
JSS Journal of Statistical Software
November 2021, Volume 100, Issue 4. doi: 10.18637/jss.v100.i04

bamlss: A Lego Toolbox for Flexible Bayesian
Regression (and Beyond)

Nikolaus Umlauf
Universität Innsbruck

Nadja Klein
Humboldt Universität

zu Berlin

Thorsten Simon
Universität Innsbruck

Achim Zeileis
Universität Innsbruck

Abstract

Over the last decades, the challenges in applied regression and in predictive model-
ing have been changing considerably: (1) More flexible regression model specifications
are needed as data sizes and available information are steadily increasing, consequently
demanding for more powerful computing infrastructure. (2) Full probabilistic models by
means of distributional regression – rather than predicting only some underlying individ-
ual quantities from the distributions such as means or expectations – is crucial in many
applications. (3) Availability of Bayesian inference has gained in importance both as an
appealing framework for regularizing or penalizing complex models and estimation therein
as well as a natural alternative to classical frequentist inference. However, while there has
been a lot of research on all three challenges and the development of corresponding soft-
ware packages, a modular software implementation that allows to easily combine all three
aspects has not yet been available for the general framework of distributional regression.

To fill this gap, the R package bamlss is introduced for Bayesian additive models for
location, scale, and shape (and beyond) – with the name reflecting the most important
distributional quantities (among others) that can be modeled with the software. At the
core of the package are algorithms for highly-efficient Bayesian estimation and inference
that can be applied to generalized additive models or generalized additive models for lo-
cation, scale, and shape, or more general distributional regression models. However, its
building blocks are designed as “Lego bricks” encompassing various distributions (expo-
nential family, Cox, joint models, etc.), regression terms (linear, splines, random effects,
tensor products, spatial fields, etc.), and estimators (MCMC, backfitting, gradient boost-
ing, lasso, etc.). It is demonstrated how these can be easily combined to make classical
models more flexible or to create new custom models for specific modeling challenges.

Keywords: backfitting, distributional regression, gradient boosting, MCMC, penalization,
probabilistic forecasting, R.

https://doi.org/10.18637/jss.v100.i04
https://orcid.org/0000-0003-2160-9803
https://orcid.org/0000-0002-5072-5347
https://orcid.org/0000-0002-3778-7738
https://orcid.org/0000-0003-0918-3766

2 bamlss: A Lego Toolbox for Flexible Bayesian Regression

1. Introduction
Many modern modeling tasks necessitate flexible regression tools that can deal with: (1) Large
data sets that can be both long (many observations) and/or wide (many variables or complex
effect types). (2) Probabilistic forecasts that capture the entire distribution and not only its
mean or expectation. (3) Enhanced inference infrastructure, typically Bayesian, broadening
classical frequentist methodology. A popular framework to combine flexible regression with
probabilistic modeling are generalized additive models (GAMs, Hastie and Tibshirani 1990),
later extended to generalized additive models for location, scale, and shape (GAMLSS, Rigby
and Stasinopoulos 2005), also known as Bayesian structured additive distributional regression
(Klein, Kneib, Lang, and Sohn 2015c) which encompasses (generalized) linear models (GLMs,
Nelder and Wedderburn 1972) as special cases. Bayesian inference in these models can be
seen as a natural framework for penalizing flexible model terms and to overcome potential
problems with p values and classical null hypothesis significance testing (Wasserstein and
Lazar 2016). However, when fitting such models to big data – long and/or wide – classical
estimation techniques using standard algorithms like iteratively weighted least squares (IWLS,
Gamerman 1997) or Markov chain Monte Carlo (MCMC) might not be feasible. Instead,
regularized estimation techniques such as lasso or boosting (Friedman, Hastie, and Tibshirani
2010; Mayr, Fenske, Hofner, Kneib, and Schmid 2012) might be necessary or further advanced
custom algorithms (Wood 2017). Hence, to facilitate addressing all challenges and needs
simultaneously – independent of a specific estimation strategy and/or fitting algorithm – the
bamlss package for the R system for statistical computing (R Core Team 2021) implements
a modular “Lego toolbox”, extending the work of Umlauf, Klein, and Zeileis (2018). In this
framework not only the response distribution is a “Lego brick” (as in a classical GLM) or the
regression terms (as in a GAM) but also the estimation algorithm such as a specific MCMC
sampler.
The idea of a “Lego toolbox” for regression models has of course been around for some
time; in some implementations, Bayesian and frequentist, there is not only the possibility to
easily implement new distributions, but also model terms, from splines to neural networks to
regression trees. In some implementations optimization routines may also be exchanged. The
following is a list of well-known packages for regression models in the R ecosystem, whose
implementations are designed to be extremely flexible.

• GAMs and GAMLSSs are available in a number of packages, most notably the mgcv
package (Wood 2017) and also the gamlss family of packages (Stasinopoulos, Rigby,
Heller, Voudouris, and Bastiani 2017; Rigby, Stasinopoulos, Heller, and Bastiani 2019)
and VGAM (Yee 2010). The latter two are notable for their support of a wide range
of response distributions. While VGAM is restrictive with respect to the integration of
flexible model terms, the gamlss package also supports (user-defined) smooth additive
terms of general type (e.g., neural networks and regression trees), however, inference
is mainly supported only for linear model terms. In contrast, mgcv excels at provid-
ing highly-optimized algorithms for general smooth models (Wood, Pya, and Säfken
2016), including inference, as well as the dedicated bam() function for big data that is
long and/or wide (Wood, Li, Shaddick, and Augustin 2017). All these packages rely
on frequentist estimation strategies. Moreover, the package provides sophisticated in-
frastructure for generating new classes of smooth terms (which is fully adopted by the
bamlss package).

Journal of Statistical Software 3

• Bayesian inference is not only an increasingly popular alternative to classical frequentist
inference, it is also particularly attractive for hierarchical or multilevel models and for
penalizing regression effects through suitable prior distributions. Also, fully Bayesian
approaches using MCMC are appealing in flexible regression models for obtaining cred-
ible intervals from the posterior samples. The brms package (Bürkner 2017) is notable
for providing a standard R workflow for estimating Bayesian multilevel models using
Stan (Carpenter et al. 2017). Also, the above-mentioned mgcv package supports es-
timation of Bayesian GAMs via its jagam() function (Wood 2016) based on JAGS
(Plummer 2003).
For more flexibility, going beyond these capabilities, it is in principle possible to directly
implement custom models using general purpose MCMC software like JAGS, Stan, or
the BUGS family of packages (Lunn, Thomas, Best, and Spiegelhalter 2000; Goudie,
Turner, Angelis, and Thomas 2020). However, for complex models – e.g., using large
data sets, spatial effects, or higher-order interactions – sampling times from these generic
MCMC engines can become long, sometimes prohibitively long. This has been addressed
by dedicated packages for Bayesian additive models, e.g., with the standalone package
BayesX (Brezger, Kneib, and Lang 2005; Belitz, Brezger, Klein, Kneib, Lang, and
Umlauf 2015) being the first to provide highly-efficient sampling schemes for very large
data sets as well as spatial/multilevel models and structured additive distributional
regression. An R interface is available in R2BayesX (Umlauf, Adler, Kneib, Lang, and
Zeileis 2015). Instead of fully Bayesian MCMC it is also possible to employ posterior
mean estimation via the integrated nested Laplace approximation to estimate flexible
Bayesian regression models. This is provided in the comprehensive R package INLA
(Rue, Martino, and Chopin 2009), popular for estimating complex spatial Bayesian
regression models (see e.g., Lindgren and Rue 2015; Bivand, Gómez-Rubio, and Rue
2015).

• Regularized estimation and explicit variable selection might be necessary, though, for
going beyond the models described above, especially for large/wide data with many
potential regressors and corresponding effects/interactions/etc. Widely-used approaches
for this include the lasso, e.g., as available for GLM-type models in the R package glmnet
(Friedman et al. 2010), or gradient boosting as available for GAMLSS-type models in the
R package gamboostLSS (Hofner, Mayr, and Schmid 2016). However, many packages
do not cover the Bayesian posterior estimation parts.

In summary, the discussion above highlights that many different packages with different
strengths are already available in R. However, a package combining all the aspects above
in a single framework is not readily available as there are typically limitations with respect
to the inferential framework, the distributions and/or complexity of the models supported,
or the estimation techniques and fitting algorithms. The package bamlss, available from the
Comprehensive R Archive Network at https://CRAN.R-project.org/package=bamlss, tries
to fill this gap with a modular “Lego” approach to flexible Bayesian regression providing:

• The usual R “look & feel” for regression modeling.

• Estimation of classic (GAM-type) regression models (Bayesian or frequentist).

• Estimation of flexible (GAMLSS-type) distributional regression models.

https://CRAN.R-project.org/package=bamlss

4 bamlss: A Lego Toolbox for Flexible Bayesian Regression

• An extensible “plug & play” approach for regression terms.

• Modular combinations of fitting algorithms and samplers.

Especially the last item is notable because the models in bamlss are not limited to a specific
estimation algorithm but different engines can be plugged in without necessitating changes in
other aspects of the model specification (such as response distributions or regression terms).
By default bamlss is using IWLS-based backfitting for optimizing the model and IWLS-based
MCMC for sampling from the posterior distribution. However, alternative optimizers and
samplers are also implemented that support lasso or boosting, and more. Moreover, the
package builds on the well-established mgcv infrastructure for smooth model terms, uses
R’s formula syntax for model specification, and provides standard extractor methods like
summary(), plot(), predict(), etc.
The remainder of this paper is as follows. In Section 2, three motivating examples illustrate the
first steps using bamlss and show cases the flexibility of the provided infrastructure. Section 3
introduces the flexible regression framework in more detail. A thorough introduction of the
R package bamlss, describing the most important building blocks for developing families,
model terms and estimation algorithms, is then given in Section 4. In Section 5 we highlight
the unified modeling approach using a complex distributional regression model for lighting
counts in complex terrain. Further details and examples about the bamlss package can be
found online at http://www.bamlss.org/.

2. Motivating examples
This section gives a first quick overview of the functionality of the package. The first example
demonstrates that the usual “look & feel” when using well-established model fitting functions
like glm() is an elementary part of bamlss, i.e., first steps and basic handling of the package
should be relatively simple. The second example shows that the package can deal with
a variety of different model terms and that model fitting functions can easily be exchanged,
here, we exemplify this feature by applying a lasso-type estimation engine. The third example
then explains how full distributional regression models can be estimated and show cases once
more the flexibility of the provided modeling infrastructure.

