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Abstract

Markov random fields on two-dimensional lattices are behind many image analysis
methodologies. mrf2d provides tools for statistical inference on a class of discrete station-
ary Markov random field models with pairwise interaction, which includes many of the
popular models such as the Potts model and texture image models. The package intro-
duces representations of dependence structures and parameters, visualization functions
and efficient (C++-based) implementations of sampling algorithms, common estimation
methods and other key features of the model, providing a useful framework to implement
algorithms and working with the model in general. This paper presents a description and
details of the package, as well as some reproducible examples of usage.

Keywords: Markov random fields, image analysis, R, Gibbs random fields, Potts model, tex-
ture.

1. Introduction

A Markov random field (MRF) is a generalization of the well-known concept of a Markov
chain where variables are indexed by vertices of a graph instead of a sequence and the notion
of memory is substituted by the neighborhood (edges) of that graph. Markov random fields
on lattices, or more generally, Gibbs distributions, have been studied in statistical mechanics
as models for interacting particle systems. They range from the basic Ising model (or its
generalization Potts model) with pairwise nearest-neighbor interaction to models with more
complex interaction types, presenting long-range and/or higher-order interaction. For an
introduction to the subject we refer to Liggett (2012) and references therein.
A finite 2-dimensional lattice is a direct representation of pixel positions on a digital image.
Geman and Geman (1984) make an analogy between image models and statistical mechanics
systems, introducing probability-based computational methods for image restoration under
a specific type of noise. Higher-order dependence structures are also described, for example,
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interactions with pixels more distant than nearest-neighbors. Cross and Jain (1983) use MRFs
with special interaction structures to model texture images.
Many modern image analysis methodologies in statistics and machine learning are grounded
on Markov random field theory and the local dependence characteristic of image data. Com-
mon tasks in image analysis involve image segmentation (Zhang, Brady, and Smith 2001; Kato
and Pong 2006; Roche, Ribes, Bach-Cuadra, and Krüger 2011; Cao, Zhou, Xu, Meng, Xu,
and Paisley 2018; Ghamisi et al. 2018), texture synthesis (Gimel’farb 1996; Freeman and Liu
2011; Versteegen, Gimel’farb, and Riddle 2016) and statistical modeling (Derin and Elliott
1987; Guillot, Rajaratnam, and Emile-Geay 2015; Freguglia, Garcia, and Bicas 2020) all of
which can be achieved with the use of MRFs. Some basic references are Blake, Kohli, and
Rother (2011) and Kato and Zerubia (2012).
In this paper, when we refer to a MRF, we consider the particular case where variables are
indexed by points of a 2-dimensional lattice, not a general graph structure. The regular grid
naturally creates a spatial structure and notions of distance and direction for the variables,
allowing models to be specified based on this spatial structure (see Besag 1974, for examples).
Parametric inference based on maximum likelihood for such models is difficult, even for the
simple models, because of the intractable constant that appears in the likelihood. Inference
for the simplest non-trivial case of the Ising model was first studied by Pickard (1987) and
continues to present challenges, see for example Bhattacharya and Mukherjee (2018). On
the other hand, while there is a continuous development of methodologies used in MRFs in
the theoretical field, implementing new algorithms is a challenge in practice, mostly due to
the high-dimensionality of the problem and the complexity of the data structures required
to represent the data in this type of problem. An overview of this topic, mainly from the
Bayesian perspective, can be found in Winkler (2012).
Most methodologies developed are based on Monte Carlo Markov chain methods, thus simple
tasks like evaluating pairs of pixels or sampling individual pixels need to be repeated millions
or billions of times in iterative methods, depending on the image size, making an efficient
implementation of such methods one of the main demands for researchers of the topic.
R (R Core Team 2021) is one of the most used programming languages among statistics
researchers, what makes the existence of good packages important for any field of statistics.
In a general context (considering the definition of MRFs with general undirected graphs),
packages like graph (Gentleman, Whalen, Huber, and Falcon 2021) and network (Butts 2008)
provides tools for representation and manipulation of graph structures which can be used for
constructing and visualizing graph-based models. Different versions of graph-based MRFs
appear in many packages. For example, the CRF package (Wu 2019) has inferential tools
Markov random fields with pairwise and unary interactions and their hidden MRF version,
MRFcov (Clark, Wells, and Lindberg 2018) allows inference for the interaction parameter
of between nodes of a graph considering covariates and gamlss.spatial (De Bastiani, Rigby,
Stasinopoulous, Cysneiros, and Uribe-Opazo 2018) allows fitting Gaussian Markov random
fields in a spatial context, similar to INLA (Rue, Martino, and Chopin 2009) and mgcv (Wood
2017).
Outside of the R ecosystem, there are powerful software in C++ used for image analysis related
to Markov random fields, such as the DGM library (Kosov 2013) and densecrf (Krähenbühl
and Koltun 2011), which also has a Python wrapper (Beyer 2015), and can be used for a
variety of tasks and use extremely efficient computational methods.
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For discrete MRFs on lattice data, closer to what is proposed in mrf2d, there are some
R packages available. The potts package (Geyer and Johnson 2020), implements simula-
tion algorithms and parameter estimation via composite-likelihood for a Potts model with
nearest-neighbor interactions only. PottsUtils (Feng 2018) also implements simulation and
tools for computing normalization constants in one, two and three-dimensional Potts model.
The package bayesImageS (Moores, Nicholls, Pettitt, and Mengersen 2020) provides Bayesian
image segmentation algorithms considering Gaussian mixtures driven by hidden Potts models
with slightly more complex interaction neighborhood. GiRaF (Stoehr, Pudlo, and Friel 2020)
allows calculation on, and sampling from general homogeneous Potts model. The Pottslab
(Storath and Weinmann 2014) package for MATLAB also provides image segmentation algo-
rithms using the Potts model, including for multivariate-valued data.
Although the available packages for discrete-valued MRFs offer efficient implementations of
their methods, they do not provide an interface that allows simple extensions to different
cases, for example, different interaction types for different positions and sparse long-range
interaction neighborhoods. Some of the algorithms used also rely on specific characteristics
of the specific setups they consider and cannot be applied more generally.
The mrf2d package (Freguglia 2022) provides a complete framework for statistical inference
on discrete-valued MRF models on 2-dimensional lattice data, where all the elements used by
algorithms (such as conditional probabilities, pseudo-likelihood function, simulation, sufficient
statistics and more) are available for the user, as well as many built-in model fitting functions.
The package uses the model described in Freguglia et al. (2020) as a reference. Many other
models, such as the Potts model and auto-models, are particular cases of our model obtained
by including restrictions to the parameters or using specific interacting neighborhoods. These
neighborhoods can be freely specified within the package and 5 families of parameter restric-
tions are available to cover the particular cases.
mrf2d (Freguglia 2022) is available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=mrf2d and can be installed and loaded with

R> install.packages("mrf2d")
R> library("mrf2d")

The development version is in its GitHub repository and can be installed with

R> devtools::install_github("Freguglia/mrf2d")

This paper is organized as follows. Section 2 describes the model considered in mrf2d, Sec-
tion 3 presents the main functionalities of the package and details of the implementation,
which are illustrated by examples in Section 4. We finish with a discussion in Section 5. All
the results of example code in this article were obtained using R version 4.0.2 and mrf2d
version 1.0.

2. Model description
Let L ⊂ {i = (i1, i2) ∈ N2} be a finite set of locations in a two-dimensional lattice region and
Z = {Zi}i∈L a field of random variables indexed by those locations.
The main purpose of mrf2d is to provide a general framework for Markov random field models
which satisfy the following assumptions:

https://CRAN.R-project.org/package=mrf2d
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(a) Finite support Each Zi can take values in Z = {0, . . . , C} for some finite C > 0.

(b) Pairwise interactions The probability of a complete configuration P(Z = z) can be
decomposed into a product of functions of the pairs (zi, zj), i ̸= j ∈ L.

