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Abstract

This paper introduces the R package FKSUM, which offers fast and exact evaluation of
univariate kernel smoothers. The main kernel computations are implemented in C++, and
are wrapped in simple, intuitive and versatile R functions. The fast kernel computations
are based on recursive expressions involving the order statistics, which allows for exact
evaluation of kernel smoothers at all sample points in log-linear time. In addition to
general purpose kernel smoothing functions, the package offers purpose built and ready-
to-use implementations of popular kernel-type estimators. On top of these basic smoothing
problems, this paper focuses on projection pursuit problems in which the projection index
is based on kernel-type estimators of functionals of the projected density.

Keywords: kernel smoothing, nonparametric, density estimation, regression, projection pur-
suit, independent component analysis, R.

1. Introduction

Kernels offer an extremely flexible way of estimating (usually) smooth functions nonpara-
metrically. At the essence of kernel smoothing, and indeed many nonparametric methods, is
the simple concept of a local average around a point, x; that is, a weighted average of some
observable quantities, those of which closest to x being given the highest weights. Suppose
our objective is the estimation of some structure (e.g., a function), which we cannot mea-
sure directly, and we instead make (indirect) observations subject to random error. If we
can assume that these observations offer (close to) unbiased measurements of the function of
interest, then in an ideal sampling scenario we would be able to make multiple such noisy
measurements at each point of interest, so that highly efficient estimation can be achieved
by taking the averages of these. In practice, however, we seldom have such control over how
we sample observations, or there may be cost constraints which severely limit such direct
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approaches. Instead, we rely on the very simple observation that if the function of interest
is continuous, then it will not change too substantially over a small region. Therefore, all
observations which are in a neighborhood of a point of interest should also provide reasonable
information about the target. Averaging our observations, but placing almost all weight on
those points in a neighborhood of the target, is therefore very well motivated.
Kernels provide an intuitive means for achieving such local averaging. In the most simple
context (although in some contexts even the following may be relaxed), a kernel is simply
a non-negative function which vanishes quickly as the magnitude of its argument increases.
Kernels can be used as weighting functions if applied to the pairwise distances between points,
so that this vanishing tendency ensures that weights associated with large distances between
points are very small. Any weighted average arising from kernel weights will therefore only
apply large weights to those points which are relatively near to the point of interest, i.e., in
its neighborhood. Furthermore, a simple rescaling of the function’s domain, with a so-called
bandwidth, allows one to control how quickly this vanishing occurs, and hence how large is
this neighborhood.
At the essence of kernel methods in statistics, then, lies the evaluation of sums of the form

S(x | x,ωωω) :=
n∑

j=1
K

(
xj − x

h

)
ωj , (1)

where K(·) is the kernel function, x is a point of interest, x = (x1, . . . , xn) is a vector of ob-
served sample points and ωωω = (ω1, . . . , ωn) is for now an arbitrary vector of coefficients associ-
ated with the observations. These could be the noisy measurements of the structure/function
being estimated, but as we will encounter in the remainder, may represent a variety of op-
tions. The parameter h is the bandwidth, and it should be clear that if h is relatively small
then it will increase the magnitude of the arguments in K(·), so that the relative sizes of the
associated weights will more heavily emphasize points close to x. The bandwidth is in a more
general context referred to as a smoothing parameter, in that large values of h lead to closer
to uniform weights, and hence the total sum, S(x | x,ωωω), will vary less for different points, x
(i.e., will represent a smoother function of x). Arguably the most important areas of research
in the context of kernel-type estimation is in the appropriate selection of the bandwidth,
h, and in the design of efficient algorithms for evaluating S(· | x,ωωω) for a large collection
of evaluation points. In fact, as we will encounter, it is frequently necessary to compute
these sums for all of the observations, x, themselves. Naïve evaluation of all such sums has
computational complexity which is quadratic in n, which is prohibitive for even moderate
sized problems. Some kernels with bounded support (those which take the value zero outside
some compact set), as well as the Laplace kernel, allow so-called fast sum updating (Lan-
grené and Warin 2019; Fan and Marron 1994; Chen 2006), which means that these sums
can be computed recursively, leading to log-linear computational complexity (the log factor
arising from the fact that the observations and evaluation points must be sorted). A similar
recursive approach was recently discussed for the class of kernels given by the product of a
polynomial and the Laplace kernel (Hofmeyr 2021). Applications of the fast sum updating
approach to products was also mentioned by Langrené and Warin (2019), although details are
not given. The bounded support kernels tend to enjoy high efficiency, which relates to them
inducing relatively low asymptotic mean integrated squared error (AMISE) when used for
estimation. A limitation of these kernels is that they can result in all weights at a point being
exactly zero. This may cause problems when using the estimated functions for prediction on
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some test data which include points outside of the range of the observations. They can also
lead to less stable cross-validation for objectives such as maximum pseudo-likelihood, for the
same reason. Other methods which are used for moderate-to-large sized problems rely on
approximations, with popular examples being the fast Gauss and Fourier transforms (FGT,
FFT, Yang, Duraiswami, Gumerov, and Davis 2003; Silverman 1982), and binning (Scott and
Sheather 1985; Hall and Wand 1996).

In this paper we will discuss the R (R Core Team 2021) package FKSUM (Hofmeyr 2022),
which is available from the Comprehensive R Archive Network (CRAN) at https://CRAN.
R-project.org/package=FKSUM. The package provides an implementation of the method
described by Hofmeyr (2021) for fast and exact computation of sums as in Equation 1. The
main kernel computations are implemented in C++ (Stroustrup 2013), and accessed through
R using the Rcpp package (Eddelbuettel and François 2011). Because of their popularity
in nonparametric statistics, there are numerous packages which provide implementations of
simple kernel smoothing methods. Popular examples include KernSmooth (Wand 2021),
ks (Duong 2021), and sm (Bowman and Azzalini 2021), all of which are available through
CRAN. In addition R’s base stats package (R Core Team 2021) includes basic kernel smooth-
ing functions. As far as we are aware, however, no existing R packages offer exact evaluation
of kernel smoothers at all sample points in faster than quadratic running time. In addi-
tion to the basic univariate kernel estimators, FKSUM offers implementations of multiple
projection pursuit methods, including independent component analysis (ICA, Hyvärinen and
Oja 2000); projection pursuit regression (PPR, Friedman and Stuetzle 1981); and minimum
density hyperplane estimation for clustering (MDPP, Pavlidis, Hofmeyr, and Tasoulis 2016).
Multiple R packages offer a variety of ICA models, including fastICA (Marchini, Heaton, and
Ripley 2021), PearsonICA (Karvanen and Koivunen 2002), ProDenICA (Hastie and Tib-
shirani 2010) and JADE (Miettinen, Nordhausen, and Taskinen 2017). Arguably the most
principled ICA objective is to minimize the mutual information in the estimated components,
which is equivalent to minimizing their individual differential entropies. Of the existing R
implementations of which we are aware, ProDenICA is the only one which optimizes a di-
rect estimate of this objective. ProDenICA achieves computational viability of the objective
via a binning-type approach to speed up the necessary nonparametric estimation task. The
fast kernel smoothing in FKSUM means no such approximations are needed in order to es-
timate and optimize entropy. The standard PPR model is implemented in R’s base stats
package, while the gsg package (Morrissey and Sakrejda 2014) provides generalizations to
binary and Poisson responses. The implementation in FKSUM provides functionality for the
use of an arbitrary differentiable loss function, and so also offers considerable customization.
In addition, because the optimization is performed using gradient descent instead of iterative
re-weighted least squares, the implementation in FKSUM has a computational advantage in
high dimensional applications over existing implementations. Finally, MDPP is implemented,
along with other cluster motivated projection pursuit models, in the package PPCI (Hofmeyr
and Pavlidis 2019). The only other packages to combine projection pursuit with clustering
explicitly, as far as we are aware, are ProjectionBasedClustering (Thrun and Ultsch 2020)
and Pursuit (Ossani and Cirillo 2021). The latter of these includes a range of projection
pursuit models, including multiple exploratory methods, which may be seen as alternatives
to ICA in certain applications.

This paper has two main objectives. The first is to provide the reader with a basic un-
derstanding of the methods implemented in the package, as well as the know-how for their

https://CRAN.R-project.org/package=FKSUM
https://CRAN.R-project.org/package=FKSUM


4 Fast Kernel Smoothing in R

use. The second is to provide more advanced readers with the tools to implement their own
methods, or existing methods based on kernel smoothing which lie beyond the scope of the
package. We discuss such implementations on two scales. We cover a very simple example,
kernel regression; as well as an in-depth description of the implementation of projection pur-
suit regression using the general purpose functions provided in the package. This example
should give the more advanced reader coverage of the majority of challenges which they are
likely to encounter in implementing their own projection pursuit methods, or methods outside
the scope of the package.