2.1. Basic Bayesian regression: Logit model

This example data is taken from the AER package (Kleiber and Zeileis 2008) and is about
labor force participation (yes/no) of women in Switzerland 1981 (Gerfin 1996). The bamlss
package and the data can be loaded with

R> library("bamlss")
R> data("SwissLabor", package = "AER")

The data frame contains 872 observations of 6 variables, where some of them might have a
nonlinear influence on the response labor participation. Now, a standard Bayesian binomial
logit model using the default MCMC algorithm can be fitted (sampler function sam_GMCMC(),
see also Section 4 for other options). The MCMC algorithm uses iteratively weighted least
squares (IWLS, Gamerman 1997, for more details see Section 3.2) proposals, which have very

http://www.bamlss.org/

Journal of Statistical Software 5

good mixing properties and computational advantages when using very large data sets (Lang,
Umlauf, Wechselberger, Harttgen, and Kneib 2014). First, the model formula is specified
with

R> f <- participation ~ income + age + education +
+ youngkids + oldkids + foreign + I(age^2)

Then, to reproduce the results the seed of the random number generator is set and the model
is estimated by

R> set.seed(123)
R> b <- bamlss(f, family = "binomial", data = SwissLabor,
+ n.iter = 1200, burnin = 200, thin = 1)

Note that the default number of iterations (n.iter) for the MCMC sampler is 1200, the
burnin-phase burnin is 200 and thinning (thin) is 1. The reason is that during the modeling
process, users usually want to obtain first results rather quickly. Afterwards, if a final model
is estimated the number of iterations of the sampler is usually set much higher to get close
to i.i.d. samples from the posterior distribution. To obtain reasonable starting values for the
MCMC sampler we run a backfitting algorithm that optimizes the posterior mode. Using
the main model fitting function bamlss() all model fitting engines can be exchanged, which
is explained in detail in Section 4 and the application Section 5. The default model fitting
engines use family objects (see also Section 4), similar to the families that can be used with
the glm() function, which enables easy implementation of new distributions (models).
Note that the model contains a quadratic term for variable age in order to capture nonlin-
earities. The resulting object b is of class "bamlss" for which standard extractor functions
like summary(), coef(), plot(), predict(), etc. are available. The model summary output
is printed by

R> summary(b)

Call:
bamlss(formula = f, family = "binomial", data = SwissLabor)

Family: binomial
Link function: pi = logit
*---
Formula pi:

participation ~ income + age + education + youngkids + oldkids +

foreign + I(age^2)
-
Parametric coefficients:

Mean 2.5% 50% 97.5% parameters
(Intercept) 6.15503 1.55586 5.99204 11.11051 6.196
income -1.10565 -1.56986 -1.10784 -0.68652 -1.104
age 3.45703 2.05897 3.44567 4.79139 3.437

6 bamlss: A Lego Toolbox for Flexible Bayesian Regression

education 0.03354 -0.02175 0.03284 0.09223 0.033
youngkids -1.17906 -1.51099 -1.17683 -0.83047 -1.186
oldkids -0.24122 -0.41231 -0.24099 -0.08054 -0.241
foreignyes 1.16749 0.76276 1.17035 1.55624 1.168
I(age^2) -0.48990 -0.65660 -0.49205 -0.31968 -0.488
-
Acceptance probability:

Mean 2.5% 50% 97.5%
alpha 0.8759 0.3230 0.9941 1

Sampler summary:
-
DIC = 1033.325 logLik = -512.7258 pd = 7.8734
runtime = 1.115

Optimizer summary:
-
AICc = 1033.737 edf = 8 logLik = -508.7851
logPost = -571.3986 nobs = 872 runtime = 0.012

and is based on MCMC samples, which suggest “significant” effects for all covariates, ex-
cept for variable education, since the 95% credible interval contains zero. In addition, the
acceptance probabilities alpha are reported, i.e., the acceptance probability of the sample
candidate based on the proposal and the posterior distribution which is calculated in each it-
eration, indicating proper behavior of the MCMC algorithm. The column parameters shows
respective posterior mode estimates of the regression coefficients, which are calculated by the
upstream optimizer algorithm (note that the column is named parameters, because optimizer
functions can in principle return any type of parameters). Besides, more results from the opti-
mizer are reported at the very end of the output: the corrected AIC (AICc, Hurvich and Tsai
1989; Cavanaugh 1997), the equivalent degrees of freedom (edf), the log-likelihood (logLik),
etc. In addition, there are also extractor functions in bamlss for information criteria like
the DIC (function DIC()) and the widely applicable information criterion (WAIC, Watan-
abe 2010, function WAIC()), or the out-of-sample continuous rank probability score (CRPS,
Gneiting and Raftery 2007; Gneiting, Balabdaoui, and Raftery 2007, function CRPS()). Note
that CRPS() approximates numerically, while the scoringRules package (Jordan, Krüger, and
Lerch 2019) can compute the CRPS very efficiently for some distributions. The usage of the
provided functions is similar to the generic AIC() and BIC(), e.g., the DIC can be computed
with

R> DIC(b)

DIC pd
1033.325 7.87343

Before proceeding the analysis, users usually perform additional convergence checks of the
MCMC chains by looking at traceplots and autocorrelation (besides acceptance probabilities).

R> plot(b, which = c("samples", "max-acf"))

Journal of Statistical Software 7

0 200 400 600 800 1000

0
5

10

Iterations

Trace of pi.p.(Intercept)

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF of pi.p.(Intercept)

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Maximum ACF of samples

Figure 1: Logit model, MCMC trace (left panel), autocorrelation for the intercept (middle
panel), maximum autocorrelation for all parameters (right panel).

These are visualized in Figure 1 and reveal approximate convergence of the MCMC chains,
i.e., there is no visible trend, and the very low autocorrelation shown for the intercept and
the maximum autocorrelation calculated as the maximum for each lag across all parameters
suggest close to i.i.d. samples from the posterior distribution. As mentioned above, the
user could also increase the number iterations and the burnin-phase, as well as adapt the
thinning parameter (arguments n.iter, burnin and thin), to make the significant bar at
lag one disappear. Note that the function call would compute all trace and autocorrelation
plots, however, for convenience we only show plots for the intercept. In addition, samples
can also be extracted using function samples(), which returns an object of class "mcmc", a
class provided by the coda package (Plummer, Best, Cowles, and Vines 2006) which includes
a rich infrastructure for further convergence diagnostic checks, e.g., Gelman and Rubin’s
convergence diagnostic (Gelman and Rubin 1992; Brooks and Gelman 1998) or Heidelberger
and Welch’s convergence diagnostic (Heidelberger and Welch 1981, 1983).
Model predictions on the probability scale can be obtained by the predict() method, e.g.,
to visualize the effect of covariate age on the probability we can create a new data frame for
prediction

R> nd <- data.frame(income = 11, age = seq(2, 6.2, length = 100),
+ education = 12, youngkids = 1, oldkids = 1, foreign = "no")

Afterwards, we predict for both cases of variable foreign

R> nd$p_swiss <- predict(b, newdata = nd, type = "parameter", FUN = c95)
R> nd$foreign <- "yes"
R> nd$p_foreign <- predict(b, newdata = nd, type = "parameter", FUN = c95)

The predict() method is applied on all MCMC samples and argument FUN specifies a func-
tion that can be applied on the predictor or distribution parameter samples. The default is
the mean() function, however, in this case we additionally extract the empirical 2.5% and
97.5% quantiles using function c95() to obtain credible intervals (note, individual samples
can be extracted by passing FUN = identity, i.e., this way users can easily generate their
own statistics). Then, the estimated effect can be visualized with

8 bamlss: A Lego Toolbox for Flexible Bayesian Regression

age

pa
rt

ic
ip

at
io

n

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

2 3 4 5 6

Foreign
Swiss

age

E
ffe

ct
 o

n
Lo

gi
t−1

(π
)

−
3

−
2

−
1

0
1

2 3 4 5 6

Figure 2: Left panel, quadratic polynomial effect of covariate age on estimated probabilities
for both cases, foreign "yes" and "no". Right panel, effect on Logit−1(π) of variable age
using regression splines (see Section 2.2). The solid lines represent mean estimates, the shaded
areas show 95% credible intervals.

R> blues <- function(n, ...) hcl.colors(n, "Blues", rev = TRUE)
R> plot2d(p_swiss ~ age, data = nd, ylab = "participation",
+ ylim = range(c(ndp_swiss, ndp_foreign)), fill.select = c(0, 1, 0, 1))
R> plot2d(p_foreign ~ age, data = nd, add = TRUE,
+ fill.select = c(0, 1, 0, 1), axes = FALSE,
+ s2.col = blues, col.lines = blues(1))

The estimates are shown in Figure 2 and suggest a clear difference for the effect of age between
both cases of factor variable foreign.

2.2. Flexible model terms and estimators

Using the flexible infrastructure of bamlss, model terms can be easily exchanged. To give a
first impression of the modeling capabilities, we again use the SwissLabor data and binomial
logit model of Section 2.1, however, in this example we use regression splines to capture the
nonlinear effect variable age.
As noted in the introduction, the bamlss package leverage the infrastructure from the R
package mgcv (Wood 2021) for setting up the design and penalty matrices for smooth terms
by calling mgcv’s smooth.construct() or smoothCon(), i.e., new user-defined smooth terms
can also be added by providing new classes for the generic functions. To estimate a spline
model instead of a polynomial model for variable age the model formula only needs to be
slightly adapted

R> f <- participation ~ income + education +
+ youngkids + oldkids + foreign + s(age, k = 10)

The function s() is the smooth term constructor from the mgcv package, the default of s()
are thin-plate regression splines with k = 10 basis functions. The model is again fitted by

R> set.seed(123)
R> b <- bamlss(f, family = "binomial", data = SwissLabor)

Journal of Statistical Software 9

Description Formula
Linear effects: Xβ x1 + x2 + x3
Nonlinear effects of continuous
covariates: f(x) = f(x1) s(x1)

Two-dimensional surfaces:
f(x) = f(x1, x2)

s(x1,x2), te(x1,x2) or ti(x1,x2)
(higher dimensional terms possible).

Spatially correlated effects:
f(x) = fspat(xs)

s(xs, bs = "mrf", xt = list(penalty =
K)), where xs is a factor indicating the discrete
regional information and K is a supplied penalty
matrix. Other options within the xt argument
are possible, please see the documentation of
smooth.construct.mrf.smooth.spec().

Varying coefficients:
f(x) = x1f(x2) s(x2, by = x1)

Spatially varying effects:
f(x) = x1fspat(xs) or
f(x) = x1f(x2, x3)

s(xs, bs = "mrf", xt = list(penalty = K),
by = x1), s(x2, x3, by = x1) or
te(x2, x3, by = x1)

Random intercepts with cluster
index c: f(x) = βc

s(id, bs = "re"), where id is a factor of cluster
indices.

Random slopes with cluster index c:
f(x) = x1βc

s(id, x1, bs = "re"), as above with continu-
ous covariate x1.

Table 1: Commonly used model term specifications with respective R formula syntax.

The estimated nonlinear effect can be plotted instantly by typing

R> plot(b, term = "s(age)")

The estimated effect based on regression splines is shown in the right panel of Figure 2 and
reveals that the quadratic polynomial seems to capture the nonlinearity appropriately.
To give a better impression what type of model terms can be used with the bamlss framework
Table 1 lists commonly-used specifications.
Besides the supported infrastructure from the mgcv package, it is also possible to implement
completely new model terms that may follow different setups compared to the basis functions
approach (see also Appendix B for an example using growth curves). Moreover, using bamlss,
estimation engines can also be exchanged. To give an example we estimate the nonlinear age
effect in the SwissLabor example using a fused lasso algorithm (see also Section 5 for a
complex example using gradient boosting optimization). The algorithm performs variable
selection in combination with factor fusion (clustering) and can also be used to identify
interpretable nonlinearities. Methodological details on lasso-type penalization using bamlss
are provided in Groll, Hambuckers, Kneib, and Umlauf (2019). To apply the fused lasso, the
numeric variable age is categorized using empirical quantiles, e.g., with

R> SwissLabor$cage <- cut(SwissLabor$age,
+ breaks = quantile(SwissLabor$age, prob = seq(0, 1, length = 10)),
+ include.lowest = TRUE, ordered_result = TRUE)

10 bamlss: A Lego Toolbox for Flexible Bayesian Regression

log(λ)

A
IC

5 4 3 2 1 0

10
40

10
50

10
60

10
70

10
80

10
90

11
00

λ=2.3598

Criterion

log(λ)

β j

(5.5,6.2]

(4.9,5.5]

(4.5,4.9]

(2.68,3.1]

(4.1,4.5],(3.8,4.1]

(3.4,3.8]

5 4 3 2 1 0

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

λ=2.36

Coefficient paths age

age

E
ffe

ct
 o

n
Lo

gi
t−1

(π
)

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

2 3 4 5 6

Estimated
nonlinear effect

Figure 3: Left panel, AIC curve with optimum shrinkage parameter λ of the lasso example
model. The middle panel shows the corresponding coefficient paths for variable cage. The
right panel displays the respective estimated effect.

