ..., —00); this is also the default behavior of the function
povmix ().

Based on ideas of Genz (1992); Genz and Bretz (1999, 2002, 2009), Hintz et al. (2021) use a
conditioning argument as well as a series of transformations to obtain

Flab) = [gu)du.

(0,1)4

Journal of Statistical Software

where g(u) = H;-izl gi(ug, ... ui—1), w= (ug,...,uq—1) € (0,1)¢ and g;(uog,...u;i_1) = e; — d;
fori=1,...,d. The d;’s are recursively defined by

dy = di(up) = ® (a—m) ,
Cr1y/ Fiy (uo)

1
di:di(u()a"wuifl) =d| 4 chjq) d —|—’LL](dj)))
Ciz /F%(UO =1
for i = 2,...,d and the e; are of the same form as the d; with a; replaced by b; for i =

,d. Here, C' = (Cij)gl 'j=1 denotes the Cholesky factor of X, i.e., a lower triangular matrix

satlsfylng CCT =¥ and ®(z) = 1/v2r [* e~/2 dt denotes the cdf of the standard normal
distribution. The above representation holds for the case when ¥ has full rank (so that Cj; > 0
fori=1,...,d). A similar formula can be derived for the singular case; see Hintz et al. (2021,
Section 3.4) for details.

Internally, the function pnvmix () first reorders the limit vectors a, b, scale matrix 3 and the
location vector p in a way so that the overall variance of the integrand ¢ is reduced. Then,
an iterative RQMC method is used to estimate F(a,b): In each iteration, the integrand
g is evaluated at a randomized low-discrepancy point-set until the default or user-supplied
absolute (or relative) error tolerance is met. For performance reasons, the evaluation of the
integrand g is performed in C. For the generation of quasi-random numbers, nvmix imports
the R package qrng of Hofert and Lemieux (2020) and by default uses a randomized Sobol’
sequence (obtained by calling sobol()). This is also the default for all other RQMC-based
methods in package nvmix. The type of uniforms used can be changed to a generalized Halton
sequence (in which case pnvmix () calls ghalton() of qrng) or to pseudo-random, in which
case the point-set is generated via runif (); for details on changing such hyperparameters,
see 7get_set_param().

3.2. Estimating the log-density function

For likelihood-based methods, it is necessary to evaluate the log-density function of a normal
variance mixture distribution at a sample. While for some special normal variance mixtures,
such as finite mixtures or the multivariate ¢ distribution, the density is available in closed form,
this is not the case for a general normal variance mixture distribution. As such, a method
capable of estimating the log-density function of any normal variance mixture is needed.
Our proposed method is implemented in the function dnvmix (), which efficiently estimates
the density f(zx) for x € R? of X ~ NVMy(u, ¥, Fyyr). We first outline the main idea behind
the method implemented in dnvmix(); for more details, see Hintz et al. (2021, Section 4).

In order for the density to exist, ¥ must have full rank. A conditioning argument then yields

/ Fxiw (@ | w) dFy (w / h(u

where

! DQ(CCWE))
h(u) = ox D@ B)) y | |
v \/(27rFV$(u))d|z| p< 2F}; (u) €(0,1)

h(u)

nvmix: Multivariate Normal Variance Mixtures in R

(x-w'= M (x-p) =12

2.0e-07
L

1.0e-07
L

0.0e+00
L

h(u)

1.0e-12 2.0e-12

0.0e+00

(x-w)'z(x-p) =120

h(u)

0e+00 2e-18 4e-18 6e-18 8e-18 1le-17

(x - 1) (x - p) = 1200

Figure 1: Integrand h for a 10-dimensional ¢ distribution with 2.2 degrees of freedom.

Estimating f(x) therefore requires the approximation of a univariate integral.

At first glance, f(x) may be approximated via

— 1
fl@) = @) = 3 hw),
i=1
where u; € (0,1) for i = 1,...,n are either pseudo- or quasi-random numbers and n is chosen

so that the error estimate meets some pre-specified tolerance. In practice, however, it is often
required to compute the logarithmic density log f(x) rather than f(x). In order to obtain

a numerically more robust estimator for log f(x) than just taking log f(x), we define the
function LSE (logarithmic sum of exponentials) by

LSE(Cla e 7Cn) = log (Z eXp(Ci)> = Cmax + log (ZeXp(Ci - cmax)))

i=1 i=1

where ¢1,...,¢, € R and c¢pax = max{cy,...,c,}. The right-hand side of this equation is
numerically more stable than the left-hand side as the sum inside the logarithm is bounded
between 1 and n. Applied to our problem, we can use

—

log f(x) = —log(n) + LSE (log h(u1), . .., log h(uy)) . (3)

Note that mathematically, lom) = log f(x) but numerically, log f(x) is more stable, espe-
cially for large Mahalanobis distances D?(x; i, X)) that yield very small (negative) values of
log h(u;). We refer to the estimator in (3) as crude estimator.

— —

—

It turns out that the estimator log f(«) performs poorly when the input & has a large Ma-
halanobis distance D?(x; u,Y). To see why, Figure 1 shows the integrand h in the special
case when W follows an inverse-gamma distribution (so that X is multivariate ¢). When the
Mahalanobis distance D?(x; u,) is large, most of the mass of the integrand is concentrated
on a small subinterval of (0, 1) and this relevant area may be undersampled or not be sampled
from at all.

To overcome this issue, we suggest using an adaptive RQMC procedure that samples mostly in
a subinterval (u;, u,) C (0, 1) around the peak of h(u) encompassing the maximum, and we use
crude trapezoidal rules in the remaining intervals (0,v;) and (u,, 1) that do not significantly
contribute to the value of f(z) anyway. Denote by hmax := max,e(o,1){h(u)} the maximum

Journal of Statistical Software

value of h and by u* the maximizer; see Hintz et al. (2021, Lemma 5.1) for details. One can
show that for any threshold ey, satisfying 0 < e, < hpax there exists an interval (u;, u,) with
u* € (ug,u,) such that h(u) > e, for u € (u,u,r) and h(u) < e, for u € (0,1) \ (ug, ur).
This result holds for any normal variance mixture with continuous mixing random variable W
supported on [0, c0); note that when W is discrete, the density is known analytically and no
estimation is necessary. The idea is then to choose ey}, in a way such that the intervals (0, u;)
and (u,,1) do not significantly contribute to the density (for instance, if they are k = 10
orders smaller than hp,.y), and then obtain the values u;, u* and u, using bisections.

It is typically necessary to evaluate the density function at several inputs xi,...,xy. For
instance, for likelihood-based methods the log-density of a sample {@1,...zx} needs to be
optimized over some parameter space. For performance reasons it is then highly desirable
that the log-density function is vectorized, as otherwise calls to the likelihood function are
too time-consuming. On the one hand, the above adaptive procedure is input-dependent
(different inputs & will give different maximizers u* and thus different subintervals (u;, u,)).
On the other hand, the crude procedure (which always samples over the whole domain of
W) can be vectorized easily by using the same random numbers, that is, the same Fjj; (u;)
for all inputs. Furthermore, the crude estimator from (3) works well for inputs & with small
Mahalanobis distance.

Hintz et al. (2021, Algorithm 4.3) suggests a combination of the crude and adaptive approach
that only uses the adaptive procedure when necessary and also re-uses expensive quantile
evaluations Fyj; (u). The following algorithm gives a high-level summary of the algorithm
implemented in the function dnvmix () of the R package nvmix. Given inputs xi,..., &/,
the order k to determine the threshold ey}, and an error tolerance e, estimate log f(x;), | =
1,...,n/, as follows:

1. Use the crude estimator from (3) with small n, to obtain estimates log f(x;), | =
1,...,n/. Store all uniforms and quantile evaluations (u, Fyj; (u)), in a list, say L.

2. If all estimates log f(x;), l = 1,...,n' meet the error tolerance e, go to Step 4. If not,
assume after reordering that xs, s = 1,...,n” with 1 < n” < n’ are the inputs whose
error estimates did not meet €.

3. For each remaining input x, s = 1,...,n”, do the following:

(a) Determine hpax and egp.

(b) Use bisections to find u;, u* and u, where starting values are taken from the stored
values in £. Add all additional pairs (u, Fjj; (u)) produced in the bisections to the
list L.

(c) Approximate log [3" h(u)du and log ful7 h(u) du via trapezoidal rules using only
values (u, Fyj;(u)) in £. Call these approximations fi(,)(%s) and fi(,, 1)(xs), re-
spectively.