1.1. Getting started

The FKSUM package can be installed and loaded from within the R console with the com-
mands

R> install.packages("FKSUM")
R> library("FKSUM")

A brief introduction to the basic functionality of the package may then be accessed with the
command

R> help(FKSUM)

The purpose built implementations offered in the package are kernel density estimation
(fk_density), kernel regression (fk_regression), independent component analysis (fk_ICA),
projection pursuit regression (fk_ppr) and minimum density hyperplanes (fk_mdh). Details
for the use of any function can be obtained from within the R console with the command
help(<function name>), e.g., help(fk_ICA).
The remainder of the paper is organized as follows. In Section 2 we introduce the use of the
general purpose function for performing efficient and exact kernel smoothing. We go on to
provide a simple but instructive example of its use, in terms of a simple kernel regression
estimator. In Section 3 we give a thorough introduction to the general projection pursuit
problem, before discussing the models and implementations in the package. In Section 3.5
we provide a detailed discussion, with reference to the implementation of projection pursuit
regression, which should provide the reader with sufficient know-how for implementing their
own projection pursuit methods which require efficient kernel evaluations. Finally, we give
some concluding remarks in Section 4.
It should be noted that all outputs presented in Section 3 were obtained by running the
associated code in R version 4.1.2 on a x86_64-w64-mingw32 platform in Windows 10. Despite
carefully setting random seeds, we have observed minor discrepancies when running the code
in different versions of R, and on different platforms. However, the general performance
and the relative comparisons with other implementations, where relevant, should be similar
regardless of computing environment.

2. Fast kernel computations with FKSUM
In this section we introduce the general approach to perform kernel smoothing using the
FKSUM package. Illustrations using the general purpose function fk_sum(), which provides
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exact evaluation of sums of the form in Equation 1, will be provided. The function runs in
O(n log(n) + m log(m)) time for n sample and m evaluation points. The implementation is
based on the method of Hofmeyr (2021), which uses kernels which can be expressed in the
form

K(x) =
α∑

k=0
βk|x|k exp(−|x|), (2)

for parameters βk > 0, k = 0, . . . , α. This is simply a product of an arbitrary polynomial in
|x| with positive coefficients and the Laplace kernel K(x) ∝ e−|x|. The value α is referred to
as the order of the kernel, as it represents the order of the polynomial component (i.e., the
highest exponent). The advantage that these kernels have from a computational perspective
is based on the fact that their sums allow for a recursive formulation in terms of the ordered
observations, x(1), . . . , x(n); x(j) ≤ x(j+1) for j = 1, . . . , n − 1, where ties may be broken
arbitrarily. These recursive formulations arise from the trivial factorization,

exp

−
∣∣∣x(j) − x(j+1)

∣∣∣
h

 = exp
(

x(j) − x(j+1)
h

)
= exp

(
x(j)
h

)
exp

(
−

x(j+1)
h

)
,

and by applying the binomial expansion to terms of the form
∣∣∣x(j) − x(j+i)

∣∣∣k, i.e.,

∣∣∣x(j) − x(j+i)

∣∣∣k = (x(j+i) − x(j))k =
k∑

l=0

(
k

l

)
xl

(j+i)(−x(j))k−l.

In particular, it can be shown that (Hofmeyr 2021)

S(x | x, ω) =
n∑

j=1
K

(
xj − x

h

)
ωj =

α∑
k=0

βk

n∑
j=1

|xj − x|k

hk
exp

(
−|xj − x|

h

)
ωj = (3)

α∑
k=0

βk

hk

k∑
l=0

(
k

l

)(
exp

(
x(n(x)) − x

h

)
xk−lℓ(l, n(x)) + exp

(
x− x(n(x))

h

)
(−x)k−lr(l, n(x))

)

where n(x) is the number of observations which are less than or equal to x, and the terms

ℓ(l, j) :=
j∑

i=1
(−x(i))l exp

(
x(i) − x(j)

h

)
ω(i); (4)

r(l, j) :=
n∑

i=j+1
xl

(i) exp
(

x(j) − x(i)
h

)
ω(i) (5)

can easily be computed recursively in j for any fixed l. Here we have used ω(i) to be the
element in ωωω associated with the i-th ordered element in the observations, x. The important
point here is that the evaluation of the expression in Equation 3 requires computational
time which is independent of n, since the summation over the observations is shifted to the
terms in Equations 4 and 5. Evaluation of Equation 3 for m evaluation points therefore has
computational complexity O(m), while evaluating all of the terms of the form in Equations 4
and 5 has complexity O(n). To first compute the order of the observations and to determine
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Figure 1: Smooth kernels of increasing order from one (left) to four (right). In addition the
Gaussian kernel is shown (dashed) for comparison. The order one kernel, in the leftmost plot,
is the default used in the package.

the values of n(·) for each evaluation point, however, jointly requires O(n log(n) + m log(m))
time, which is thus the computational bottleneck in large problems.
The default kernel used in the package is an order one kernel with β0 = β1 = 1

4 . This
is the simplest kernel of the form in Equation 2 with two continuous derivatives. To vi-
sualize the shape of kernels of the type in Equation 2, the package provides the function
plot_kernel(beta, ...). The function requires only a single argument, which is the vector
of coefficients (β0, . . . , βα). In addition any graphical arguments accepted by R’s base plot()
function are accepted. The visualization produced by the function is scaled so that the kernel
represents a probability density function of a random variable with unit variance. The normal-
izing constant can be determined using the function norm_const_K(beta). That is, if beta is
a vector of positive coefficients, then the kernel with coefficients beta/norm_const_K(beta)
has unit integral. In addition var_K(beta) computes the variance of the random variable hav-
ing as density the kernel with coefficients beta/norm_const_K(beta). This standardization
of scale allows for far simpler visual comparison of the different kernels available in this class.
Hofmeyr (2021) discusses a sub-class of smooth kernels (a relatively high number of continu-
ous derivatives at zero), for which βk ∝ 1

k! , k = 0, . . . , α. The first four of these are shown in
Figure 1, with the popular Gaussian kernel, K(x) = 1√

2π
e−x2/2, shown for comparison. The

following code snippet can be used to reproduce this figure.

R> par(mfrow = c(1, 4), mar = rep(2, 4))
R> for (k in 1:4) {
+ plot_kernel(1 / factorial(0:k), ylim = c(0, 0.5))
+ lines(seq(-4, 4, length = 500),
+ dnorm(seq(-4, 4, length = 500)), lty = 2)
+ }

As can be seen in the figure, the order three kernel is visually similar to the Gaussian kernel.
However, it is the order four kernel which has the closest efficiency to that of the Gaussian,
for the purpose of density estimation. We have found that the default (order one) kernel is
a very useful general purpose kernel, and have not often found reason to deviate from this
choice.
Now, as we have discussed, of vital importance to the implementation of kernel-type estimators
is the evaluation of sums of the form in Equation 1. Collections of such sums can be used
for extremely flexible estimation of density functions, regression functions and spatial fields.
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However, of potentially greater importance, in some applications, than the estimation of
a function, is the estimation of its derivative. Examples include when the function values
themselves are not of great consequence, but the structure of the function, in terms of its
stationary points, is the focus of the analysis. Furthermore, in the context of projection
pursuit, when the objective function is based on a kernel-type estimator of the distribution of
the projected data, it is necessary to compute sums of kernel derivatives in order to evaluate
the gradient of the objective during optimization. The FKSUM package therefore also offers
functionality for evaluating such sums exactly and efficiently. Formally, the function fk_sum()
may be used to evaluate the collection of sums

n∑
i=1

K

(
xi − x̃j

h

)
ωi and

n∑
i=1

K ′
(

xi − x̃j

h

)
ωi, for j = 1, . . . , m, (6)

where (x1, . . . , xn) is a vector of univariate sample points, and (x̃1, . . . , x̃m) is a vector of
evaluation points. The function takes the following arguments:

x: Vector of sample points (x1, . . . , xn).

omega: Vector of coefficients (ω1, . . . , ωn).

h: Numeric bandwidth. Must be positive, i.e., h > 0.

x_eval: (Optional) vector of evaluation points (x̃1, . . . , x̃m). The default is x.

beta: (Optional) vector of kernel coefficients. The default is c(0.25, 0.25), corresponding
to the smooth order 1 kernel.

nbin: (Optional) integer number of bins if binned estimator is to be used. If omitted then
exact evaluation is performed.

type: (Optional) one of "ksum", "dksum" and "both". If "ksum" or "dksum" then the first
or second set of sums in Equation 6, respectively, is returned. If "both" then the matrix
cbind(ksum, dksum) is returned. The default is "ksum".

2.1. A simple application of fk_sum()

Before moving on to the main application covered in the paper in the following section, we
introduce the reader to the functionality of the fk_sum() function through a simple example.
Although the estimator we consider has an explicit implementation in the package, we believe
it is beneficial to become familiar with the use of the general purpose function, for the purpose
of modifying existing methods and implementing ones own. We will also cover a more complex
example in a later section.