The formula for the fused lasso model is then specified with the special la() model term
constructor function provided in bamlss:

R> f <- participation ~ income + education + youngkids + oldkids + foreign +
+ la(cage, fuse = 2)

where argument fuse specifies the type of fusion (nominal fusion fuse = 1, ordered fusion
fuse = 2). To estimate the fused lasso model only the default optimizer function in the
bamlss() wrapper function call needs to exchanged

R> b <- bamlss(f, family = "binomial", data = SwissLabor,
+ optimizer = opt_lasso, sampler = FALSE,
+ criterion = "AIC", upper = exp(5), lower = 1)

The optimum shrinkage parameter λ is selected by the AIC (another option is criterion =
"BIC"). Arguments upper and lower determine the search interval of λ, per default nlambda
= 100 values are generated. Note that no MCMC sampling is used after the opt_lasso()
estimation engine is applied, argument sampler = FALSE in the bamlss() call.
The AIC curve and the coefficient paths including the optimum shrinkage parameter λ can
be visualized with

R> pathplot(b)

Figure 3 shows the AIC curve and coefficient paths for cage. The AIC curve assumes a
minimum at the vertical gray dashed line. The coefficient paths obviously depict that the
algorithm can either shrink categories out of the model (shrink to zero), or even fuses them.
In the right panel of Figure 3, the estimated effect of the categorized variable age is shown.
The effect is computed by predicting without intercept using the optimum stopping iteration,
which is selected by AIC and can be extracted with function lasso_stop(). The stopping
iteration is passed to the predict() method by specifying the mstop argument.

Journal of Statistical Software 11

R> page <- predict(b, term = "cage", intercept = FALSE,
+ mstop = lasso_stop(b))

The figure is then created using the untransformed original covariate on the x-axis.

R> plot2d(page ~ age, data = SwissLabor, rug = TRUE)

Using the fused lasso estimation nonlinearities can be identified again, similar to the spline
based estimate in the right panel of Figure 2.

2.3. Location-scale model

Here, we extend the framework and estimate a distributional regression model that not only
captures the mean (or location) of the response variable but also its variance (or scale). As an
example, we employ the number of weekly fatalities in Austria from 2000–2020 (up to week 46
in 2020) as obtained from the Eurostat data base (https://ec.europa.eu/eurostat/). The
data is available in the bamlss package as fatalities, providing the number (num) of fatalities
in each year and week. It can be loaded with

R> data("fatalities", package = "bamlss")

The idea of the subsequent analysis is to estimate a reference mortality model based on the
data from 2000–2019 prior to the COVID-19 (Corona virus disease 2019) crisis in order to
bring out graphically the excess mortality in 2020. Excess mortality is often employed for
assessing the effects of exceptional events such as pandemics (Leon et al. 2020) or natural
catastrophes (Fouillet et al. 2008). First, we split the data into the corresponding subsets.

R> d19 <- subset(fatalities, year <= 2019)
R> d20 <- subset(fatalities, year >= 2020)

To capture the long-term seasonal trend of the fatality number distribution, we employ a
simple model here: log-fatalities are assumed to be normally distributed with smooth seasonal
variations in both mean and variance. As shown below the log-transformation stabilizes
skewness and variance in the data somewhat so that a normal model works sufficiently well.
Cyclic splines with respect to the week of the year are employed to capture the smooth
seasonal trends while assuring that the values at the beginning and the end of the year match.
The model formula is now a list with elements for the mean of log(num) (corresponding to
parameter mu) and standard deviation sigma of the normal distribution.

R> f <- list(
+ log(num) ~ s(week, bs = "cc", k = 20),
+ sigma ~ s(week, bs = "cc", k = 20)
+)

Function s() is again the smooth term constructor from the mgcv package (Wood 2021) and
bs = "cc" specifies a penalized cyclic cubic regression spline. (Other smooth terms such as
te() or ti() could be included in the same way.) Based on this bamlss() is used to estimate
a full Bayesian regression model using the NO() normal family from the gamlss.dist package.

https://ec.europa.eu/eurostat/

12 bamlss: A Lego Toolbox for Flexible Bayesian Regression

week

s(
w

ee
k)

.m
u

−
0.

10
0.

00
0.

05
0.

10
0.

15

0 10 20 30 40 50

week

s(
w

ee
k)

.s
ig

m
a

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0 10 20 30 40 50

Figure 4: Estimated effects of week on the mean mu and standard deviation sigma of the
normal model. The gray shaded areas represent 95% credible intervals.

R> library("gamlss.dist")
R> set.seed(456)
R> b <- bamlss(f, data = d19, family = NO)

The resulting estimated effects along with their 95% credible intervals can be easily visualized
using the plot() method:

R> plot(b, model = c("mu", "sigma"))

The resulting displays are shown in Figure 4 depicting a clear nonlinear relationship for both
distribution parameters. The left panel shows that mean log-fatalities are much higher in
winter than in summer with a peak around February matching the highest risk for influenza
and other viral infections in Austria. The right panel shows that the standard deviation
is also highest at around the same time but that there is another local maximum in the
summer months, possibly related to recurrent heat waves that can be quite stressful for the
cardiovascular system (Fouillet et al. 2008).
Figure 5 shows the predicted 5%, 50%, and 95% quantiles (in black) of the corresponding
normal distributions along with the observed fatalities in 2000–2019 (in light gray) and in
2020 (in red, up to week 46), respectively. Thus, the quantiles reflect the effects already
conveyed by the predicted parameters in Figure 4. This shows that the fatalities in 2020 are
above the median almost throughout all weeks and above the 95% quantile for a couple of
weeks in spring and in the fall/winter, respectively. While the mortality in the spring period
is only moderately increased, it is much higher than in previous years in fall/winter during
the second COVID-19 wave in Austria.
In the following, we show how to draw Figure 5 using the bamlss infrastructure. First, we set
up a new data frame and predict the distribution parameters for each week of the year.

R> nd <- data.frame(week = 1:53)
R> par <- predict(b, newdata = nd, type = "parameter")

Based on these, the fitted quantiles can be computed using the quantile function from the
family of the model (see Section 4.2 for details). The exp() transformation maps the fitted
values from the log-scale back to the original frequency scale.

Journal of Statistical Software 13

0 10 20 30 40 50

12
00

14
00

16
00

18
00

20
00

22
00

Week

N
um

be
r

of
 fa

ta
lit

ie
s

Figure 5: Predicted 5%, 50%, and 95% quantiles (in black) of the cyclic seasonal model
along with the observed number of fatalities in 2000–2019 (in light gray) and in 2020 (in red).

R> nd$fit <- sapply(c(0.05, 0.5, 0.95),
+ FUN = function(p) { exp(family(b)$q(p, par)) })

Finally, the estimated quantiles and observed data can be visualized using matplot() after
reshaping the data to “wide” format with a separate column for each year.

R> d19w <- reshape(d19, idvar = "week",
+ timevar = "year", direction = "wide")
R> matplot(d19w$week, d19w[, -1],
+ type = "o", lty = 1, pch = 16, col = gray(0.1, alpha = 0.1),
+ xlab = "Week", ylab = "Number of fatalities")
R> grid()
R> matplot(nd$week, nd$fit, type = "l", lty = c(2, 1, 2),
+ col = 1, lwd = 2, add = TRUE)
R> lines(num ~ week, data = d20, col = 2, lwd = 2, type = "o", pch = 16)

For judging how well the distributional model captures the observed data, the plot() method
includes some diagnostic graphics such as histograms or quantile-quantile (Q-Q) plots of
randomized quantile residuals (Dunn and Smyth 1996), shown in Figure 6.

R> plot(b, which = c("hist-resid", "qq-resid"), c95 = TRUE)

By setting c95 = TRUE, the Q-Q plot includes 95% credible intervals. Both plots show that
the log-transformation of the fatality numbers only partially captures the right-skewed obser-
vations and that therefore the model fit is not ideal in the upper tail. In an accompanying on-
line vignette at http://www.bamlss.org/articles/fatalities.html we show how to find

http://www.bamlss.org/articles/fatalities.html

14 bamlss: A Lego Toolbox for Flexible Bayesian Regression

Histogramm and density

Residuals

D
en

si
ty

−2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

−3 −2 −1 0 1 2 3

−
2

0
2

4

Normal Q−Q plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s
Figure 6: Histogram and Q-Q plot including 95% credible intervals (dashed lines) of the
randomized quantile residuals for the distributional regression model.

a better probabilistic model by considering more flexible distributions (beyond the normal
case) and general Box-Cox transformations (instead of hard-coding the log-transformation).
While this improves the distributional model, the qualitative insights regarding the excess
mortality in Austria during the COVID-19 crisis remain unchanged.

3. A flexible Bayesian model framework
This section briefly summarizes the BAMLSS modeling framework. For a detailed method-
ological description please refer to Umlauf et al. (2018), as well as to the references given
below on page 15 that discuss various applications and extensions that are also implemented
in bamlss. The following outlines the framework from the viewpoint of distributional regres-
sion models, however, please note that model classes like, e.g., GLMs and GAMs or even
survival joint models (Köhler, Umlauf, Beyerlein, Winkler, Ziegler, and Greven 2017; Köhler,
Umlauf, and Greven 2018) are special cases in this setup.

3.1. Model structure

Within the framework of GAMLSS or distributional regression models all parameters of the
response distribution can be modeled by explanatory variables such that

y ∼ D (h1(θ1) = η1, h2(θ2) = η2, . . . , hK(θK) = ηK) , (1)

where D denotes a parametric distribution for the response variable y with K parameters
θk, k = 1, . . . ,K, that are linked to additive predictors using known monotonic and twice
differentiable functions hk(·). Note that the response may also be a q-dimensional vector
y = (y1, . . . , yq)>, e.g., when D is a multivariate distribution (see, e.g., Klein, Kneib, Klasen,
and Lang 2015a). The additive predictor for the k-th parameter is given by

ηk = ηk(X; βk) = f1k(X; β1k) + . . .+ fJkk(X; βJkk
), (2)

Journal of Statistical Software 15

based on j = 1, . . . , Jk unspecified (possibly nonlinear) functions fjk(·), applied to each row of
the generic data matrix X, encompassing all available covariate information. The correspond-
ing parameters βk = (β1k, . . . ,βJkk

)> are typically regression coefficients pertaining to model
matrices Xk = (X1k, . . . ,XJkk)>, whose structure only depend on the type of covariate(s)
and prior assumptions about fjk(·).
Usually, functions fjk(·) are based on a basis function approach, where ηk then is a typical
GAM-type or so-called structured additive predictor (STAR, Fahrmeir, Kneib, and Lang
2004). Similar to Stasinopoulos et al. (2017), Umlauf et al. (2018) relax this assumption
and let fjk(·) be an unspecified composition of covariate data and regression coefficients. For
example, functions fjk(·) could also represent nonlinear growth curves, a regression tree, a
neural network or lasso-penalized model terms as shown in Section 2.2.
For full Bayesian inference, priors need to be assigned to the regression coefficients βjk. To
be as flexible as possible, Umlauf et al. (2018) use the rather general prior pjk(βjk; τ jk,αjk)
for the j-th model term of the k-th parameter, where the form of pjk(·) depends on the type
of function fjk(·). Here, τ = (τ>11, . . . , τ

>
J11, . . . , τ

>
1K , . . . , τ

>
JKK

)> is the vector of all assigned
hyper-parameters, e.g., representing smoothing variances (shrinkage parameters). Similarly,
αjk is the set of all fixed prior specifications, i.e., for GAM-type models αjk usually holds the
so-called penalty matrices, amongst others. In most situations the prior pjk(βjk; τ jk,αjk) is
based on a multivariate normal kernel for βjk and on inverse gamma distributions for each
τ jk = (τ1jk, . . . , τLjkjk)>, but as indicated previously, in principle any type of prior can be
used (see Gelman 2006; Polson and Scott 2012; Klein and Kneib 2016a; Umlauf et al. 2018
for more detailed discussions on priors for τ jk and principled constructions for such priors).
Examples of distributional models that fit well in this framework are the ones for:

• Univariate responses of any type, e.g., counts with zero-inflation and/or overdisper-
sion as proposed in Klein, Kneib, and Lang (2015b); Herwartz, Klein, and Strumann
(2016); Stasinopoulos and Rigby (2021a), continuous responses with spikes, skewness,
heavy tails or bounded support as in Klein, Denuit, Lang, and Kneib (2014); Klein
et al. (2015c); Stasinopoulos and Rigby (2021a), as well as responses for extreme events
(Umlauf and Kneib 2018).