(d) Approximate log [, h(u) du via a RQMC algorithm with error tolerance e. Call
the approximation fi(y, .,)(Ts)-

(e) Combine
IOg f(wl) = LSE (ﬂ(O,ul)(mS)v ﬂ(ul,u,«)(ms)v ﬂ(ur,l) (ms)) .

8 nvmix: Multivariate Normal Variance Mixtures in R

—

4. Return log f(x;), l=1,...,n.

The default relative error tolerance for log-density estimates is 1072 which, within a small
number of iterations, will typically not be met by estimates of log-density values produced in
Step 1 that require the usage of the adaptive procedure. Hence, Step 2 indeed detects poor
estimates. This would, however, not be the case if a large number of iterations was used, as
in this case error estimates of highly peeked integrals become biased and underestimate the
error. Furthermore, if in Step 2 at least one estimate does not meet the error tolerance, by
choice of defaults this means that 7680 pairs of (u, F}j; (u)) were produced in Step 1. Hence,
the errors made in the trapezoidal rules performed in Step 3¢ to approximate the integrals in
(0,u;) and (u,, 1) are negligible, especially since these areas do not significantly contribute to
the density anyway.

3.3. Parameter estimation for multivariate normal variance mixtures

The function fitnvmix () of package nvmix can be used to tackle the following task: Given
ind.

Xi,..., X, '~ NVMgy(p, 3, Fi) where Fy has quantile function Fyj; (u,v) with unknown
parameter vector v of length p,, estimate v, u and X.

Internally, fitnvmix () uses an ECME algorithm; see Liu and Rubin (1994, 1995). Let 6 =
(v, u, Y) and denote by 6, the current value of 6 in iteration k. Furthermore, let

n
log Lorg(l/v K, DIHD, TR Xn) = Z lOg fX(le v, 1, Z)
i=1
denote the original log-likelihood and
n
1Ochpl(0; Xla cee 7XTL) W17 sy Wn) = Zlong,W(Xh VVZa 0)
i=1

= log fxw(Xi | Wi, 2) +) log fw (Wisv)
i=1 =1

the complete log-likelihood, where W7y, ..., W,, are (unobserved) independent and identically
distributed copies of W. Finally, denote by

Q(0:6;) = E(log LPN0; X1, ..., X, W1, ..., Wy) | X1,..., X,;0%)

the expected value of the complete log-likelihood given the (observed) data X1, ..., X,.

The main idea implemented in fitnvmix () is as follows:

1. Obtain an initial estimate 6y = (v, to, o).
2. For k=1,2,..., repeat until convergence:

(a) Update py and ¥y by maximizing Q(6; 0y) with respect to p and ¥ with v = vy
kept fixed.

(b) Update v by maximizing log L°*¢(v, py, Xk; X1, . . ., X)) with respect to v.

Journal of Statistical Software

As a convergence criterion we suggest stopping once the relative difference in parameter es-
timates between two iterations is smaller than a given threshold. In Hintz et al. (2021),
it is shown that the update in Step 2a merely requires the estimation of weights dp; =
E(1/W;| X;;0x) for i = 1,...,n. These weights can be estimated via an adaptive proce-
dure similar to the one implemented in dnvmix (). For the optimization in Step 2b, the
likelihood estimated via dnvmix () is optimized using optim(). Unless supplied by the user, a
natural starting value for p in Step 1 is g = X,,. If S,, denotes the sample covariance matrix
of X1,...,X,, it follows that E(S,,) = E(W)X, if it exists. This motivates us to numerically
solve the (p, + 1)-dimensional optimization problem

(v*, ") = arg max L°®(v, po, cSp; X1, ..., Xy)

v,c>0

via optim() and to set vy = v* and g = ¢*5,.

4. Usage of the R package nvmix

4.1. Sampling normal variance mixtures using rnvmix ()

In practice, notably for Monte Carlo studies, it is often required to draw samples from X ~
NVMy(p, X, Fyy). The function rnvmix() provides a function to sample from X based on
the stochastic representation (1). Its synopsis is given by:

ronvmix(n, rmix, gmix, loc = rep(0, d), scale = diag(2), factor = NULL,
method = c("PRNG", "sobol", "ghalton"), skip = 0, ...)

Note that the function rnvmix () also allows the user to specify the mixing random variable
W via a non-uniform random variate generator (RVG) as argument rmix. This is due to the
fact that there are distributions for which it is hard to find the quantile function, but for
which sampling procedures exist (for example, for stable distributions). As an example call,
consider a normal variance mixture with W ~ Exp(1). In the first case, rmix is provided as
a list and in the second case, rmix is a function interpreted as an RVG.

R> rate <- 1

R> n <- 500

R> set.seed(42)

R> r.exp.1 <- rnvmix(n, rmix
R> set.seed(42)

R> r.exp.2 <- rnvmix(n, rmix = function(n) rexp(n, rate = rate))
R> stopifnot(all.equal(r.exp.1l, r.exp.2))

list("exp", rate = rate))

As a second example, let the mixing random variable W follow a stable distribution with skew-
ness B = 1 so that it is supported on the positive real line. An RVG for stable distributions
is provided by the function rstablel() from the R package copula of Hofert, Kojadinovic,
Maechler, and Yan (2020). The two samples generated in the following code are displayed in
Figure 2.

10 nvmix: Multivariate Normal Variance Mixtures in R

20
|

400
|
15

Xz
200
|
Xz

-5

*

*
-10

T T T T T T T T T T T T
-800 -600 -400 -200 0 200 400 -60 -40 -20 0 20

Xy Xy

Figure 2: Plots of the samples r.stable.heavy and r.stable.light from bivariate normal
variance mixtures where the mixing variable follows a stable distribution with skewness g = 1
and characteristic exponents av = 0.5 (left) and a = 0.9 (right).

R> library("copula")

R> scale <- matrix(c(1, 0.5, 0.5, 1), ncol = 2)

R> set.seed(42)

R> r.stable.heavy <- rnvmix(n, rmix = rstablel, scale = scale, alpha
+ beta = 1)

R> r.stable.light <- rnvmix(n, rmix = rstablel, scale = scale, alpha = 0.9,
+ beta = 1)

0.5,

The important argument method of rnvmix () allows the user to specify whether a pseudo-
random sample from X is to be drawn or if instead a low-discrepancy point set should be used
to produce the samples. Allowed are the strings "PRNG" (the default, classical pseudo-random
sampling based on runif ()) or "sobol" or "ghalton" (for the inversion method based on the
corresponding low-discrepancy point sets). In the latter two cases, gmix must be provided.
As a third example, consider a three-point mixture distribution with g = (0,0) and 3 = I.

R> x <- c¢(1, 3, 5)

R> p <- ¢(0.2, 0.3, 0.5)

R> gmix <- function(u) {

+ (u <= p[1]) * x[1] + (u > p[1] & u <= p[1] + p[2]) * x[2] +
+ (u > pl1] + p[2]) * x[3]

+ }

R> r.3pm.pseudo <- rnvmix(n, gmix = gmix)

R> r.3pm.ghalton <- rnvmix(n, gmix = gmix, method = "ghalton")
R> r.3pm.sobol <- rnvmix(n, gmix = gmix, method = "sobol")

The samples r.3pm.pseudo, r.3pm.ghalton and r.3pm.sobol are plotted in Figure 3. Note
the additional “homogeneity” for the quasi-random samples. We highlight that the quasi-
random sample points are typically not independent of each other. That is, while it holds

ind.

that @1,...,x, ~ NVMy(u, X, Fyy) for the pseudo-random sample points in r.3pm.pseudo,

Journal of Statistical Software

Xy Xy Xy

Figure 3: Plots of the samples r.3pm.pseudo (pseudo-random sample), r.3pm.ghalton (gen-
eralized Halton sample) and r.3pm.sobol (Sobol’ sample) of a bivariate three-point-mixture.

each of the n sample points in r.3pm.ghalton and r.3pm.sobol follows the specified normal
variance mixture but cannot be treated as independent realizations, since the n underlying
quasi-random points (that are each mapped to a realization of the normal variance mixture
via quantile transformations) are correlated. For more about how to use RQMC in practice,
see Lemieux (2009, Section 6.2).

4.2. Estimating probabilities with pnvmix()

The main function pnvmix ()

The function pnvmix () has the following structure:

pavmix (upper, lower = matrix(-Inf, nrow = n, ncol = d), gmix, rmix,
loc = rep(0, d), scale = diag(d), standardized = FALSE, control = list(),
verbose = TRUE, ...)