Example: Kernel regression

In the standard formulation of the regression problem, the mean of a response variable, Y , is
related to one or more covariates, X1, . . . , Xd, through some function f(·), which needs to be
estimated. That is,

Y = f(X1, . . . , Xd) + ϵ,
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where ϵ is a zero mean random variable, referred to as a residual, which may or may not be
dependent on X1, . . . , Xd. Here we will assume that a single covariate, X, is available, and
we observe a sample of pairs {(x1, y1), . . . , (xn, yn)}, assumed to be independent realizations
from the joint distribution of X and Y . We will consider the simplest kernel-type estimator
of the regression function, f(·), named after its two independent originators, the Nadaraya-
Watson estimator (Nadaraya 1964; Watson 1964). The estimator is based on the very simple
reasoning that to estimate f(x) = E[Y | X = x] we can take a weighted average of the
observed response values, y1, . . . , yn, which emphasizes those for which the corresponding xi’s
are close to x. Using kernels to provide these weights, we have

f̂(x) =
∑n

i=1 K
(xi−x

h

)
yi∑n

i=1 K
(xi−x

h

) .

To compute f̂(·) for a range of evaluation points, we evaluate the numerator and denominator
terms each using the function fk_sum(). In the numerator, the vector of coefficients, ωωω, is
given by the vector of responses y = (y1, . . . , yn), while in the denominator ωωω is given by a
vector of ones.
Below we sample a set of observations and plot the kernel based estimates for two bandwidth
values, one small and one large. We generate data in which the underlying regression function
is given by f(x) = 3 sin(2x) + 10(x − 5)I(x > 5), where I(·) is the indicator function. This
is a sine function with a kink at the point x = 5, above which a steep linear component is
added. The residual distribution is equal to that of T +(G−1)

(
(X − 5)2 + 3

)
, where T has a

t distribution with 3 degrees of freedom and G ∼ Gamma(2, 2). We sample 5000 pairs where
1
10X ∼ Beta(2, 2) and the distribution of Y | X is described above.

R> set.seed(1)
R> n <- 5000
R> x <- rbeta(n, 2, 2) * 10
R> fx <- 3 * sin(2 * x) + 10 * (x > 5) * (x - 5)
R> y <- fx + rt(n, 3) + (rgamma(n, 2, 2) - 1) * ((x - 5)^2 + 3)
R> xeval <- seq(0, 10, length = 1000)
R> par(mfrow = c(1, 2))
R> for (h in c(0.25, 0.05)) {
+ plot(x, y, xlab = "x", ylab = "y")
+ fhat <- fk_sum(x, y, h, x_eval = xeval) / fk_sum(x, rep(1, n),
+ h, x_eval = xeval)
+ lines(xeval, fhat, col = 2, lwd = 2)
+ lines(xeval, 3 * sin(2 * xeval) + 10 * (xeval > 5) * (xeval - 5),
+ col = 3, lwd = 2)
+ }

The results are shown in Figure 2. The true function is shown in green, and the estimates in
red. The larger bandwidth oversmooths and does not accurately capture the local extrema
of the function (left). On the other hand, the smaller bandwidth is accurate over much of
the range, but exhibits increased variation in the tails, which can be seen from what some
authors describe as “wiggly” (right). The problem of bandwidth selection is beyond the
scope of this paper, however for illustrative purposes we also plot estimates using two data
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Figure 2: Nadaraya-Watson regression estimates of non-linear function. True function shown
in green, with estimates using bandwidth 0.25 (left) and 0.05 (right) shown in red.
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Figure 3: Nadaraya-Watson regression estimates of non-linear function. True function shown
in green, with estimates using amise bandwidth (left) and cross validation based bandwidth
(right) shown in red

driven bandwidth selection techniques implemented in the package. The first is based on
an approximation of the asymptotic mean integrated squared error minimizing bandwidth
(amise), while the other is based on leave-one-out cross validation (cv). For these we use the
purpose built function fk_regression().

R> par(mfrow = c(1, 2))
R> plot(fk_regression(x, y, type = "NW"))
R> lines(xeval, 3 * sin(2 * xeval) + 10 * (xeval > 5) * (xeval - 5),
+ col = 3, lwd = 2)
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R> plot(fk_regression(x, y, type = "NW", h = "cv"))
R> lines(xeval, 3 * sin(2 * xeval) + 10 * (xeval > 5) * (xeval - 5),
+ col = 3, lwd = 2)

The argument type specifies the use of the Nadaraya-Watson estimator, where the default
would be a local-linear estimator. The output can be seen in Figure 3. Both bandwidth
values lead to an estimate which captures the function well with considerably less variation
than the smaller bandwidth from the first set of estimates.
In this section we introduced the versatile function fk_sum(), which can be used to implement
standard kernel based estimators very simply. The example covered should provide the reader
with sufficient understanding of the function’s use that they will be capable of implementing
their own simple kernel estimators. In the next section we discuss some of the functionality
offered by the package for projection pursuit problems. In addition to two purpose-built
implementations, we discuss in detail the implementation of projection pursuit regression
using the Nadaraya-Watson estimator. This example should give more advanced readers
further instruction on the use of the function fk_sum() in more complex problems.

3. Projection pursuit
Projection pursuit refers to the problem of identifying (usually low-dimensional) linear projec-
tions of a set of data which expose structures of interest. What is considered interesting may
be made explicit in relation to a subsequent objective, e.g., clustering (Bolton and Krzanowski
2003; Hofmeyr and Pavlidis 2019), or the pursuit may be more exploratory in nature (Huber
1985; Friedman 1987). Projection pursuit may also be formulated for supervized problems,
such as regression (Friedman and Stuetzle 1981), in which projections of a collection of covari-
ates are sought which reveal strong predictive relationships with a set of response variables.
Arguably the most popular projection pursuit method is that of Principal Component Anal-
ysis (PCA). PCA has numerous equivalent formulations, including finding the projection of
the data which minimizes the total squared reconstruction error. In the context of projec-
tion pursuit this may be seen rather as the objective of finding projections which lose as
little structure as possible, in a general sense. However, PCA may fail in this objective if
the variation in the noisy (less structured) components in the data dominates the total data
variation.
The basic formulation of the projection pursuit problem may be given as

max
W∈F

Φ(W | X),

where X ∈ Rn×d represents the data matrix, W is the projection matrix, which comes from
some feasible set F ⊂ Rd×d′ , where d′ is the dimension of the projection; and Φ(·) is the
projection index, which is intended to measure how “interesting” the projected data are. That
is, we seek the projection matrix, W, for which the projected data, XW ∈ Rn×d′ , capture
the structures of interest (which are in X) as well as possible. Very frequently an equivalent
formulation of the projection index allows us to decompose the total “interestingness” of
the projected data into the sum of the interestingness of each of the components, Xwi, i =
1, . . . , d′, measured separately. Even if the reformulation is not equivalent, this latter approach
is frequently preferred as it can vastly simplify the problem. The main practical benefit
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of this reformulation is that it allows us to obtain the projection vectors, wi, i = 1, . . . , d′

(i.e., the columns of W), iteratively. The feasible set F is then used (either explicitly or
implicitly) to effectively ensure that the same, or very similar vectors are not obtained for
multiple columns of W. With this reformulation we consider the projection pursuit problem
expressed, somewhat loosely, as,

max
W:wi∈F(W−i)

d′∑
i=1

Φ (wi | X, W−i) ,

where W−i denotes the matrix [w1 . . . wi−1 wi+1 . . . wd′ ], i.e., the projection matrix
excluding the i-th column. That is, we make explicit the fact that the feasible set, and
indeed the projection index itself, for the i-th component, may depend on the values of the
other components. As mentioned above, the problem in this form is often approached in an
iterative manner, in which the optimization is greedily performed by adding the apparently
best component at iteration i, given all those obtained so far, but without accounting for
components which will be obtained subsequently. In this case we are essentially then interested
only in the univariate projection pursuit problem,

max
w∈F

Φ(w | X),

where we have suppressed the dependence on the other components for convenience of nota-
tion, and note that in order to obtain a complete solution we may have to consider a sequence
of different problems, i.e., with different objectives and feasible sets. Now, except in examples
in which the projection index is scale invariant, i.e., Φ(w | X) = Φ(αw | X) ∀α > 0, a fairly
universal constraint is that the norm of the projection vector is constant, where without loss
of generality we may assume ||w|| = 1. Enforcing this constraint can be achieved in a number
of ways, including using modified search directions during optimization (Niu, Dy, and Jordan
2011), expressing w in polar coordinates (Hofmeyr and Pavlidis 2015) or by formulating the
projection index as the composition (Hofmeyr 2017)