(c) Homogeneous interactions For any two pixels i and j and any relative position r, the
interaction between pixels i and i + r is the same as for pixels j and j + r, i.e., the
interaction depends on the relative position of the pair of pixels, not on their position
in the lattice.

These assumptions are satisfied by most commonly used models in image processing.
We use the representation in Freguglia et al. (2020) which expresses the probability distri-
bution of the random field in the form of the exponential family and introduce additional
constraints to parameter space and/or different dependence structures to include particular
features of the model under study.

2.1. Homogeneous Markov random field with pairwise interactions

MRF models are characterized by their conditional independence property. Let N be a
neighborhood system on L, then Z is a Markov random field with respect to N if Zi given
its neighbors ZNi is conditionally independent from all other variables

P(Zi = zi | Z−i) = P(Zi = zi | ZNi), i ∈ L, (1)

where Z−i denotes the set of variables {Zj, j ̸= i}.
To start defining MRFs in an image processing context, a location of the lattice i ∈ L will be
referred as a pixel i and an observed value of the variable zi ∈ Z as pixel value or color.
We denote by R ⊂ Z2 a set of interacting relative positions such that, for no pair of elements
r, r′ ∈ R we have r′ = −r (no position in R is a reflection of another). Based on R, we
can construct a neighborhood system (interaction structure) N in such way that the set of
neighbors of site i, Ni can be represented by a graph with vertices L where there is an edge
connecting i and j if, and only if, j = i ± r. For example, a nearest-neighbor structure
corresponds to R = {(1, 0), (0, 1)}.
Given an interaction structure R, for any relative position r ∈ R the interactions associated
to that relative position are characterized by a map θr(·, ·), θr : Z2 → R. For a, b ∈ Z, the
value θr(a, b) is called a potential.
The model in mrf2d considers a neighborhood system N that connects pairs of pixel positions
i, j such that i− j ∈ R. Under assumptions (a), (b) and (c), the Hammersley-Clifford theorem
(Hammersley and Clifford 1971) implies that the probability function for Z belongs to the
exponential family and can be described by a set of natural parameters θ = {θr(a, b), r ∈
R, a, b, ∈ Z},

P(Z = z) = 1
ζθ

eH(z,θ), (2)

where
H(z, θ) =

∑
r∈R

∑
i,j∈L

θr(zi, zj)1(j=i+r) and ζθ =
∑
z′

eH(z′,θ). (3)

Figure 1 illustrates how the function H(z, θ) is computed for an example interaction structure
R and a field z.
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R = {(1, 0), (0, 1), (2, 2)}

i

(0, 1)

(1, 0)

Interaction Structure

Data

0 0 2
1 2 1
0 2 0

z =

0 0 2
1 2 1
0 2 0

0 0 2
1 2 1
0 2 0

0 0 2
1 2 1
0 2 0(2, 2)

θ(1,0)(0, 2) + θ(0,1)(0, 1) +

0 0 2
1 2 1
0 2 0

0 0 2
1 2 1
0 2 0

θ(0,1)(0, 1) +

θ(0,1)(1, 0) +

θ(1,0)(2, 1) +

Pairwise contributions to H(z, θ)

0 0 2
1 2 1
0 2 0

θ(1,0)(2, 1) +

0 0 2
1 2 1
0 2 0

θ(0,1)(2, 0) +

0 0 2
1 2 1
0 2 0

θ(1,0)(0, 0) +

0 0 2
1 2 1
0 2 0

θ(1,0)(2, 0) +

0 0 2
1 2 1
0 2 0

θ(1,0)(1, 2) +

0 0 2
1 2 1
0 2 0

θ(0,1)(1, 2)

0 0 2
1 2 1
0 2 0

θ(0,1)(2, 2) +

0 0 2
1 2 1
0 2 0

θ(2,2)(0, 2) +

Figure 1: Example of interaction structure with three relative positions and example field on
a 3 by 3 lattice (left) and contributions of each interacting pair to H(z, θ)(right).

Note that adding a constant a constant cr to the potentials associated with a relative position
r ∈ R results in the same probability because the constant cancels when dividing by ζθ. Thus,
constraints for the potentials θr(a, b) are necessary to obtain identifiability in the model. We
consider θr(0, 0) = 0 for all relative positions r, which ensures identifiability and also gives an
interpretation for interactions in terms of the pair (0, 0): θr(a, b) < 0 (resp. > 0) means that
the pair (a, b) is less (resp. more) likely to appear in a pair with relative position r than (0, 0).

Potts model as a particular case

The Potts model (Potts 1952) is one of the most important MRF model used in image seg-
mentation because it can assign higher probability for equal-valued pairs of nearest-neighbors,
creating large regions of pixels with the same values. The model has a single parameter ϕ
that is interpreted as the inverse temperature in a mechanical statistics context.
A standard Potts model can be expressed as Equation 2 with the function H(z, θ) taking the
form ∑

(i,j):||i−j||=1
ϕ1(zi ̸=zj). (4)

Assumptions (a), (b) and (c) are satisfied, thus, we can rewrite Equation 4 in terms of an
interaction structure R and potentials θ by noticing

• The set i, j : ||i − j|| = 1 are vertical and horizontal pairs of neighbors, therefore, the
interaction structure R is the set {(1, 0), (0, 1)}.
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• The potential θr(a, b) is equal to ϕ if a ̸= b and 0 otherwise, regardless of r. The
constraint θr(0, 0) = 0 is satisfied in this definition. Therefore, we have the parameter
restriction

θr(a, b) = ϕ1(a̸=b)

for all r ∈ R.

This parameter restriction corresponds to the "onepar" family described in Section 3.2.

2.2. Important elements of the model

The main inference challenge for MRFs lies in the normalizing constant ζθ appearing in
Equation 2. It cannot be evaluated in practice as it requires summing over Z |L| possible field
configurations and there is no analytical expression for it, except for trivial cases, leading to
an intractable likelihood.
Being unable to evaluate the likelihood function hinders the use of most statistical methods.
Inference under intractable likelihoods have been developed over the years. The main stud-
ies involve using conditional probability-based functions, like pseudo-likelihood (Jensen and
Künsch 1994, for example) and Monte Carlo methods (Geyer and Thompson 1992; Møller,
Pettitt, Reeves, and Berthelsen 2006, for example).
Although there is a wide variety of inferential methods available, most of them are built
using the same pieces of the model. Thus, having access to each of these pieces is necessary
to implement algorithms. We highlight important characteristics of the model available in
mrf2d that are used by inference methods.

Conditional probabilities

A consequence of the Markov property (conditional independence) is a simple expression for
conditional probabilities. H(z, θ) is a sum of terms that only depends on pairs of pixel values,
which implies that all terms not involving position i cancel out when evaluating P(Zi | Z−i).
Define the part of the sum that involves the pixel in position i as

hi(k | z) =
(i+r)∈L∑

r∈R
θr(k, z(i+r)) +

(i−r)∈L∑
r∈R

θr(z(i−r), k). (5)

The conditional probability of Zi = k given all other locations, P(Zi = k | ZNi), is then given
by the standard softmax of hi(k | z),

P(Zi = k | Z−i = zNi) = ehi(k|z)∑
k′ ehi(k′|z) . (6)

Pseudo-likelihood function

The pseudo-likelihood function (Besag 1974, 1975) is defined as the product of conditional
probabilities of each variable given all other variables of a random field,

PL(θ; z) =
∏
i∈L

P(Zi = zi | Z−i = z−i) =
∏
i∈L

ehi(zi|z)∑
k′ ehi(k′|z) . (7)
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Algorithm 1: Approximate sampling algorithm for MRFs using T steps of Gibbs sampler.
Initialize z with a starting configuration z = z(0);
Initialize the iteration counter t = 0; while t ≤ T do

Sample {i(1), i(2), . . . , i(|L|)} a random permutation of the pixel positions L;
for ℓ in 1, . . . , |L| do

Update zi(ℓ) conditional to the rest of the field z−i(ℓ) with probabilities from
Equation 6;

end
t = t + 1;
Result: output the final configuration z.

end

In the special case of an independent field, it is equivalent to the likelihood function. Notice
that the pseudo-likelihood function does not depend on the intractable normalizing constant
and Equation 7 is numerically equivalent to a logistic regression problem where each pixel
values corresponds to independent observations and the interacting pixel values are covariates
with coefficients corresponding to the associated potentials.

