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Abstract

We introduce the new package dmbc that implements a Bayesian algorithm for cluster-
ing a set of binary dissimilarity matrices within a model-based framework. Specifically, we
consider the case when S matrices are available, each describing the dissimilarities among
the same n objects, possibly expressed by S subjects (judges), or measured under different
experimental conditions, or with reference to different characteristics of the objects them-
selves. In particular, we focus on binary dissimilarities, taking values 0 or 1 depending on
whether or not two objects are deemed as dissimilar. We are interested in analyzing such
data using multidimensional scaling (MDS). Differently from standard MDS algorithms,
our goal is to cluster the dissimilarity matrices and, simultaneously, to extract an MDS
configuration specific for each cluster. To this end, we develop a fully Bayesian three-way
MDS approach, where the elements of each dissimilarity matrix are modeled as a mixture
of Bernoulli random vectors. The parameter estimates and the MDS configurations are
derived using a hybrid Metropolis-Gibbs Markov Chain Monte Carlo algorithm. We also
propose a BIC-like criterion for jointly selecting the optimal number of clusters and latent
space dimensions. We illustrate our approach referring both to synthetic data and to a
publicly available data set taken from the literature. For the sake of efficiency, the core
computations in the package are implemented in C/C++. The package also allows the
simulation of multiple chains through the support of the parallel package.

Keywords: Bayesian data analysis, dissimilarity matrices, information criteria, multidimen-
sional scaling, MCMC, MDS, mixture models, model-based clustering, three-way MDS.

1. Introduction

Data consisting of proximity measures, that is measurements of the pairwise similarity or
dissimilarity between n objects, abound in many fields, ranging from psychology, sociology
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and market research, to ecology, demography, economics, as well as genomics and linguistics.
A dissimilarity matrix, D — whose (i, h)-th entry, d;;,, represents the dissimilarity between ob-
jects i and h — is typically analyzed using multidimensional scaling (MDS; for a comprehensive
overview see Borg and Groenen 2005). MDS is a factorial technique that aims at finding a
set of latent factors (the so-called MDS configuration) in a low-dimensional Euclidean space,
such that the distances between objects in this space resemble as much as possible the original
d;p’s. In its basic formulation, MDS involves a single dissimilarity matrix.

Different MDS variants have been introduced in the literature. The classical or metric
MDS (CMDS; Torgerson 1952, 1958) assumes that the d;;’s are Euclidean distances plus
a random error. Nonmetric MDS (Shepard 1962; Kruskal 1964) handles ordinal data, as-
suming that only the ordering of the dissimilarities is relevant in the determination of the
MDS configuration. The ALSCAL algorithm (Takane, Young, and De Leeuw 1977) com-
bines metric and nonmetric solutions and derives the MDS configuration by fitting a function
(whose features depend on the type of data) of the d;;’s with errors added (see Krantz,
Luce, Suppes, and Tversky 1971). Also, maximum likelihood (metric) MDS approaches have
been proposed (Ramsay 1977, 1978, 1982; Takane 1978b,a, 1981; Takane and Carroll 1981;
Takane and Sergent 1983; Takane and Shibayama 1986, 1992), which allow for the selection
of the number of MDS factors using likelihood ratio tests or Akaike’s criterion (Takane 2007).
Adopting a Bayesian approach, Oh and Raftery (2001) introduced a model where the d;;’s
follow a truncated normal distribution whose expected value is the Euclidean distance based
upon the MDS factors. The authors rely on Markov Chain Monte Carlo (MCMC) methods
for estimation and also introduce a criterion to select the number of dimensions.

A further major development in the literature on MDS is the so-called three-way MDS, where
many dissimilarity matrices, say D1,...,Dg, are taken into account simultaneously (Young
1987; Borg and Groenen 2005; Giguere 2006). This situation typically arises when the pair-
wise dissimilarities among n objects are judgments expressed by different subjects (usually
playing the role of judges or raters), or when they are measured under different experimental
conditions, or with reference to different characteristics of the objects themselves. For the
sake of exposition, and without loss of generality, throughout the paper we will refer to the
first situation, thus assuming that the dissimilarity matrices describe the judgments expressed
by S subjects.

When dealing with multiple dissimilarity matrices, two opposite situations may be considered,
leading to the so-called replicated MDS (RMDS) and weighted MDS (WMDS) (see for exam-
ple Young 1987; Borg and Groenen 2005). The RMDS approach relies on the assumption that
all the dissimilarities derive from the same latent factors, and that the possible differences
across the S dissimilarity matrices are due to random measurement errors. Hence, RMDS
aims at identifying a consensus MDS configuration minimizing the sum of the squared pre-
diction errors for all the D;’s. Adopting an opposite perspective, one could regard each D; as
the emanation of a subject-specific set of factors. Within this context, the WMDS approach
assumes that a common MDS configuration exists, but that each subject assigns a different
importance to the common underlying factors. Thus, the individual D;’s can be recovered
by applying subject-specific weights to the MDS factors, and the individual differences in
judgments can be assessed by comparing the corresponding weights. A notable example in
this context is the well-known INDSCAL model (Carroll and Chang 1970; Borg and Groenen
2005, Chapter 21). This approach postulates the existence of a group space, that represents
what the subjects have in common, and a set of individual spaces, which are uniquely gen-
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erated by stretching or compressing the group space along its dimensions. Both RMDS and
WMDS can pose some problems in applications. Indeed, the two approaches postulate that
a unique configuration exists, but such hypothesis cannot be tested. Moreover, with regard
to WMDS, comparing the subjects based on the differences in the estimated weights can be
challenging. Also, in some applications groups of subjects sharing the same system of weights
can be observed, and it could be of interest to identify such groups using a proper cluster-
ing approach. This would allow unveiling the differences in the cognitive processes related
to judgments similarity. In the same way, when dissimilarities are measured under differ-
ent experimental conditions (for example, different time periods), clustering such conditions
permits to properly characterize the scenarios that significantly impact on the dissimilarities
between objects. An interesting contribution in this direction is the K-INDSCAL model de-
veloped by Bocci and Vichi (2011), that assumes the existence of K homogeneous groups of
subjects each having a different group space, while also allowing for class-conditional individ-
ual dimensional weighting. More formally, the K-INDSCAL approach is defined as a finite
mixture of INDSCAL models, for which estimation is performed by alternating least-squares.
A Bayesian version of the K-INDSCAL model was proposed by Okada and Lee (2016), who
extended the model introduced Oh and Raftery (2001) for continuous dissimilarities. Notably,
while offering a structured inferential framework, the complexity of their model did not allow
the definition of a formal model selection tool.

The most popular commercial statistical software all provide a module that implements at
least some of the MDS variants described above. For example, SAS (SAS Institute Inc. 2013)
includes the MDS procedure, which allows to fit two- and three-way, metric and nonmetric
MDS models. Similarly, the PROXSCAL algorithm in SPSS (IBM Corporation 2021) fits all
the traditional MDS models®. Finally, Stata (StataCorp 2021) provides the mds and mdsmat
commands to perform classic metric MDS as well as modern metric and nonmetric two-way
MDS. Turning to open source implementations, only R offers a relatively large number of
packages to apply different types of MDS (for a comprehensive list, refer to the psychometric
methods task view, Mair 2021). Among them, it is worth to mention the smacof package (De
Leeuw and Mair 2009), the most general in our opinion, which implements different MDS
approaches based on the minimization of a stress function using an iterative majorization
algorithm?. However, to the best of our knowledge, there is no package currently available
that includes functions for fitting whatever form of Bayesian MDS?.

Here, we introduce the dmbc package, which implements an extension to three-way binary
data of the fully Bayesian MDS approach by Oh and Raftery (2007). In our model, the sub-
jects’ dissimilarity matrices are partitioned into G clusters and a different p-dimensional MDS
configuration is derived for each cluster, with G and p a priori unknown. Thus, the matrices
clustered together share a common latent configuration space. Even if our proposal can in

1SPSS also includes PREFSCAL, an algorithm that implements wunfolding, which is a further MDS variant
used to model preferential choice data (for an overview see Borg and Groenen 2005, Chapter 14).

2The package name derives from the name of the algorithm itself, SMACOF, which is the acronym of
“scaling by majorizing a complicated function”. The algorithm has been introduced by De Leeuw (1977), but
for an accessible overview we suggest to see Borg and Groenen (2005), Chapter 8.