Φ(w | X) = ϕ(p)
∣∣∣∣
p=Xw⃗

,

where w⃗ = 1
||w||w and ϕ(·) simply measures the interestingness of a univariate data set, here

given as the normalized projected data, stored in the vector p = (p1, . . . , pn) = (x⊤
1 w⃗, . . . , x⊤

n w⃗).
Practically, then, Φ(·) preforms two operations. First it projects the argument w onto the
unit ball (i.e., divides it by its norm), and then computes the interestingness of the data
projected onto the unit vector w⃗. Optimization of Φ(·) based on this formulation can thus
equivalently be performed without any constraint on the magnitude of the argument w.
There are three projection pursuit methods which are implemented in FKSUM. These are
independent component analysis (ICA, Hyvärinen and Oja 2000), minimum density projection
pursuit (MDPP, Pavlidis et al. 2016) and projection pursuit regression (PPR, Friedman and
Stuetzle 1981). We will discuss the purpose-built implementations of ICA and MDPP in this
section. In addition, we provide a detailed discussion of the implementation of projection
pursuit regression with the intention that this will provide instruction for readers who may
wish to implement their own projection pursuit methods, or existing methods which are not
implemented in the package.
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3.1. Independent component analysis

A primary motivation for the application of independent component analysis is the assumption
that an observed multivariate data set, X ∈ Rd, has as columns different linear combinations
of latent factors which are statistically independent. The task is then to obtain an unmixing
matrix, W, such that the columns of the transformed data XW have maximal independence.
This has broad application in signal processing; with the canonical example being the so-
called cocktail party problem. Here a room is populated by a crowd of people, with different
subsets involved in different conversations. Microphones situated around the room record
these conversations, with each microphone recording conversations closer to them with higher
volume, but also receiving sounds from all other conversations in the room at different levels.
The objective is then to take all recordings and identify a transformation which separates the
actual conversations from one another.
A popular objective for ICA uncovers an alternative point of view which motivates the appli-
cation of ICA to the general problem of exploratory projection pursuit. That is, to maximize
independence one can minimize the mutual information in the components of the projected
data. In order to achieve this, we attempt to maximize the unique information in each of the
components, and so in a general sense ICA may be seen as obtaining the projection which
identifies the most informative components in the data. Now, if we consider the statistical
context, in which our observations (stored in the rows of X) represent a sample of realiza-
tions of a random variable, say Z, which may without loss of generality be assumed to have
zero mean, then the objective of minimizing mutual information is to minimize the Kullback-
Leibler divergence (KL divergence, Kullback and Leibler 1951) of the product of the marginal
densities of the components of W⊤Z from their joint density. That is, if we use fZ(·), fW⊤Z(·)
and fw⊤

i Z(·) to represent the densities of Z, W⊤Z and w⊤
i Z respectively, then the mutual

information in the components of W⊤Z is given by

KL

fW⊤Z

∣∣∣∣∣∣∣∣ d′∏
i=1

fw⊤
i Z

 = E
[
log(fW⊤Z(W⊤Z))

]
− E

log

 d′∏
i=1

fw⊤
i Z(w⊤

i Z)


= E[fZ(Z)] + log(det|W|)−

d′∑
i=1

E[log(fw⊤
i Z(w⊤

i Z))].

If this divergence is small, then the joint density is well approximated by the product of its
marginals, meaning that the corresponding random variables are close to independent; sharing
little information between them. Now, two useful observations vastly simplify the problem of
estimating an appropriate projection matrix, W, to achieve this minimization. First, a neces-
sary condition for two random variables to be independent is that they have zero correlation.
Second, independence is unaffected by scale, in that two random variables, say U, V are in-
dependent if and only if U and αV are independent for all α. Practically, then, we restrict
W to be of the form ΛΛΛ−1/2UQ, where ΛΛΛ is the diagonal matrix containing the eigenvalues of
the covariance of Z, U has as columns its first d′ eigenvectors, and Q ∈ Rd′×d′ is orthonor-
mal. The convenience of this is that the determinant of W is constant, meaning that the
dependence of the above KL-divergence on W is only in the term

∑d′
i=1 E[log(fw⊤

i Z(w⊤
i Z))].

This is the sum of the negative entropies of the random variables w⊤
1 Z, . . . , w⊤

d′Z. Notice also
that the term ΛΛΛ−1/2U has the effect of whitening the random variable, so that ZΛΛΛ−1/2U has
identity covariance. Practically, then, to perform ICA, we first whiten the data matrix by
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setting X̃ = (X − µ̂µµ1⊤)Λ̂ΛΛ
−1/2

Û, where Λ̂ΛΛ and Û contain the eigenvalues and vectors of the
covariance matrix of the data, and µ̂µµ is the vector of column means of the data. We then
iteratively minimize the estimated sample entropy of the projected components, with the i-th
minimization being of

− 1
n

n∑
j=1

log
(
f̂p(pj)

) ∣∣∣∣
p=X̃q⃗i

,

over the projection vector, now denoted by qi, under the constraint that qi is orthogonal
to q1, . . . , qi−1. Here qi is, after normalization, the i-th column of the orthonormal matrix
Q. We use f̂p(·) to be the estimated density based on the vector of univariate projected
points, where in this case this is given by the projection of the whitened data, X̃, onto the
normalized projection vector q⃗i. The natural choice of density estimate in our context is the
kernel density estimate, given by

f̂p(x) = 1
nh

n∑
i=1

K

(
pi − x

h

)
.

The implementation of ICA in FKSUM is provided in the function fk_ICA(), and is based
on the above approach. The function takes the following arguments:

X: Matrix of observations X (num_data × num_variables).

ncomp: (Optional) integer number of independent components to extract. The default is 1.

beta: (Optional) vector of kernel coefficients. The default is c(0.25, 0.25).

hmult: (Optional) bandwidth multiplier. Bandwidth used is Silverman’s rule (Silverman
1986) multiplied by hmult. The default is 1.5.

it: (Optional) integer number of iterations in each optimization. The default is 20.

nbin: (Optional) integer number of bins if binning approximation is to be used. The default
is to perform exact kernel computations.

The output of the function is a named list with class fk_ICA, containing the following fields:

$X: The data matrix given as argument to the function.

$K: The whitening matrix, Λ̂ΛΛ
−1/2

Û.

$W: The optimal projection matrix for the whitened data.

$S: The estimated independent components.

Note that in the package we denote the unmixing matrix for the already whitened data by
$W to be consistent with other implementations, where in our derivation above we used Q to
represent this matrix.
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3.2. Examples

Here we use the function fk_ICA() to perform independent component analysis. We will
consider both simulated and real data examples in order to illustrate the speed and accuracy
of the package implementation. For context, we compare with the ICA methods implemented
in the packages fastICA (Marchini et al. 2021), ProDenICA (Hastie and Tibshirani 2010),
PearsonICA (Karvanen and Koivunen 2002) and JADE (Miettinen et al. 2017).

Simulation

In the first example using the fk_ICA() function we conduct a simulation study to assess
the speed and accuracy of the implementation in recovering components which are simulated
under the independence assumption, but which are then subjected to a random linear trans-
formation using a randomly generated mixing matrix. Following Bach and Jordan (2002)
and Hastie and Tibshirani (2003), we use the Amari distance (Amari, Cichocki, and Yang
1996) between the estimated unmixing matrix and the inverse of the mixing matrix to assess
the accuracy of the estimation. We also use the collection of densities introduced by Bach
and Jordan (2002) to simulate the true independent components.
The ProDenICA package also conveniently provides functions for simulating data from the
densities in Bach and Jordan (2002) and for computing the Amari distance, in the functions
rjordan() and amari() respectively. It also provides the function mixmat() for simulating
mixing matrices.
We repeatedly generate sets of data with independent components, and then apply a randomly
generated linear transformation to these data and apply the various ICA methods. We repeat
the experiment 20 times, and in each case sample 2000 points with 4 components. Within each
experiment we choose a random combination of the 18 densities produced by the rjordan()
function, which are listed according to the letters ‘a’ to ‘r’. For illustration, the following
produces a single such data set and applies the function fk_ICA() to estimate the independent
components. The matrix X contains the true components and R is used to represent the random
mixing matrix. The matrix Xx therefore contains the mixed components.

R> set.seed(1)
R> X <- matrix(0, 2000, 4)
R> densities <- sample(letters[1:18], 4)
R> for (i in 1:4) X[,i] <- rjordan(densities[i], 2000)
R> R <- mixmat(4)
R> Xx <- X %*% R
R> model <- fk_ICA(Xx, 4)

Next we plot the densities of the true components, the mixtures and the estimated compo-
nents.

R> par(mfrow = c(4, 3), mar = c(0, 0, 3, 0))
R> for (i in 1:4) {
+ plot(fk_density(Xx[,i]), main = paste("Mixed component", i),
+ xaxt = "n", yaxt = "n")
+ plot(fk_density(model$S[,i]), main = paste("Estimated component", i),
+ xaxt = "n", yaxt = "n")
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Figure 4: Mixed, estimated and true components from simulated data.