Here, upper and lower correspond to the limit vectors b and a introduced in Section 3.1.
The quantile function of W can be specified using the argument gmix: This can be either a
character string for certain special cases, a list, or a function; see the examples below. As was
the case for rnvmix (), one can also specify the mixing random variable via an RVG using
the argument rmix. If rmix is supplied, pnvmix () uses Monte Carlo (MC) estimation of the
probability rather than RQMC. This typically leads to a larger run-time, as RQMC methods
substantially outperform purely MC based methods; see Hintz et al. (2021, Section 7.2) for
details and a numerical study.

As an example, assume that

2 05 0
W ~Exp(l), p=0, =05 2 1
0 1 2

The following code estimates P(—1 < X; < 3, =2 < Xy <2, -3 < X3 < 1) for X ~
NVMs(u, X, Fyy), first by specifying qmix as a 1ist and then as a function. Due to the
random nature of the underlying methods, the result slightly depends on .Random.seed.

R> a <- -(1:3)
R> b <- 3:1

11

12 nvmix: Multivariate Normal Variance Mixtures in R

R> scale <- matrix(c(2, 0.5, 0, 0.5, 2, 1, 0, 1, 2), ncol = 3)

R> rate <- 1

R> set.seed(42)

R> p1 <- pnvmix(b, lower = a, gmix = list("exp", rate = rate), scale = scale)
R> set.seed(42)

R> p2 <- pnvmix(b, lower = a, gmix = function(u, lambda)

+ -log(1 - u) / lambda, scale = scale, lambda = rate)

R> stopifnot(all.equal(pl, p2))

The function pnvmix () returns the desired probability, along with an an error estimate and
the number of RQMC iterations needed.

R> str(p1)

num 0.599

- attr(x, "abs. error")= num 0.000122
- attr(*, "rel. error")= num 0.000204
- attr(*, "numiter")= num 1

Algorithm-specific parameters can be changed via the argument control. For instance, if a
higher precision of the computed probability is desired, this can be accomplished by chang-
ing the argument pnvmix.abstol (which defaults to 1e-3) in the control argument at the
expense of a higher run-time.

R> (pnvmix(b, lower = a, qmix = function(u, lambda) -log(l1 - u) / lambda,
+ lambda = rate, scale = scale, control = list(pnvmix.abstol = le-5)))

[1] 0.5988188
attr(,"abs. error")
[1] 9.851637e-06
attr(,"rel. error")
[1] 1.645178e-05
attr(,"numiter")

(1] 17

The wrappers pNorm() and pStudent ()

For the two important special cases when the mixing random variable W is constant or
inverse-gamma (so that the resulting normal variance mixture follows a multivariate normal
or t distribution), pNorm() and pStudent () are user-friendly wrappers of pnvmix (). Note that
pStudent () works for any positive degrees of freedom (not necessarily integer), a functionality
which — to the best of our knowledge — is provided by nvmix for the first time in R. This is
especially important if ¢ probabilities need to be computed from an estimated t distribution.

We illustrate these wrappers for a singular distribution where the scale matrix > is rank
deficient. By default, a warning is thrown when the provided scale matrix is singular (unless
verbose = FALSE).

Journal of Statistical Software

R> A <- matrix(c(1, 0, 0, 0, 2, 1, 0, 0, 3, 0, 0, O, 4, 1, 0, 1), ncol = 4,
+ byrow = TRUE)

R> scale <- A %*J t(A)

R> upper <- 2:5

R> df <- 1.5

R> pn <- pNorm(upper, scale = scale)

Warning in pgnvmix(upper = upper, lower = lower, gqmix = gmix, rmix = rmix,
Provided 'scale' is singular.

4.3. Estimating the (log-)density with dnvmix ()

The function dnvmix() can be used to compute the (log-)density of any normal variance
mixture with full rank scale ¥ and has a similar header as pnvmix():

dnvmix(x, gqmix, loc = rep(0, d), scale = diag(d), factor = NULL,
control = 1list(), log = FALSE, verbose = TRUE, ...)

But note that there is no argument rmix () here, as the underlying algorithm relies on sub-
sampling in certain regions of the support of W for which the quantile function must be
provided.

As an example, consider a d-dimensional ¢ distribution with degrees of freedom v > 0, location
p and scale X, denoted by X ~ MVTy(v, u,¥). The density of X is known and given by

x) = L+ d)/2) (1+D2(m;u,2))_ygd, x € R (4)
I'(v/2)y/ (vm)d[X]

The knowledge of this formula can be used to validate our procedure. If we supply gqmix
as a function, the log-density will be estimated; if we supply gqmix = "inverse.gamma" (or
use the wrapper dStudent()), dnvmix() uses the formula in (4) to compute the density. In
the following example, evaluation points are sampled from a 20-dimensional, heavy-tailed
t distribution and the log-density of a less heavy-tailed ¢ distribution is computed at the
sampled points. For input with (very) large Mahalanobis distance, it can happen that the
procedure fails to provide a reliable error estimate. If this is the case, a warning is thrown.

R> set.seed(271)

R> d <- 20

R> df <- 3.9

R> n <- 2000

R> x <- rnvmix(n, qmix = "inverse.gamma", df = df/3, scale = diag(d))

R> dt.1 <- dnvmix(x, gmix = "inverse.gamma", df = df, log = TRUE)
R> dt.2 <- dnvmix(x, qmix = function(u, df) 1 / qgamma(l - u, shape = df/2,
+ rate = df/2), df = df, log = TRUE)

As with pnvmix (), algorithm-specific parameters can be passed to dnvmix () via the argument
control. For instance, by setting dnvmix.doAdapt = FALSE, dnvmix () only uses the crude
estimator from (3).

13

14 nvmix: Multivariate Normal Variance Mixtures in R

+ True log—density
- Estimated log—-density (adaptive)
Estimated log-density (non-adaptive)

-50
|

log—density

-100

-150

T : T

. - =~ +
T T T T T T T
0 200 400 600 800 1000 1200

Mahalanobis distance D(x; W, X)

Figure 4: True and estimated log-densities dt.1, dt.2 and dt.3 for a 20-dimensional ¢ dis-
tribution as a function of the Mahalanobis distance D(x; u, X).

R> dt.3 <- dnvmix(x, qmix = function(u, df) 1 / qgamma(l - u, shape = df/2,
+ rate = df/2), df = df, control = list(dnvmix.doAdapt = FALSE),
+ log = TRUE)

Warning in densmix_(qW, maha2.2 = maha2.2, lconst = lconst, d = d,
control = control, : Tolerance not reached for all inputs;
consider increasing 'max.iter.rqmc' in the 'control' argument.

As the non-adaptive procedure performs poorly for input x with large Mahalanobis distance,
the default error tolerance is not met when the non-adaptive procedure is used. The estimated
and true log-densities dt.1, dt.2 and dt.3 are plotted in Figure 4 as a function of the
Mahalanobis distance D(x; p, X). As anticipated, keeping Figure 1 in mind, the non-adaptive
approach deteriorates for larger values of D(x; u, X).

4.4. Fitting normal variance mixtures with fitnvmix()

The function fitnvmix () allows a user to fit normal variance mixtures to data.

fitnvmix(x, gmix, mix.param.bounds, nu.init = NA, loc = NULL, scale = NULL,
init.size.subsample = min(n, 100), size.subsample = n, control = 1list(),
verbose = TRUE)

In order to call fitnvmix (), three arguments are required: a data matrix x, a specification of
the mixing random variable W via gmix, and the bounds on the mixing parameters as a vec-
tor or matrix via mix.param.bounds: For a multivariate ¢ distribution, these bounds would
correspond to bounds on the degrees of freedom. As before, the mixing variable W is specified
via the argument gmix, which can be either a character string for certain distributions or a
function. In the latter case, gmix must be of the form gqmix = function(p, nu) where nu is
a numeric, so can also be a vector. Furthermore, the user can supply an initial value on the

Journal of Statistical Software

mixing parameter(s) via the argument nu.init. The argument init.size.subsample deter-
mines the size of the subsample used for the (p, + 1)-dimensional optimization to find initial
values in Step 1 on page 8. For performance reasons, and since this step is only performed
to find an initial value, the default was chosen to be 100. The argument size.subsample
determines the size of the subsample used for the optimization in Step 2b on page 8 to find
the next estimate of the mixing parameter. By default, size.subsample = n so that the
full sample is used in these optimizations. While this leads to longer run-times, numerical
experiments suggest that using smaller sample sizes leads to flawed estimates.