Generating MRFs via Gibbs sampler

While exact sampling from dependent and high-dimensional processes is a challenging task
overall, the conditional independence of MRFs simplifies the implementation of the Gibbs
sampler algorithm (Geman and Geman 1984). In the Gibbs sampler algorithm, each pixel
value is updated conditionally to the current state of its neighbors and a Gibbs sampler cycle
consists of updating each pixel exactly one time.
To avoid introducing any kind of bias due to updates order, a random permutation of L is
drawn to define the order in which pixels are updated at each cycle. After running a suitable
number of cycles in Algorithm 1, the distribution of the resulting field sampled in the process
is approximately the joint distribution of the MRF.
Sampling a field conditional to a subset of pixel values can be achieved with the same algorithm
by skipping the updates for those pixels which are being conditioned on.
There exist faster mixing algorithms for particular cases such as Swendsen-Wang algorithm
(Wang and Swendsen 1990), but they require specific conditions from the model and/or
particular implementations to be efficient. Therefore, despite its slower mixing times in
some scenarios, we keep the Gibbs sampler as the method of choice in this work due to its
generalization ability as it only requires computing conditional distributions.

Sufficient statistics

An important computational consequence of the model assumptions is the fact that, in order
to evaluate the probability (or likelihood) function for a particular observed field z, it is not
necessary to determine the values of each pixel individually, but only the co-occurrence counts
for each relative position r ∈ R.
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The function H(z, θ) can be rewritten as

H(z, θ) =
∑
r∈R

C∑
a=0

C∑
b=0

θr(a, b)na,b,r(z), (8)

where na,b,r(z) = ∑
i∈L 1(zi=a,z(i+r)=b) is the count of occurrences of the pair (a, b) ∈ Z2 in

pairs of pixels with relative position r. Therefore,

SR(z) = {na,b,r(z), a, b ∈ Z, r ∈ R}

is a vector of sufficient statistics, where each component na,b,r(z) is associated with a corre-
sponding potential θr(a, b). Gimel’farb (1996) calls this sufficient statistic the co-occurrence
histogram.
Parameter constraints reduce the dimension of the sufficient statistic. Our identifiability
constraint θr(0, 0) = 0 implies that all n0,0,r(z) are excluded from SR(z) and equality con-
straints require aggregating (sum) co-occurrence counts to match the parameter dimension.
We shall keep the same notation for the constrained version of the sufficient statistics SN (z)
and potentials θ.
The main advantages of the representation with sufficient statistics are the reduced memory
usage in Monte Carlo methods and a convenient representation of H(z, θ) as an inner product
that simplifies dealing with likelihood ratios as it is done in Geyer and Thompson (1992),

H(z, θ) = ⟨SN (z), θ⟩. (9)

2.3. Gaussian mixtures driven by hidden MRFs

Another class of models present in the image processing field are hidden Markov random field
models (HMRFs). The hidden version considers a latent (unobserved) process, denoted Z
and an observed field, denoted Y, where Z is distributed as a MRF and the distribution of
Y | Z is reasonably simple.
In this type of modeling, Z is often considered the “true” image and Y is a noisy image.
Usually the goal of the analysis in this context is to recover the underlying field. Note that
for the models considered in this work, where Z has finite support, the hidden field defines a
segmentation of the image, making it a suitable approach for image segmentation.
In mrf2d, we provide built-in tools for the case where Y | Z is a finite Gaussian mixture with
mixture components driven by the hidden field. Additional covariates can also be included
as fixed effects for the mean,

Yi | Zi = a ∼ N(µa + xi⊤β, σ2
a), a = 0, 1, . . . , C. (10)

Given the latent field, observed values Y are assumed to be independent leading to the
conditional density

f(y | Z = z) =
∏
i∈L

1√
2πσ2

zi

exp
(

(yi − µzi − x⊤
i β)

2σ2
zi

)
(11)
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and the complete likelihood function

Lθ (β, {(µa, σa), a = 0, . . . , C}; y, z) = 1
ζθ

e(H(z,θ)) ∏
i∈L

1√
2πσ2

zi

exp
(

(yi − µzi − x⊤
i β)

2σ2
zi

)
(12)

Inference for this models involves estimating the parameters (µk, σk)k=0,1,...,C and β associated
with the Gaussian Mixture and predicting the labels of the latent field z simultaneously.
Bayesian methods and the EM algorithm are the most common approaches. The parameters
of the latent field distribution θ are fixed a priori and considered tuning hyper-parameters of
the algorithm.

3. Using the package

3.1. Model representation

The model described in Section 2 can be completely characterized by three components: the
random field z, the interaction structure R and the potentials θ. Additionally, y and the
mixture parameters (µk, σ2

k)k=0,...,C are included in hidden MRFs.
A consistent representation of each component is provided in the package so that inputs and
outputs of built-in functions, as well as methods the user may implement, are compatible and
usable in the analysis pipeline. Representations are described in Table 1.

Random fields z and y.

Realizations of a random fields z and y are represented by simple matrix objects with di-
mension N × M , where N ≥ maxi1(i1, i2) ∈ L and M ≥ maxi2(i1, i2) ∈ L, i.e., the maximal

Model Function Representation in mrf2d
component argument
z: Discrete-
valued field

Z A matrix object with values in {0, . . . , C}, where Z[w,q]
represents the pixel value in position (w, q) of the lattice. NA
values are used for positions that do not belong to L when it
is not a rectangular region.

y: Continuous-
valued field

Y A matrix object with real values, where Y[u,v] represents
the pixel value in position (u, v) of the lattice. NA values are
used for positions that do not belong to L when it is not a
rectangular region.

R: Interaction
structure

mrfi An object of the S4 class ‘mrfi’. It can be created with the
mrfi() and rpositions() functions.

θr(a, b): Array
of potentials

theta A three-dimensional array object with dimensions (C + 1) ×
(C + 1) × |R|. For a pair of values (a, b) and the s-th inter-
acting relative position rs of R, the corresponding potential
is mapped at theta[a+1, b+1, s].

Table 1: Model representation summary.
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coordinates. This matrix represents a rectangular set of pixels that contains L. The value in
row i1 and column i2 represents the observed value of the random field in position (i1, i2): an
integer in {0, 1, . . . , C} for z or a real number for y.
We do not require L to be a complete rectangular region. Pixels which position does not
belong to L are assigned the NA value.
Two functions are available for visualizing random fields: dplot() and cplot(). dplot()
should be used for discrete-valued fields z while cplot() is used for continuous-valued matri-
ces y. These functions provide an alternative to base R image() function, producing elegant
images in the form of ggplot objects. The main advantage is that they allow the use of
the ggplot2 package (Wickham 2016) to customize the image using the grammar of graphics.
Details and examples of customization of the images produced using ggplot2 can be found in
Appendix A.