+ plot(fk_density(X[,i]), main = paste("True component", i),
+ xaxt = "n", yaxt = "n")
+ }

The plots are shown in Figure 4. Note that the order of the estimated components does not
necessarily coincide with that of the true components. The ICA objective is also invariant to
reflection, and hence some components may be reflected. It is clearly verifiable by eye that
the estimated components accurately capture the true components.
The results from all 20 replications of this experiment are summarized in Figure 5 below. Code
to reproduce these results is available in supplementary material. In addition to the implemen-
tation based on exact kernel estimation of the component entropies, we have also considered
a binned approximation using the optional argument nbin in the function fk_ICA(). This
offers a more relevant comparison with the method in ProDenICA which uses a similar ap-
proximation technique. The Amari distances are shown in the boxplots in Figure 5, where the
mean distance for each method is also included. In addition the horizontal line corresponds
with the median Amari distance from the default implementation of fk_ICA(), which allows
for easier comparisons.
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Figure 5: Boxplots of Amari distances between estimated unmixing matrix and inverse mixing
matrix. In addition the mean Amari distance for each method is shown. The horizontal line
corresponds to the median for the default settings of fk_ICA().

The implementation in ProDenICA obtains the most accurate results, but runs an order of
magnitude slower than any of the other methods, taking an average of 2 seconds per run
compared with fk_ICA() taking an average of 0.15 seconds without and 0.09 seconds with
binning. The running time will clearly depend on the system being used, but we expect a
similar relative running time for comparison on all systems. The implementations in fastICA,
PearsonICA and JADE are very computationally efficient, but they are much less reliable in
accurately recovering the underlying components. The method in FKSUM offers a reason-
able trade-off; achieving close-to as accurate outputs to those of ProDenICA, but far more
efficiently, on these data.

The cocktail party problem

Here we follow Example 1 of Miettinen et al. (2017), but repeat it multiple times. The example
uses three audio waves of length 50000 and a single noise signal as the original components,
and then applies a random mixing matrix to obtain the observed mixed signals. We begin by
loading the package required for this example, and then loading the audio data.

R> library("tuneR")
R> S1 <- readWave(system.file("datafiles/source5.wav", package = "JADE"))
R> S2 <- readWave(system.file("datafiles/source7.wav", package = "JADE"))
R> S3 <- readWave(system.file("datafiles/source9.wav", package = "JADE"))

Next we repeatedly generate a random noise signal and mixing matrix, and fit the same models
as in the last example. We compute the amari distance between the estimated unmixing
matrices and the inverse of the mixing matrix, R, and store these in the list amari_all.
We also store the running times of the different methods in the list t_all. We repeat the
experiment 20 times.

R> amari_all <- list(fk = c(), fk_bin = c(), fast = c(),
+ Pearson = c(), ProDen = c(), Jade = c())
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Figure 6: Boxplots of Amari distances between estimated unmixing matrix and inverse mixing
matrix. In addition the mean Amari distance for each method is shown. The horizontal line
corresponds to the median for the default settings of fk_ICA().

R> t_all <- list(fk = c(), fk_bin = c(), fast = c(),
+ Pearson = c(), ProDen = c(), Jade = c())
R> for (rep in 1:20) {
+ set.seed(rep)
+ NOISE <- noise("white", duration = 50000)
+ X <- cbind(S1@left, S2@left, S3@left, NOISE@left)
+ R <- mixmat(4)
+ Xx <- X %*% R
+ t_all$fk[rep] <- system.time(model <- fk_ICA(Xx, 4))[1]
+ amari_all$fk[rep] <- amari(model$K %*% model$W, solve(R))
+ t_all$fk_bin[rep] <- system.time(model <- fk_ICA(Xx, 4, nbin = 5000))[1]
+ amari_all$fk_bin[rep] <- amari(model$K %*% model$W, solve(R))
+ t_all$fast[rep] <- system.time(model <- fastICA(Xx, 4))[1]
+ amari_all$fast[rep] <- amari(model$K %*% model$W, solve(R))
+ t_all$ProDen[rep] <- system.time(model <- ProDenICA(Xx, 4,
+ whiten = TRUE))[1]
+ amari_all$ProDen[rep] <- amari(model$whitener %*% model$W, solve(R))
+ t_all$Pearson[rep] <- system.time(model <- PearsonICA(Xx, 4))[1]
+ amari_all$Pearson[rep] <- amari(model$W, solve(R))
+ t_all$Jade[rep] <- system.time(model <- JADE(Xx))[1]
+ amari_all$Jade[rep] <- amari(t(model$W), solve(R))
+ }

As before we plot the boxplots of the Amari distances, and add the mean Amari distance
for each method. We also add a horizontal line at the median of the performance from the
method in FKSUM to make the comparisons clearer.

R> boxplot(amari_all)
R> abline(h = median(amari_all$fk))
R> points(1:6, unlist(lapply(amari_all, mean)), col = 2, lwd = 6)
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The outputs are shown in Figure 6. In this example fk_ICA() obtains the most accurate re-
sults, with only minor differences between the exact kernel estimates and the binned approx-
imation. In fact the binned approximation yields a very slightly more accurate output than
the exact kernel method. Unlike in the simulation example covered previously, ProDenICA()
is one of the least accurate methods.
The average running times tell a similar story to those from the previous example.
The main difference here is that the binning approximations are relatively faster in this larger
example. In particular, the binned approximation implemented in FKSUM is now reasonably
competitive with the methods which use surrogate functions for the negative entropy, running
roughly 5 times slower. In addition, the binned implementation in ProDenICA now runs in
a similar amount of time to the exact method in FKSUM.

3.3. Minimum density hyperplanes

The minimum density projection pursuit method (Pavlidis et al. 2016) attempts to obtain the
cluster separating hyperplane with minimal integrated density along it; the minimum density
hyperplane (MDH). That is, to obtain the hyperplane H(w, b) := {x ∈ Rd | w⊤x = b}
for which the surface integral on the hyperplane,

∮
H(w,b) f(x)dx, is minimized. Here f(·)

is a probability density function, and this integral is, in practice, estimated using a kernel
estimate based on a sample from the distribution with density f(·). Notice that if X is a
random variable with density f(·), then

∮
H(w,b) f(x)dx is equal to the value of the density of

the univariate random variable X⊤w⃗ evaluated at b
||w|| . To estimate this integral, therefore,

one needs only compute a univariate density estimate from the projected data on w⃗. Now, it
should be clear that the integral on the hyperplane H(w, b) can be made arbitrarily small by
taking a value of b which is extremely large in magnitude. To ensure the hyperplane passes
through the region of the density which is of interest, rather than through the tail, a penalty
is added to the objective which ensures the hyperplane passes within a chosen distance of the
mean. In particular, the objective is given by

p(w, b) = Î(w, b) + C max{0, |b− µ̂w| − ασ̂w}2, (7)

where Î(w, b) is used to represent the estimate of
∮

H(w,b) f(x)dx and the terms µ̂w = w⊤µ̂µµ and
σ̂w =

√
w⊤Σ̂w are the mean and standard deviation of the projected data, Xw, respectively.

The constant C > 0 is some large positive value which affects the strength of the penalty
and α > 0 controls the size of the feasible region. The second term in Equation 7 therefore
applies no penalty for hyperplanes which pass within α standard deviations of the mean of
the data, measured in the the direction orthogonal to the hyperplane. Beyond the distance
ασ̂w, the penalty scales quadratically with the distance of the hyperplane from the mean.
Especially when the number of clusters is large, the number of local minima in the objective
in Equation 7 tends to be large. To mitigate the effect of these minima, the minimum density
projection pursuit (MDPP) objective is given by,

Φ(w | X) := min
b∈R

p(w⃗, b).

Practically, for a given w, we compute a kernel density estimate from the projected data
on the normalized projection vector, Xw⃗, and search for the minimum of this density plus
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the penalty described in Equation 7. In other words, the projection index for projection
vector w is the value of the original objective for the best hyperplane orthogonal to w. This
approach allows the value of b to change discontinuously during optimization, and thereby
avoid some of the local minima in the original objective. The hyper-parameter α is adjusted
during optimization. Starting from α = 0, the first solution passes through the mean of the
data, and tends to lead to a reasonable separation of clusters. Thereafter the value is slowly
increased and the solution returned by the algorithm is the last valid cluster separator (a
hyperplane which passes between the modes of the density of the projected data).
MDPP is implemented in the function fk_mdh(), which takes the following arguments:

X: Matrix of observations X (num_data × num_variables).

v0: (Optional) initial projection vector. The default is the first principal component.

hmult: (Optional) numeric bandwidth multiplier. The bandwidth used to estimate the
density is given by hmult multiplied by Silverman’s heuristic calculated on the initial
projection vector. The default value is 1.

beta: (Optional) vector of kernel coefficients. The default is c(0.25, 0.25), corresponding
to the smooth order 1 kernel.

alphamax: (Optional) numeric maximum (scaled) distance of the hyperplane from the mean
of the data. The default is 1.