3The only traces we found on the web about software for Bayesian MDS are: 1) an R function called BMDS
wrapping a JAGS (Plummer 2003) model available at https://github.com/davidaarmstrong/asmcjr (see
Armstrong II, Bakker, Carroll, Hare, Poole, and Rosenthal 2014) , 2) the original Fortran routines that imple-
ment the model in Oh and Raftery (2001), 3) a set of R functions introduced by Okada and Shigemasu (2009),
but no longer available on the web, and 4) the Stan (Carpenter et al. 2017) code for the Bayesian K-INDSCAL
model in Okada and Lee (2016).
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principle be applied to any type of dissimilarities, here we focus on binary dissimilarities,
taking only values 0 or 1 depending on whether two objects are deemed as dissimilar or not.
We concentrate on binary dissimilarities because such type of data are often analyzed using
simplistic approaches. Indeed, MDS is frequently applied to a consensus dissimilarity matrix
obtained by summing or averaging the individual ones. In other cases, groups of dissimilarity
matrices are formed a priori (based on experimental conditions or on the subjects’ charac-
teristics, such as gender or age), and three-way MDS (typically, either RMDS or WMDS) is
performed on the consensus matrices formed for each group. Clearly, in the latter case, the
groups are identified a priori, without evaluating whether they are actually different and/or
internally homogeneous. While this can be reasonable when the analysis is confirmatory, an
exploratory approach would instead surely benefit from a data-driven procedure aiming at
identifying the possible clusters and their specific MDS configurations. As already mentioned,
this allows to ignore the possibly negligible differences across subjects, to detect groups of sub-
jects sharing similar opinions, and to better shape and identify their most distinctive traits.
Additionally, this simplifies subsequent analyses, which can be based on a reduced number of
groups rather than the original set of subjects. The model implemented in the dmbc pack-
age provides a possible solution to achieve these goals. Embedding the model in a Bayesian
framework is particularly convenient because it permits a full inferential assessment of the
obtained results. Furthermore, we build on the work of Oh and Raftery (2007), and introduce
a BIC-like criterion for simultaneously selecting the optimal number of latent dimensions, p,
and number of clusters, G.

A distinctive feature of our approach compared to classic RMDS or WMDS is that in the
latter a single MDS configuration is extracted, while we obtain a different configuration for
each cluster of subjects. Under this perspective, our proposal can be regarded as an extension
of RMDS, because we assume that there are groups of subjects — not known a priori — whose
dissimilarities derive from the same cluster-specific MDS configuration. Instead, our method
differs from WMDS, because we assume that all the subjects placed in the same cluster share
the same configuration. Note that the more complex Bayesian model introduced by Okada
and Lee (2016) — assuming that subjects in the same cluster assign different weights to the
common cluster-specific MDS factors — is a full integration of RMDS and of WMDS. The
introduction of individual weights allows capturing differences across subjects, even when
placed in the same cluster. Our model instead leads to a compromise solution cluster-wise,
which can nonetheless be more representative and easier to interpret. In addition, our simpler
model has the advantage of allowing the definition of a criterion for model selection.

Before proceeding, it is worth mentioning that our procedure shares some features with the
approach introduced by Hoff, Raftery, and Handcock (2002) and extended by Handcock,
Raftery, and Tantrum (2007) to model social networks based on the assumption of the ex-
istence of a latent (unique) “social space”. Specifically, Hoff et al. (2002) refer to a class of
random graph models where the nodes represent n social actors, the edge between two nodes
signals a specified relation between them, and the probability of observing a relation depends
on the distance between the nodes in a latent space. Handcock et al. (2007) extend the model
to account for the possible clustering of n actors based on their position in the unique latent
space.? Instead, our goal is to cluster the S subjects according to their judgments about the
similarity of the n objects, thus partitioning configurations rather than positions.

4These models can be fit using the latentnet package (Krivitsky, Handcock, Raftery, and Hoff 2009; Krivitsky
and Handcock 2008).
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More specifically, we model the joint distribution of each subject’s dissimilarities as a finite
mixture of Bernoulli random vectors, with parameters depending on the cluster-specific MDS
factors and estimate all the unknown quantities (i.e., the parameters and the latent positions)
using a hybrid Metropolis-Gibbs algorithm. Our package also allows to run simultaneously
multiple MCMC chains by exploiting the capabilities of the parallel package (R Core Team
2021). To make the computations more efficient, most of the routines included in the package
are written in C/C++ through the support of the Repp package (Eddelbuettel and Frangois
2011).

The dmbec package is available from the Comprehensive R Archive Network (CRAN) at http:
//CRAN.R-project.org/package=dmbc and it can be installed directly using, for example,
install.packages("dmbc"). The development version of the package can also be retrieved
from https://github.com/sergioventurini/dmbc.

The paper first briefly reviews the model and then moves to fully present the package features.
More specifically, Section 2 introduces our model-based approach for clustering a set of binary
dissimilarity matrices, together with the details of the MCMC algorithm for its estimation.
Section 3 illustrates the proposed criterion to simultaneously select the number of latent
dimensions and the number of clusters. Section 4 provides a description of the features
available in the dmbc package and shows how to apply them on simulated data. In Section 5
we apply the package’s functionalities to a data set that is available in the literature. Finally,
Section 6 summarizes and provides some closing remarks.

2. Model specification and estimation

We consider S binary and symmetric dissimilarity matrices, D1, Do, ..., Dg, so that the (i, h)-
th element of Dy, d;;, j, can only take values 0 or 1, with d;;, ; = dp,; ; if i # h, and 0 otherwise.
We assume that the S subjects are partitioned into G clusters, with G a priori unknown. To
represent the subjects’ group memberships we refer to a set of latent variables, x;, such that
P(z; = g) = Ag, with Ay > 0 and 25:1 Ag = 1. Matrices assigned to the same cluster
are assumed to share a common p-dimensional latent configuration space for the n objects,
with p also unknown. Therefore, for the i-th object, a latent vector exists, z7:=(z; | z; =
g9)=(%,..., zfp), reflecting the factors scores possibly underlying the dissimilarity judgments
expressed by the subjects in the g-th cluster. Thus, the true dissimilarity between objects
i and h for the subjects in the g-th cluster, 67, can be expressed as the Euclidean distance

between z¢ and Z‘Z, 5f’h = \/ Eizl (sz — zgk)2. Conditionally on the cluster, we assume that
the observed dissimilarity is a Bernoulli random variable, (d;, | z; = g) ~ Ber(n%, ), with 7J,
depending on 67, through
logit (7}, ) = g + 85, (1)
or equivalently,
9 exp(ag + 6%,)
=T+ explag + 55

= expit(ay + 67,). (2)

Further, the j-th subject’s dissimilarities are assumed to be conditionally independent given
the latent positions in the configuration space, so that

din,; —din,j
(dj | ;= g) ~ f(d; | 79) = [ (x§) " (1 —mfy) =%, (3)
i<h
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where d; denotes the vector whose elements are the m = n(n —1)/2 elements in the lower tri-
angular part of D;, and w9 denotes the corresponding vector of m’s. Hence, the unconditional
distribution of d; turns out to be the mixture

G
dj ~ Y Agf(dj | 7). (4)

g=1

We aim at finding the G clusters and at estimating the latent p-dimensional configuration for
each cluster. Note that p is assumed to be the same for all the clusters. This may appear
as a strong assumption, possibly reducing the flexibility of the model. Nonetheless, if the
unknown dimensions of the clusters’ configurations, (p1,...,pq), are actually different and
vary between, say, pmin and pmaz, we can expect that a dimension p = Py, Will be selected,
and that for a cluster with p; < p, (p — pg) factors will turn out to be irrelevant. Therefore,
the assumption of a constant number of latent dimensions in the different clusters should not
have a large impact on the results.

2.1. Model estimation

The adoption of a fully Bayesian approach requires the specification of prior distributions
for all the unknown parameters. For the latent positions we assume a p-variate normal
distribution, 27 ~ N, (0,7,1,). The assumption of spherical covariance matrix allows avoiding
a too large number of parameters, but in principle it could be relaxed. For n, we use an inverse
gamma distribution with mode b,/(agy + 1), 1y ~ ZG(ag,by). For the logit cluster-specific
intercept in Equation 1, we assume that a; ~ N (0,03), with 03 ~ IG(ap,bp). Finally,
we use a G-dimensional Dirichlet distribution for the vector of mixing probabilities, A ~
Dg(vi, ..., vg). All the parameters are assumed to be a priori independent.