To illustrate the usage of fitnvmix(), consider a Pareto-normal variance mixture, X ~
PNVMy(v, u, ¥). Here, W ~ Par(v, 1) has density fi(w) = vw~#*V for w > 1. The density
of X is then

—d/2—v
))) (27_‘_)d’2‘ 2 27 2 Y)

where y(z;2) = [y t*"te~tdt for z,z > 0 denotes the (lower) incomplete gamma function.
Furthermore, weights E(W | X) required for updating g and ¥ in the ECME iterations
can also be derived for X ~ PNVMy(v, u,¥). As an example, we sample X,..., X, ~
PNVMy(v, pu,¥) where v = 1.5, p = (0,...,0) and ¥ is randomly generated. We then
use fitnvmix() to estimate these parameters, first by supplying gmix as a string (so that
fitnvmix () uses closed formulas for weights and densities) and then by supplying the quantile
function of W directly so that all weights and densities are estimated.

R> set.seed(42)

R> d <- 4

R> n <- 100

R> nu. <- 1.5

R> scale <- cov2cor (tcrossprod(matrix(runif(d * d), ncol = d)))
R> x <- rnvmix(n, gmix = "pareto", alpha = nu., scale = scale)
R> m.p.b <- ¢(0.1, 50)

R> gmix. <- function(u, nu) (1 - u)~(-1/nu)

R> system.time(fit.parl <- fitnvmix(x, qmix = "pareto",

+ mix.param.bounds = m.p.b))

user system elapsed
0.053 0.002 0.057

R> system.time(fit.par2 <- fitnvmix(x, gmix = gqmix.,
+ mix.param.bounds = m.p.b))
user system elapsed
2.739 0.029 2.784
R> fit.parl
Call: fitnvmix(x = x, gmix = "pareto", mix.param.bounds = m.p.b)

Input data: 100 4-dimensional observations.

15

16 nvmix: Multivariate Normal Variance Mixtures in R

Normal variance mixture specified through quantile function of the mixing
variable "pareto"
with unknown 'loc' vector and unknown 'scale' matrix.
log-likelihood at reported parameter estimates: -410.348100
Termination after 8 iterations, convergence detected.
Estimated mixing parameter(s) 'nu':
[1] 1.42
Estimated 'loc' vector:
[1] 0.03790 -0.11281 0.02971 0.01733
Estimated 'scale' matrix:
(.11 [,21 [,31 [,4]
[1,] 0.8960 0.7727 0.7423 0.8947
[2,] 0.7727 0.8389 0.6512 0.7557
[3,] 0.7423 0.6512 0.8311 0.6039
[4,] 0.8947 0.7557 0.6039 1.0230

R> fit.par2

Call: fitnvmix(x = x, gmix = gmix., mix.param.bounds = m.p.b)
Input data: 100 4-dimensional observations.
Normal variance mixture specified through quantile function of the mixing
variable function (u, nu) (1 - u)~(-1/nu)
with unknown 'loc' vector and unknown 'scale' matrix.
Approximated log-likelihood at reported parameter estimates: -410.292900
Termination after 16 iterations, convergence detected.
Estimated mixing parameter(s) 'nu':
[1] 1.412
Estimated 'loc' vector:
[1] 0.03800 -0.11296 0.02966 0.01760
Estimated 'scale' matrix:
(.11 [,21 [,31 [,4]
[1,] 0.8930 0.7701 0.7399 0.8916
[2,] 0.7701 0.8360 0.6491 0.7532
[3,] 0.7399 0.6491 0.8283 0.6019
[4,] 0.8916 0.7532 0.6019 1.0194

As expected, the estimates differ slightly when qmix is supplied as a function, as in this case,
all weights and log-densities are numerically estimated, inevitably leading to small estimation

errors and also to a longer run-time.

Note that fitnvmix() returns an S3 object of class ‘fitnvmix’, which is essentially a list
containing, among others, the estimated mixing parameter nu as well as the estimated location
vector loc and scale matrix scale. The methods print (), summary () and plot () are defined

for the class ‘fitnvmix’

The function qgplot_maha() plots the empirical quantiles D?(x;; u, %), i = 1,...,n, versus
their theoretical counterparts; the latter are approximated internally by calling qgammamix ().

This serves as a graphical goodness-of-fit (GoF) assessment. The structure is as follows:

Journal of Statistical Software

o . .
n - 8 8
- - Asymptotic CI ° 1z ---- Asymptotic CI ° L
Bootstrap ClI o - Bootstrap Cl o
) <)
o 2 o
? 8] 7
3 3
S © <o.
o 9] n . ©
2 1" o "
g T § e =
=1 o) 3 o oo}
o N o - N
@ =] o =}
=3 ~ S o | ~
5 & £ w 8
[ZEE (=] n S}
" "
[a] o | [a]
I N FE]
17 173
2 2
o

[a)] i [a]
< -) <
] w4 o 2
o - 0 o o) %)
T X T T T T T T T T X
0 50 100 150 05 10 20 50 10.0 20.0 50.0 200.0

Theoretical quantiles Theoretical quantiles

Figure 5: Q-Q plot of the empirical quantiles D?(x;; p, X2) versus their theoretical counterparts
on ordinary scale (left) and log-log scale (right).

qgplot_maha(x, gmix, loc, scale, fitnvmix_object, trafo.to.normal = FALSE,
test = c("KS.AD", "KS", "AD", "none"), boot.pars = list(B = 500,
level = 0.95), plot = TRUE, verbose = TRUE, control = list(),
digits = max(3, getOption("digits") - 4), plot.pars = 1list(), ...)

If the argument trafo.to.normal is TRUE, a probability-quantile transformation is used to
construct the Q-Q plot on a normal axis. Besides approximating the theoretical quantiles, the
function also computes asymptotic standard errors as in Fox (2015, p. 35-36) and a Bootstrap
confidence interval with level boot . pars$level and boot.pars$B repetitions for the empirical
quantiles. Including these confidence intervals helps address the problem of large variations
in the ordered samples. As Q-Q plots can merely be used as a first graphical assessment,
the function additionally performs statistical GoF tests. In particular, depending on the
argument test, a Kolmogorov-Smirnov GoF test is performed via ks.test () on the univariate
Mahalanobis distances, or an Anderson-Darling GoF test in which case qqplot_maha() calls
ad.test() from the R package ADGofTest; see Bellosta (2011). By default, both tests
are performed. The p values for testing the null hypothesis of having specified the correct
distribution and the values of the test-statistic are displayed on the second y-axis. Finally,
the argument plot.pars which is passed to the underlying plot() method can be used to
specify plotting parameters, such as logarithmic axes and colors. See 7qgplot_maha() and
?7get_set_qgplot_param() for details and examples. The output of the following code is
displayed in Figure 5.

R> set.seed(1)

R> qq.par <- qgplot_maha(x, gmix = "pareto", alpha = fit.pari$nu,
+ loc = fit.pari$loc, scale = fit.parl$scale, plot = FALSE)
R> plot(qq.par)

R> plot(qq.par, plot.pars = list(log = "xy"))

The return value of the function qgplot_maha() is an object of class ‘qgplot_maha’ for which
the methods plot () and print() are defined:

17

18 nvmix: Multivariate Normal Variance Mixtures in R

R> qq.par

Call: qgplot_maha(x = x, gmix = "pareto", loc
scale = fit.parl$scale, plot = FALSE, alpha

fit.pari$loc,
fit.pari$nu)

Input: 100 squared Mahalanobis distances.

KS test: D
AD test: D

0.06, p = 8.65e-01
0.281, p = 9.52e-01.

Computed results stored in the object:

- theoretical quantiles in $theo_quant;

- sorted, squared Mahalanobis distances in $maha?2;

- estimated, asymptotic standard errors in $asymptSE;

- Bootstrap CIs (estimated from 500 resamples) in $boot_CI;
- GoF test results in $testout;

As a second example, consider W = 1/W for W ~ Burr(v1, v») having cdf Fjy, (w) =1 — (1 +
w?) 72 for w > 0; we refer to the resulting mixture as inverse-Burr mixture. It can be easily
computed that Fj (u) = (u='/*2 —1)~1/" for u € (0,1). Note that in this case, there are two
mixing parameters (so that v has length p, = 2) and bounds for both, v; and v, need to be
passed to fitnvmix () via the argument mix.param.bounds.

R> gmix <- function(u, nu) (u~(-1/nu(2]) - 1)~ (-1/nul1])

R> set.seed(274)

R> nu <- c(2, 5)

R>d <-5

R> n <- 500

R> scale <-cov2cor (tcrossprod(matrix(runif(d * d), ncol = d)))
R> m.p.b <- matrix(c(0.1, 0.1, 8, 8), ncol = 2)

R> x <- rnvmix(n, qmix = gmix, nu = nu, scale = scale)

R> fit.burr <- fitnvmix(x, gmix = gmix, mix.param.bounds = m.p.b)
R> fit.burr

Call: fitnvmix(x = x, gqmix = gmix, mix.param.bounds = mix.param.bounds)

Input data: 500 5-dimensional observations.