• Multivariate responses such as multivariate normal, multivariate t or Dirichlet regression
(for analyzing compositional data, Klein et al. 2015a).

• Multivariate responses with more complex dependence structures modeled through cop-
ulas (Klein and Kneib 2016b).

• Survival data and joint modeling (Köhler et al. 2017, 2018).

3.2. Posterior estimation

Estimation typically requires to evaluate the log-likelihood `(β; y,X) function and its deriva-
tives w.r.t. all regression coefficients β a number of times. For Bayesian inference the log-
posterior is either used for posterior mode estimation, or for solving high-dimensional inte-
grals. e.g., for posterior mean estimation MCMC samples need to be computed.
Although the types of models that can be fitted within the flexible BAMLSS framework
can be quite complex, Umlauf et al. (2018) show that there are a number of similarities

16 bamlss: A Lego Toolbox for Flexible Bayesian Regression

between optimization and sampling concepts. Fortunately, and albeit the different model
term complexity, algorithms for posterior mode and mean estimation can be summarized
into a partitioned updating scheme with separate updating equations using leapfrog or zigzag
iteration (Aitkin 1987; Smyth 1996), e.g., with updating equations

(β(t+1)
jk , τ

(t+1)
jk) = Ujk(β

(t)
jk , τ

(t)
jk ; ·) j = 1, . . . , Jk, k = 1, . . . ,K, (3)

where function Ujk(·) is an updating function, e.g., for generating one Newton-Raphson step
or for getting the next step in an MCMC simulation.
Rigby and Stasinopoulos (2005) showed that using a basis function approach, i.e., each func-
tion fjk(·) can be represented by a linear combination of a design matrix and regression co-
efficients, the updating functions Ujk(·) for posterior mode (frequentist penalized likelihood)
estimation for βjk share an iteratively weighted least squares updating step (IWLS, Gamer-
man 1997)

β
(t+1)
jk = Ujk(β

(t)
jk ; ·) = (X>jkWkkXjk + Gjk(τ jk))−1X>jkWkk(zk − η

(t+1)
k,−j), (4)

with weight matrices Wkk and working responses zk, similarly to the well-known IWLS
updating scheme for generalized linear models (GLM, Nelder and Wedderburn 1972). In
the same way, approximate full conditionals π(βjk|·) for MCMC are constructed with this
updating step (Gamerman 1997; Fahrmeir et al. 2004; Brezger and Lang 2006; Klein and
Kneib 2016b). The matrices Gjk(τ jk) are derivative matrices of the priors pjk(βjk; τ jk,αjk)
w.r.t. the regression coefficients βjk, e.g., using basis function for fjk(·) matrices Gjk(τ jk)
can be a penalty matrices that penalize the complexity using a P-spline representation (Eilers
and Marx 1996).
Even if the functions fjk(·) are not based on a basis function approach, the updating scheme
(4) can be further generalized to

β
(t+1)
jk = Ujk

(
β

(t)
jk , zk − η

(t+1)
k,−j ; ·

)
,

i.e., theoretically any updating function applied to the “partial residuals” zk − η
(t+1)
k,−j can be

used (for detailed derivations see also Umlauf et al. 2018).
The great advantage of this modular architecture is that the concept does not limit to model-
ing of the distributional parameters θk in (1), e.g., as mentioned above, based on the survival
function, Köhler et al. (2017) and Köhler et al. (2018) implement Bayesian joint models for
survival and longitudinal data. Moreover, the updating schemes do not restrict to any par-
ticular estimation engine, e.g., Groll et al. (2019) use the framework to implement lasso-type
penalization for GAMLSS and Simon, Fabsic, Mayr, Umlauf, and Zeileis (2018) investigate
gradient boosting with stability selection algorithms (see also Section 5). Very recently, Klein,
Simon, and Umlauf (2019) implement neural network distributional regression models.

3.3. Model choice and evaluation

Measures of performance

Model choice and variable selection is important in distributional regression due to the large
number of candidate models. The following lists commonly-used tools:

Journal of Statistical Software 17

• Information criteria can be used to compare different model specifications. For pos-
terior mode estimation, the Akaike information criterion (AIC), or the corrected AIC,
as well as the Bayesian information criterion (BIC), can be used. Estimation of model
complexity is based on the so-called equivalent degrees of freedom (EDF), i.e., for each
model term the trace of the smoother matrix is computed (see, e.g., Hastie and Tib-
shirani 1990) and the total degrees of freedom are approximated by the sum over all
distributional parameters and model terms.
For MCMC based estimation, model choice mainly relies on the deviance information
criterion (DIC, Spiegelhalter, Best, Carlin, and Van der Linde 2002) and the widely
applicable information criterion (WAIC, Watanabe 2010).

• Quantile residuals (Dunn and Smyth 1996) can be used to evaluate the model fit.
The residuals can be assessed by quantile-quantile-plots, probability integral transforms
(PIT) histograms (Gneiting et al. 2007) or worm plots (Van Buuren and Fredriks 2001).

• Scoring rules: Sometimes it is helpful to evaluate the performance on a test data set
(or for instance based on cross validation). For this, proper scoring rules (Gneiting and
Raftery 2007; Gneiting et al. 2007) can be utilized.

Evaluation and interpretation

• Plotting: Estimated functions f̂jk(·) are usually subject to a centering constraint (e.g.,∑
f̂jk(xi) = 0), therefore, simple effect plots are a straightforward method to evaluate

individual model term importance and can also be used for respective interpretations.
Sometimes it can be useful in distributional regression to look at transformations of the
original model parameters such as expected value or variance of the response variable
y.

• Predictions: For obtaining such transformations model predictions need to be computed.
This can be done either manually by the corresponding predict() method, or by the
R package distreg.vis (Stadlmann 2021), which provides a graphical user interface for
visualization of distributional regression models.

4. The bamlss package
The R package bamlss provides a modular software architecture for flexible Bayesian regression
models (and beyond). The implementation follows the conceptional framework presented in
Umlauf et al. (2018), which supports Bayesian and/or frequentist estimation engines using
complex possibly nonlinear model terms of any type. The highlights of the package are:

• A unified model description where a formula specifies how to set up the predictors from
the data and the family, which holds information about the response distribution, the
model.

• A generic method for setting up model terms and a model.frame() for BAMLSS,
the bamlss.frame(), along with the corresponding prior structures. A transform()

18 bamlss: A Lego Toolbox for Flexible Bayesian Regression

Input

Pre-processing

Estimation

Post-processing

Output

dataformula family

bamlss.frame()

transform()

optimizer()

sampler()

samplestats()

results()

plot()summary() predict()

Figure 7: Flow chart of the bamlss modeling architecture. Thick gray lines represent op-
tional paths, e.g., after building the bamlss.frame() the user can either run an optimizer()
function prior running the sampler(), or run the sampler() function directly.

function can optionally set up modified terms, e.g., using mixed model representation
for smooth terms.

• Support for modular and exchangeable updating functions or complete model fitting
engines in order to optionally implement either algorithms for maximization of the log-
posterior for posterior mode estimation or for solving high-dimensional integrals, e.g.,
for posterior mean or median estimation. First, an (optional) optimizer() function can
be run, e.g., for computing posterior mode estimates. Second, a sampler() is employed
for full Bayesian inference with MCMC, which uses the posterior mode estimates from
the optimizer() as starting values. An additional step can be used for preparing the
results(), e.g., for creating model term effect plots.

• Standard post-modeling extractor functions to create sampling statistics, visualizations,
predictions, amongst others.

The modular architecture of bamlss is illustrated in Figure 7. As mentioned above, the first
step in model development is to setup design and penalty matrices for a model that is spec-
ified by the family object. Therefore a formula is processed together with the data using

Journal of Statistical Software 19

Step Type Function

Pre-processing
Parser bamlss.frame()

Transformer bamlss.engine.setup(), randomize()
lasso_transform()

Estimation
Optimizer opt_bfit(), opt_bbfit(), opt_boost(), opt_lasso()

opt_Cox(), opt_JM()

Sampler sam_GMCMC(), sam_BayesX(), sam_JAGS()
sam_Cox(), sam_JM()

Post-processing Stats & Results samplestats(), results.bamlss.default()

Table 2: Current available functions that can be used for pre-processing, estimation and
post-processing within the bamlss framework.

the bamlss.frame() function. In a second pre-processing step, the returned model frame
may also be transformed. The BAMLSS model frame can then be used with optimizer()
and/or sampler() functions in the estimation step. This is probably the main advantage of
the architecture, users can easily exchange and integrate user defined estimation functions.
The only requirement is to keep the structure of the bamlss.frame() function, as well for
optimizer() and sampler() functions. Note that there is naming convention, optimizer
functions start with prefix opt_* and sampler functions with sam_*. After the estimation
step optional post-processing functions can be applied to create additional sampling statis-
tics, function samplestats(), or results that can be used for plotting the estimated effects,
function results(). The post-processing step is optional since it is not necessarily needed
in the last output step, e.g., for computing predictions. This feature is especially important
when using large data sets, because the run time for computing samplestats() or results()
can be quite long or computations can even lead to memory problems.
In summary, besides implementing models using the family infrastructure (see Section 4.2)
the architecture is very flexible such that also users interested in implementing new and
non-standard models or algorithms only need to focus on the estimation step, i.e., write
optimizer() or sampler() functions and get all post-processing and extractor functionalities
“for free”. This way, prototyping becomes relatively easy, but also the integration high-
performance estimation engines is facilitated. Table 2 provides an overview of current available
functions. Note that sampler functions sam_BayesX() and sam_JAGS() need installation of
the BayesXsrc (Umlauf, Adler, Kneib, Lang, and Zeileis 2021) and the rjags (Plummer 2021)
package. To have a better overview of various functionalities, function engines() provides
information about which optimizer and sampler functions can be used with which family. For
example, to look up compatibility for the normal distribution of the gamlss.dist package and
the family implemented in bamlss the user can type

R> engines(NO, gaussian_bamlss, cox_bamlss)

NO gaussian cox
opt_bfit() TRUE TRUE FALSE
opt_boost() TRUE TRUE FALSE
opt_bbfit() TRUE TRUE FALSE
sam_GMCMC() TRUE TRUE FALSE
sam_BayesX() FALSE TRUE FALSE

20 bamlss: A Lego Toolbox for Flexible Bayesian Regression

sam_JAGS() FALSE TRUE FALSE
special_opt() FALSE FALSE TRUE
special_sam() FALSE FALSE TRUE