Based on such specifications, the full conditional posterior distributions of the model param-
eters are:

(2] | else) ~ ¢p(2] | 0,m41,) £(Z9, g, ), (5)
np 1 p n g 9
(ng | else) ~ZG | ag + - by + 3 Z Z (z6)" | » (6)
k=1i=1
(cg | else) ~ p(ay | 07U§)€~(Zg,ag,:c), (7)
o2
(07 | else) ~ IG <ao +1,bg + ;) : (8)
)\ d g
P(z; =g | else) = Ggf(J’ﬂ-)l, 9)
SuiiAf (dj | )

(A | else) ~ Dg(vi + S1,y- .., va + Sa), (10)
where & = (21,...,25), Z9 = (2,...,2Y%), ¢(- | p, ) indicates the p-dimensional multivari-

ate normal density with mean vector g and covariance matrix 3, and E(Zg, g, @) represents
the contribution of the g-th cluster to the overall likelihood:

U(Z9,ay,x) = H expit(ag + 5i9h)di,+(1 — expit(ag + 5fh))597d51»+, (11)
i<h
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with dlh n ES 1 dzh], and Sy = EJ 1I(z; = g). The notation (- | else) in Equations 5-10
indicates condltlomng on all the other unknowns in the model.
To simulate from the posterior distributions, a MCMC algorithm is used, which iterates over
the model parameters, latent positions and cluster memberships by updating them in turn.
We use a Gibbs sampler for the parameters whose full conditional posterior distribution is
available, while we adopt a Metropolis-Hastings step otherwise.

By cycling over the clusters, that is for ¢ = 1,...,G, we use a Metropolis-Hastings step to
update the (Z9 )(t) ’s, by sampling the n objects in a random order. For the i-th sampled object,
a normal proposal density is used, and a candidate (27)* ~ N, ((27)®),721,) is accepted with
probability
029 o @) 6, ()" | 0.0 I, )
(29, aé% z®) 6, (=)0 | 0,11,

where £ ((Z ) a{(;t), ()) is defined as in Equation 11. Note that we abused a little the
notation since the 2?7 are updated one at a time. Indeed, in the expression above it is (Z9)* =

(2§,...,(27)*,...,29), with only one object’s vector of latent positions, the i-th, updated.

A further Metropolis-Hastings step is used to update oz!(]). A candidate o ~ NV (ag ,V2), is
accepted with probability

E((Zg)uﬂ),a*,w(”) ( | 0, 02@))
Z((Z (1), o) w(t)) ¢(a§t) | o,ag(t)).

The variances of the proposal distributions, vz and ~,, are chosen to achieve a good per-
formance of the algorithm in terms of acceptance rate. Preliminary testing suggested that
setting vz = 1.5 and 7, = 0.75 provides satisfactory results in terms of acceptance rates (i.e.,
between 20% and 30%) in most cases.

Every MCMC iteration for the cluster-specific parameters is completed by updating 74, o ,
x, and A, using their full conditionals, shown in Equation 6, Equation 8, Equation 9 and
Equation 10, respectively.

We compute the parameter estimates as the posterior means from the corresponding MCMC
chain after deleting the burn-in iterations.
2.2. Initialization

To initialize the MCMC simulation, starting values of all the model’s parameters must be
provided. As for the initial partition =, in the package three different approaches are available
(see Section 4 for the corresponding syntax specification):

1. Select the initial partition randomly.

2. Partition the S subjects into G groups by applying a Ward hierarchical clustering algo-
rithm to the vectors of observed dissimilarities d;, j = 1,...,S using a specified distance
measure (Everitt, Landau, Leese, and Stahl 2011).

3. Provide a user-defined partition, possibly obtained using alternative approaches.
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In our experience, the choice of the initial partition does not seem to systematically affect the
final results of the analysis. In any case, in all the examples reported in this paper, we set the
initial partition randomly, to let the algorithm learn from the data without being influenced
by any specific initial choice.

No matter how the initial partition is chosen, the corresponding vector of clusters’ proportions,
A = (ny/S,...,ng/S), is used to initialize A. Given the initial partition, the starting p-
dimensional MDS configuration for the g-th cluster, (Z9 )<0), is derived through a classical
metric MDS from a consensus matrix DY obtained by summing the dissimilarity matrices of
the subjects assigned to cluster g.

To initialize 4 we use the average sample variance computed over the p coordinates of (Z7 )(0),

§§0). For oy we rely on the means of the elements of the d;’s in the g-th cluster, d?, and to

the overall mean of the dissimilarities in the g-th cluster, d9. For each pair of objects, we
define the artificial binary dissimilarity d} taking value 1 or 0 depending on whether or not
ng > d9. We fit the logistic regression model (Equation 1) relating the Ji‘%’s to the distances
computed using the initial configuration (Zg)(o), and take aéo) as the intercept estimate of
this model and the squared standard error of the estimate itself as a starting value for o2

g?
the variance of ay.

The hyper-parameters (ag, by, a1, b1, ..., aq,bg, 1, ..,vq) need to be specified by the user.
As for ng, we set ag = 3/2 and by = %5&0), so that the prior mean for 7, is fixed at Eéo). We use
a noninformative prior for 03, by choosing ag = by = 10~!. Finally, for the prior distribution
of A we follow the standard approach in the literature on Bayesian finite mixtures (Robert
1996) and set vy = 1 for g = 1,...,G. Tests on the effect of changing the values of the
hyper-parameters showed a little impact on the final numerical results, and almost no effect

on the qualitative conclusions for all the data sets we analyzed.

2.3. Identifiability and post-processing

Since the Euclidean distance is invariant under translation, rotation, and reflection, the likeli-
hood will also be invariant. To solve the consequent identifiability issues, we follow a standard
approach (see for example Oh and Raftery 2001; Hoff et al. 2002), and post-process the sam-
pled latent positions by applying a Procrustes transformation (Gower and Dijksterhuis 2004;
Borg and Groenen 2005). Thus, the resulting configuration Z9, ¢ = 1,...,G, is rotated
toward maximum similarity with a reference configuration, that we set equal to the configu-
ration at the last iteration of the MCMC algorithm.

The likelihood is also invariant under a permutation of the clusters’ labels (Stephens 2000).
To fix this label switching issue, we choose the relabeling approach proposed by Celeux, Hurn,
and Robert (2000)°.

5An alternative to the application of the relabeling algorithm we included in the package consists in skip-
ping the post-processing step by setting procrustes = FALSE and relabel = FALSE, and then applying an-
other user-defined algorithm to the parameter chains, such as one of those implemented in the label.switching
package (Papastamoulis 2016).
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3. Model choice

In the previous section we described the inferential procedure for given G, the number of
clusters, and p, the dimension of the latent spaces. Actually, the proper choice of p and G
is a relevant issue in MDS and in cluster analysis respectively. Embedding the problem in a
Bayesian framework allows to develop selection criteria. Specifically, we extend to our case
the approach proposed in Oh and Raftery (2007) to simultaneously choose p and G, where
they take into account the situation of a unique numerical dissimilarity matrix and the aim
is to cluster the objects.

Following Oh and Raftery (2007), we propose to select (p,G) based on p(Z,q, p, G | D),
the posterior density function of (Z,p,G) given the data, D, evaluated at Z = Z,q, the
estimated posterior mean of the latent configuration given (p, G). Note that

p(ZpG7p7G|D):Cf(D| ZPG>p7G)p(Zvap7G)7 (12)

where ¢ is a constant, and f(D | Zpq,p,G) and p(Z,q,p,G) are respectively the marginal
likelihood and the marginal prior:

G
F(D| Zya.0.G) = [ H(D | Zyop. Gy ) T] plesg | a2)p(oDp(0)daydoar,
g=1

p(ZpG7p> G) = /p(Zvapv G7 n)dn

Assuming equal prior probabilities for all p € (Pmin, Pmaz) and for all G € (Gmin, Gmaz),
Equation 12 can be written as

p(ZvapaG | D) X f(D | ZPG’pa G)p(ZPG |p7 G) (13)

The marginal prior of Z for given p and G is

p(Zye | p,G) = /p(ZpG | p,G,m)p(n | p,G)dn

¢ a
— (97)~"PG/2 I'(ag +np/2) bos
e ) e e

The marginal likelihood is not available in closed form, but it can be approximated using
the Laplace-Metropolis method (Lewis and Raftery 1997). More specifically, by defining the
3G-dimensional vector 8 = (a, a2, \), we obtain

f(D ‘ ZpGap’ G) ~ (27T)3G/2|H*‘1/2f(D | ZpGaP» Ga 0*)1)(0*)7 (15)

where 6" = arg maxg h(0), with h(0) = log{f(D | Z,q,p,G,0)p(0)}, and H* is minus the
inverse Hessian of h(-) evaluated at 8*. Note that when G = 1, it is 8 = (o, 0?).