The function returns a named list with class fk_mdh, and fields $v and $b, corresponding
to the final (normalized) projection vector, w⃗, and the value of b in the optimal hyperplane
orthogonal to w⃗.
It is worth noting that in order to compute Φ(w | X), the search for the optimal hyperplane
orthogonal to w is performed using a combination of grid evaluations and binary search. As a
result, there is no need to evaluate the density at every projected data point, as was the case
in ICA. We therefore do not expect so significant an improvement on the running time over
existing implementations. That being said, repeated evaluation of the density during binary
search is more efficient using the fast kernel computations availed by the package.

3.4. Examples

Simulation

We begin, as before, with a simulation to assess the speed and accuracy of the implementation
in FKSUM. We compare with the implementation given in PPCI (Hofmeyr and Pavlidis 2019),
which uses the Gaussian kernel for estimating densities. In each experiment we simulate 2000
data from a Gaussian mixture in 10 dimensions, with means and diagonal covariances deter-
mined randomly. The number of components in each mixture is also determined randomly.
We measure the accuracy in terms of the true integrated density on the hyperplane solutions,
as well as the clustering accuracy of the separation of the collections of points generated from
each of the mixture components. Since a hyperplane only induces a binary partition of the
data, we evaluate the clustering accuracy using the success ratio (Pavlidis et al. 2016), which
measures the degree to which at least one cluster has been successfully separated from the



20 Fast Kernel Smoothing in R

Running time Integrated density Success ratio
FKSUM 0.116± 0.041s 0.078± 0.098 0.941± 0.095
PPCI 0.603± 0.314s 0.071± 0.096 0.948± 0.084

Table 1: Average ± standard deviation of running time, integrated density and success ratio
for two implementations of MDPP.

remainder. We repeat the experiment 100 times, and store the resulting running times and
accuracy measures. The results are summarized in Table 1. Code to replicate these results
can be found in supplementary materials. The only appreciable difference in the performance
is in terms of running time, where the implementation in FKSUM runs an average of five
times faster than the existing implementation.

Image clustering

Next we apply both implementations of MDPP to the optical recognition of handwritten digits
data set, which is available in the PPCI package, and which was originally obtained from the
UCI machine learning repository (Dua and Karra Taniskidou 2017). The data represent
5620 images of handwritten digits from multiple subjects, which have been compressed to
8×8 pixels and vectorized, resulting in 64 dimensional data. We load this data set and apply
both implementations.

R> data("optidigits", package = "PPCI")
R> system.time(fk_sol <- fk_mdh(optidigits$x))

user system elapsed
3.689 0.057 3.746

R> success_ratio(optidigits$x %*% fk_sol$v < fk_sol$b[1], optidigits$c)

[1] 0.9299176

R> system.time(pp_sol <- mdh(optidigits$x))

user system elapsed
5.318 0.157 5.476

R> success_ratio(optidigits$x %*% pp_sol$v < pp_sol$b[1], optidigits$c)

[1] 0.9040637

In this case the method in FKSUM offers only a minor improvement in running time, but
obtains a superior clustering result. Next we plot the resulting hyperplanes, and the estimated
density along the optimal projection vectors. The class fk_mdh includes the method plot.
To utilize this method to visualize the solution from PPCI, we replace the projection vector
and split point from the FKSUM solution.
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Figure 7: Minimum density hyperplane solutions on optical recognition of handwritten digits
data. The left plots show the data projected into a two-dimensional subspace determined by
the optimal projection vector and the first principal component in its null-space, while the
right plots show the density of the data projected on the optimal projection vector.

R> plot(fk_sol)
R> fk_sol$v <- pp_sol$v
R> fk_sol$b <- pp_sol$b
R> plot(fk_sol)

The plots are shown in Figure 7. The left plots show scatter plots of the data projected
into two-dimensional subspaces. In each case the horizontal axis corresponds to the optimal
projection obtained from MDPP, while the vertical axis is the first principal component of the
data after projection into the null-space of the MDPP projection. The right plots show the
kernel density estimates computed from the data projected on the optimal projection vectors.
It is apparent that the FKSUM method obtained a hyperplane of considerably lower density
in this example.

3.5. Projection pursuit regression: A detailed implementation

In this final discussion of projection pursuit we provide a very detailed description of the
implementation of projection pursuit regression (PPR). The intention is that the reader will
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find sufficient instruction for the implementation of their own projection indices, or indices
which are not currently offered in the FKSUM package. For details on the use of the PPR
implementation in FKSUM, use the command help(fk_ppr).
The standard PPR model assumes the conditional distribution of the response variable, Y ,
given a vector of covariates, X, is given by

Y | X ∼ N

µ +
k∑

j=1
fj(w⊤

j X), σ2

 ,

where the functions fj : R→ R; j = 1, . . . , k, are assumed to come from some known class of
functions, say C. It is these functions, as well as the projection vectors w1, . . . , wk and the
global mean, µ, which are to be estimated. Notice that if C is the class of linear functions, then
the above problem reverts to the standard linear regression model. In general C is assumed
to be a very rich class of functions, where restrictions might only be placed on the number
of continuous derivatives admissible by its members. In these general cases nonparametric
estimation of fj ; j = 1, . . . , k becomes preferable. The simplest approach to fitting a PPR
model follows a forward procedure in which each term in the expression for the conditional
expectation of the response,

E[Y | X = x] = µ +
k∑

j=1
fj(w⊤

j x),

is estimated based on the residuals remaining after the terms estimated so far at each stage
have been accommodated. That is, if {(x1, y1), . . . , (xn, yn)} represent observed pairs of the
covariates and response, then initially the mean is estimated as µ̂ = ȳ = 1

n

∑n
i=1 yi and

the residuals are first set to ri ← yi − µ̂; i = 1, . . . , n. The following is then iterated, for
j = 1, . . . , k: (i) estimate wj and fj(·) by minimizing

∑n
i=1

(
ri − fj(w⊤

j xi)
)2

; (ii) update the
residuals by setting ri ← ri − fj(w⊤

j xi); i = 1, . . . , n. The main computational and method-
ological challenge, therefore, is in estimating each of the pairs wj , fj(·), for j = 1, . . . , k. We
henceforth drop the subscript j and simply focus on estimating the pair of projection vector,
w, and univariate regression function, f(·), from a set of pairs of covariates and residuals,
{(x1, r1), . . . , (xn, rn)}.
For brevity and simplicity we focus here only on using the Nadaraya-Watson estimator for
f(·)1, and for enhanced stability we will use leave-one-out estimates during optimization. The
projection index is therefore given by

Φ(w | X, r) =
n∑

i=1

ri −
∑

j ̸=i K
(

pj−pi

h

)
rj∑

j ̸=i K
(

pj−pi

h

)
2∣∣∣∣∣∣∣

p=Xw⃗

,

where r is the vector of residuals and X is the matrix with i-th row given by x⊤
i . It will

be convenient going forward to introduce the notation ΣΣΣ(·) and ΣΣΣ′(·) to be the vector valued
functions mapping Rn → Rn, with

ΣΣΣ(ωωω)i =
∑
j ̸=i

K

(
pj − pi

h

)
ωj ,

1The function fk_ppr() in FKSUM provides implementations of both the Nadaraya-Watson and local linear
estimators.
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ΣΣΣ′(ωωω)i =
∑
j ̸=i

K ′
(

pj − pi

h

)
ωj ,

where p = Xw⃗, as before, and the value of the projection vector, w, will be clear from the
context. For example, we may now write

Φ(w | X, r) =
n∑

i=1

(
ri −

ΣΣΣ(r)i

ΣΣΣ(1)i

)2
=

n∑
i=1

(ri − r̂i)2
∣∣∣∣
r̂i=

ΣΣΣ(r)i
ΣΣΣ(1)i

,

where 1 is a vector of ones, and r̂ = (r̂1, . . . , r̂n) is the vector of fitted values for the residuals.
We are now ready to formulate the objective function to be optimized in R. That is, we define
the function phi_ppr(), which evaluates the projection index for a given projection vector,
as follows

R> phi_ppr <- function(w, X, r, h, beta){
+ n <- nrow(X)
+ p <- X %*% w / sqrt(sum(w^2))
+ Sr <- fk_sum(p, r, h, beta = beta) - beta[1] * r
+ S1 <- fk_sum(p, rep(1, n), h, beta = beta) - beta[1]
+ S1[S1 < 1e-20] <- 1e-20
+ r_hat <- Sr / S1
+ sum((r - r_hat)^2)
+ }

Here Sr and S1 represent the vectors ΣΣΣ(r) and ΣΣΣ(1), respectively. Notice that in order to
obtain the leave-one-out terms for the numerator and denominator in the fitted values (Sr
and S1 respectively), we need only subtract the vector of coefficients (the argument omega in
the function), multiplied by beta[1]. This is because

ΣΣΣ(ωωω)i =
∑
j ̸=i

K

(
pj − pi

h

)
ωj =

n∑
j=1

K

(
pj − pi

h

)
ωj −K (0) ωi =

n∑
j=1

K

(
pj − pi

h

)
ωj − β0ωi.