The table shows that the NO() family is compatible with all pure R implementations of
optimizer and sampler functions, but not with special samplers like BayesX and JAGS.
These can only be used with the gaussian_bamlss() family. In addition, neither NO()
or gaussian_bamlss() has its own special optimizer or sampler implemented, such as the
cox_bamlss() family.
To exemplify the presented “Lego toolbox”, the following R code estimates the logit model
using the SwissLabor data presented in Section 2.1. First, the data is loaded and the model
formula is specified with

R> data("SwissLabor", package = "AER")
R> f <- participation ~ income + age + education +
+ youngkids + oldkids + foreign + I(age^2)

In the second step, the necessary design matrices are constructed using the model frame
parser function bamlss.frame()

R> bf <- bamlss.frame(f, data = SwissLabor, family = "binomial")

Then, posterior mode estimates are obtained by using the implemented backfitting estimation
function opt_bfit()

R> pm <- with(bf, opt_bfit(x, y, family))

The estimated parameters returned from function opt_bfit() can then be used as starting
values for the MCMC sampler function sam_GMCMC()

R> set.seed(123)
R> samps <- with(bf, sam_GMCMC(x, y, family, start = pm$parameters))

Using the parameters samples returned from function sam_GMCMC(), statistics like the DIC
are computed using the samplestats() function

R> stats <- with(bf, samplestats(samps, x, y, family))
R> print(unlist(stats))

logLik DIC pd
-512.72579 1033.32501 7.87343

As one can see in the code above, estimation engines have common arguments x (holding the
design and penalty matrices), y (the response data) and family (the bamlss family object).
For implementing new estimation engines, users only need to keep the argument structures
and the return values, i.e., for optimizer() functions a named numeric vector of estimated
parameters and for sampler() functions parameter samples of class "mcmc" or "mcmc.list"
(see package coda, Plummer et al. 2006). More details on the naming convention and the
structure of the return value of bamlss.frame() are given in Section 4.1.
To ease the modeling process, all the single modeling steps presented in the above can be
executed using the bamlss wrapper function bamlss(). The main arguments of bamlss() are

Journal of Statistical Software 21

bamlss(formula, family = "gaussian", data = NULL,
transform = NULL, ## Pre-processing
optimizer = NULL, sampler = NULL, ## Estimation
samplestats = NULL, results = NULL, ...) ## Post-processing

where the first line basically represents the standard model frame specifications (see Chambers
and Hastie 1992). All other arguments represent functions presented in Table 2 and can
be exchanged. Note that the default for argument optimizer is the backfitting estimation
function opt_bfit() and the default for argument sampler is the sam_GMCMC() sampling
function, which is a quite generic implementation. More specifically, sam_GMCMC() accepts
proposal functions for each model term which do not necessarily have to be the same and
can be exchanged, e.g., the core proposal function is implemented in C and is additionally
optimized for large design and penalty matrices such that sampling using very large data
sets is possible (see Lang et al. 2014 for details on algorithms, e.g., using sam_JAGS() is
only suitable for moderate sized data and low complexity model terms). For more details on
sam_GMCMC() please see the bamlss manual.
The returned fitted model object is a list of class “bamlss”, which is supported by several
standard methods and extractor functions, such as plot(), summary() and predict().
As already exemplified in Section 2, using the model fitting wrapper function bamlss() it
is straightforward to use different modeling approaches by simply exchanging the estimation
engines. This feature can be particularly important in complex modeling situation, where
good mixing of the MCMC algorithm requires very good starting values. One use case is
presented in Section 5, where for stability reasons posterior mode estimates are obtained
using the gradient boosting optimizer function boost(). Afterwards the MCMC sampling
engine sam_GMCMC() is applied with the boosting estimates as starting values.

4.1. The BAMLSS model frame

Similar to the well-known model.frame() function that is used, e.g., by the linear model
fitting function lm(), or for generalized linear models glm(), the bamlss.frame() function
extracts a “model frame” for fitting distributional regression models. Internally, the function
parses model formulae, one for each parameter of the distribution, using the Formula package
infrastructure (Zeileis and Croissant 2010) in combination with model.matrix() processing
for linear effects and smooth.construct() processing of the mgcv package to setup design
and penalty matrices for unspecified smooth function estimation (Wood 2021, see also, e.g.,
the documentation of function s() and te()).
The most important arguments are

bamlss.frame(formula, data = NULL, family = "gaussian",
weights = NULL, subset = NULL, offset = NULL,
na.action = na.omit, contrasts = NULL, ...)

The argument formula can be a classical model formulae, e.g., as used by the lm() function,
or an extended bamlss formula including smooth term specifications like s() or te(), that is
internally parsed by function bamlss.formula(). Note that the bamlss package uses special
family objects, that can be passed either as a character without the "_bamlss" extension
of the bamlss family name (see the manual ?bamlss.family for a list of available families),

22 bamlss: A Lego Toolbox for Flexible Bayesian Regression

or the family function itself. In addition, all families of the gamlss (Stasinopoulos and Rigby
2021a) and gamlss.dist (Stasinopoulos and Rigby 2021b) package are supported, i.e., there is
a transformer function that reads all necessary components and then transfers them into a
family object for bamlss.
The returned object, a named list of class "bamlss.frame", can be employed with the model
fitting engines listed in Table 2. The most important elements used for estimation are:

• x: A named list, the elements correspond to the parameters that are specified within
the family object. For each distribution parameter, the list contains all design and
penalty matrices needed for modeling (see the upcoming example).

• y: The response data.

• family: The processed bamlss family.

To better understand the structure of the "bamlss.frame" object a print method is provided.
For illustration, we simulate data

R> set.seed(111)
R> d <- GAMart()

and set up a "bamlss.frame" object for a Gaussian distributional regression model including
smooth terms. First, a model formula is needed

R> f <- list(
+ num ~ x1 + s(x2) + s(x3) + te(lon,lat),
+ sigma ~ x1 + s(x2) + s(x3) + te(lon,lat)
+)

Afterwards the model frame can be computed with

R> bf <- bamlss.frame(f, data = d, family = "gaussian")

To keep the overview, there is also an implemented print method for "bamlss.frame" objects.

R> print(bf)

'bamlss.frame' structure:
..$ call
..$ model.frame
..$ formula
..$ family
..$ terms
..$ x
.. ..$ mu
..$ formula
..$ fake.formula
..$ terms

Journal of Statistical Software 23

..$ model.matrix

..$ smooth.construct

.. ..$ sigma

..$ formula

..$ fake.formula

..$ terms

..$ model.matrix

..$ smooth.construct

..$ y

.. ..$ num

..$ delete

For writing a new estimation engine, the user can directly work with the model.matrix
elements, for linear effects, and the smooth.construct list, for smooth effects respectively.
The smooth.construct is a named list which is compiled using the smoothCon() function
of the mgcv package using the generic smooth.construct() method for setting up smooth
terms.

R> print(names(bfxmu$smooth.construct))

[1] "s(x2)" "s(x3)" "te(lon,lat)"

In this example, the list contains three smooth term objects for parameter mu and sigma.
As shown in Appendix B the bamlss.frame() function can also process special model terms,
i.e., model terms that are not necessarily represented by a linear matrix vector product.

4.2. Family objects

Family objects are important building blocks in the design of BAMLSS models. The im-
plementation in bamlss follows the well-established structures for family objects that are
supported, e.g., by the base R model fitting function glm(), or family objects of the gamlss
and VGAM package. This means, that users can also easily write new family objects to
be used with bamlss. Such family objects specify the distribution by collecting functions of
the density, respective log-likelihood, first-order derivatives of the log-likelihood w.r.t. pre-
dictors (the score function), and (optionally) second-order derivatives of the log-likelihood
w.r.t. predictors or their expectation (the Hessian). Commonly used distributions are already
implemented in bamlss; and note that the ones from the gamlss and gamlss.dist package can
also be accessed through the bamlss package (see Section 2.3 for an example).
We illustrate how to build a bamlss family by hand along the Gaussian distribution, with
density

f(y |µ, σ) = 1√
2πσ

· exp
(
−(y − µ)2

2σ2

)
,

and log-likelihood function

`(µ, σ | y) = −1
2 log(2π)− log(σ)− (y − µ)2

2σ2 ,

24 bamlss: A Lego Toolbox for Flexible Bayesian Regression

for an individual observation. The sum of the log-likelihood function over all observations is
the target function of the optimization problem.
In the distributional regression framework the parameters are linked to predictors by link
functions,

µ = ηµ, log(σ) = ησ.

For the Gaussian µ and σ are linked to ηµ and ησ by the identity function and the logarithm,
respectively.
The score functions in bamlss are the first derivatives of the log-likelihood w.r.t. the predictors:

sµ = ∂`

∂ηµ
= ∂`

∂µ
· ∂µ
∂ηµ

= y − µ
σ2 ,

and
sσ = ∂`

∂ησ
= ∂`

∂σ
· ∂σ
∂ησ

= −1 + (y − µ)2

σ2 .

For the second derivative of the log-likelihood we are able to obtain the negative expectation,

E(−∂2`/∂η2
µ) = σ−2,

and
E(−∂2`/∂η2

σ) = 2.

In more detail, the default bamlss estimation engines are based on IWLS updating functions
and do not require the mixed elements of the Hessian, i.e., the backfitting optimizer function
opt_bfit() uses leapfrog or zizag iterations (Smyth 1996) and the MCMC sampler function
sam_GMCMC() also only updates one model term fjk(·) at a time, hence, only the diagonal
elements of the Fisher information matrix are needed. Furthermore, it is not mandatory to
use the expected Fisher information, but for numerical stability it is recommended. If the
information on the second derivatives is not provided the bamlss.frame() will set up ap-
proximate versions by numerical differentiation of the score functions, the same mechanism
is applied for first order derivatives. Hence, in quite a few cases implementing a new family
can only be based on the specification of the density function, however, in terms of optimiza-
tion runtime this is certainly not the most efficient choice. For distributions for which the
expectation of the second derivative is intractable or does not exist, the user can rely on two
options: the first option is to simply take the Hessian evaluated at observations and corre-
sponding predictors rather than computing the theoretical expectation analytically for filling
the diagonals of the weight matrices Wkk. The second option is to find a good approximation
for the expectation (see, e.g., Klein et al. 2015b, for the case of the overdispersion parameter
of the negative binomial distribution).
Now we have to write a function that returns a family.bamlss object (S3) which encapsu-
lates functions for density, score and Hessian, and the names of the family, parameter and
link functions. The required elements are listed in Table 3. Note that there are no other
specifications to follow, for example one could also build a family that allows for flexible link
functions (like the families from the gamlss package).
Merely all functions take as first argument the response y and as second argument a named
list holding the evaluated parameters par of the distribution. The example implementation
is shown in Appendix A.

Journal of Statistical Software 25

Name of element Value
family Character string with the name of the family.
names Vector of character strings with the names of the parameters.
links Vector of character strings with the names of the link functions
d A function returning the density with arguments d(y, par, log =

FALSE) (see below).
p The cumulative distribution function p(y, par, ...).
score A list with functions (one for each parameter) returning the first deriva-

tives of the log-likelihood w.r.t. predictors.
hess A list with functions (one for each parameter) returning the negative

second derivatives of the log-likelihood w.r.t. predictors.

Table 3: Elements of the Gaussian distribution "bamlss.family" object.

Optionally, the "family.bamlss" object can be extended by functions for
• the quantile function (the inverse cdf) q(p, par),

• a random number generator r(n, par),

• the log-likelihood loglik(y, par),

• the expectation mu(par, ...),

• initial values for optimization, which has to be a list containing a function for each
parameter,

• a customized predict() function which will be called by predict.bamlss(), e.g., as
implemented in the family cox_bamlss(),

• similarly, a customized residuals() function that should be used by residuals.bamlss(),

which can help to speed up optimization, or be convenient for predictions and simulations.
When all formulas for a family are worked out, it usually takes about an hour to create a new
family object. Of course, this also depends on the complexity of the density function. With
some families it can be meaningful for speed reasons to port the functions for example to C.
In our experience, programming then takes only slightly longer, about 2 to 3 hours.
For a list of all implemented families, please see the documentation of ?bamlss.family.