As suggested by Lewis and Raftery (1997), we compute 8* as the multivariate median of the
posterior sample {0(5) :4=1,...,L}, defined as 8" = argming ZZLzl \0(5) —q|. As for H*,
note that asymptotically it equals the (marginal) posterior covariance matrix. To limit the
impact of possible outliers, we use a robust estimator of the posterior covariance matrix, and
precisely the minimum covariance determinant estimator (see Rousseeuw 1984; Rousseeuw
and Van Driessen 1999).



10 dmbc: Model-Based Clustering of Binary Dissimilarity Matrices in R

As pointed out in Oh and Raftery (2001, 2007), a criterion based on p(Z,q,p,G | D) would
favor larger p. Indeed, p(Z,q | p,G) is positively related to the scale of Z, which tends to
decrease as p increases, even without improvement of the fit. To avoid this shrinking effect,
two configurations should be compared using the same number of dimensions. Therefore, to
compare dimensions p and (p — 1) we refer to Z, and to Z,, = (Z,-1 : 0), a p-dimensional
configuration obtained by adding to Z,_; a factor with all the coordinates equal to zero. Note
that Z; returns the same likelihood as Z;_1, and that if (p — 1) is the correct dimension,
then the optimal solution in the p dimensional space should be (close to) Z;.

When G = 1, we define Z,; = Z,,. In this case, the marginal likelihood reduces to f(D |
Z,,p) = [ f(D| Zp1,p,a)p(a | 0?)p(6?)dado?, and the comparison between configurations
with dimensions p and (p — 1) can be based on

p(Zp,p| D) _ f(D|Zy,p)p(Zy | p)
p(Z,.p| D) f(D|Z,,p)p(Z, | p)
f(D1Z,,p)p(Zy, | p)

" (D[ Zy 1y )p(Z | p)

_ f(D| Z,,p) p(Zy | p) p(Zp-1) [ p—1) (16)
D Zpryp=1)p(Zepa) [p=1)  p(Z;|p)

~ pZy,p|D) pZyp1ylp—1)  p(Zp|D)

W Zp1yp-11D)  p(Zyp)  p(Zpo1yp-1] D)

where A, can be regarded as a correction factor to the posterior density ratio of Z, and
Z (1) for the shrinking effect. Using Equation 14 one can show that

p—1l n
—2log A, = —nlog(2m) —2log (F(C;j(;ﬁpn;/gﬂ)) —nlog (b + % Z Z (21%1))2) , (17)
k=1i=1

where a = ay, b = by, and zz-(,f_l) is the estimate of the latent space coordinate (for the i-th

object and the k-th factor) in the (p — 1)-dimensional configuration corresponding to G = 1.
Since the shrinking effect regards only p and not G, we use A, for all values of G' given the

same value of p, as suggested in Oh and Raftery (2007). Hence, to choose simultaneously p
and G, we propose the following information criterion:

DCIC ¢ = —2log f(D | Z1¢,1,G) —2logp(Z1c | 1,G)

p(Z'rG7T7G | D)

p
rGs '

r=2
p
f(D]|Zq,1G) p(Z:c | 1,G) (18)
— DpCIC _ol ~2log A,
1G+7Z_2{ ng(D|Z(T_l)G,T—l,G)p(Z(T_l)G | 'r'_].,G) }

p
= —2log f(D | Zpa,p,G) — 2logp(Zpe | p,G) =2 log A,
r=2

where Equation 16 has been used to derive the final expression. The values of p and G corre-
sponding to the minimum DCIC),g should be selected as the best solution. The encouraging
results obtained in a small simulation study (not reported here) suggest the reliability of the
proposed criterion for the selection of the correct model.
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4. The dmbc package

The dmbc package allows to fit the model described above and to compute the DCIC,,¢; index
for the sequence of models with latent space dimension up to p and number of clusters up to
G. Additionally, it includes functionalities for summarizing and plotting all the results. In
this section, we provide a detailed description of the package features.

4.1. Object classes

The package uses the S4 system and it is built around six classes whose features and slots are
described below.

‘dmbc_data’: Defines instances to represent the input data of a dissimilarity model-based
clustering (DMBC) analysis. The classes’ slots are: diss, a list containing the subjects’
dissimilarity matrices, that must be objects with class dist; n, the number of objects assessed
by each subject; S, the number of subjects. A further class member, family, specifies the
distribution of the dissimilarities, but it is not used in the current version of the package and,
since we limit attention to binary dissimilarities, at the moment it is internally constrained
to "binomial".

‘dmbc_model’: Defines objects providing the main elements of a DMBC model, namely the
dimension of the latent space, p, the number of clusters, G, and family having the same
content as described above.

‘dmbc_fit’: Defines objects containing the results of a DMBC model fitted using a single
MCMC chain. It includes the simulated chains for the model’s parameters®, the Metropolis-
Hastings acceptance rates, the list of the observed dissimilarity matrices (diss), a list (dens)
with the log-likelihood, log-prior and log-posterior values at each iteration, the control param-
eters, the prior hyper-parameters choices, the proposal distribution parameters for the latent
positions, and the cluster-specific random-effects oy’s, a list (dim) containing the model’s
dimensions (i.e., n, p, G and S) and the model characteristics (i.e., those described above for
the ‘dmbc_model’ class).

‘dmbc_fit_list’: Contains a unique member, results, that consists of a list of ‘dmbc_fit’
objects corresponding to the independent MCMC simulated chains.

‘dmbc_config’: Provides the final estimates: Z.est and Z.sd respectively contain the esti-
mates of the latent configurations for the n objects in each cluster and the corresponding
posterior standard deviation, cluster provides the estimate of the subjects’ cluster mem-
bership, and est indicates the estimate type (either posterior means, medians, or modes, or
estimates corresponding to the maximum likelihood value attained during the simulations);
for convenience, also general information about the fitted model (n, p, etc.) is included. Fi-
nally, chain is the ID number of the chain used to compute the estimates, and labels is an
optional character vector of labels to tag the objects in graphical visualizations.

‘dmbc_ic’: Provides information about the comparison of DMBC models based on different
values of p and/or G, and specifically the results of the computations discussed in Section 3.
In particular, the class slots correspond to the different components of the DCIC index (i.e.,
logprior, logmlik, logcorrfact and DCIC defined in Equation 14, Equation (15), Equa-
tion (17) and Equation (18) respectively), the posterior estimates of the compared models

SFor the latent positions chains, both the original simulations (z.chain) and those post-processed using a
Procrustes analysis (z.chain.p) are provided.

11
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(post.est), the estimate type (est), and a list (res_last_p) of ‘dmbc_fit_list’ objects
with the results of the fitted DMBC models corresponding to the maximum value of p. The
last slot should be used as a starting point in case one wants to extend the comparison to
models with higher dimensions. Indeed, as discussed above, the DCIC index is computed
incrementally with respect to the value of p.

For all these classes, the package provides specific methods for printing, summarizing and
plotting their contents, which are illustrated in more details in the following.

4.2.

Model fitting

The package’s main function is dmbc (), whose primary aim is to set up the problem, verifying
the coherency and consistency of the inputs, and possibly filling in with default values all the
inputs not specified in the function call. In addition, when more MCMC chains are simulated,
the function dispatches the call to perform the requested type of parallel operation.

More operationally, fitting a DMBC model requires the three steps described below.

Step 1. Specification, at least partial, of a set of tuning parameters controlling the model’s
fitting procedure:

nsim: The number of MCMC iterations (after burn-in).
burnin: The number of burn-in iterations.

thin: The number of iterations between consecutive draws.
nchains: The number of MCMC chains to run.

threads: The number of cores to use in the computations.
seed: An optional random seed.

parallel: A string indicating the type of parallel operation to use for running mul-
tiple chains simultaneously. Admissible values are "no" (i.e., serial computation, one
chain at a time), "multicore" and "snow". Specifically, multicore and snow are the
two original packages that have been merged into the parallel package that we use in-
ternally (R Core Team 2021). We offer the possibility to choose between "multicore"
and "snow" because the first option, which exploits the mclapply () function from the
parallel package, is not available on Windows systems.

z.prop: The variance of the normal proposal distribution for the latent positions (de-
noted as 7% in Section 2.1).

alpha.prop: The variance of the normal proposal distribution for the cluster-specific
random effects o, (denoted as 72 in Section 2.1).

random.start: A Boolean value indicating whether the initial cluster membership
should be chosen randomly or not (see the next two arguments for alternatives).

partition: A numeric vector containing the user-defined initial partition.
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o method: If the initial partition is not chosen randomly (i.e., random.start = FALSE),
a Ward hierarchical clustering algorithm is applied to the observed dissimilarities us-
ing the distance measure specified through this argument. The allowed distances are
those available in the dist () function, that is either euclidean, maximum, manhattan,
canberra, binary or minkowski, with the default set to the Manhattan distance.

e procrustes: A Boolean value indicating whether to post-process the simulated MCMC
chains by applying a Procrustes transformation.

e relabel: A Boolean value indicating whether to post-process the simulated MCMC
chains by running the relabeling algorithm by Celeux et al. (2000). Note that turning
off the relabeling allows to dramatically reduce the computational burden of the whole
algorithm.

e store.burnin: A Boolean value indicating whether the burn-in iterations should be
stored in the final output’.

o verbose: A Boolean value indicating whether information on the progress of the MCMC
algorithm should be printed in the R console®.