Interaction structures R

Interaction structures are represented by objects of the S4 class ‘mrfi’ implemented in mrf2d.
These objects can be created with the mrfi() or rpositions() functions, which have argu-
ments max_norm, norm_type and positions. In mrfi(), the interaction structure created
will include all relative positions which satisfy ||(i1, i2)|| ≤ max_norm for the specified norm
type. positions can be passed as a list containing length 2 integer vectors with relative po-
sitions to include when using rpositions(). The function automatically checks for repeated
and opposite relative positions to ensure the structure is valid.
norm_type options are the same as R built-in norm() function, mainly, "1", "2" and "m" are
used for ℓ1, ℓ2 and the maximum norm, respectively. The default is ℓ1 norm.
An algebra of mrfi objects is implemented for manipulating these objects. + is used to perform
union of two mrfi objects or a mrfi object and a numeric vector with 2 integers can be used
to add a single interacting position to an existing mrfi object. Similarly, the - operator can
be used to perform set difference between two mrfi objects or to remove a single position if
a vector with 2 integers is used in the right-hand-side.
Some examples for creating different R are detailed below.

• mrfi(max_norm = 1) creates an interaction structure with all positions with ||(i1, i2)||1 ≤
1, which corresponds to a nearest-neighbor structure R = {(1, 0), (0, 1)}.

• rpositions(positions = list(c(1,0), c(0,1))) is an alternative way of specifying
the same structure of the previous example.

• mrfi(max_norm = 1) + rpositions(positions = list(c(2,0))) results in the in-
teraction structure R = {(1, 0), (0, 1), (2, 0)}.

• mrfi(max_norm = 1) + rpositions(positions = list(c(-1,0))) results in R =
{(0, 1), (−1, 0)}. The norm-based and position-based positions had an intersection (re-
flected position at (−1, 0)), so the redundant position (1, 0) was removed. In case of
opposite directions being added together, right-hand size argument is prioritized.

Additionally, conversion of mrfi objects to list is implemented in the as.list() method.
Subsetting methods are also available with the "[]" and "[[]]" operators. These methods
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Figure 2: Examples of interaction structures R created and their visualization.

are particularly important for model selection algorithms, as many distinct sparse interaction
structures can be obtained by using different subsets of a large reference base structure.
A plot method is available for mrfi objects. The code chunk below exemplifies the usage
of plotting functions and manipulation of mrfi objects. The resulting plots are presented
in Figure 2. The black square represents the origin position (0, 0), positions included in the
interaction structure R are represented by the dark-gray squares with black borders, while
their opposite directions are the light-gray squares.

R> plot(mrfi(max_norm = 1))
R> plot(mrfi(max_norm = 2, norm_type = "m") + c(4, 0))
R> plot(mrfi(4) - mrfi(2))
R> plot(mrfi(6, norm_type = "m")[c(1, 2, 6, 9, 19, 41)])

Potentials array θ

The collection of potentials, θr(a, b), is represented by an array object with dimensions (C +
1) × (C + 1) × |R|. Rows and columns are used to map a and b, respectively, while slices
are used to map relative positions r. A set of potentials {θr(a, b), a, b ∈ Z, r ∈ R} is always
related to an interaction structure R = {r1, r2, . . . , r|R|}. Since the i-th slice maps the i-th
relative position of R, ri, this is the minimal representation required to store all parameters
required by the model.
An important detail is that array indices in R start at 1, while we consider our set of possible
values Z = {0, 1, . . . , C}, therefore we need to shift a and b by one position when accessing
their value in the R array. Figure 3 illustrates how potentials can be represented as an array
in R in the C = 2 case. Two elements are highlighted and the associated indices used to
access them are shown as examples.

3.2. Parameter restriction families

Parameter restrictions play an important role in the inference process of our Markov random
field models. mrf2d functions support 5 families of parameter restrictions for the array of po-
tentials to be considered in inference algorithms. They are specified by the family argument
of functions to ensure the resulting output array (theta) respects those constraints. A brief
description of each interaction structure is given next. Table 2 presents the mathematical
definitions, number of free parameters and an example of a slice of the array of potentials for
the case with C = 2 in each family.
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θr3(0, 0) θr3(0, 1) θr3(0, 2)

θr3(1, 0) θr3(1, 1) θr3(1, 2)

θr1(2, 0) θr3(2, 1) θr3(2, 2)

θr2(0, 0) θr2(0, 1) θr2(0, 2)

θr2(1, 2)

θr3(2, 2)

θr1(0, 0) θr1(0, 1) θr1(0, 2)

θr1(1, 2)θr1(1, 1)θr1(1, 0)

θr1(2, 0) θr1(2, 1) θr1(2, 2)

. . .

. . .

a

b

r

R = {r1, r2, . . .}

theta[2,3,1]

theta[1,1,3]

C = 2

θrs(a, b) → theta[a+1, b+1, s]

R = {(1, 0), (0, 1), (2, 2)}

C = 1

θ(2,2)(1, 0) θ(2,2)(1, 1)

θ(2,2)(0, 0) θ(2,2)(0, 1)

θ(0,1)(1, 0) θ(0,1)(1, 1)

θ(0,1)(0, 0) θ(0,1)(0, 1)

θ(1,0)(1, 0) θ(1,0)(1, 1)

θ(1,0)(0, 0) θ(1,0)(0, 1)
i

(0, 1)

(1, 0)

(2, 2)

Figure 3: Left: Example of array representation of potentials with C = 2 for a generic
interaction structure R. Right: Array representation of potentials for the example from
Figure 1.

Family Restriction Free parameters Example slice

"onepar" θr(a, b) = ϕ1(a̸=b) 1

0 ϕ ϕ
ϕ 0 ϕ
ϕ ϕ 0


"oneeach" θr(a, b) = ϕr1(a̸=b) |R|

 0 ϕr ϕr
ϕr 0 ϕr
ϕr ϕr 0


"absdif" θr(a, b) = ∑C

d=1 ϕr,d1(|b−a|=d) |R|C

 0 ϕr,1 ϕr,2
ϕr,1 0 ϕr,1
ϕr,2 ϕr,1 0


"dif" θr(a, b) = ∑C

d=−C,d̸=0 ϕr,d1(b−a=d) |R|2C

 0 ϕr,1 ϕr,2
ϕr,−1 0 ϕr,1
ϕr,−2 ϕr,−1 0


"free" θr(0, 0) = 0 |R|(C2 − 1)

 0 ϕr,0,1 ϕr,0,2
ϕr,1,0 ϕr,1,1 ϕr,1,2
ϕr,2,0 ϕr,2,1 ϕr,2,2


Table 2: Description of parameter restriction families.

"onepar" A single-parameter (ϕ) model, where interactions depend only on the fact that
values are equal or different, regardless of their relative position. This restriction corre-
sponds to the classical Ising and Potts model.

"oneeach" The same interaction type as "onepar", but allowing different values ϕr for dif-
ferent interacting positions r ∈ R.

"absdif" For each r ∈ R, the potentials θr(a, b) depend only on the absolute differences of
their pixel values d = |b − a|. Note that "absdif" is equivalent to "oneeach" when
C = 1.
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"dif" Generalizes the "absdif" family allowing opposite signal differences to have different
interactions.

"free" No restrictions, except for the identifiability constraint θr(0, 0) = 0.

Families "dif" and "absdif" should only be used when pixel values represent quantities
and their differences are well-defined, for instance, in grayscale images with few levels, as
in the example analysed in Gimel’farb (1996). If relabeling the values does not change the
interpretation of the problem, then these restrictions are probably not suitable.
The function smr_array(theta, family) can be used to transform a parameter array into
a vector of appropriate length containing only the free parameters corresponding to the pro-
vided array (theta) and the restriction family. The opposite operation is also available as
the expand_array(theta_vec, family, mrfi, C) function. These transformations use a
simpler and less memory consuming structure so they are particularly useful for optimization
problems as most functions, for example R built-in optim function, require a vector of pa-
rameters. Also, they are convenient for storing multiple vectors, for example in Monte Carlo
methods.

3.3. Random field sampler

Being able to sample observations of Markov random fields is a key component of many
inference methods that aim to avoid the intractable normalizing constant. In mrf2d, a com-
plete and efficient routine to sample fields using the Gibbs sampler algorithm described in
Algorithm 1 is provided by the rmrf2d() function. Its arguments are:

• init_Z: The initial field configuration, or a length-2 vector with the dimensions of the
field to be sampled. If the dimensions are provided, the initial configuration is randomly
sampled from independent discrete uniform distributions.