4.3. Estimation engines

Estimation engines in bamlss are usually based on the model frame setup function
bamlss.frame() (see Section 4.1), i.e., the functions all have a x argument, which contains
all the necessary model and penalty matrices, and a y argument, which is the response (uni-
variate or multivariate). In addition, an estimation engine usually has a family argument,
which specifies the model to be estimated. However, this is not a mandatory argument, i.e.,
one could write an estimation function that is designed for one specific problem, only. As
mentioned at the beginning of Section 4, there is naming convention, optimizer functions
start with prefix opt_* and sampler functions with sam_*. The naming convention is not
mandatory, but it gives the user a better overview of the many functions of the package.

26 bamlss: A Lego Toolbox for Flexible Bayesian Regression

The modeling setup is best explained by looking at the main estimation engines provided by
bamlss. The default optimizer using the bamlss() wrapper function is opt_bfit(), which is
a backfitting routine. The most important arguments are

opt_bfit(x, y, family, start = NULL, weights = NULL, offset = NULL, ...)

The default sampling engine in bamlss is sam_GMCMC(), again the most important arguments
are

sam_GMCMC(x, y, family, start = NULL, weights = NULL, offset = NULL, ...)

So basically, the arguments of the optimizer and the sampling function are the same, the
main difference is the return value. In bamlss optimizer functions usually return a vector of
estimated regression coefficients (parameters), while sampling functions return a matrix of
parameter samples of class "mcmc" or "mcmc.list" (for details see the documentation of the
coda package).
Internally, what the optimizer or sampling function is actually processing is not important for
the bamlss() wrapper function as long as a vector or matrix of parameters is returned. For op-
timizer functions the return value needs to be named list with an element "parameters", the
vector (also a matrix, e.g., for lasso() and boost() optimizers) of estimated parameters. The
most important requirement to make use of all extractor functions like summary.bamlss(),
predict.bamlss(), plot.bamlss(), residuals.bamlss(), etc., is to follow the naming con-
vention of the returned estimates. The parameter names are based on the names of the
distribution parameters as specified in the family object. For example, the family object
gaussian_bamlss() has parameter names "mu" and "sigma"

R> gaussian_bamlss()$names

[1] "mu" "sigma"

Then, each distributional parameter can be modeled by parametric (linear) and nonlinear
smooth effect terms. The parametric part is indicated with "p" and the smooth part with "s".
The names of the parametric coefficients are the names of the corresponding model matrices
as returned from bamlss.frame(). E.g., if two linear effects, with variables "x1" and "x2",
enter the model for distributional parameter "mu", then the final names are "mu.p.x1" and
"mu.p.x2". Similarly for the smooth parts, if we model a variable "x3" using a regression
spline as provided by the s() function of the mgcv package, the name is based on the names
that are used by bamlss.frame() for the smooth.construct() object. In this case the
parameter names start with "mu.s.s(x3)". If this smooth term has 10 regression coefficients,
then the final name must be

R> paste0("mu.s.s(x3)", ".b", 1:10)

[1] "mu.s.s(x3).b1" "mu.s.s(x3).b2" "mu.s.s(x3).b3"
[4] "mu.s.s(x3).b4" "mu.s.s(x3).b5" "mu.s.s(x3).b6"
[7] "mu.s.s(x3).b7" "mu.s.s(x3).b8" "mu.s.s(x3).b9"

[10] "mu.s.s(x3).b10"

Journal of Statistical Software 27

i.e., all smooth term parameters are named with "b" and a numerated.
An example of how to setup an estimation engine for bamlss for linear regression models is
given in Appendix C. The example also provides details on the naming convention and return
values of optimizer and sampler functions.

5. Flexible count regression for lightning reanalysis
This section illustrates the workflow with bamlss along a small case study. We want to
build a statistical model linking positive counts of cloud-to-ground lightning discharges to
atmospheric quantities from a reanalysis dataset.

5.1. Motivation and data

The region we focus on are the European Eastern Alps. Cloud-to-ground lightning dis-
charges – detected by the Austrian Lightning Detection and Information System (ALDIS,
Schulz, Cummins, Diendorfer, and Dorninger 2005) – are counted on grids with a mesh size
of 32 km. The lightning observations are available for the period 2010–2018. The reanalysis
data come from ERA5, the fifth generation of the ECMWF (European Centre for Medium-
Range Weather Forecasts) atmospheric reanalyses of the global climate (Copernicus Climate
Change Service 2017; Hersbach and et al. 2020). ERA5 provides globally complete and
consistent pseudo-observations of the atmosphere using the laws of physics. The horizontal
resolution is approx. 32 km, while the temporal resolution is hourly and covers the years from
1979 to present. In this example application we work only with a small subset of the data,
which can be assessed from the accompanying R package FlashAustria (Simon 2021). The
data are loaded with

R> data("FlashAustria", package = "FlashAustria")
R> head(FlashAustriaTrain)[, 1:6]

counts d2m q_prof_PC1 cswc_prof_PC4 t_prof_PC1 v_prof_PC2
1 2 291.3184 -0.011472293 7.168725e-06 15.922548 2.5646172
2 16 283.5004 0.001007288 1.612870e-05 -9.758380 0.7955608
3 1 291.0506 -0.005590341 -3.226052e-06 20.274007 7.5535312
4 7 288.0358 -0.006293043 3.715074e-05 14.258116 5.8523424
5 41 288.4433 -0.006315605 3.509800e-05 8.757239 8.3675943
6 1 286.6035 -0.001597900 -3.195042e-06 -3.433136 -3.4291366

R> nrow(FlashAustriaTrain)

[1] 12000

The motivation for this application is as follows: lightning counts are not modeled within the
atmospheric reanalyses, as their spatial resolution is too coarse for resolving convective events
that lead to lightning discharges. Homogeneous lightning observations are only available for
the period in the order of a decade, here 2010–2018. Thus, based on a probabilistic statistical
model, lightning counts for the time before 2010 could be fitted, thus enabling the analysis

28 bamlss: A Lego Toolbox for Flexible Bayesian Regression

Abbreviation Description
d2m 2 metre dewpoint temperature is a measure of the humidity of the

air. The temperature to which the air, at 2 metres above the surface
of the Earth, would have to be cooled for saturation to occur.

q_prof_PC1 The vertical profile of specific humidity q has been decomposed by
principal component analysis (PCA). This is the first principal com-
ponent.

cswc_prof_PC4 The vertical profile of specific snow water content cswc has been
decomposed by PCA. This is the forth principal component.

t_prof_PC1 The vertical profile of temperature t has been decomposed by PCA.
This is the first principal component.

v_prof_PC2 The vertical profile of the v-component of the wind v has been de-
composed by PCA. This is the second principal component.

sqrt_cape The square root of convective available potential energy. This is an
indication of the (in)stability of the atmosphere.

sqrt_lsp Large-scale precipitation. Accumulated liquid and frozen water, com-
prising rain and snow, which is generated by the cloud scheme of the
numerical model.

Table 4: Quantities taken directly or derived from ERA5.

of lightning events in the past for which no observations are available. On the one hand this
will increase our knowledge about physical processes leading to such events, and on the other
it will enable quantification how these extreme short-term events are affected by changing
climate (Westra et al. 2014).
Table 4 lists the covariates considered which are based on a small subset of ERA5 quantities
(Copernicus Climate Change Service 2017; Hersbach and et al. 2020) and include variables
that are known to be good predictors for convective events (e.g., Simon et al. 2018).

5.2. Model specification

The response of our statistical model are positive counts, with a mean of 13.61, and a variance
of 1180.63. Thus, we are facing a truncated count data distribution which is highly overdis-
persive (Cameron and Trivedi 2013). Simon, Mayr, Umlauf, and Zeileis (2019) employed a
zero-truncated negative binomial distribution, which is specified by two parameters µ > 0 and
θ > 0. µ is the expectation of the underlying untruncated negative binomial, and θ modifies
the variance of the untruncated negative binomial by VAR(Ỹ) = µ+µ2/θ, where Ỹ is a latent
random variable following the underlying untruncated negative binomial distribution.
The spatial and temporal scale of aggregation of the lightning discharges here differs from
the one in Simon et al. (2019). Therefore, it is worth comparing the zero-truncated negative
binomial against other distributions that could capture the truncation of the count data and
its overdispersion. Hence, we also consider the zero-truncated Sichel distribution which can
also capture skewed count data.
The zero-truncated negative binomial distribution is implemented as ztnbinom_bamlss()
within bamlss while the Sichel is available as SICHEL() within gamlss.dist. Using the gamlss.tr
package the latter is truncated at zero so that it can be readily plugged into the family

Journal of Statistical Software 29

argument of bamlss().

R> library("gamlss.dist")
R> library("gamlss.tr")
R> ztSICHEL <- trun(0, family = "SICHEL", local = FALSE)

In the following we illustrate how to model the lightning counts with one of the two distri-
butions. To specify smooth terms for all distributional parameters – for ztnbinom_bamlss()
parameters µ and θ and for ztSICHEL() parameters µ, σ and ν – we set up a list of three
formulas. Smooth P-splines (Eilers and Marx 1996), known for their good sampling prop-
erties, are employed for all predictors in the formula for µ. For the (over)dispersion model
large-scale precipitation is used in the second formula (without a parameter name on the
left-hand side in order to be applicable to both distributional models). Finally, for the Sichel
distribution a constant shape parameter is added in the third formula (which is ignored when
using the formula list with the zero-truncated negative binomial distribution).

R> f <- list(
+ counts ~ s(d2m, bs = "ps") + s(q_prof_PC1, bs = "ps") +
+ s(cswc_prof_PC4, bs = "ps") + s(t_prof_PC1, bs = "ps") +
+ s(v_prof_PC2, bs = "ps") + s(sqrt_cape, bs = "ps"),
+ ~ s(sqrt_lsp, bs = "ps"),
+ ~ 1
+)

Now, we have all ingredients on hand to feed the standard interface for statistical models in R:
a formula f, families ztnbinom_bamss(), ztSICHEL(), and a data set FlashAustriaTrain.
Within the bamlss() call we also provide arguments which are passed forward to the optimizer
and the sampler. We choose the gradient boosting optimizer opt_boost() in order to find
initial values for the default sampler sam_GMCMC(). Gradient boosting proved to offer a very
stable method for finding regression coefficients that serve as initial values for a MCMC
sampler (Simon et al. 2019). In the following, we illustrate the estimation of the models with
the ztSICHEL() family. We set the number of iterations to maxit = 1000. For the sampling
we allow 1000 iterations as burn-in phase, and apply a thinning of the resulting chain of 3.
Running n.iter = 2000 iterations on 3 cores in parallel leads to 1000 MCMC samples in the
end (note that parallel chains are started using function mclapply() of the base R parallel
package by setting argument cores, see the manual of sampler function sam_MCMC()).

R> set.seed(123)
R> flash_model_ztSICHEL <- bamlss(f, data = FlashAustriaTrain,
+ family = ztSICHEL, binning = TRUE,
+ optimizer = opt_boost, maxit = 1000,
+ thin = 3, burnin = 1000, n.iter = 2000,
+ light = TRUE, cores = 3)

logLik -36636.9 eps 0.0003 iteration 1000 qsel 7
elapsed time: 28.99min
Starting the sampler...
|********************| 100% 0.00sec 115.67min

30 bamlss: A Lego Toolbox for Flexible Bayesian Regression

The model was fitted on three Intel Xeon CPU E5-4660 v4 cores with 2.20GHz on which
the boosting took about 28.99 minutes and the average sampling time about 1.9 hours. This
is relatively slow as the ztSICHEL() uses a rather generic high-level R implementation. To
fit the model flash_model_ztnbinom we rather used family = ztnbinom_bamlss() than
family = ztSICHEL, all other specifications for optimization left untouched.