Normal variance mixture specified through quantile function of the mixing
variable function (u, nu) (u(-1/nul[2]) - 1)~ (-1/nul1])

with unknown 'loc' vector and unknown 'scale' matrix.

Approximated log-likelihood at reported parameter estimates: -3021.139300

Termination after 27 iterations, convergence detected.

Estimated mixing parameter(s) 'nu':

[1] 2.055 5.494

Estimated 'loc' vector:

[1] 0.009835 -0.020870 -0.036802 0.027952 -0.030785

Estimated 'scale' matrix:

[,1] [,2] [,3] [,4] [,5]

Journal of Statistical Software

[=} = o

€ - 3 g

b - Asymptotic Cl IO g | ---- Asymptotic CI ° g

° Bootstrap Cl @ Bootstrap CI %

S | ~ ~

Q - <

- - -

g g

o o) o)

o _| o (2]

o N N

-~ ~ ~

g 1l g 1

= 8 | Q = Q

§ © Y g Y

=} n 3 0

o < o <

L o =} @ IS

o o - ~ [=% —

E © b £ 2

ﬁ < 3 =}

=) (=] o

S)l‘ - " 1

fa) a

] 8 8

A 2 2

k7 7

S} 2 £ 2

T T T T o T T T T T T T T 12

0 100 200 300 400 05 10 20 5.0 10.0 50.0 200.0 500.0
Theoretical quantiles Theoretical quantiles

Figure 6: Q-Q plot of the empirical quantiles D?(x;; p, X2) versus their theoretical counterparts
on ordinary scale (left) and log-log scale (right).

[1,] 1.0051 0.7493 0.7909 0.7903 0.7403
[2,] 0.7493 1.0268 0.8677 0.2242 0.5882
[3,] 0.7909 0.8677 1.0275 0.3870 0.8727
[4,] 0.7903 0.2242 0.3870 0.9365 0.4883
[5,] 0.7403 0.5882 0.8727 0.4883 1.0067

Finally, we call function qgplot_maha() by supplying the object fit.burr to the argument
fitnvmix_object, which already contains all necessary information.

R> set.seed(1)

R> qq.burr <- qqplot_maha(fitnvmix_object = fit.burr, plot = FALSE)
R> plot(qq.burr)

R> plot(qq.burr, plot.pars = list(log = "xy"))

5. Example application

In this section, we demonstrate how package nvmix can be used to analyze a multivariate
financial dataset. We consider daily return data from the 15 real estate investment trusts
(REITs) which are constituents of the S&P 500 index between 2010 and 2012 (n = 753 data
points). The data are obtained from the R package qrmdata; see Hofert, Hornik, and McNeil
(2019). We fit marginal ARMA(1, 1)-GARCH(1, 1) models using the packages qrmtools
(Hofert, Hornik, and McNeil 2021) and rugarch (Galanos 2022) and then fit normal variance
mixture models to the resulting standardized residuals.

R> library("qrmtools")

R> library("rugarch")

R> set.seed(123)

R> data("SP500_const", package = "qrmdata")

19

20 nvmix: Multivariate Normal Variance Mixtures in R

R> time <- c("2010-01-01", "2012-12-31")

R> x <- SP500_const [pasteO(time, collapse = "/"),

+ SP500_const_info$Subsector == "REITs"]

R> X <- -returns(x)

R> uspec <- rep(list(ugarchspec(distribution.model = "std")), ncol (X))
R> fit.ARMA.GARCH <- fit_ARMA_GARCH(X, ugarchspec.list = uspec,
+ verbose = FALSE)

R> fits <- fit.ARMA.GARCH$fit

R> resi <- lapply(fits, residuals, standardize = TRUE)

R> X <- as.matrix(do.call(merge, resi))

R> colnames(X) <- colnames(x)

R> n <- nrow(X)

In particular, we consider four different models: a multivariate normal, multivariate ¢ (so that
W follows an inverse-gamma distribution), a Pareto mixture and an inverse-Burr mixture.
We need to specify both the mixing random variable and bounds on its parameters. Note
that, with the exception of the inverse-Burr mixture, qmix can be provided as a string so that
fitnvmix () uses closed formulas for densities and weights as opposed to estimating them
internally via RQMC methods.

R> qmix_ <- list(constant = "constant", inverse.gamma = "inverse.gamma",
+ inverse.burr = function(u, nu) (u”(-1/nu(2]) - 1)~(-1/nul1]),
+ pareto = "pareto")

R> m.p.b_ <- list(constant = c(0, 1e8), inverse.gamma = c(1, 8),
+ inverse.burr = matrix(c(0.1, 0.1, 8, 8), ncol = 2), pareto = c(1, 8))

Now all the ingredients are defined so that fitnvmix() can be called with the different
specifications of qmix and mix.param.bounds.

R> fit.results <- lapply(1:4, function(i)
+ fitnvmix (X, qmix = gmix_[[i]], mix.param.bounds = m.p.b_[[i]]))

In order to compare the models, we plot the fitted log-densities (computed via dnvmix()) as
functions of the Mahalanobis distances D(x; i,).

n)
n)

R> 1.dens <- matrix(NA_real_, ncol = 4, nrow

R> mahas <- matrix(NA_real_, ncol = 4, nrow

R> for (i in 1:4) {

mahas[, i] <- sqrt(mahalanobis(X, center = fit.results[[i]]$loc,
cov = fit.results[[i]]$scale))

order.maha <- order (mahas[, i])

mahas[, i] <- mahas[order.maha, i]

1.dens[, i] <- dnvmix(X[order.maha,], qmix = gmix_[[i]],
loc = fit.results[[i]]$loc, scale = fit.results[[i]]$scale,
nu = fit.results[[i]]$nu, log = TRUE)

+ + + + + + + +

}

The results are displayed in Figure 7. Evidently, the non-trivial mixtures show heavy tails
whereas the fitted multivariate normal does not.

Journal of Statistical Software 21

Multiv. normal

- Inverse-gamma mixture
Inverse—Burr mixture

- Pareto mixture

log-density

5 10 15 20

Mahalanobis distance D(x; Y, X)

Figure 7: Log-densities as functions of the Mahalanobis distance for four fitted normal vari-
ance mixture models using a 15 stock REIT portfolio with data from the SP500 dataset from
2010-01-01 to 2012-12-31 after deGARCHing.

With the estimated parameters at hand, one can call ggplot_maha() to plot the observed
Mahalanobis distances D2(a:,~,ﬂ,fl) versus their theoretical quantiles and perform a GoF
test. The plots produced by the following code are displayed in Figure 8. As expected, the
multivariate normal provides a poor fit as it lacks heavy tails. On the other hand, the fitted
Pareto-mixture seems too heavy-tailed to provide a good fit to the data. The inverse-Burr
mixture fits better than both the normal and the Pareto, and roughly as well as the inverse-
gamma mixture (corresponding to a multivariate ¢ distribution). Based on the provided
p values, we can reject the multivariate normal and the Pareto-mixture.

R> qq.results <- lapply(1:4, function(i)
+ qqplot_maha(fitnvmix_object = fit.results[[i]]))

An important quantity in quantitative risk management is the joint quantile exceedance
probability, which for a d-dimensional random vector X = (X7,..., Xy) is defined by

Qu) = P(X1 > Fx, (u),..., Xq > Fx, (u)), wue€(0,1).

That is, Q(u) is the probability that each component in X exceeds its u quantile. As we
regard the random variables X, j = 1,...,d, as losses, Q(u) is the probability of a joint large
loss, which is a rare event.

By radial symmetry of X ~ NVMy(u, >, Fyy) and continuity of the marginal distribution
functions Fx;, j = 1,...,d, it follows that for any u € (0, 1),

Q(u) = P(Xl > F;(_l(u),,Xd > F)}_d(u)) = P(Xl S F;(_l(l —u),. . .,Xd S F;(_d(l —u))
:P(FXl(Xl) < 1—u,...,FXd(Xd) < 1—u):C(1—u,...,1—u)
where C : [0,1]¢ — [0,1] with C(u) = P(Fy,(X1) < u1,..., Fx,(X4) < ug) is the copula of
X. Such a copula can be evaluated with the function pnvmixcop (), which first calls qnvmix ()

to estimate the quantiles F)‘(_J (u) and then calls pnvmix() with argument upper set to the
corresponding quantile estimates.