To support the user in setting these parameters, the package includes the dmbc_control ()
auxiliary function which can be used to specify all or only a subset of the above parameters.
The parameters that are not explicitly provided will be set to their default values automat-
ically. Section 4.3 provides more details about the meaning of the most relevant tuning
parameters and the corresponding default values.

Step 2. Choice of the prior hyper-parameters (see Section 2.1) using a list with elements:

e eta: A list of two vectors a and b, both of size GG, containing the hyper-parameters of
the Inverse Gamma distributions of the zY’s prior variances.

e sigma2: A list with two numeric scalars, a and b, containing the hyper-parameters of
the Inverse Gamma distribution of the prior variance of ay.

e lambda: A vector of size G containing the parameters of the Dirichlet prior distribution
of A.

The package includes an auxiliary function, dmbc_prior (), to assist the user in the proper
setting of the prior hyper-parameters, which works similarly to the dmbc_control() seen
above.

Step 3. Call of the dmbc () function. After a preliminary check of the validity of the control
and prior arguments passed, the function internally generates the model’s parameter starting
values using the dmbc_init () function, and it dispatches the computation using the chosen
parallel framework. dmbc () internally calls dmbc_fit (), the workhorse function that performs
all the computations. In particular, for each chain dmbc_f£fit () performs the following sub-
steps.

"Hence, the final number of iterations is floor ((nsim + burnin)/thin) if store.burnin = TRUE and
floor(nsim/thin) otherwise.

8Unfortunately, the verbose control parameter is ineffective when computations are performed in parallel.
In this case, verbose produces only limited information regarding the creation and shutting down of a parallel
socket cluster.

13
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o Sub-step 3a: It runs the MCMC simulation by calling the internal dmbc_mcmc() C
routine.

o Sub-step 3b: It post-processes the latent position chains by applying a Procrustes trans-
formation as described in Section 2.3. This step is performed using the procrustes()
function from the MCMCpack package (Martin, Quinn, and Park 2011).

o Sub-step 3c: It relabels all the parameter chains to take care of the label-switching issue.
This is implemented internally in the dmbc_relabel() C routine.

Note that sub-steps 3b an 3c are performed only if the procrustes and relabel options in
dmbc_control () are both set to TRUE (default).

After these computations, the control returns to the dmbc() function, which may perform
an optional final post-processing step (i.e., Procrustes transformation and relabeling) to try
making the results of the different chains more consistent in terms of interpretation. This
optional final step can be achieved by setting to TRUE the post_all argument of dmbc ().

The output returned by dmbc () is an object of class ‘dmbc_fit_list’

To describe the features of the package, we refer to the simulated data stored in the simdiss
object?, which contains S = 10 binary dissimilarity matrices. For a preliminary exploration
of the data, it is possible to use the plot () function, that displays the dissimilarities matrices
using a grid of rectangles with colors corresponding to their values (0 or 1):

R> data("simdiss", package = "dmbc")
R> plot(simdiss, colors = c("white", "darkgray"), cex.font = 0.75)

The picture, reported in Figure 1, highlights that some of the subjects share a common pattern
of Os and 1s. This is particularly evident for subjects from 4 to 8, whose matrices present a
top right block of Os.

We illustrate the estimation process by fitting a model with p = 2 dimensions and G = 3
clusters, running two independent MCMC chains using the parallel = "snow" option, and
keeping in the final output one in every 10 iterations:

R>p <=2

R> G <- 3

R> control <- dmbc_control(nsim = 10000, burnin = 20000, thin = 10,
+ nchains = 2, threads = 2, parallel = "snow", seed = 601,

+ verbose = TRUE)

R> prior <- dmbc_prior(eta = list(a = rep(1, G), b = rep(2, G)))
R> res <- dmbc(simdiss, p = p, G = G, control = control,

+ prior = prior, post_all = TRUE)

—--— STARTING PARALLEL SIMULATION OF 2 CHAINS ---

starting worker pid=49949 on localhost:11736 at 16:14:24.946
starting worker pid=49963 on localhost:11736 at 16:14:25.190
-—-— END OF PARALLEL SIMULATION OF 2 CHAINS --—-

9These data are included in the package. The code for reproducing them is also available as a demo. The
demo can be run by typing demo(simdiss, package = "dmbc").
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Figure 1: Simulated data. Each panel shows the binary dissimilarity matrix for a subject in
the sample. The white color corresponds to the Os and the dark gray to the 1s in the matrices.
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4.3. Diagnostics

The standard approach in the estimation of Bayesian models through MCMC is to let the
algorithm run for a prespecified number of iterations to allow the probability distribution of
the sampled values converge to the “target” distribution, that is the posterior distribution of
the model’s parameters. Therefore, a common step in every Bayesian data analysis problem
is to inspect the results provided by the MCMC simulation to check whether the algorithm
did actually convergence. Even if an in-depth discussion of these procedures goes beyond
the scope of the paper, we provide here a brief summary of the most frequently adopted
strategies, referring to the classical reference by Gelman and Rubin (1992) and to the recent
review by Roy (2020) for a more formal and detailed description.
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A very common practice to attain convergence consists in discarding (burn-in) the first part of
the simulated chains to avoid including in the estimates calculation values of the parameters
that belong to regions of low (posterior) density. In addition, to reduce the autocorrelation
in the sampled values, one can thin the sample, using only one in every k-th iteration.

Based on the theoretical considerations discussed in the references above and on the many
experimentation we performed during the development of the package, we chose some default
values to support the user in setting these critical tuning parameters. More specifically:

o The default for the length of the burn-in period (burnin in our package) was set to
5,000, that is half of the total number of iterations. This is a pretty commonly adopted
strategy. Even so, when convergence is slower it is advisable to increase this value.

o The default for the number of iterations after burn-in (nsim in the package) was set to
10,000, which has shown to provide good results in most of the cases we considered.

o For thinning (thin in the package), the default is set to 1, so that no thinning is applied.
Indeed, we think that this choice should be left to the user, because it depends on the
complexity of the problem and on possible preliminary results.

A further set of parameters that typically have a strong impact on the “goodness” of the
sampled values is represented by the variance of the proposal distributions from which the
algorithm advances new potential values. On one hand, too large values of these variances
may produce too many rejections, and the algorithm will probably get stuck. On the other
hand, too small values will produce too many acceptances, preventing the algorithm to explore
regions of the parameter space with potentially higher density. In our algorithm, there are two
such variances: the variance of the proposal distribution for the latent coordinates zfj, and the
variance for the cluster-specific intercepts a4 (see Section 2.1 for details). The default values
for these parameters were set respectively to 1.5 and 0.75, which worked pretty smoothly in
most examples. However, it is very difficult to suggest proposal variance values that work
well for every situation and some trials are always recommendable (at least to confirm that
the default values work fine).

Besides and beyond the setting of the tuning parameters, it is always crucially important
to monitor the algorithm and to assess whether it converged or not. The simplest, but
probably most powerful, graphical tool in this respect is the trace plot, reporting the parameter
values sampled at each iteration. When the trace plot shows a “stationary” series, that is a
sequence of values with no trend and constant variability, one can tentatively conclude that
the algorithm achieved convergence.