> set.seed(123)
> flash_model_ztnbinom <- bamlss(f, data = FlashAustriaTrain,
+ family = "ztnbinom", binning = TRUE,
+ optimizer = opt_boost, maxit = 1000,
+ thin = 3, burnin = 1000, n.iter = 2000,
+ light = TRUE, cores = 3)

logLik -36700.7 eps 0.0006 iteration 1000 qsel 7
elapsed time: 7.47min
Starting the sampler...
|********************| 100% 0.00sec 9.12min

Computation times for the more efficient ztnbinom_bamlss() family are much lower with
about 7 and 9 minutes for boosting and sampling, respectively. By setting the argument
binning = TRUE only unique observations are being used internally to create the design ma-
trices. This can have two advantages, (a) for large data sets one does not run into memory
problems so easily, (b) the estimation algorithms are sometimes much faster, because fewer
floating point operations need to be performed. In addition, when setting light = TRUE, no
design or penalty matrices, model frames, results, etc., are stored. Hence, memory require-
ments when storing the model objects are much lower so that the fitted model objects can be
provided within the FlashAustria package.

R> data("FlashAustriaModel", package = "FlashAustria")

The corresponding R code is provided in the supplemental materials.

5.3. Model diagnostics

To select one of the two models, we examine their calibration using a worm plot (Van Bu-
uren and Fredriks 2001). The worm plot is implemented within bamlss for objects of class
bamlss.residuals and can be selected via the which argument of the plot method for these
objects:

R> resids <- c(
+ "ztnbinom" = residuals(flash_model_ztnbinom),
+ "ztSICHEL" = residuals(flash_model_ztSICHEL)
+)
R> plot(resids, which = "wp", main = "Worm plot")

The worm plots (Figure 8) reveal that both ztSICHEL and ztnbinom somewhat underestimate
the mass of the upper tail. However, for ztSICHEL the effect is less pronounced and overall

Journal of Statistical Software 31

Figure 8: Worm plots for the two distributional models.

calibration is much better than for ztnbinom. Hence, we focus on the ztSICHEL() model but
remark that most qualitative insights are very similar for ztnbinom.
As a next diagnostic we check the log-likelihood contributions of the individual terms during
the boosting optimization (Figure 9).

R> pathplot(flash_model_ztSICHEL, which = "loglik.contrib")

After 1000 iterations the term s(q_prof_PC1).mu has the highest contribution to the log-
likelihood with 144 followed by s(sqrt_cape).mu with 115 and s(d2m).mu with 50. Overall
contributions to the log-likelihood at the end of the boosting procedure are very small signaling
that the algorithm approach a state that is suitable for initializing the MCMC sampling.
The MCMC chains can be assessed by visualizations of their traces and autocorrelation func-
tions (ACFs), exemplified in Figure 10 for the term s(q_prof_PC1) (for parameter µ of the
Sichel distribution).

R> plot(flash_model_ztSICHEL, model = "mu", term = "s(q_prof_PC1)",
+ which = "samples")

The traces reveal samples around stables means, confirming that the 1000 boosting iterations
and the 1000 burn-in samples were sufficient. The ACFs reveal quite some autocorrelation
after the thinning, suggesting that sampling efforts should be increased further in a final
model run.

5.4. Predictions and visualizations

As the boosting summary (Figure 9) reveals that the terms s(q_prof_PC1), s(sqrt_cape)
and s(d2m) have the largest contribution for improving the fit, the corresponding effects

32 bamlss: A Lego Toolbox for Flexible Bayesian Regression

0 200 400 600 800 1000

0
50

10
0

Iteration

Lo
gL

ik
 c

on
tr

ib
ut

io
n

(Intercept).sigma
(Intercept).mu

s(t_prof_PC1).mu
s(v_prof_PC2).mu

s(cswc_prof_PC4).mu

s(sqrt_cape).mu

s(q_prof_PC1).mu

mstop = 1000

Figure 9: Contribution to the log-likelihood of individual terms during gradient boosting.

are shown in Figure 11 to illustrate how the atmospheric quantities of the reanalyses are
related to lightning events. The effects are presented on the scale of the additive predictor
of the distributional parameter µ, i.e., the log scale. A higher log(µ) would result in a higher
expectation of the count data distribution.

R> plot(flash_model_ztSICHEL, model = "mu",
+ term = c("s(q_prof_PC1)", "s(sqrt_cape)", "s(d2m)"))

s(q_prof_PC1) shows a clear decrease. As q_prof_PC1 is the leading principal component of
the vertical profile of specific humidity, one has to consider the corresponding spatial mode
(not shown) for interpretation: positive values of q_prof_PC1 are linked to more moisture
in the lower atmosphere (below 850 hPa) and less moisture in the mid atmosphere (between
850 hPa and 600 hPa). Thus, smaller values of the principal component mean that more
moisture is available in the mid atmosphere, a source of latent energy, energy that becomes free
when water transfers from the gas to the liquid phase. This energy supports the occurrence
of deep convection and thus of heavy lightning events. s(sqrt_cape) reveals an increasing
shape. This means a higher convective available potential energy (CAPE) increases µ, which
increases the expectation of the distribution and thus is associated with higher probabilities
for events with high counts. Physically the shape of the effect is meaningful as more convective
available potential energy has the potential to lead to heavier lightning events. The similar is
true for the increasing effect of s(d2m). Finally, the model is leveraged to predict a case for
the period before 2010, for which no lightning data are available. The case of interest is a front
moving from the West to the East on the Northern side of the Alps on 2001-09-15 and 2001-
09-16. The case data FlashAustriaCase contains additional columns containing time and

Journal of Statistical Software 33

0 200 400 600 800 1000

0.
0

1.
0

2.
0

3.
0

Iterations

Trace of mu.s.s(q_prof_PC1).b1

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

Lag

A
C

F

ACF of mu.s.s(q_prof_PC1).b1

0 200 400 600 800 1000

0.
0

0.
5

1.
0

1.
5

Iterations

Trace of mu.s.s(q_prof_PC1).b2

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

Lag

A
C

F

ACF of mu.s.s(q_prof_PC1).b2

Figure 10: MCMC trace (left panels) and autocorrelation (right panels) for two parameters
from the term s(q_prof_PC1) of the model mu.

Figure 11: Effect of the terms s(q_prof_PC1), s(sqrt_cape), and term s(d2m) from model
mu. Credible intervals derived from MCMC samples.

34 bamlss: A Lego Toolbox for Flexible Bayesian Regression

Figure 12: A probabilistic reconstruction of lightning counts occurred on September 15 2001
at 12 UTC and at 18 UTC and on September 16 2001 at 6 UTC and 12 UTC, i.e., the
probability of having observed 10 or more counts within one grid box.

space information, and is of class sf (Pebesma 2018). We predict the parameters for this case,
and derive the probability of observing 10 or more flashes within a grid box conditioned on
thunderstorm activity, by applying the cumulative distribution function ...$p() of the family
which can be extracted from the fitted model using family(). The family contains functions
to map the predictors to the parameter scale, density, cumulative distribution function, log-
likelihood, and scores and Hessian. We apply the cdf to compute the probability of observing
more than 10 flashes in a box and hour given a lightning event. The function ...$p() takes
the quantile as first argument, and the list with the parameters, as returned by predict(),
as a second argument.

R> library("sf")
R> fit <- predict(flash_model_ztSICHEL,
+ newdata = FlashAustriaCase, type = "parameter")
R> fam <- family(flash_model_ztSICHEL)
R> FlashAustriaCase$P10 <- 1 - fam$p(9, fit)

We visualize this case by employing ggplot() (Wickham 2016), and the Oslo color scale from
the colorspace package (Zeileis et al. 2020). The country borders world are retrieved from
the rnaturalearth package (South 2017).

R> library("ggplot2")
R> world <- rnaturalearth::ne_countries(scale = "medium", returnclass = "sf")
R> ggplot() + geom_sf(aes(fill = P10), data = FlashAustriaCase) +

Journal of Statistical Software 35

+ scale_fill_continuous_sequential("Oslo", rev = TRUE) +
+ geom_sf(data = world, col = "white", fill = NA) +
+ coord_sf(xlim = c(7.95, 17), ylim = c(45.45, 50), expand = FALSE) +
+ facet_wrap(~time) + theme_minimal()

The case gives an example for a reconstructed lightning event: On 2001-09-15 (top row of
Figure 12) it reveals moderate probabilities for observing 10 or more lightning counts within
a grid cell and hour. Over night the situation is still unstable, around 6 UTC on 2001-09-
16 there is still quite high activity on the northern parts of the Alps. (bottom left panel of
Figure 12). Finally, strong lightning events were reconstructed for the afternoon of the second
day (2001-09-16) in particular on the Southern side of the main Alpine ridge (bottom right
panel of Figure 12).

6. Conclusion
The R package bamlss is a very comprehensive software to estimate Bayesian distributional
regression models. The package is primarily based on the typical R “look & feel”, which
makes it easy to get started with the package. Similar to other implementations, bamlss is
a modular “Lego toolbox”, however, the package stands out from others in that it makes
complete sampling and/or optimizer functions exchangeable, so that users who are interested
in extensions can easily set up new models, where all elaborate data processing infrastructure
and extractor functions are completely provided by the package. Several examples illustrate
the functionality of the package. For the future it is planned to provide algorithms for
Gigadata, a topic that the package so far treats only very superficially. In addition, it is
planned to expand the family infrastructure to support families from other implementations
more easily.

Acknowledgments
We thank two anonymous reviewers for critically reading the manuscript and suggesting
substantial improvements. Nadja Klein acknowledges support through the Emmy Noether
grant KL 3037/1-1 of the German research foundation (DFG). Thorsten Simon acknowledges
the funding by the Austrian Science Fund (FWF, grant no. P 31836)

References

Aitkin M (1987). “Modelling Variance Heterogeneity in Normal Regression Using GLIM.”
Journal of the Royal Statistical Society C, 36(3), 332–339. doi:10.2307/2347792.

Belitz C, Brezger A, Klein N, Kneib T, Lang S, Umlauf N (2015). BayesX – Software for
Bayesian Inference in Structured Additive Regression Models. Version 3.0.2, URL http:
//www.BayesX.org/.

Bivand RS, Gómez-Rubio V, Rue H (2015). “Spatial Data Analysis with R-INLA with Some
Extensions.” Journal of Statistical Software, 63(20), 1–31. doi:10.18637/jss.v063.i20.

https://doi.org/10.2307/2347792
http://www.BayesX.org/
http://www.BayesX.org/
https://doi.org/10.18637/jss.v063.i20

36 bamlss: A Lego Toolbox for Flexible Bayesian Regression

Brezger A, Kneib T, Lang S (2005). “BayesX: Analyzing Bayesian Structured Additive Regres-
sion Models.” Journal of Statistical Software, 14(11), 1–22. doi:10.18637/jss.v014.i11.

Brezger A, Lang S (2006). “Generalized Structured Additive Regression Based on Bayesian
P-Splines.” Computational Statistics & Data Analysis, 50, 947–991. doi:10.1016/j.csda.
2004.10.011.

Brooks SP, Gelman A (1998). “General Methods for Monitoring Convergence of Iterative
Simulations.” Journal of Computational and Graphical Statistics, 7(4), 434–455. doi:
10.1080/10618600.1998.10474787.

Bürkner PC (2017). “brms: An R Package for Bayesian Multilevel Models Using Stan.”
Journal of Statistical Software, 80(1), 1–28. doi:10.18637/jss.v080.i01.