• mrfi: A mrfi object representing the interaction structure R.

• theta: An array of potentials.

• cycles: The number of Gibbs sampler cycles.

• sub_region: Optional argument used for non-rectangular images when init_Z is a
vector holding the dimensions. A logical matrix with the same dimensions as specified
in init_Z. Pixels with FALSE value are not included in the image.

• fixed_region: Optional. A matrix with logical values. Pixel positions with TRUE
value are conditioned on their initial configuration (init_Z) value and are not updated.

We illustrate below the use of the sampling function on two fields: a 200×200 field (z_sample)
without conditioning on any pixel (nothing specified in fixed_region) and a 100 × 100 field
(z_border) conditioning on the boundary values being fixed as 0, sampled from a random
initial configuration. The resulting images are presented in Figure 4.

R> th <- expand_array(-1, family = "onepar", mrfi(1), C = 1)
R> z_sample <- rmrf2d(init_Z = c(200,200), mrfi = mrfi(1), theta = th)
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Figure 4: Simulated random fields from a nearest-neighbor structure. Left: no boundary
conditions. Right: conditional to all border values being 0 (black).

R> border <- matrix(FALSE, nrow = 100, ncol = 100)
R> border[1, ] <- border[100, ] <- border[, 1] <- border[, 100] <- TRUE
R> initial <- matrix(sample(0:1, 100*100, replace = TRUE),
+ nrow = 100, ncol = 100)
R> initial[border] <- 0
R> z_border <- rmrf2d(initial, mrfi = mrfi(1), theta = th,
+ fixed_region = border)

Non-rectangular fields can be sampled either by passing a non-rectangular field as the init_Z
argument or by using the sub_region argument and specifying the dimensions of the sampled
field.
Another important feature is conditioning on a subset of pixel values. There are many situ-
ations where keeping a subset of pixels fixed during the sampling process can be useful, for
example, filling a region of missing pixel values via simulation, defining boundary conditions
(our model corresponds to a free boundary condition, but other types such as fixed or periodic
boundary can be sampled with proper manipulation of the initial configuration and condi-
tioning region) or performing block-wise updates of the data using conditionally independent
blocks (for parallelization of algorithms).
Since the Gibbs sampler algorithm updates each pixel value multiple times, performance
is one of our main implementation concerns. To improve the performance and speed up
computations considerably, the internals of the sampling function, as well as most other
computationally intensive functions are written in C++ with the use of Rcpp (Eddelbuettel
and François 2011) and RcppArmadillo (Eddelbuettel and Sanderson 2014) packages.

3.4. Statistical inference in mrf2d
Inference methods for MRF models are diverse and their suitability highly depend on the type
of data being analyzed. The framework provided by mrf2d can be used to implement all sorts
of algorithms that are built from a common stack of components: simulation, conditional
probabilities and sufficient statistics. It also provides complete built-in routines for some
estimation algorithms.
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Function Use
Miscellaneous

rmrf2d Generates samples of a MRF via Gibbs sampler. Used for Monte Carlo
based methods.

cp_mrf2d Computes the conditional probabilities for a pixel position given its neigh-
bors.

pl_mrf2d Computes pseudo-likelihood value for an observed field considering inter-
action structure mrfi and array of potentials theta.

cohist Creates the co-occurrence histogram of an observed field given an in-
teraction structure. Can be converted to a vector of sufficient statistics
given a restriction family with the smr_stat function.

smr_array and
expand_array

Conversions between array and vector representation of potentials given
a parameter restriction family.

Built-in inference algorithms

fit_pl Estimates the parameter array given an observed field via pseudo-
likelihood optimization. Returns a mrfout object.

fit_sa Estimates the parameter array given an observed field via stochastic ap-
proximation algorithm. Returns a mrfout object.

fit_ghm Fits a Gaussian mixture driven by a given hidden MRF model using the
EM algorithm from Zhang et al. (2001). polynomial_2d and fourier_2d
can be used to create polynomial and 2-dimensional Fourier basis func-
tions, respectively, to be used as a fixed effect. Returns a hmrfout object.

Table 3: List of available functions used for inference in mrf2d with a brief description of each
one.

Table 3.4 presents a list of functions available in the package that can be used to construct
inference algorithms, as well as built-in functions for parameter estimation for MRF and for
the hidden MRF models defined in Section 2.3 that we describe next. The built-in inference
functions return objects of class ‘mrfout’ (MRF data) or ‘hmrfout’ (hidden MRF models),
which contains the information about the fitted model, as well as summary and plot methods
associated for interpretation of the results.

Maximum pseudo-likelihood estimation

The pseudo-likelihood function in Equation 7 can be evaluated efficiently because it does
not depend on the intractable normalizing constant. A common estimation procedure for
intractable likelihood problems is optimizing the pseudo-likelihood with respect to the pa-
rameters. The pseudo-likelihood estimator is given by

θ̂P L = arg max
θ

PL(θ; z). (13)

The function fit_pl() from mrf2d implements an optimization of the pseudo-likelihood
function using R built-in optim() function. It handles the conversions between array and
vector representation of potentials automatically, respecting the restriction family selected
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and returns the estimated array of potentials and maximum value of the pseudo-likelihood in
logarithmic scale. The arguments of fit_pl are:

• Z: The observed random field z.

• mrfi: A mrfi representing an interaction structure R.

• family: A parameter restriction family.

• init: An array with the initial configuration used in the optimization. 0 can be used
to start from the independent model.

• optim_args: A named list with additional arguments passed to the optim() function
call.

Stochastic approximation algorithm

Given an observed field z(0), the stochastic approximation algorithm (Robbins and Monro
1951) seeks to create a Markov chain of parameter vectors {θ(t)}t≥1 that converges to the
maximum likelihood estimate of θ, which is the solution of the zero gradient condition
Eθ(SR(Z)) = SR(z(0)), derived from Equation 9.
The algorithm is defined by the recurrence

θ(t+1) = θ(t) + γ(t)(SR(z(0)) − SR(z(t))), (14)

where z(t) is a field sampled using θ(t) and γ(t) is a sequence of positive constants that satisfies∑∞
t=1 γ(t) = ∞ and ∑∞

t=1

(
γ(t)

)2
< ∞.

Stochastic approximation is implemented in mrf2d as the fit_sa() function. It samples
z(t) via Gibbs sampler considering the previous field z(t−1) as the initial configuration. Pe-
riodically, the field samples are refreshed, starting from an independent discrete uniform
distribution and running a greater number of Gibbs sampler cycles, this procedure prevents
the algorithms from getting stuck in problematic field samples. Its arguments are:

• Z: The observed field z(0).

• mrfi: The interaction structure R.

• family: The family of parameter restrictions considered when converting the potentials
array to a vector.

• gamma_seq: A sequence of step size values to be used as γ(t). These values are divided
by the number of pixels |L| internally to be invariant with respect to the image size. The
typical sequence recommended is seq(from = M, to = 0, length.out = B), with M
ranging from 0.5 to 2 and large number of iterations (B).

• init: The initial array of parameters or the value 0 to start from the independent
model.

• cycles: Number of Gibbs sampler ran between iterations.
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• refresh_each: Restarts the sample z(t) from a random configuration each refresh_each
iterations.

• refresh_cycles: When a refresh happens, how many Gibbs sampler cycles are ran in
the current parameter configuration.

Among the elements of the returned mrfout object, theta contains the estimated potential
array and metrics a data frame with the Euclidean distances between SR(z(0)) and SR(z(t))
for each iteration. This sequence of distances is used to monitor the convergence of the
algorithm as a form of diagnostics analysis.