For the sake of convenience, we linked our package to others developed for MCMC diagnostics.
More specifically, the function dmbc_fit_to_mcmc.list (), converts the output returned by
dmbc () into an object of class ‘mcmc.1list’, which can be inspected using the functions from
the coda package (Plummer, Best, Cowles, and Vines 2006), the most popular for the analysis
of MCMC results. Furthermore, our package allows to produce a variety of graphical visu-
alizations to monitor the simulated chains. These graphs are generated using the functions
from the bayesplot package (Gabry, Simpson, Vehtari, Betancourt, and Gelman 2019). In the
next sections we provide some examples of the visualizations available with dmbc ().
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4.4. Exploration and visualization of results

For a summary of the obtained results, one can apply the summary () function to the object
of class ‘dmbc_fit_list’ returned by dmbc(). The function first converts the output into
an mcmc . list object and then applies the corresponding summary () method. The summary
method for ‘dmbc_fit_list’ allows specifying two arguments. The first, include.burnin,
controls whether the burn-in iterations (assuming they have been stored in the original call)
should be used or not when computing the summaries. The second, summary.Z, controls the
printout of the summary for the latent position estimates. For the simulated data example,
one gets the following results:

R> summary(res, include.burnin = FALSE, summary.Z = FALSE)

Iterations = 20001:29991
Thinning interval = 10
Number of chains = 2

Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
alpha[1] -3.8594 0.5164 0.011546 0.036506
alpha[2] -3.3207 0.3528 0.007889 0.024965
alpha[3] -3.8348 0.7032 0.015724 0.057758
etal1] 7.1986 2.4715 0.055264 0.112231
etal2] 4.9174 1.5434 0.034510 0.080073
etal[3] 7.9105 3.2217 0.072040 0.197908
sigma2[1] 38.7963 363.8506 8.135946 8.137515
sigma2[2] 23.9627 165.7760 3.706864 3.706896
sigma2[3] 42.6845 249.5785 5.580745 7.818240
lambda[1] 0.3086 0.1250 0.002795 0.002796
lambda[2] 0.4657 0.1338 0.002992 0.002992
lambdal[3] 0.2257 0.1099 0.002457 0.002457

2. Quantiles for each variable:

2.5% 257 50% 75% 97.5%
alpha[1] -4.97023 -4.1876 -3.8319 -3.5002 -2.8988
alpha[2] -4.03252 -3.5614 -3.3101 -3.0655 -2.6773
alpha[3] -5.32564 -4.2902 -3.7899 -3.3448 -2.5625
etal1] 3.58702 5.4571 6.7880 8.4850 13.0449
etal[2] 2.58887 3.8333 4.6855 5.7719  8.7478
etal3] 3.44995 5.7142 7.3069 9.4781 16.0688
sigma2[1] 1.75988 4.8764 9.6093 21.8536 190.0575
sigma2[2] 1.40564 3.6178 7.1333 15.9046 128.8550
sigma2([3] 1.54723 4.5953 9.5105 24.3741 231.8324
lambda[1] 0.09830 0.2173 0.2984 0.3905 0.5765

17
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lambda[2] 0.21370 0.3707 0.4607 0.5635 0.7283
lambda[3] 0.05238 0.1423 0.2129 0.2975 0.4621

The model’s estimates of the objects’ latent positions and of the subjects’ cluster member-
ship can be obtained by calling the dmbc_get_configuration() function, which returns an
object of class ‘dmbc_config’ (see Section 4.1). By default, the dmbc_get_configuration()
function uses the results of the first simulated chain to compute the summaries. It is possible
to use another chain by setting the chain argument accordingly'’. For the simulated data
example we obtain:

R> est <- dmbc_get_configuration(res)
R> summary (est)

Dissimilarity Model Based Clustering -- Latent configuration estimates
Number of objects (n): 16

Number of latent dimensions (p): 2

Number of subjects (S): 10

Number of clusters (G): 3

Family: binomial

Chain ID: 1

Estimate type: posterior mean

Cluster sizes:

Size
Cluster 1 3
Cluster 2 5
Cluster 3 2

Subjects assigned to each cluster:
Clusterl: 1, 2, 3

Cluster2: 4, 5, 6, 7, 8

Cluster3: 9, 10

Latent configuration estimates (Z):

————————————————————————————————— Cluster 1 —————————————————————
Dimension 1 Dimension 2

i=1 2.5827 1.1961

i=2 2.4143 0.5661

i=16 2.1879 0.4982

--------------------------------- Cluster 2 —————=————————————m
Dimension 1 Dimension 2

i=1 2.2937 0.4323

i=2 2.7216 0.5056

i=16 2.7855 0.5391

--------------------------------- Cluster 3 ——————————————————

0The dmbc_get_configuration() function does not use the results from all available chains because it may
be that the cluster memberships are not consistent across independent runs of the algorithm (i.e., different
MCMC chains).
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Dimension 1 Dimension 2

i=1 0.6337 -4.1890
i=2 -0.3493 -3.5771
i=16 0.9984 -4.0258

To access the cluster memberships more explicitly, one can use the clusters() generic
method, which is imported from the modeltools package (Hothorn, Leisch, and Zeileis 2020):

R> clusters(est)
[1] 1112222233

Note that subjects from 4 to 8, who exhibited common dissimilarities patterns (see Figure 1),
are correctly clustered together.

The package includes a method for plotting the objects in the estimated latent space, pos-
sibly identifying the points in the diagram with the labels provided in the call to function
dmbc_get_configuration(). If not explicitly given, points in the diagram are labeled from
1 to n:

R> set.seed(101) # needed to replicate the label positioning

R> library("bayesplot")

R> color_scheme_set(rep("black", 6))

R> graph <- plot(est, size = 2, size_lbl = 3, label_objects = TRUE)
R> graph + panel_bg(fill = "white", color = NA)

The plot of the latent configuration estimates shows that the subjects clustered in different
groups have different perceptions about the similarities/dissimilarities among the objects they
evaluated.

The results of a fitted DMBC model can be represented graphically in many different ways. In
particular, as we already mentioned in Section 4.3, the dmbc package exploits the capabilities
of the bayesplot, a wrapper of ggplot2 (Wickham 2016), that is focused on the visualization
of MCMC simulations. To visualize the results of a fitted DMBC model, one needs to use
the plot () function specifying the type of the desired plot in the what argument. All the
possibilities offered by bayesplot have been mirrored in dmbc'!. In Figures 3-5 we provide
some examples of the available plot types, which are commonly used to graphically assess the
algorithm convergence:

R> color_scheme_set ("brightblue")

R> plot(res, what = "areas_ridges", regex_pars = "lambda",
+ include.burnin = TRUE)

R> color_scheme_set ("mix-blue-red")

1 Admissible values for the what argument are acf, areas, dens, hex, hist, intervals, neff, pairs,
parcoord, recover, rhat, scatter, trace, violin and combo. For more details on these visualization we
suggest to see the corresponding bayesplot documentation.
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Figure 2: Simulated data. Plot of the estimated 2-dimensional configuration in the G = 3
clusters. The titles of the plots report the number of subjects assigned to each cluster; the
points in the plot are identified by the corresponding object’s label.

R> plot(res, what = "trace", regex_pars = "eta", include.burnin = TRUE,
+ transformation = "log",

+ facet_args = list(labeller = ggplot2::label_parsed))

R> color_scheme_set ("viridisA")

R> plot(res, what = "pairs", regex_pars = "alpha", diag_fun = "hist",

+ off_diag fun = "hex", include.burnin = TRUE)

In particular, Figure 3 shows the density plots of the A\, parameters. A unimodal density for
the values from a MCMC simulation, like those represented in the figure, typically provides
evidence in favor of convergence. Figure 4 reports the trace plots for the log-transformed 7,
parameters; the logarithmic transformation is particularly useful for variances, that typically
exhibit right-skewed distributions. The plots show no trend or change in the variability,
suggesting that the algorithm reached convergence also for these parameters. Finally, Figure 5
displays the histograms for the simulated o, parameter values, together with the graphical
representation of their pairwise joint distributions. Again, no unexpected patterns are visible
in these diagrams, and this further corroborates the conclusion that the algorithm converged.

4.5. Model selection

The dmbc package provides the dmbc_IC() function that implements the approach for model
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Figure 3: Simulated data. Plot of overlapping ridge-lines for the simulated A parameters of
a fitted DMBC model with p = 2 latent dimensions and G = 3 clusters.
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Figure 4: Simulated data. Trace plots for the logarithm of the simulated 17 parameters of a
fitted DMBC model with p = 2 latent dimensions and G = 3 clusters.
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Figure 5: Simulated data. Hexagonal heat maps of bin counts, with corresponding histograms
on the diagonal panels for the simulated a parameters of a fitted DMBC model with p = 2
latent dimensions and G = 3 clusters.

selection described in Section 3. Together with the data, control and prior choices as for
dmbc (), this function also requires to specify pmax, the maximum value of the latent space
dimension one wants to consider, and Gmax, the maximum number of cluster solutions to
compare. In addition, one may choose the estimate type to use in the computations. By
default, the posterior means are used, but other available possibilities are posterior medians
or modes, or the estimates corresponding to the maximum likelihood value attained during
the simulation. dmbc_IC() returns an object of class ‘dmbc_ic’ containing all the results, and
in particular the values of the DCIC index corresponding to the requested models.