22 nvmix: Multivariate Normal Variance Mixtures in R

-
7 o
. < : . 1
E - ---- Asymptotic CI o5 ° - Asymptotic CI 13
Bootstrap Cl Cle 9 Bootstrap Cl ©
2 >
6 ~ o g
B o]
B < g 3
" 1) N y\
o ! o (2}
8§ =7 6 e 8 ° a
g g £ § 8 5
S el £ S N
=3 o = =3 N
g & B2 S
£ g £ o @
I g 8 6 2
2] o "] — S
n 7 [a] I
.'d(h;' [a]
2 5]
= a)
2 <
] =
173
o - e o - 2
T T T T T T T T T T T T T 2

5 10 15 20 25 30 35 40 0 50 100 150 200 250

Theoretical quantiles Theoretical quantiles
— o0
. o . @
- Asymptotic CI © % ° - Asymptotic CI © éij
Bootstrap Cl © S Bootstyap Cl o
(=2} ' -~
g o ®
3 b
g -] :
32} ee}
iy 8 - <
3 Toog ° L
2 2 o
£ % £ S
S o © S =]
T L N T o N
o Y o o 8)
=3 > S « -
£ 2 £ 2
< o < o
n) 0 o
1 1
8 a o a
— o S o
173 — 7]
] 2
2 2
= =
173 17
o - e o 4 . 2
T T T T T —Q T - T T ¥
0 100 200 300 400 500 0 500 1000 1500
Theoretical quantiles Theoretical quantiles

Figure 8: Q-Q plots for four fitted normal variance mixture models using the 15 stock REIT
portfolio.

R> n. <- 50

R> u. <- 5eq(0.95, to = 0.999, length.out = n.)

R> u.matrix <- matrix(u., nrow = n., ncol = ncol(X))

R> tailprobs <- sapply(1:4, function(i) pnvmixcopula(l - u.matrix,

+ gmix = gmix_[[i]], scale = cov2cor(fit.results[[i]]$scale),

+ nu = fit.results[[i]]$nu, control = list(pnvmix.abstol = 1e-5)))

Figure 9 displays the estimated probabilities Q(u) for a range of values of u for the four
different models, once as is and once standardized by the corresponding multivariate nor-
mal probability. As expected from the previous discussion, the heavy-tailed Pareto mix-
ture gives the largest exceedance probabilities. Note that when w is large, the quantile ex-
ceedance probability for the non-normal models is larger by orders of magnitude. For instance,
Qinverse-Burr (g 99) /@Normal (0 99) ~ 10 meaning that such a joint large loss is 10 times more
likely if we assume that X follows an inverse-Burr mixture as opposed to a multivariate
normal. This highlights the well known fact that multivariate normal variance mixtures are

Journal of Statistical Software 23

o - @ —— Multiv. normal
- § 8 4 --- Inverse-gamma mixture
< | = @ -~ - Inverse—Burr mixture
T - 2 - Pareto mixture
@ [=]
[Te] O] o
B
= °
13 o]
A 7 N
o N
e g 8
- (] e}
P g
& B3
A _| 5
3 © A
E 3 | w2 o
o I8 X
0 N
—— Multiv. normal g o
~ | -~ Inverse-gamma mixture s
Q@ _| -+ Inverse-Burr mixture =
8 -~ Pareto mixture a4
T T T T T T T T T T T T
0.95 0.96 0.97 0.98 0.99 1.00 0.95 0.96 0.97 0.98 0.99 1.00
u u

Figure 9: Estimated quantile exceedance probabilities Q(u) for the four different models. The
right figure displays the same probabilities Q(u) standardized by the corresponding normal
probability.

better suited than the multivariate normal for financial data, due to their inherent heavy
tailedness.

To conclude this section, we consider the problem of estimating risk measures for an equal
weight portfolio. If X ~ NVMy(u, X, Fyy), it follows from the stochastic representation (1)
of X that a' X ~ NVM;(a'u,a’Ya, Fy) for any a € RY. If we regard X as a vector of
losses from different investments, @' X models the loss of a portfolio with portfolio weights
given by a.

Besides the cdf of X := a' X, interest often lies in the two important risk measures value-at-
risk and expected shortfall; see McNeil et al. (2015, Chapter 2). The value-at-risk is defined as
the o quantile of the cdf of X, i.e., VaR,(X) = inf{x € R : Fx(z) > a} for a € (0,1). Such
quantile can be estimated with the function qnvmix () or with its wrapper VaRnvmix (). And
the expected shortfall of X at confidence level a € (0,1) is, provided the integral converges,
given by

1 1
ESy(X) = 7/ VaR,(X) du;
l-—ala
if Fx is continuous, which is the case for normal variance mixtures, one can show that
ES,(X) =E(X | X > VaR,(X)).

The function ESnvmix () in the R package nvmix can be used to estimate expected shortfall
for univariate normal variance mixtures. In the case of the normal and ¢ distributions, closed
formulas for expected shortfall are known; these formulas are used by ESnvmix () if gmix is
provided as a string.

In the following code, we estimate risk measures of a'X for @ = (1,...,1) where X ~
NVMi5(f, 2, Fy) for the four different models fitted earlier.

R> alpha <- 1 - 1/107seq(0.5, 3.5, by = 0.05)
R> VaRs <- matrix(NA, ncol = 5, nrow = length(alpha))

24 nvmix: Multivariate Normal Variance Mixtures in R

8 4 .. —— Multiv. normal
- N - -~ Inverse-gamma mixture
- Inverse—Burr mixture
S --- Pareto mixture
b ——- empirical

50
|
/

100
|

—— Multiv. normal

--- Inverse-gamma mixture
- Inverse—Burr mixture

-+~ Pareto mixture

——- empirical

VaRy
20
|

10

T T T T T T T T T T T T T T T T T T
5e-04 2e-03 le-02 5e-02 2e-01 5e-04 2e-03 1le-02 5e-02 2e-01

1-a 1-a

Figure 10: Estimated value-at-risk (left) and expected shortfall (right) for a 15 stock REIT
portfolio based on the four different normal variance mixture models fitted to data obtained
from the SP500 dataset from 2010-01-01 to 2012-12-31 after deGARCHing.

R> ESs <- matrix(NA, ncol = 5, nrow = length(alpha))

R> for (i in 1:4) {

VaRs[, i] <- VaR_nvmix(alpha, qmix = qmix_[[i]],
loc = sum(fit.results[[i]]$loc), scale = sum(fit.results[[i]]$scale),
nu = fit.results[[i]]$nu)

ESs[, i] <- ES_nvmix(alpha, gmix = gmix_[[i]],
loc = sum(fit.results[[i]]$loc), scale = sum(fit.results[[i]]$scale),
nu = fit.results[[i]]$nu)

+ + + + + + +

We can also estimate these risk measures non-parametrically from the data by their respective
sample versions for comparison.

R> sum.obs <- rowSums (X)

R> VaRs[, 5] <- quantile(sum.obs, probs = alpha)

R> ESs[, 5] <- sapply(seq_along(alpha),

+ function(i) mean(sum.obs[sum.obs > VaRs[i, 5]]))

The results are plotted in Figure 10 on log-log scale. For large «, the normal model clearly
underestimates both risk measures whereas both the multivariate ¢ and Burr-mixture models
provide a better fit. The Pareto-mixture gives too conservative estimates.

We highlight again that all estimation was carried out using the function gqmix as a “black
box”. For instance, the inverse-Burr mixture is a model that has not been studied in the
literature yet; without functionalities provided by package nvmix, rather involved estimation
procedures would need to be derived for this model to perform the data analysis undertaken

in this section.

Journal of Statistical Software

6. Grouped normal variance mixtures

An even larger class of multivariate distributions than normal variance mixtures is obtained
when the scalar random variable W in (1) is replaced by a vector of comonotone random
variables. We say that X follows a grouped normal variance mixture, denoted by X ~
gNVM, (i, X, Fw), if X has stochastic representation

X = p+ diag(vV Wi, ...,V Wy)AZ, (5)

where W = (Wy,..., Wy) = (Fyy, (U), ..., Fy,(U)) for U ~ U(0,1) and Fw(w) = P(W <
w). Similarly to normal variance mixtures from (1) where the scalar random variable W can
be interpreted as a shock affecting all (co)variances of the underlying multivariate normal, the
comonotone random vector W can be regarded as a shock mixing different components of X
using different distributions. This gives rise to non-elliptical models well beyond the classical
normal variance mixture case. As such, this class includes the multivariate ¢ distribution with
multiple degrees of freedom.