EM algorithm for HMRF models

Gaussian Mixtures driven by hidden MRFs can be fitted in mrf2d with an extension of the
EM algorithm from Zhang et al. (2001) to include a fixed effect (see Freguglia et al. 2020,
for details). The probabilities computed for the latent label of each pixel in the E-step are
conditioned on the global maximum probability configuration of its neighbors, obtained via
iterated conditional modes (ICM) algorithm at each iteration (Besag 1986).
The complete algorithm is available in the fit_ghm function. Its main arguments are

• Y: The observed continuous-valued field y.

• mrfi: Interaction structure of the latent field R.

• theta: The array of potentials that defines the latent field distribution.

• fixed_fn: A list of functions of pixel positions f(i1, i2) to be used as fixed effect. Con-
structors for 2-dimensional polynomials and Fourier basis are available in the functions
polynomial_2d and fourier_2d, respectively.

• equal_vars: A logical value indicating if mixture components are forced to have
equal variances.

• init_mus and init_sigmas: Optional initial values of (µa, σa)a=0,...,C . If none is passed,
an independent Gaussian mixture is fitted with initial values based on quantiles and
the estimates of this fitted model are used as (often good) starting values in the main
procedure.

• maxiter: Maximum number of iterations before stopping.

• max_dist: Defines a stopping condition for the EM algorithm. For consecutive itera-
tions t and t+1, the absolute difference in each parameter, |µ(t)

k −µ
(t+1)
k | and |σ(t)

k −σ
(t+1)
k |

are computed for k = 0, 1, . . . , C. The algorithms stops if all differences are less than
max_dist.

• icm_cycles: Number of cycles of Iterated Conditional Modes algorithm executed in
each iteration.

fit_ghm() returns a hmrfout object represented by a data.frame containing par – the esti-
mates of the mixture parameters {(µ̂a, σ̂a), a = 0, 1 . . . , C}, Z_pred – the highest probability
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Figure 5: Visualization of field1.

configuration of the latent field computed via ICM algorithm ẑ, fixed – a matrix with the
estimated fixed effects

(
x⊤

i β̂
)

for each pixel, and predicted – a matrix with the predicted
mean for each pixel

(
x⊤

i β̂ + µ̂ẑi

)
.

4. Data analysis using mrf2d

4.1. Example 1: A binary image with texture-like pattern

Description

To illustrate the usage of mrf2d for finite-valued images, we use the object field1 available
in the package, which contains a binary field with anisotropic pattern as seen in Figure 5. It
is a synthetic texture image of the same type as the binary texture data presented in Cross
and Jain (1983). The data can be loaded and viewed using the code chunk below.

R> data("field1", package = "mrf2d")
R> dplot(field1, legend = TRUE)

Our goal is to fit a MRF model to this data and sample images from the fitted model to
evaluate if the patterns achieved in the generated data are similar to the original data. This
is the typical setup of a texture synthesis problem with finite-valued images.
This analysis involves three main stages: Specifying the model (interaction structure and
parameter restrictions), estimating the parameters and evaluating the fitted model. All of
the run times described in this section were obtained using an Intel Core i7-7500U 2.70GHz
CPU processor.
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Specifying R and parameter family

Model selection under intractability is a challenging problem because most algorithms require
comparing (maximum) likelihood functions for different models, what cannot be done exactly
and/or have a high computational cost for MRF models.
The main routes in the model specification stage are: using prior information of the data or
problem to select what type of restrictions and interaction structure are best suited, using the
most general model (e.g., no restrictions and a complex interaction structure) as in Freguglia
et al. (2020) or using some estimation technique.
This image presents a diagonal pattern what indicates a nearest-neighbor interaction structure
may not be appropriate to capture all the dependence present in the field. We first choose
what kind of parameter restriction family will be considered by checking that relabeling the
values Z does not change the patterns in the image indicating symmetric potentials should
be suited for this image, and there is a clear difference in the interactions when considering
pixels in different directions, what indicates we need different types of interaction for different
relative positions. These characteristics match the "oneeach" family that will be used in this
example.
In order to estimate the set of interacting positions R, we use use a naive algorithm which
consists of performing 300 steps of stochastic approximation considering a large set of can-
didate interacting positions (all positions with maximum norm less or equal 6, 84 positions
total) and then select the positions with absolute value of the associated potential higher than
a threshold value. This is a strategy similar to the heuristic search algorithm from Gimel’farb
(1996). Stochastic approximation was preferred over maximum pseudo-likelihood, for exam-
ple, because it is computationally more suited for high-dimensional situations and we are not
requiring a very accurate estimation at this point, so we can use a reasonably low number of
iterations.
The code below implements this naive interaction selection algorithm in a few lines using
the tools available in mrf2d considering a threshold value of 0.10. A large set of interaction
position (candidates) is defined and the stochastic approximation algorithm is executed
based on this complete interaction structure, obtaining complete_sa, then a selection based
on thresholding absolute values of interactions is performed (selected).

R> candidates <- mrfi(6, norm_type = "m")
R> set.seed(1)
R> complete_sa <- fit_sa(field1, candidates, family = "oneeach",
+ gamma_seq = seq(from = 1, to = 0, length.out = 300),
+ cycles = 2, refresh_each = 301)

The complete stochastic approximation procedure in the fit_sa() call took 168 seconds to
complete in total.

R> plot(complete_sa)
R> thr_value <- 0.1
R> theta_vec <- smr_array(complete_sa$theta, "oneeach")
R> selected <- which(abs(theta_vec) > thr_value)
R> R1 <- candidates[selected]
R> R1
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Figure 6: Plot of the complete_sa object. Nearest-neighbor positions have strong interactions
(with negative potential) for different-valued pairs, while position (4, 4) has a weaker positive
potential. This can be interpreted as nearest-neighbors having more weight when they are
equal, while pixel with relative position (4, 4) have more weight when they are different.

Figure 7: Candidate positions for the interaction structure (left) and selected positions (right).
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Estimating θ

Considering the parameter restriction family "onepar" and the selected interaction structure
R = {(1, 0), (0, 1), (4, 4)}, we have a model with 3 free parameters. A 3-dimensional optimiza-
tion problem is simple enough to be solved using the built-in pseudo-likelihood optimization
function. We also fit the model via stochastic approximation, now only considering the se-
lected interaction structure, for comparison. The results are compared with the summary()
method for the ‘mrfout’ class and presented below.

R> pl <- fit_pl(field1, R1, family = "oneeach")
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R> summary(pl)

Model adjusted via Pseudolikelihood
Image dimension: 150 150
2 colors, distributed as:

0 1
11083 11417

Interactions for different-valued pairs:
Position| Value Rel. Contribution

(1,0)| -0.993 1.000 ***
(0,1)| -1.021 0.995 ***
(4,4)| 0.183 0.735 **

R> sa <- fit_sa(field1, R1, family = "oneeach",
+ gamma_seq = seq(from = 1, to = 0, length.out = 300))
R> summary(sa)

Model adjusted via Stochastic Approximation
Image dimension: 150 150
2 colors, distributed as:

0 1
11083 11417

Interactions for different-valued pairs:
Position| Value Rel. Contribution

(1,0)| -0.964 1.000 ***
(0,1)| -0.983 0.987 ***
(4,4)| 0.183 0.756 ***

The resulting estimates were roughly the same using the two functions. The fit_pl call ran
in 2.371 seconds while the fit_sa call took 56.627 seconds to complete. The optimization
process from maximum pseudo-likelihood estimation was substantially faster, mainly due
to the low-dimensionality of the problem, than running a satisfactory number of stochastic
approximation steps to achieve reasonable precision.

Evaluating the fitted model

To evaluate how well the estimated parameters fit the data, we generate a new sample from
the fitted model. Figure 8 shows the original image and the image simulated from the fitted
model for comparison. The patterns created are visually very similar. Therefore the fitted
MRF model successfully describes the characteristics of the data and is capable of synthesizing
new images with the same texture pattern.