Leave-one-out sums can result in values very close to zero if the observations are sparse over
some range. When dividing by such terms we find it prudent to buffer them away from zero
to avoid numerical instability.
Now, in order to effectively and efficiently optimize this function, we need to evaluate its
gradient. In order to compute the gradient, we use the chain rule, as follows,

∇wΦ(w | X, r)⊤ = ∇p

 n∑
i=1

ri −
∑

j ̸=i K
(

pj−pi

h

)
rj∑

j ̸=i K
(

pj−pi

h

)
2

⊤

Dwp

∣∣∣∣∣∣∣∣
p=Xw⃗

,

where∇p(·) indicates the vector of partial derivatives based on the projected sample, p = Xw⃗,
and Dwp is the matrix whose i, j-th entry is the partial derivative of pi = w⃗⊤xi with respect
to wj , which is equal to xij

||w|| −
piwj

||w||2 . We thus have Dwp =
(

1
||w||X−

1
||w||2 pw⊤

)
. Now, if

we again let r̂i =
∑

j ̸=i K
(

pj−pi

h

)
rj/

∑
j ̸=i K

(
pj−pi

h

)
, i = 1, . . . , n, then the first term in the
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chain rule product can be determined using

∂

∂pi

n∑
j=1

(rj − r̂j)2 =
n∑

j=1

∂

∂r̂j
(rj − r̂j)2 ∂r̂j

∂pi

= 2
n∑

j=1
(r̂j − rj) ∂

∂pi

n∑
k ̸=j

K
(

pk−pj

h

)
rk

n∑
k ̸=j

K
(

pk−pj

h

)

= 2
n∑

j=1
(r̂j − rj)


n∑

k ̸=j
yk

∂
∂pi

K
(

pk−pj

h

)
n∑

k ̸=j
K
(

pk−pj

h

) −

n∑
k ̸=j

K
(

pk−pj

h

)
rk

n∑
k ̸=j

∂
∂pi

K
(

pk−pj

h

)
(

n∑
k ̸=j

K
(

pk−pj

h

))2


= 2

n∑
j=1

r̂j − rj
n∑

k ̸=j
K
(

pk−pj

h

)
 n∑

k ̸=j

rk
∂

∂pi
K

(
pk − pj

h

)
− r̂j

n∑
k ̸=j

∂

∂pi
K

(
pk − pj

h

)

= 2
∑
j ̸=i

r̂j − rj
n∑

k ̸=j
K
(

pk−pj

h

)
 n∑

k ̸=j

rk
∂

∂pi
K

(
pk − pj

h

)
− r̂j

n∑
k ̸=j

∂

∂pi
K

(
pk − pj

h

)

+ 2 r̂i − ri
n∑

k ̸=i
K
(

pk−pi
h

)
 n∑

k ̸=i

rk
∂

∂pi
K

(
pk − pi

h

)
− r̂i

n∑
k ̸=i

∂

∂pi
K

(
pk − pi

h

)
= 2

∑
j ̸=i

r̂j − rj
n∑

k ̸=j
K
(

pk−pj

h

) (ri

h
K ′
(

pi − pj

h

)
− r̂j

h
K ′
(

pi − pj

h

))

− 2 r̂i − ri
n∑

k ̸=i
K
(

pk−pi
h

)
1

h

n∑
k ̸=i

rkK ′
(

pk − pi

h

)
− r̂i

h

n∑
k ̸=i

K ′
(

pk − pi

h

)

= 2
h

∑
j ̸=i

r̂j(r̂j − rj)∑
k ̸=j

K
(

pk−pj

h

)K ′
(

pj − pi

h

)
− 2ri

h

∑
j ̸=i

(r̂j − rj)∑
k ̸=j

K
(

pk−pj

h

)K ′
(

pj − pi

h

)

+ 2r̂i(r̂i − ri)
h
∑
k ̸=i

K
(

pk−pi
h

)∑
j ̸=i

K ′
(

pj − pi

h

)
− 2(r̂i − ri)

h
∑
k ̸=i

K
(

pk−pi
h

)∑
j ̸=i

rjK ′
(

pj − pi

h

)
,

where some of the signs have changed in the final step due to the reversing of the terms inside
K ′(·), which is an odd function, i.e., K ′(x) = −K ′(−x) ∀x. This is now in a form convenient
for the notation ΣΣΣ(·),ΣΣΣ′(·) used previously. That is, we find

∂

∂pi

n∑
j=1

(rj − r̂j) = 2
h

(
ΣΣΣ′
( r̂(r̂− r)

ΣΣΣ(1)

)
i

− riΣΣΣ′
( r̂− r

ΣΣΣ(1)

)
i

+ r̂i − ri

ΣΣΣ(1)i

(
r̂iΣΣΣ′(1)i −ΣΣΣ′(r)i

))
,

where products and ratios of vectors within ΣΣΣ′(·) are element-wise operations. To evaluate
the gradient, both the kernel and kernel derivative sums of r and 1 are required. We can
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therefore set type = "both" in the function fk_sum(). For the other sums, we only require
the sums of kernel derivatives. To compute the gradient of the projection index in R, we can
thus use the following,

R> dphi_ppr <- function(w, X, r, h, beta){
+ n <- nrow(X)
+ nw <- sqrt(sum(w^2))
+ p <- X %*% w / nw
+ S1 <- fk_sum(p, rep(1, n), h, beta = beta, type = "both")
+ S1[, 1] <- S1[, 1] - beta[1]
+ S1[S1[, 1] < 1e-20, 1] <- 1e-20
+ Sr <- fk_sum(p, r, h, beta = beta, type = "both")
+ Sr[, 1] <- Sr[, 1] - beta[1] * r
+ r_hat <- Sr[, 1] / S1[, 1]
+ T1 <- fk_sum(p, r_hat * (r_hat - r) / S1[, 1], h,
+ beta = beta, type = "dksum")
+ T2 <- r * fk_sum(p, (r_hat - r) / S1[, 1], h,
+ beta = beta, type = "dksum")
+ T3 <- (r_hat - r) / S1[, 1] * (r_hat * S1[, 2] - Sr[, 2])
+ dphi_dp <- (T1 - T2 + T3) * 2 / h
+ dp_dw <- (X / nw - p %*% t(w) / nw^2)
+ c(t(dphi_dp) %*% dp_dw)
+ }

In the above we have split the partial derivatives with respect to the elements in p into terms
T1, T2, T3. We have also used the fact that the function fk_sum(..., type = "both")
returns a matrix in which the first column contains the kernel sums and the second contains
the sums of kernel derivatives. Note that since K ′(0) = 0 for all symmetric, differentiable
kernels, the sums of kernel derivatives are the same whether they are of the leave-one-out
type or not. Hence, only the first column in the output of fk_sum(..., type = "both")
needs to be modified to accommodate the fact that we use leave-one-out sums.
Before continuing, it is prudent to verify that the gradient function is producing the correct
output. In order to do so, we compare its output with a numerically approximated gradient
based on finite differences. In particular, if a function, g(·), is differentiable, then,

∂

∂wi
g(w) = g(w + hei)− g(w− hei)

2h
+ o(h),

where ei is the vector of zeroes except in the i-th position, where it takes the value one. Note
that a simple way to encode the collection of vectors {e1, . . . , ed} is as the rows of the identity
matrix. We begin by generating a set of data (covariates and response variable). We will
generate 1000 data points in 10 dimensions from a multivariate Gaussian distribution with a
randomly generated covariance matrix. We will then select some random “true” projection
vectors, and define the response as a non-linear function of the projected data.

R> set.seed(1)
R> n_dat <- 1000
R> n_dim <- 10
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R> X <- matrix(rnorm(n_dat * n_dim), n_dat, n_dim) %*%
+ matrix(2 * runif(n_dim^2) - 1, n_dim, n_dim)
R> wtrue1 <- rnorm(n_dim)
R> wtrue2 <- rnorm(n_dim)
R> y <- (X %*% wtrue1 > 1) * (X %*% wtrue1 - 1) + tanh(X %*% wtrue2 / 2) *
+ (X %*% wtrue1) + (X %*% (wtrue1 - wtrue2) / 5)^2 + rnorm(n_dat)

We now check that our exact gradient matches closely to the finite differences approximation,
both in a relative and absolute sense, for a randomly selected projection vector. We also, for
now, simply choose a random positive bandwidth value.