Note that the definition of X in (5) does not indicate any grouping yet. We can speak of
groups when certain margins of W have the same distribution. More precisely, let W be
split into S subvectors W = (W1, ..., Wg) where W} has dimension d; and Zle dj =d.
If each W; has stochastic representation W; = (F‘;](U), e ,Fmij (U)), all margins of W;
are identical, and the corresponding subvector of X is then a normal variance mixture with
mixing distribution Fyy,. Even if there is no grouping present, i.e., when S = d, we refer to
X in (5) as a grouped mixture.

The grouped ¢ copula proposed in Daul, Giorgi, Lindskog, and McNeil (2003) (see also De-
marta and McNeil 2005 and Luo and Shevchenko 2010) is the copula of a grouped normal
variance mixture where the W; follow inverse-gamma distributions with potentially different
degrees of freedom. Unlike the classical ¢ copula, the grouped t copula allows different pair-
wise margins to be modeled by different ¢ copulas, thereby leading to more flexible models.
The original motivation to derive grouped ¢ copulas led to our definition in (5); see also Hintz,
Hofert, and Lemieux (2020) for a theoretical treatment.

Moving from a scalar mixing random variable W to a vector of comonotone random variables
W introduces additional computational challenges. Not even the density of a grouped t
copula is available in closed form. Package nvmix also provides functionalities for grouped
normal variance mixtures with the functions [p/d/r|gnvmix(). The mixing distribution is
again specified via the argument qmix, which now can be a list to reflect the grouping, along
with an additional vector groupings. For instance, the function rgnvmix() for sampling
from grouped mixtures has the following structure:

rgnvmix(n, gmix, groupings = 1:d, loc = rep(0, d), scale = diag(2),
factor = NULL, method = c("PRNG", "sobol", "ghalton"), skip = 0, ...)

The argument qmix is typically a 1ist of length S, whereas groupings is a vector of length
d such that variable j has mixing distribution specified in qmix [[groupings[j]1]1].

As an illustration, assume X ~ gNVM; (0,3, Fyy) where Wi ~ 1G(1,1), Wy =1 a.s., W3 ~
Exp(1), Wy ~ Par(2,1) and W5 = Wj. That is, marginally, X, X5 ~ t2, Xo ~ N(0, 1), and
X3 and X4 are Exponential and Pareto mixtures. The following code samples 1000 iid copies
of X; see Figure 11 for a pairs plot of the sample. Note how different bivariate margins are of

25

26 nvmix: Multivariate Normal Variance Mixtures in R

-3 -1 1 3 -6 -2 2 6
N N T N | N N N I N | o
. F N * % . ¥ . ** N
* *| * *
o
—
o
X1
o
N
= |
[Se LT
a *
o %
*x
e
T'_***,;*
@ %
| *
*
*
x i
© -
~
. *
N *
! 5
e . #
© x
****: S
j‘ o
*;
*
***i o
- «
* * * * |
! T T T ! T T T ! ! T T T !
-20 0 10 20 -4 0 2 4 -20 0 10

Figure 11: Plot of the samples r.gnvm from a 5-dimensional grouped normal variance mixture.

quite different types; this cannot be the case for normal variance mixtures which are elliptical;
see McNeil et al. (2015, Chapter 6).

R>d <- 5
R> df <- 2
R> n <- 1e3

R> set.seed(157)

R> A <- matrix(runif(d * d), ncol = d)

R> scale <- cov2cor(A }*} t(A))

R> groupings <- c(1, 2, 3, 4, 1)

R> gmix <- list(function(u, df) 1 / qgamma(l - u, shape = df/2,

+ rate = df/2), function(u) rep(l, length(u)), list("exp", rate = 1),

+ function(u) (1 - u)~(-1/2))

R> r.gnvm <- rgnvmix(n, groupings = groupings, qmix = gmix, scale = scale,
+ df = df)

The distribution and density function of X can be evaluated using the functions pgnvmix ()
and dgnvmix():

Journal of Statistical Software 27

s

°

o.

g

o.

o.

5

Figure 12: Density (left), distribution function (middle) and a sample plot (right) of a bivari-
ate grouped t-copula with parameter p = 0.7 and degrees of freedom (0.5, 35).

R> b <- 3 * runif(d) * sqrt(d)
R> (pg <- pgnvmix(b, groupings = groupings, qmix = qmix, scale = scale,
+ df = df))

[1] 0.6913258
attr(,"abs. error")
[1] 0.0008712519
attr(,"rel. error")
[1] 0.001260262
attr(,"numiter")

[1] 1

R> (dg <- dgnvmix(b, groupings = groupings, qmix = qmix, scale = scale,
+ df = df))

[1] 9.770276e-06
attr(,"abs. error")
[1] 2.270454e-11
attr(,"rel. error")
[1] 2.323838e-06
attr(,"numiter")

[1] 1

Functionalities for the important special case of a grouped t copula are implemented in the
functions [d/p/r]gStudentcopula(); not even this important special case has been treated
before. In the following example, we compute the density and distribution function of a
bivariate grouped ¢ copula with degrees of freedom (0.5,35); see Figure 12. The degrees of
freedom were chosen far apart to make the effect of having two different parameters more
visible.

R> set.seed(123)
R> d <- 2
R> rho <- 0.7

28 nvmix: Multivariate Normal Variance Mixtures in R

R> scale <- matrix(c(1, rho, rho, 1), ncol = 2)

R> df <- ¢(0.5, 35)

R> r.gStdcop <- rgStudentcopula(le4, df = df, scale = scale)
R> n.grid <- 33

R> u <- seq(0, 1, length.out = n.grid)

R> grid <- expand.grid("u[1]" = u, "ul[2]" = u)

R> dC <- dgStudentcopula(as.matrix(grid), df = df, scale
R> pC <- pgStudentcopula(as.matrix(grid), df = df, scale
R> val.pC <- cbind(grid, "C(ul1],u[2])" = pC)

R> val.dC <- cbind(grid, "c(u[1],u[2])" = dC)

scale)
scale)

7. Conclusion

The present paper introduced the R package nvmix, which offers a range of functionalities
for the class of (grouped and ungrouped) multivariate normal variance mixture distributions.
The package can be used to perform main statistical tasks, namely sampling, the estimation
of the distribution and density functions as well as parameter estimation. Additionally, some
functionalities for graphical goodness-of-fit assessment, for the estimation of the risk measures
value-at-risk and expected shortfall as well as for working with normal variance copulas are
implemented.

As multivariate normal variance mixtures belong to the most widely used distributions in
disciplines such as actuarial science and quantitative risk management, package nvmix enjoys
a potential wide applicability in practice: Functions provided in nvmix allow one to model
multivariate data well beyond the classical multivariate normal and ¢ distributions.

Besides demonstrating the algorithms underlying the main functions [p/d/fit]nvmix, several
examples illustrating the usage of the package were provided. Furthermore, a data analysis
on a portfolio of 15 real estate investment trusts was performed; besides the multivariate
normal and ¢, rather new models such as a Pareto and an inverse-Burr mixture model were
fitted to the data and studied in more detail.

Even more flexible models than classical normal variance mixtures are obtained by moving
from a scalar mixing random variable to a vector of comonotone random variables, giving
rise to grouped normal variance mixtures. The package nvmix also provides functionalities
for this larger class of multivariate distributions; this includes the special case of a grouped
t copula.

Acknowledgments

We thank the associate editor and an anonymous reviewer for their comments and sugges-
tions, which helped us improve this paper and our software. The second and third authors
would like to thank NSERC (Natural Sciences and Engineering Research Council of Canada)
for financial support for this work through Discovery Grant RGPIN-5010-2015 and RGPIN-
238959, respectively.

Journal of Statistical Software 29

References

Azzalini A (2021). sn: The Skew-Normal and Related Distributions Such as the Skew-t and
the SUN. R package version 2.0.1, URL https://CRAN.R-project.org/package=sn.

Azzalini A, Genz A (2020). mnormt: The Multivariate Normal and t Distributions, and
Their Truncated Versions. R package version 2.0.2, URL https://CRAN.R-project.org/
package=mnormt.

Bellosta CJG (2011). ADGofTest: Anderson-Darling GoF' Test. R package version 0.3, URL
https://CRAN.R-project.org/package=ADGofTest.

Cao J, Genton MG, Keyes DE, Turkiyyah GM (2022). “tlrmvnmvt: Computing High-
Dimensional Multivariate Normal and Student-t Probabilities with Low-Rank Methods in
R” Journal of Statistical Software, 101(4), 1-25. doi:10.18637/jss.v101.1i04.