R> z_sim <- rmrf2d(dim(field1), R1, pl$theta)
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Figure 8: Original data (left) and random field simulated from the fitted model (right).

4.2. Example 2: Image segmentation of a hidden MRF

Description

The data available in the object hfield1 in the package will be used to illustrate the use of
mrf2d for Gaussian mixtures driven by hidden MRFs. It consists of an image with continuous-
valued pixels ranging from 0.3 to 15.2. A pattern similar to the previous example can be
observed with the addition of a continuous noise.

R> data("hfield1", package = "mrf2d")
R> cplot(hfield1)

We consider an image composed by a latent (hidden) MRF plus a random noise whose dis-
tribution for each pixel may depend on the pixel value in the latent field. The main goal
for this type of data is to recover the segmentation of the underlying pixel labels, an image
segmentation problem (Li, Wu, and Zhang 2009; Shah and Chauhan 2015, for example). This
is a typical problem where Gaussian mixtures driven by hidden Markov random fields are well
suited.

Fitting a hidden MRF with no fixed effect

The built-in function for fitting hidden MRFs (fit_ghm()), like most algorithms used for
Gaussian mixtures driven by HMRFs, considers the distribution of the underlying field as a
hyper-parameter specified a priori. In this example, since we observe an underlying pattern
similar to one in Example 1, we will reuse the model estimated by penalized likelihood as the
MRF distribution.
We fit a HMRF model to the data using the fit_ghm function. The mixture parameters
estimates are shown below and the resulting segmentation is presented in Figure 10(b).

R> hmrf_nofixed <- fit_ghm(hfield1, mrfi = R1, theta = pl$theta)
R> summary(hmrf_nofixed)
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Figure 9: Image data for hfield1.

Gaussian mixture model driven by Hidden MRF fitted by EM-algorithm.
Image dimensions: 150 150
Predicted mixture component table:

0 1
10988 11512

Number of covariates (or basis functions): 0
Interaction structure considered: (1,0) (0,1) (4,4)

Mixture parameters:
Component mu sigma

0 5.29 1.39
1 9.19 1.46

Model fitted in 4 iterations.

The labels in the segmentation follow the expected pattern only in the middle part of the
image. Two large clusters without the pattern appear at the upper and lower parts of the
image, what indicates there might be some missing spatial information not included in the
model.

Adding a polynomial trend as fixed effect

A HMRF model without covariates has an intrinsic assumption that the mean values of pixel
intensities, given their labels, are homogeneous along the image region. This is not the case
for the data in Figure 9, as a vertical gradient effect can be observed.
In order to incorporate this spatial effect not captured in the model, we include spatial
covariates, in the form of polynomial functions of pixel positions (i1, i2) as a fixed effect.
These covariates can be specified in fixed_fn argument of the function and a (centered)
polynomial can be created with the polynomial_2d() function from mrf2d.
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Figure 10: Results from the hidden MRF fits: (a) the original image data, (b) segmentation
obtained without adding a polynomial effect, (c) polynomial fitted as a fixed effect, (d) image
segmentation when the polynomial effect is included.

In this example, we include all terms of a two-dimensional centered cubic polynomial, that is,

p(i1, i2) =
3∑

d1=0

3∑
d2=0

βi1,i2 (i1 − c1)d1 (i2 − c2)d2 , (15)

where the centering position (c1, c2) is the middle pixel position of the image.

R> hmrf_poly <- fit_ghm(hfield1, mrfi = R1, theta = pl$theta,
+ fixed_fn = polynomial_2d(c(3, 3), dim(hfield1)))
R> summary(hmrf_poly)

Gaussian mixture model driven by Hidden MRF fitted by EM-algorithm.
Image dimensions: 150 150
Predicted mixture component table:

0 1
11718 10782

Number of covariates (or basis functions): 15
Interaction structure considered: (1,0) (0,1) (4,4)
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Mixture parameters:
Component mu sigma

0 6.79 0.62
1 7.82 1.20

Model fitted in 4 iterations.

The code chunk below illustrates how the resulting fields available in the function output can
be visualized. The results are presented in Figure 10.

R> cplot(hfield1)
R> dplot(hmrf_nofixed$Z_pred, legend = TRUE)
R> cplot(hmrf_poly$fixed)
R> dplot(hmrf_poly$Z_pred, legend = TRUE)

This example highlights two features of mrf2d that are not available in other packages: The
possibility to specify a distribution for the underlying field that is more flexible than a simple
Potts model and the option to include covariates (in this example, the polynomial trend) that
are estimated simultaneously to the mixture parameters, preventing undesired effects in the
segmentation results.

4.3. Example 3: Neuroimaging segmentation with BOLD5000 data

Neuroimaging is one of the most frequent applications of HMRF models (Zhang et al. 2001;
Shah and Chauhan 2015). We illustrate a brain magnetic resonance image segmentation using
a sample of the BOLD5000 dataset (Chang, Pyles, Marcus, Gupta, Tarr, and Aminoff 2019)
available in the bold5000 object in the package.

R> data("bold5000", package = "mrf2d")
R> cplot(bold5000)

Our main goal in this problem is to segment the brain image into large regions corresponding
to different elements, like a background, bones, fat, grey matter, white matter, etc.
The most common approach for the segmentation using HMRFs is to consider a simple Potts
model (nearest-neighbor interaction structure R = {(1, 0), (0, 1)} and the "onepar" parameter
restriction family. The potential associated with different-valued pairs controls, as well as the
number of components are considered fixed a priori and will not be discussed in this paper.
For the purpose of illustration, we use 4 components (C = 3) and the value −1 for the
potentials of different-valued pairs.

R> Rnn <- mrfi(1)
R> theta_nn <- expand_array(-1, family = "onepar", C = 3, mrfi = Rnn)

We add a constraint that all variance parameters of the mixture components must be equal
by setting the equal_vars parameter to TRUE. This improves the results in this problem by
preventing some of the mixture components to be estimated with too high variance, what
may causes pixels with large and small values to be predicted in the same class with high
probability.
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Figure 11: Brain magnetic resonance image in bold5000 data.

We also fit an independent Gaussian mixture (by multiplying all potentials by zero) for a
comparison with the HMRF model. Segmentation results are presented in Figure 12 and the
parameter estimates are shown below.

R> set.seed(1)
R> fit_brain <- fit_ghm(bold5000, Rnn, theta_nn, equal_vars = TRUE)
R> fit_brain_ind <- fit_ghm(bold5000, Rnn, theta_nn*0, equal_vars = TRUE)

R> summary(fit_brain)

Gaussian mixture model driven by Hidden MRF fitted by EM-algorithm.
Image dimensions: 176 256
Predicted mixture component table:

0 1 2 3
22921 6829 7305 8001

Number of covariates (or basis functions): 0
Interaction structure considered: (1,0) (0,1)

Mixture parameters:
Component mu sigma

0 7.23 28.78
1 128.90 28.78
2 207.53 28.78
3 294.71 28.78

Model fitted in 11 iterations.

R> summary(fit_brain_ind)
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Figure 12: Image segmentation predicted by the hidden MRF fitted (left) and the independent
mixture model (right).

Gaussian mixture model driven by Hidden MRF fitted by EM-algorithm.
Image dimensions: 176 256
Predicted mixture component table:

0 1 2 3
23013 7021 7065 7957

Number of covariates (or basis functions): 0
Interaction structure considered: (1,0) (0,1)

Mixture parameters:
Component mu sigma

0 7.51 30.23
1 133.10 30.23
2 211.72 30.23
3 295.33 30.23

Model fitted in 4 iterations.

The resulting parameter estimates are not much different when comparing the independent
mixture model and the HMRF and both ran in approximately 85 seconds, but the segmen-
tation is cleaner when using the HMRF model, without sparse different-labeled pixels inside
regions.