R> w <- rnorm(n_dim)
R> h <- runif(1)
R> beta <- c(0.25, 0.25)
R> Eh <- diag(n_dim) * 1e-5
R> dphi_approx <- apply(Eh, 1, function(eh) (phi_ppr(w + eh, X, y, h, beta)
+ - phi_ppr(w - eh, X, y, h, beta)) / 2e-5)
R> dphi <- dphi_ppr(w, X, y, h, beta)
R> max(abs(dphi / dphi_approx - 1))

[1] 7.004957e-10

R> max(abs(dphi - dphi_approx))

[1] 1.479764e-07

We see that the analytical and numerically approximated gradients are extremely close to
one another, and so should feel confident that our analytical expression, and the function for
evaluating it, is correct.
Next we write a function, ppr_nw(), to perform projection pursuit based on minimizing
phi_ppr(). To optimize the projection we apply the function optim(), from R’s base stats
package. Our preferred optimization method is the limited memory BFGS algorithm (Liu
and Nocedal 1989). We have found that using an oversmoothing bandwidth during projection
pursuit is quite reliable, and tends to be fairly robust as the estimation along each projection
has relatively low variation. We select this bandwidth using the optimal rate for univariate
regression, O(n−1/5), and a measure of the scale of the covariates, for which we use the square
root of the largest eigenvalue of their covariance matrix. Once the optimal projection has been
determined, however, the final fitting is performed using a more sophisticated method which
is based on leave-one-out cross-validation. It is generally preferable to initialize the projection
vector, w, with a sensible heuristic. We use the ordinary least squares solution, with a small
ridge to ensure a unique solution, w = (X⊤X + 0.01I)−1X⊤y. We also allow for alternative
initialization with the optional argument w, which is by default set to this ridge solution.

R> ppr_nw <- function(X, r, w = NULL){
+ n <- nrow(X)
+ d <- ncol(X)
+ if (is.null(w)) w <- solve(t(X) %*% X + 0.01 * diag(d)) %*% t(X) %*% r
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Figure 8: Projection pursuit regression solution from ten dimensional simulated data. The
plots show the response against the initial projection, the optimal projection and the fitted
values.

+ h <- sqrt(eigen(cov(X))$values[1]) / n^0.2
+ w <- optim(w, phi_ppr, dphi_ppr, X, r, h, c(0.25, 0.25),
+ method = "L-BFGS-B")$par
+ w <- w / sqrt(sum(w^2))
+ loo_sse <- function(h) phi_ppr(w, X, r, h, c(0.25, 0.25))
+ h <- optimise(loo_sse, c(h/50, h))$minimum
+ list(w = w, h = h)
+ }

We now find the optimal projection for the data which we generated previously, and plot the
result. For interest we also plot the response values against the projections along the initial
randomly generated projection, as well as against the fitted values. The plots can be seen
in Figure 8. Notice that the implementation we have provided above does not necessitate
that the mean of the response needs to first be subtracted to obtain the first set of residuals.
However, to be consistent with the discussion above, we will include this step.

R> mu <- mean(y)
R> r <- y - mu
R> w_opt <- ppr_nw(X, r, w = w)
R> p <- X %*% w_opt$w
R> S1 <- fk_sum(p, rep(1, n_dat), w_opt$h)
R> Sr <- fk_sum(p, r, w_opt$h)
R> fitted <- mu + Sr / S1
R> par(mfrow = c(1, 3))
R> plot(X %*% w, y, main = "Response against initial projection",
+ xlab = "optimal projection", ylab = "y")
R> plot(X %*% w_opt$w, y, main = "Response against optimal projection",
+ xlab = "optimal projection", ylab = "y")
R> points(X %*% w_opt$w, fitted, col = 2)
R> plot(fitted, y, main = "Response against fitted values",
+ xlab = "fitted", ylab = "y")
R> abline(0, 1, lwd = 2, col = 2)
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3.6. Examples

We will compare the implementation we defined above with the function ppr() from R’s stats
package. This function uses an iterative re-weighted least squares approach to optimization, as
opposed to a more standard gradient descent. As a result, this implementation is extremely
efficient for problems of moderate dimensionality, but scales quadratically in the problem
dimension2.

Simulation

Once again we begin with a simulation to assess the speed and accuracy of our implementation.
We consider two scenarios, one of low dimensionality and another of higher dimensionality.
Code to reproduce the results of these experiments is available in supplementary material.
In the first experiment we use exactly the same set-up as we did above, with 1000 total
observations and 10 covariates. The only difference is that we use half the data for training and
the other half to estimate the performance of the models. Here the existing implementation
in the stats package is superior, with an average running time of 0.003 seconds and average
estimated coefficient of determination 0.69, based on 50 replications of the experiment. On
the other hand, the implementation we defined above runs an order of magnitude slower and
achieves an average coefficient of determination of 0.65.
In the second experiment we consider a higher dimensional example, containing 200 covari-
ates. We also increase the number of data to 5000. In the interest of time, we repeat this
experiment only 20 times, and again consider the running time and estimated coefficient of
determination. In this case the existing implementation in the stats package overfits the data,
and obtains a large negative average coefficient of determination, −0.83. On the other hand,
our implementation continues to provide accurate predictions with an average coefficient of
determination of 0.79. Also, as expected, the running time of the existing implementation
increases substantially, now exceeding that of ours by roughly three times.

Baseball salaries

To conclude this section we consider a simple real data example taken from James, Witten,
Hastie, and Tibshirani (2013), which is available in the package ISLR (James, Witten, Hastie,
and Tibshirani 2021). The problem is to predict the salaries of professional baseball players
based on various performance statistics. For simplicity, we only use the numerical covariates.
We begin by setting up the matrix of covariates and the vector of responses, removing those
cases which do not have a response value.

R> library("ISLR")
R> X <- as.matrix(Hitters[! is.na(Hitters[, 19]), c(1:13, 16:18)])
R> y <- Hitters[! is.na(Hitters[, 19]), 19]

We again compare models based on their estimated coefficient of determination. Because the
data set is small, containing only 263 complete observations, we consider multiple splits into
70% training and 30% testing data. We store the training indices in the vector train. For
interest we also consider models with two components. To estimate the second component, we

2Many gradient descent methods scale linearly in the problem dimension.
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simply apply the function ppr_nw() to the data using the residuals after the first component’s
fitted values have also been subtracted from the responses.

R> n_rep <- 50
R> R2_stats_1 <- numeric(n_rep)
R> R2_stats_2 <- numeric(n_rep)
R> R2_nw_1 <- numeric(n_rep)
R> R2_nw_2 <- numeric(n_rep)
R> for (rep in 1:n_rep) {
+ set.seed(rep)
+ sm <- sample(1:nrow(X), floor(0.7 * nrow(X)))
+ model <- ppr(X[sm,], y[sm], nterms = 1)
+ yhat <- predict(model, X[-sm,])
+ R2_stats_1[rep] <- 1 - mean((yhat - y[-sm])^2) / var(y[-sm])
+ model <- ppr(X[sm,], y[sm], nterms = 2)
+ yhat <- predict(model, X[-sm,])
+ R2_stats_2[rep] <- 1 - mean((yhat - y[-sm])^2) / var(y[-sm])
+ component_1 <- ppr_nw(X[sm,], y[sm])
+ p <- X %*% component_1$w
+ S1 <- fk_sum(p[sm], rep(1, length(sm)), component_1$h, x_eval = p)
+ Sy <- fk_sum(p[sm], y[sm], component_1$h, x_eval = p)
+ fitted <- Sy[sm] / S1[sm]
+ yhat <- Sy[-sm] / S1[-sm]
+ R2_nw_1[rep] <- 1 - mean((yhat - y[-sm])^2) / var(y[-sm])
+ component_2 <- ppr_nw(X[sm,], y[sm] - fitted)
+ p <- X %*% component_2$w
+ S1 <- fk_sum(p[sm], rep(1, length(sm)), component_2$h, x_eval = p[-sm])
+ Sy <- fk_sum(p[sm], y[sm] - fitted, component_2$h, x_eval = p[-sm])
+ yhat <- yhat + Sy / S1
+ R2_nw_2[rep] <- 1 - mean((yhat - y[-sm])^2) / var(y[-sm])
+ }
R> colMeans(cbind(R2_stats_1, R2_stats_2, R2_nw_1, R2_nw_2))

R2_stats_1 R2_stats_2 R2_nw_1 R2_nw_2
0.3350620 0.2966666 0.3720452 0.4322518

Our implementation not only obtains superior accuracy to the existing implementation, but
also better utilizes the added flexibility of the additional component, whereas this flexibility
appears to lead to overfitting when using the function ppr() in this instance.

4. Conclusion
In this paper we discussed the use of the R package FKSUM for efficient univariate ker-
nel smoothing and projection pursuit when the projection index requires evaluating kernel
based estimates of functionals of the projected data distribution. These include indepen-
dent component analysis; projection pursuit regression and minimum density hyperplanes.
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In all cases we investigated the accuracy and efficiency of the package’s implementation in
comparison with existing implementations available either with R’s standard distribution or
through the comprehensive R archive network. In all cases the implementations provided in
FKSUM showed very competitive performance. In addition we provided a detailed derivation
and implementation of projection pursuit regression, which we believe should provide readers
with sufficient instruction to use the package functionality for implementing smoothing and
projection pursuit methods in R which lie beyond the scope of the package in its current form.
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