As an illustration, we complete the analysis of the simulated data by comparing the DMBC
models with p from 1 to 3 and with G from 1 to 4, with priors set to the default values.
To speed up the process, we choose a small number of iterations (for brevity, we omit the
output):

R> pmax <- 3

R> Gmax <- 4

R> control <- list(burnin = 7000, nsim = 3000, thin = 10,
+ z.prop = 1.5, alpha.prop = 0.75, random.start = TRUE,
+ verbose = TRUE, store.burnin = TRUE, seed = 301)

R> ic <- dmbc_IC(data = simdiss, pmax = pmax, Gmax = Gmax,
+ control = control)
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Figure 6: Simulated data. Graphical representation of the DCIC index values for a set of
DMBC models with p between 1 and 3 and G between 1 and 4. The best model, corresponding
to the minimum DCIC value, is the one with p =1 and G = 3.

The values of the DCIC index for the requested models can be obtained by printing the object
returned by dmbc_IC():

R> print(ic)

Dissimilarity Model Based Clustering -- Model choice

Latent dimensions (p) included: from 1 to 3

Number of clusters (G) included: from 1 to 4

Family: binomial

Dissimilarity Model Based Clustering Information Criterion (DCIC):
G=1 G =2 G =3 G=4

p=1 1446.45 1280.94 1159.81 1173.91

p =2 1415.12 1248.14  1222.07 1241.16

p =3 1400.68 1311.20 1377.67 1391.48

The best model seems to be the one with p = 1 and G = 3, which is characterized by the
minimum DCIC. To ease the comparison of the DCIC values, one can also visualize the results
using the plot method for ‘dmbc_ic’ objects (see Figure 6):

R> color_scheme_set(c("black", "white", "darkgray", "white",
+ ugrayu, ”White”))
R> plot(ic, size = c(4, 1.5)) +

+ theme (panel.grid.major = element_line(colour = "gray", size = .05),
+ panel.grid.minor = element_line(colour = "gray", size = .05),

+ panel.border = element_rect(colour = "black", fill = NA),

+ panel.background = element_blank())
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The package also includes a convenient procedure for updating the evaluation of p and G by
increasing their maximum values. This can be done using the update method for ‘dmbc_ic’
objects imported from the stats4 package (R Core Team 2021). For example, the following
code allows to add the DCIC indices for models with p = 4 to those previously obtained,
while maintaining the same range of values for G (output not reported here):

R> new.pmax <- pmax + 1
R> new.ic <- update(ic, pmax = new.pmax, Gmax = Gmax)
R> plot(ic, size = c(4, 1.5))

5. Empirical application

We refer to data presented in Takane, Jung, and Takane (2009) relative to judgments on the
similarity between n = 18 animals expressed by S = 20 subjects. Each subject was asked to
divide the animals into as many groups as needed, based on their similarity. In their work,
Takane et al. (2009) build a summary dissimilarity matrix whose (i, j)-th entry contains the
number of subjects who did not place the i-th and the j-th animal into the same group. A
standard (nonmetric) MDS with the Euclidean distance was used to analyze the data, and
a three-dimensional solution was chosen “primarily for ease of presentation” (Takane et al.
2009, p. 233).

This approach is based on the implicit assumption that the subjects’ dissimilarity matrices
are homogeneous, so that a consensus matrix effectively summarizes the data. However,
one could be interested in investigating whether such assumption is supported by data, and
to study more in depth the possible differences in the subjects’ perceived dissimilarities, by
identifying clusters of subjects with similar perceptions. Therefore, for each subject we build
a dissimilarity matrix whose entries signal for each pair of animals whether they were placed
in the same group (0) or not (1). The resulting binary matrices, available in the animals
object within the package, can be visualized as in Figure 7:

R> data("animals", package = "dmbc")
R> plot(animals, colors = c("white", "darkgray"), cex.font = 0.75)

We first apply the procedure to simultaneously select p and G based on the DCIC index.
Thus, for each combination of (p,G), with 1 <p <5 and 1 < G < 5, we apply our algorithm
using 20,000 MCMC iterations, with the first 10,000 used for warming-up (the ranges for p
and G were chosen based on a preliminary analysis using a reduced number of iterations).
The prior and proposal variance parameters are set as illustrated in Section 2.1.

R> pmax <- 5

R> Gmax <- 56

R> prm.prop <- list(z = 2.5, alpha = 1)

R> control <- list(burnin = 10000, nsim = 10000, z.prop = prm.prop$z,
+ alpha.prop = prm.prop$alpha, verbose = TRUE, seed = 201)

R> animals_ic <- dmbc_IC(animals, pmax = pmax, Gmax = Gmax,

+ control = control)

R> animals_ic
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Figure 7: Animals data. Each panel shows the binary dissimilarity matrix for a subject in the
sample. The matrices have been obtained using the data in Takane et al. (2009), by setting
their elements equal to 0 or 1 depending on whether a pair of animals is placed or not in the
same group by the subject. The white color corresponds to the 0Os and the dark gray to the
1s in the matrices.

Dissimilarity Model Based Clustering -- Model choice

Latent dimensions (p) included: from 1 to 5

Number of clusters (G) included: from 1 to 5

Family: binomial

Dissimilarity Model Based Clustering Information Criterion (DCIC):
G=1 G =2 G =3 G =4 G=5

2129.01 1723.20 1688.98 1672.74  1895.29

1773.61  1810.01 2121.70 1885.02 2564.19

1682.60 2058.95 2224.82 2416.28  2707.07

1682.79  1919.54  2346.64  2527.38  2827.89

1707.99  2104.38 2139.97 2642.78  3062.09

e loRiso Bl o)
GO W N

These results suggest (p, G) = (1, 4) as the best solution. Therefore, we refit the selected model
using a 100,000 iterations for burn-in followed by further 50,000 iterations. To avoid strong
dependence along the parameter chains, we choose to retain only 1 in every 10 iterations.
Finally, to allow for a better mixing, we set the proposal distribution variances to relatively
large values, namely vz = 3 and v, = 1. Below is the code to simultaneously fitting two
chains using the snow protocol:
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Figure 8: Animals data. Trace plots for the fitted DMBC model with (p G) = (1,4) for
the following parameters (a) (log-transformed) 7,’s. (b) (log-transformed) 0' ’s. (c) Ag’s. (d)
ayg's.

R> prm.prop <- list(z = 3, alpha = 1)

R> control <- list(burnin = 100000, nsim = 50000, thin = 10,

+ z.prop = prm.prop$z, alpha.prop = prm.prop$alpha,

+ verbose = TRUE, seed = 1406, nchains = 2, threads = 2,

+ parallel = "snow")

R> animals_1_4 <- dmbc(animals, p = 1, G = 4, control = control,
+ post_all = TRUE)

The trace plots for the fitted model (see Figure 8) are obtained as follows:

R> color_scheme_set("teal")
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R> plot(animals_1_4, what = "trace", regex_pars = "eta",

+ transformation = "log")

R> plot(animals_1_4, what = "trace", regex_pars = "sigma2",
+ transformation = "log")

R> plot(animals_1_4, what = "trace", regex_pars = "lambda")
R> plot(animals_1_4, what = "trace", regex_pars = "alpha")

These diagrams allow to conclude that the simulated chains behave properly.