R> dplot(fit_brain$Z_pred, legend = TRUE)
R> dplot(fit_brain_ind$Z_pred, legend = TRUE)

5. Discussion
mrf2d provides a consistent programming interface for statistical inference in a large class of
discrete Markov random field models defined on 2-dimensional lattices. It has an efficient and
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simple to use implementation of the main stack of computations used by most of inference
algorithms, as well as complete routines for some commonly used and more complex estima-
tion methods. The objects used for representing each model component have been carefully
designed and tuned over several iterations to achieve a balance between performance and
usability in the stable version.
The model featured in the package generalizes Potts model from other available packages
in different ways, such as allowing a flexible definition of interacting pixel positions and
interaction types, with the drawback that it cannot take advantage of algorithms that require
the setup of a Potts model to improve their efficiency.
The versatility from the non-parametric model behind mrf2d and the flexible representation
proposed in the package allows us to create special 2-dimensional structures that are equiva-
lent to 3-dimensional representations of data. This can make mrf2d also an interesting option
for applications with 3-dimensional data where the assumptions of the model also hold. A
vignette is available with a deeper explanation on how to reshape 3-dimensional problems for
the mrf2d framework and it can be viewed by using the vignette() function.

R> vignette("three-dimensions-on-mrf2d", package = "mrf2d")

We currently have over 160 unit tests supported by the testthat package (Wickham 2011)
and more than 90% of the code covered in the tests. These tests were designed to verify
mathematical correctness of functions, the behavior of functions with unexpected input and
the consistency of error messages. The package is in constant development and new tests are
added whenever new functionalities are implemented to ensure its reliability over time.
For these reasons, mrf2d is an important tool for making statistical inference in images using
Markov random fields more accessible, allowing researchers to perform data analysis and
implement new algorithms in R with a simple and consistent framework.
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A. Customizing visualizations with ggplot2

A.1. Random field visualization

The two plotting functions dplot() and cplot() return an object of the ‘ggplot’ class, what
allows users to produce customized visualizations by changing scales, legend characteristics,
titles, themes and much more by using the grammar of graphics from the ggplot2 package
(Wickham 2016).
Random fields (represented by matrix objects) are transformed into a data.frame structure
with columns x, y and value. x and y are the indices of the matrix object while value maps
the pixel-value in that position (Z[x,y]).
The plots are constructed using a tile plane with rectangles (geom_tile() from ggplot2) with
the value column map to the fill aesthetics. In dplot(), which is used for finite-valued
fields, value is treated as a factor, while in cplot() it is a continuous numeric. This is the
only difference between the functions and it should be kept in mind when defining custom
color scales.
Figure 13 created with the code chunk below shows examples of customized versions of a
random field visualization built from the same base dplot() result. Modifications include
adding a title, removing all scale-related information (keeping only the actual image), using
a custom color-scale and changing the legend position, respectively.

R> library("ggplot2")
R> base_plot <- dplot(field1, legend = TRUE)
R> base_plot + ggtitle("This is a custom title")
R> base_plot + theme_void() + theme(legend.position = "none")
R> base_plot + scale_fill_manual(values = c("red", "blue"))
R> base_plot + theme(legend.position = "bottom")

A.2. Interaction structure visualization

Similarly to the functions used to visualize random fields, a plot() method is available for
mrfi objects. A data.frame with columns named rx and ry is created internally with the
coordinates of each interacting relative position. These columns are mapped to the x and
y axis, respectively and a geom_tile is used to produce the plot. The reverse positions
are included automatically with a light-gray color, but this can be prevented by setting
include_opposite = FALSE in the plot call. It also returns a ggplot object that can be
customized. The code chunk next presents examples of how plots can be customized by
adding custom colors, text labels to the interacting positions and a custom title.

R> mrfi_plot <- plot(mrfi(3) + c(5,1))

R> mrfi_plot + geom_tile(fill = "orange", color = "blue")
R> mrfi_plot + geom_text(aes(label = paste0("(", rx, ",", ry, ")")))
R> mrfi_plot + ggtitle("Add a custom title") +
+ theme(plot.title = element_text(hjust = 0.5, size = 24))
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Figure 13: Four examples of field visualizations achieved by adding ggplot2 layers to a base
plot produced in mrf2d.
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Figure 14: Examples of customized visualizations of mrfi objects.

B. Comparing methods between packages for a Potts model
One of the most important particular cases for the model presented in Section 2.1.1 is the
Potts model, which is used in the theory supporting many available packages. In particular,
the potts package (Geyer and Johnson 2020) provides functionalities similar to some of the
ones implemented in mrf2d, mainly random sampling and computing the composite likelihood
(comparable to the pseudo-likelihood function). The main difference between the packages
is that mrf2d uses a Gibbs sampler scheme, with sequential updates of individual pixel while
potts uses the Swendsen-Wang algorithm (Wang and Swendsen 1990), that updates blocks of
pixels at each iteration.
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Figure 15: Sufficient statistics for 100 simulated realizations of the Potts Model with varying
number of iterations using both mrf2d and potts packages.

We conducted a simulation study in order to compare mrf2d and the potts package version 0.5-
9 with respect to the Potts model simulation algorithms. Our goal was not to compare
implementations as the algorithms are different, but to check whether the simulated fields are
comparable between packages as a form of validation and understanding the behavior of our
simulation method with respect to the number of Gibbs sampler cycles.
Considering the parametrization of the Potts model in Equation 4, 100 realizations of a three-
color (C = 2) Potts model with parameter ϕ = −1 (corresponds +1 in the parametrization
used in the potts package) were simulated considering number of iterations equal to 5, 15,
25, 35, 45, 55, 65 and 75 in each package. We use the term iteration referring to the cycles
parameter in mrf2d and nspace in potts. For each simulated field, we computed the sufficient
statistics T (z) = ∑

||i−j||=1 1(zi ̸=zj). The results are presented in Figure 15 and the code for
the simulations is available in the replication script for this article.
We can consider the algorithms achieved equilibrium when executing more iterations do not
change the distribution of the samples, which we summarize by the distribution of their
sufficient statistics. In this case, the Gibbs sampler from mrf2d seems to achieve equilibrium
within 35 to 45 cycles while roughly a value of 25 for the nspace parameter of potts seems to
be enough to achieve equilibrium in the Swendsen-Wang algorithm. Finally, we verify that the
distribution of the sufficient statistics after reaching an equilibrium state is approximately the
same in both packages and we conclude that even though potts uses the more specialized and
efficient Swendsen-Wang algorithm, mrf2d with a Gibbs sampler provides a valid alternative
simulation tool for the model that can also be extended, even within the scope of the Potts
model, to cases such as positive ϕ, not covered by the Swendsen-Wang algorithm.
We also compare estimation algorithms in both packages for the maximum pseudo-likelihood
method, which is a particular case of composite likelihood, thus available in potts. We simu-
lated 100 realizations of a 3 color Potts model in a 64 × 64 lattice again with the parameter
ϕ = −1. For each realization, we computed maximum pseudo-likelihood estimates using
mrf2d and potts to compare the results. Results are presented in Figure 16. In our compar-
ison, estimates obtained with potts were consistently greater (smaller absolute value) than



36 mrf2d: Markov Random Fields on Lattices in R

−1.050

−1.025

−1.000

−0.975

−0.950

−1.050 −1.025 −1.000 −0.975
mrf2d

po
tts

Figure 16: Estimated parameter via pseudo-likelihood optmization for 100 simulated realiza-
tions of the Potts model using the mrf2d and potts packages. The solid line represents the
y = x equation and dashed lines mark the parameter value used in the simulations.

the ones obtained via mrf2d. The average estimate for mrf2d was −1.0027996 while for potts
the average was −0.9930211, with sample deviations equal to 0.0213258 and 0.0216528, re-
spectively. We conclude that maximum pseudo-likelihood estimation methods are roughly
equivalent in both packages.
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