Daul S, Giorgi ED, Lindskog F, McNeil A (2003). “The Grouped t-Copula with an Application
to Credit Risk.” doi:10.2139/ssrn.1358956. Available at SSRN 1358956.

Demarta S, McNeil A (2005). “The ¢t Copula and Related Copulas.” International Statistical
Review, 73(1), 111-129. doi:10.1111/j.1751-5823.2005.tb00254 . x.

Eddelbuettel D (2012). “Counting CRAN Package Depends, Imports and LinkingTo.” URL
http://dirk.eddelbuettel.com/blog/2012/08/05/.

Fox J (2015). Applied Regression Analysis and Generalized Linear Models. Sage Publications.

Galanos A (2022). rugarch: Univariate GARCH Models. R package version 1.4-6, URL
https://CRAN.R-project.org/package=rugarch.

Genz A (1992). “Numerical Computation of Multivariate Normal Probabilities.” Journal
of Computational and Graphical Statistics, 1(2), 141-149. doi:10.1080/10618600.1992.
10477010.

Genz A, Bretz F (1999). “Numerical Computation of Multivariate t-Probabilities with Ap-
plication to Power Calculation of Multiple Contrasts.” Journal of Statistical Computation
and Simulation, 63(4), 103-117. doi:10.1080/00949659908811962.

Genz A, Bretz F (2002). “Comparison of Methods for the Computation of Multivariate ¢
Probabilities.” Journal of Computational and Graphical Statistics, 11(4), 950-971. doi:
10.1198/106186002394.

Genz A, Bretz F (2009). Computation of Multivariate Normal and t Probabilities. Lecture
Notes in Statistics. Springer-Verlag. doi:10.1007/978-3-642-01689-9.

Genz A, Bretz F, Miwa T, Mi X, Hothorn T (2021). mvtnorm: Multivariate Normal and
t Distributions. R package version 1.1-3, URL http://CRAN.R-project.org/package=
mvtnorm.

Hintz E, Hofert M, Lemieux C (2020). “Grouped Normal Variance Mixtures.” Risks, 8(4),
103. doi:10.3390/risks8040103.

https://CRAN.R-project.org/package=sn
https://CRAN.R-project.org/package=mnormt
https://CRAN.R-project.org/package=mnormt
https://CRAN.R-project.org/package=ADGofTest
https://doi.org/10.18637/jss.v101.i04
https://doi.org/10.2139/ssrn.1358956
https://doi.org/10.1111/j.1751-5823.2005.tb00254.x
http://dirk.eddelbuettel.com/blog/2012/08/05/
https://CRAN.R-project.org/package=rugarch
https://doi.org/10.1080/10618600.1992.10477010
https://doi.org/10.1080/10618600.1992.10477010
https://doi.org/10.1080/00949659908811962
https://doi.org/10.1198/106186002394
https://doi.org/10.1198/106186002394
https://doi.org/10.1007/978-3-642-01689-9
http://CRAN.R-project.org/package=mvtnorm
http://CRAN.R-project.org/package=mvtnorm
https://doi.org/10.3390/risks8040103

30 nvmix: Multivariate Normal Variance Mixtures in R

Hintz E, Hofert M, Lemieux C (2021). “Normal Variance Mixtures: Distribution, Density
and Parameter Estimation.” Computational Statistics € Data Analysis, 157, 107175. doi:
10.1016/j.csda.2021.107175.

Hofert M, Hintz E, Lemieux C (2022). nvmix: Multivariate Normal Variance Miztures.
R package version 0.1-0, URL https://CRAN.R-project.org/package=nvmix.

Hofert M, Hornik K, McNeil A (2021). grmtools: Tools for Quantitative Risk Management.
R package version 0.0-14, URL https://CRAN.R-project.org/package=qrmtools.

Hofert M, Hornik K, McNeil AJ (2019). grmdata: Data Sets for Quantitative Risk Man-
agement Practice. R package version 2019-12-03-1, URL https://CRAN.R-project.org/
package=qrmdata.

Hofert M, Kojadinovic I, Maechler M, Yan J (2020). copula: Multivariate Dependence with
Copulas. R package version 1.0-1, URL https://CRAN.R-project.org/package=copula.

Hofert M, Lemieux C (2020). qrng: (Randomized) Quasi-Random Number Generators.
R package version 0.0-8, URL https://CRAN.R-project.org/package=qrng.

Lemieux C (2009). Monte Carlo and Quasi-Monte Carlo Sampling. Springer-Verlag.

Liu C, Rubin D (1994). “The ECME Algorithm: A Simple Extension of EM and ECM with
Faster Monotone Convergence.” Biometrika, 81(4), 633-648. doi:10.1093/biomet/81.4.
633.

Liu C, Rubin D (1995). “ML Estimation of the ¢ Distribution Using EM and Its Extensions,
ECM and ECME.” Statistica Sinica, 5(1), 19-39.

Luo X, Shevchenko P (2010). “The t Copula with Multiple Parameters of Degrees of Freedom:
Bivariate Characteristics and Application to Risk Management.” Quantitative Finance,
10(9), 1039-1054. doi:10.1080/14697680903085544.

McNeil A, Frey R, Embrechts P (2015). Quantitative Risk Management: Concepts, Techniques
and Tools. Princeton University Press.

Osorio F (2015). MVT: Estimation and Testing for the Multivariate t-Distribution. R package
version 0.3, URL https://CRAN.R-project.org/package=MVT.

Pfaff B, McNeil A (2020). QRM: Provides R-Language Code to Examine Quantitative Risk
Management Concepts. R package version 0.4-31, URL https://CRAN.R-project.org/
package=QRM.

R Core Team (2021). R : A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org.

Wilhelm S, Manjunath B (2015). tmvtnorm: Truncated Multivariate Normal and Student
t Distribution. R package version 1.4-10, URL http://CRAN.R-project.org/package=
tmvtnorm.

https://doi.org/10.1016/j.csda.2021.107175
https://doi.org/10.1016/j.csda.2021.107175
https://CRAN.R-project.org/package=nvmix
https://CRAN.R-project.org/package=qrmtools
https://CRAN.R-project.org/package=qrmdata
https://CRAN.R-project.org/package=qrmdata
https://CRAN.R-project.org/package=copula
https://CRAN.R-project.org/package=qrng
https://doi.org/10.1093/biomet/81.4.633
https://doi.org/10.1093/biomet/81.4.633
https://doi.org/10.1080/14697680903085544
https://CRAN.R-project.org/package=MVT
https://CRAN.R-project.org/package=QRM
https://CRAN.R-project.org/package=QRM
https://www.R-project.org
http://CRAN.R-project.org/package=tmvtnorm
http://CRAN.R-project.org/package=tmvtnorm

Journal of Statistical Software

Affiliation:

Erik Hintz, Marius Hofert, Christiane Lemieux

Department of Statistics and Actuarial Science

University of Waterloo

200 University Avenue West

Waterloo, ON, Canada N2L 3G1

E-mail: erik.hintz@uwaterloo.ca, marius.hofert@uwaterloo.ca,

clemieux@uwaterloo.ca

URL: http://uwaterloo.ca/scholar/ehintz/
http://www.math.uwaterloo.ca/~mhofert/
http://www.math.uwaterloo.ca/~clemieux/

Journal of Statistical Software https://www.jstatsoft.org/
published by the Foundation for Open Access Statistics https://www.foastat.org/

April 2022, Volume 102, Issue 2 Submitted: 2020-07-02
d0i:10.18637/jss.v102.102 Accepted: 2021-09-20

31

mailto:erik.hintz@uwaterloo.ca
mailto:marius.hofert@uwaterloo.ca
mailto:clemieux@uwaterloo.ca
http://uwaterloo.ca/scholar/ehintz/
http://www.math.uwaterloo.ca/~mhofert/
http://www.math.uwaterloo.ca/~clemieux/
https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v102.i02

	Introduction
	R packages for multivariate t and related distributions
	The underlying algorithms
	Estimating probabilities
	Estimating the log-density function
	Parameter estimation for multivariate normal variance mixtures

	Usage of the R package nvmix
	Sampling normal variance mixtures using rnvmix()
	Estimating probabilities with pnvmix()
	The main function pnvmix()
	The wrappers pNorm() and pStudent()

	Estimating the (log-)density with dnvmix()
	Fitting normal variance mixtures with fitnvmix()

	Example application
	Grouped normal variance mixtures
	Conclusion