Figure 9 reports the estimated posterior means of the MDS configurations for the G = 4
identified clusters obtained with the dmbc_get_configuration() function'?:

R> animals_1bl <- attr(animals@diss[[1]], "Labels")

R> z <- dmbc_get_configuration(animals_1_4, labels = animals_1bl)
R> color_scheme_set (rep("black", 6))

R> z_p <- plot(z, label_objects = TRUE, nudge_x = 1.5)

R> z_p + panel_bg(fill = "white", color = NA)

R> drop(z@Z.est)

g=1 g =2 g=3 g =4
be  7.8912752 6.5106375 -21.455187  8.224499
cm  0.2380378 -3.8663022 2.605586  3.829071
ct -3.4236000 1.8068985 ~-7.849494 -13.674802
cw -3.4194108 -6.6235717 15.044190 1.428815
dg -3.4104635 2.0627046 -7.820329 -8.948322
el 4.1662027 -3.4291387 2.599000 5.570218
gf 11.5683549 5.3200457 -21.472301 -8.852644
fx  4.1953358 -2.7289153 2.606050 4.723642
hs -3.4355190 -5.0130349 15.045028 2.329998
1i 11.5609187 6.8156971 2.617145 -13.787044
mk  4.1867203 0.3508692 2.732718 6.421884
ms -12.9864275 1.2205536 -12.737961 -3.632380
pg -3.9004318 -6.6333716 15.030775 1.089844
rb -12.9862458 2.0959669 -17.909004 -1.743951
sh -3.4317612 -6.5386677 15.042455 1.068187
sq -13.0303637 1.4428922 -17.886356 -3.491393
tg 11.5594469 6.8165351  2.625455 -13.786998
wf 11.5698326 5.6893051 -21.485886 -8.853681

The clusters’ configurations are displayed along the 45 degrees line to reduce label cluttering
and to better appreciate the arrangement of the objects (animals) along the single extracted
factor. Subjects in clusters 1 and 3 are those who arranged the animals in the neatest and
simplest way. Subjects in cluster 1 (i.e., subjects 1 and 11) mostly distinguish between farm
and house animals, animals living in a wild habitat (divided into two groups — elephant,

12Codes for animals: Bear: be; Camel: cm; Cat: ct; Cow: cw; Dog: dg; Elephant: el; Giraffe: gf; Fox: fx;
Horse: hs; Lion: li; Monkey: mk; Mouse: ms; Pig: pg; Rabbit: rb; Sheep: sh; Squirrel: sq; Tiger: tg; Wolf:
wi.
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Figure 9: Animals data. Estimated posterior means of the one-dimensional configurations for
the G = 4 clusters of subjects. To avoid label cluttering, the estimated latent configurations
are represented along the 45 degrees line. Clusters compositions (subjects): 1: (1,11); 2:
(7,8,9,12,14,16,18); 3: (3,17,20); 4: (4,5,6,10,13,15,19). Codes for animals: Bear: be;
Camel: cm; Cat: ct; Cow: cw; Dog: dg; Elephant: el; Giraffe: gf; Fox: fx; Horse: hs; Lion: li;
Monkey: mk; Mouse: ms; Pig: pg; Rabbit: rb; Sheep: sh; Squirrel: sq; Tiger: tg; Wolf: wf.

fox and monkey on one side, tiger, lion, giraffe, and wolf on the other), and rodents. The
singletons laying along the MDS factor (namely, camel and bear) are projected between two
classes because they are differently classified by the two subjects in the cluster. Subjects in
cluster 3 (3, 17 and 20) present a similar classification, even if they distinguish between farm
and house animals (cat and dog), divide wild animals differently, and quite weirdly perceive
squirrel and rabbit as similar to giraffe, bear and wolf. As for cluster 4 (subjects 4, 5, 6, 10,
13, 15 and 19), on one extreme, the farm animals are grouped and placed relatively close to
the big four-footed animals (camel, elephant) and to the fox, which are not homogeneously
classified by the cluster’s subjects. On the opposite side, the placement of felines (lion, tiger
and cat) and canines (wolf and dog) can be noted. In the center of the configuration we
find the rodents. Further, monkey and bear are projected toward the end of the dimension;
their positions can be ascribed to an imperfect fit of these animals with the other identified
throngs. Finally, cluster 2 (subjects 2, 7, 8, 9, 12, 14, 16 and 18) includes subjects with the
most articulated system of classification.
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6. Conclusion

In this work, we introduced dmbec, an R package that extends to three-way binary data
the Bayesian multidimensional scaling approach by Oh and Raftery (2007). Our procedure
provides a partition of the set of dissimilarity matrices into G groups, and simultaneously
returns a p-dimensional MDS configuration for each cluster. Embedding the problem in a
Bayesian framework has the advantage of allowing the development of a Bayesian criterion
to jointly select G and p. Furthermore, it is possible to obtain credibility intervals for all
the estimated parameters as well as for the objects’ coordinates in the different clusters’
configurations.

Our procedure is flexible and includes RMDS and WMDS as particular cases. If the con-
figuration underlying the identified clusters is unique and the individual differences are only
due to a different system of weights, then the cluster-specific configurations will be similar
except for cluster-specific scaling factors. Clearly, a model based on a unique configuration
with a possibly different system of weights is easier to interpret compared to the case when
many configurations are obtained. Even so, the comparison of the configurations across the
clusters’ can be pursued using a Procrustean analysis (see for example Gower and Dijkster-
huis 2004) and rotating the estimated configurations to maximum similarity with a reference
configuration.

Even if our focus here is very specific, a nice feature of our model-based three-way MDS is
its versatility. Indeed, the model and the package can be extended along different directions.
First, our approach can be adapted to deal with multinomial and numerical (i.e., non-binary)
dissimilarity data by suitably modifying the assumption (Equation 3) on the dissimilarity
distribution. Second, it can be enriched by introducing subject-level covariates, such as socio-
demographic characteristics, assuming that they influence either the cluster membership, or
the linear predictor (Equation 1), or both. Third, it is possible to allow for asymmetric
dissimilarity matrices. All these ideas are currently under development.

One limitation of the model regards the assumption that the cluster-specific latent spaces have
the same dimension, p. This might lead to overestimate the latent space dimension for some
clusters. A simple way to overcome this issue is to apply principal components analysis to the
estimated cluster-specific configurations to assess if one or more clusters present redundant
dimensions. Although one could envision an extension of the model that allows for a different
number of dimensions of the configuration spaces, this would come at the cost of a more
complicated procedure for selecting the optimal value for p in the different clusters.

In the MCMC algorithm presented in the paper we use normal proposal densities. This choice
is motivated by the difficulty in identifying suitable distributions in a complex multivariate
setting like the one analyzed here. An alternative strategy, which has been largely discussed in
the literature, is the surrogate proposal approach, used for example in Gormley and Murphy
(2010), that approximates a target distribution by simplifying its terms through a quadratic
multivariate Taylor expansion. This allows constructing proposal distributions which better
approximate problematic full conditional distributions from which sampling is required, and
allows the Metropolis-Hastings algorithm to explore more efficiently the parameters’ space.

A further limitation of our proposal concerns the DCIC criterion. For given values of p and
G, the computation of the DCIC requires the estimation of all models with dimensions from
1 to (p—1), and this does not permit to focus on a restricted set of (hypothesized) promising
dimensions. The estimation of the model over a wide range of dimensionality can therefore
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be very time consuming. One possibility to overcome this issue is to adapt to our context
the approach introduced by Oh (2012) for choosing the MDS dimensionality in the case of
a single dissimilarity matrix. In this procedure, for each factor in an MDS configuration, a
prior is assumed which is a mixture of a point mass at 0 and a continuous distribution for the
rest of the parameter space. This prior specification leads to a marginal posterior distribution
which is a mixture of the same form of the prior, where the mixing weight of the continuous
distribution can be regarded as a measure of significance for the factor itself. Hence, in such
framework the optimal dimension of the configuration coincides with the number of factors
having high posterior probabilities of being non-zero.

Our methodology does not account for uncertainty in the number of clusters G and the latent
space dimension p, which are both assumed to be unknown but fixed quantities. This clearly
represents a further direction of research, which can be carried on using a trans-dimensional
MCMC approach, such as the reversible jump sampling (Green 1995; Richardson and Green
1997; Brooks, Giudici, and Roberts 2003), in which the dimension of the parameter space
can change from one iteration to the next. Alternatively, one can achieve a higher degree
of flexibility by adopting a nonparametric perspective, for example using Dirichlet process
mixtures (see for example Ferguson 1973; Escobar and West 1995; MacEachern and Miiller
1998; Kyung, Gill, and Casella 2010; Miiller, Quintana, Jara, and Hanson 2015 provides a
comprehensive survey of these models).

Still with reference to the selection of the best model, we note that, up to a certain extent,
the DCIC index tends to favor an increase in the number of clusters over an increase in the
number of dimensions of the MDS configuration. As a consequence, when the sample contains
a large number of subjects with very peculiar perceptions, one may get a DCIC profile showing
a very slow monotonic decay with respect to the number of clusters. In these cases, model
selection becomes an issue, since one may find a “global” optimum only selecting a very high
value for G. When this occurs, we suggest to adopt a more heuristic procedure that mimics
the strategy used to identify the dimension of factorial configurations through the well-known
scree plot. Thus, in these situations we suggest to select as a reasonable value of G the point
where the slope of the DCIC curve levels off showing the classical “elbow”.

As a final remark, for what regards the computational efficiency of the algorithm implemen-
tation, we note that the algorithm scales well with respect to the number of subjects (S) and
to the number of clusters (G), while it tends to slow down when the number of objects (n)
increases.
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