Cameron AC, Trivedi PK (2013). Regression Analysis of Count Data. Econometric Society
Monographs, 2nd edition. Cambridge University Press, Cambridge.

Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, Brubaker M, Guo
J, Li P, Riddell A (2017). “Stan: A Probabilistic Programming Language.” Journal of
Statistical Software, 76(1), 1–32. doi:10.18637/jss.v076.i01.

Cavanaugh JE (1997). “Unifying the Derivations for the Akaike and Corrected Akaike
Information Criteria.” Statistics & Probability Letters, 33(2), 201–208. doi:10.1016/
S0167-7152(96)00128-9.

Chambers JM, Hastie TJ (eds.) (1992). Statistical Models in S. Chapman & Hall, London.

Copernicus Climate Change Service (2017). “ERA5: Fifth Generation of ECMWF Atmo-
spheric Reanalyses of the Global Climate.” Copernicus Climate Change Service Climate
Date Store (CDS). Date of access: June 2019, https://cds.climate.copernicus.eu/
cdsapp#!/home.

Dunn PK, Smyth GK (1996). “Randomized Quantile Residuals.” Journal of Computational
and Graphical Statistics, 5(3), 236–244. doi:10.2307/1390802.

Eilers PHC, Marx BD (1996). “Flexible Smoothing Using B-Splines and Penalized Likelihood.”
Statistical Science, 11, 89–121. doi:10.1214/ss/1038425655.

Fahrmeir L, Kneib T, Lang S (2004). “Penalized Structured Additive Regression for
Space Time Data: A Bayesian Perspective.” Statistica Sinica, 14, 731–761. doi:
10.1007/978-3-642-34333-9_9.

Fouillet A, Rey G, Wagner V, Laaidi K, Empereur-Bissonnet P, Le Tertre A, Frayssinet P,
Bessemoulin P, Laurent F, De Crouy-Chanel P, Jougla E, Hémon D (2008). “Has the
Impact of Heat Waves on Mortality Changed in France since the European Heat Wave of
Summer 2003? A Study of the 2006 Heat Wave.” International Journal of Epidemiology,
37(2), 309–317. ISSN 0300-5771. doi:10.1093/ije/dym253.

Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear
Models via Coordinate Descent.” Journal of Statistical Software, 33(1), 1–22. doi:10.
18637/jss.v033.i01.

https://doi.org/10.18637/jss.v014.i11
https://doi.org/10.1016/j.csda.2004.10.011
https://doi.org/10.1016/j.csda.2004.10.011
https://doi.org/10.1080/10618600.1998.10474787
https://doi.org/10.1080/10618600.1998.10474787
https://doi.org/10.18637/jss.v080.i01
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1016/S0167-7152(96)00128-9
https://doi.org/10.1016/S0167-7152(96)00128-9
https://cds.climate.copernicus.eu/cdsapp#!/home
https://cds.climate.copernicus.eu/cdsapp#!/home
https://doi.org/10.2307/1390802
https://doi.org/10.1214/ss/1038425655
https://doi.org/10.1007/978-3-642-34333-9_9
https://doi.org/10.1007/978-3-642-34333-9_9
https://doi.org/10.1093/ije/dym253
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01

Journal of Statistical Software 37

Gamerman D (1997). “Sampling from the Posterior Distribution in Generalized Linear Mixed
Models.” Statistics and Computing, 7(1), 57–68. doi:10.1023/a:1018509429360.

Gelman A (2006). “Prior Distributions for Variance Parameters in Hierarchical Models
(Comment on Article by Browne and Draper).” Bayesian Analysis, 1(3), 515–534. doi:
10.1214/06-ba117a.

Gelman A, Rubin DB (1992). “Inference from Iterative Simulation Using Multiple Sequences.”
Statistical Science, 7(4), 457–472. doi:10.1214/ss/1177011136.

Gerfin M (1996). “Parametric and Semi-Parametric Estimation of the Binary Response Model
of Labour Market Participation.” Journal of Applied Econometrics, 11(3), 321–339. doi:
10.1002/(SICI)1099-1255(199605)11:3<321::AID-JAE391>3.0.CO;2-K.

Gneiting T, Balabdaoui F, Raftery AE (2007). “Probabilistic Forecasts, Calibration and
Sharpness.” Journal of the Royal Statistical Society B, 69(2), 243–268. doi:10.1111/j.
1467-9868.2007.00587.x.

Gneiting T, Raftery AE (2007). “Strictly Proper Scoring Rules, Prediction, and Esti-
mation.” Journal of the American Statistical Association, 102(477), 359–378. doi:
10.1198/016214506000001437.

Goudie RJB, Turner RM, Angelis DD, Thomas A (2020). “MultiBUGS: A Parallel Imple-
mentation of the BUGS Modeling Framework for Faster Bayesian Inference.” Journal of
Statistical Software, 95(7), 1–20. doi:10.18637/jss.v095.i07.

Groll A, Hambuckers J, Kneib T, Umlauf N (2019). “LASSO-Type Penalization in the Frame-
work of Generalized Additive Models for Location, Scale and Shape.” Computational Statis-
tics & Data Analysis, 140, 59–74. doi:10.1016/j.csda.2019.06.005.

Hastie T, Tibshirani R (1990). Generalized Additive Models. Chapman & Hall/CRC, New
York.

Heidelberger P, Welch PD (1981). “A Spectral Method for Confidence Interval Generation
and Run Length Control in Simulations.” Communications of the ACM, 24(4), 233–245.
doi:10.1145/358598.358630.

Heidelberger P, Welch PD (1983). “Simulation Run Length Control in the Presence of an
Initial Transient.” Operations Research, 31(6), 1109–1144. doi:10.1287/opre.31.6.1109.

Hersbach H, et al (2020). “The ERA5 Global Reanalysis.” Quarterly Journal of the Royal
Meteorological Society, 146(730), 1999–2049. doi:10.1002/qj.3803.

Herwartz H, Klein N, Strumann C (2016). “Modelling Hospital Admission and Length of Stay
by Means of Generalised Count Data Models.” Journal of Applied Econometrics, 31(6),
1159–1182. doi:10.1002/jae.2454.

Hofner B, Mayr A, Schmid M (2016). “gamboostLSS: An R Package for Model Building and
Variable Selection in the GAMLSS Framework.” Journal of Statistical Software, 74(1),
1–31. doi:10.18637/jss.v074.i01.

https://doi.org/10.1023/a:1018509429360
https://doi.org/10.1214/06-ba117a
https://doi.org/10.1214/06-ba117a
https://doi.org/10.1214/ss/1177011136
https://doi.org/10.1002/(SICI)1099-1255(199605)11:3<321::AID-JAE391>3.0.CO;2-K
https://doi.org/10.1002/(SICI)1099-1255(199605)11:3<321::AID-JAE391>3.0.CO;2-K
https://doi.org/10.1111/j.1467-9868.2007.00587.x
https://doi.org/10.1111/j.1467-9868.2007.00587.x
https://doi.org/10.1198/016214506000001437
https://doi.org/10.1198/016214506000001437
https://doi.org/10.18637/jss.v095.i07
https://doi.org/10.1016/j.csda.2019.06.005
https://doi.org/10.1145/358598.358630
https://doi.org/10.1287/opre.31.6.1109
https://doi.org/10.1002/qj.3803
https://doi.org/10.1002/jae.2454
https://doi.org/10.18637/jss.v074.i01

38 bamlss: A Lego Toolbox for Flexible Bayesian Regression

Hurvich CM, Tsai CL (1989). “Regression and Time Series Model Selection in Small Samples.”
Biometrika, 76(2), 297–307. doi:10.1093/biomet/76.2.297.

Jordan A, Krüger F, Lerch S (2019). “Evaluating Probabilistic Forecasts with scoringRules.”
Journal of Statistical Software, 90(12), 1–37. doi:10.18637/jss.v090.i12.

Kleiber C, Zeileis A (2008). Applied Econometrics with R. Springer-Verlag, New York. URL
https://CRAN.R-project.org/package=AER.

Klein N, Denuit M, Lang S, Kneib T (2014). “Nonlife Ratemaking and Risk Management
with Bayesian Generalized Additive Models for Location, Scale, and Shape.” Insurance:
Mathematics and Economics, 55, 225 – 249. doi:10.1016/j.insmatheco.2014.02.001.

Klein N, Kneib T (2016a). “Scale-Dependent Priors for Variance Parameters in Structured
Additive Distributional Regression.” Bayesian Analysis, 11(4), 1071–1106. doi:10.1214/
15-ba983.

Klein N, Kneib T (2016b). “Simultaneous Inference in Structured Additive Conditional Cop-
ula Regression Models: A Unifying Bayesian Approach.” Statistics and Computing, 26(4),
841–860. doi:10.1007/s11222-015-9573-6.

Klein N, Kneib T, Klasen S, Lang S (2015a). “Bayesian Structured Additive Distributional
Regression for Multivariate Responses.” Journal of the Royal Statistical Society C, 64,
569–591. doi:10.1111/rssc.12090.

Klein N, Kneib T, Lang S (2015b). “Bayesian Generalized Additive Models for Location,
Scale and Shape for Zero-Inflated and Overdispersed Count Data.” Journal of the American
Statistical Association, 110(509), 405–419. doi:10.1080/01621459.2014.912955.

Klein N, Kneib T, Lang S, Sohn A (2015c). “Bayesian Structured Additive Distributional
Regression with an Application to Regional Income Inequality in Germany.” Annals of
Applied Statistics, 9, 1024–1052. doi:10.1214/15-aoas823.

Klein N, Simon T, Umlauf N (2019). “Neural Network Regression with an Application to
Leukaemia Survival Data – An Unstructured Distributional Approach.” In Proceedings of
the 34th International Workshop on Statistical Modelling, Guimarães, Portugal, volume 1,
pp. 157–160. Statistical Modelling Society.

Köhler M, Umlauf N, Beyerlein A, Winkler C, Ziegler AG, Greven S (2017). “Flexible Bayesian
Additive Joint Models with an Application to Type 1 Diabetes Research.” Biometrical
Journal, 59(6), 1144–1165. doi:10.1002/bimj.201600224.

Köhler M, Umlauf N, Greven S (2018). “Nonlinear Association Structures in Flexible Bayesian
Additive Joint Models.” Statistics in Medicine, 37(30), 4771–4788. doi:10.1002/sim.7967.

Lang S, Umlauf N, Wechselberger P, Harttgen K, Kneib T (2014). “Multilevel Struc-
tured Additive Regression.” Statistics and Computing, 24(2), 223–238. doi:10.1007/
s11222-012-9366-0.

Leon DA, Shkolnikov VM, Smeeth L, Magnus P, Pechholdová M, Jarvis CI (2020). “COVID-
19: A Need for Real-Time Monitoring of Weekly Excess Deaths.” The Lancet, 395(10234),
e81. doi:https://doi.org/10.1016/S0140-6736(20)30933-8.

https://doi.org/10.1093/biomet/76.2.297
https://doi.org/10.18637/jss.v090.i12
https://CRAN.R-project.org/package=AER
https://doi.org/10.1016/j.insmatheco.2014.02.001
https://doi.org/10.1214/15-ba983
https://doi.org/10.1214/15-ba983
https://doi.org/10.1007/s11222-015-9573-6
https://doi.org/10.1111/rssc.12090
https://doi.org/10.1080/01621459.2014.912955
https://doi.org/10.1214/15-aoas823
https://doi.org/10.1002/bimj.201600224
https://doi.org/10.1002/sim.7967
https://doi.org/10.1007/s11222-012-9366-0
https://doi.org/10.1007/s11222-012-9366-0
https://doi.org/https://doi.org/10.1016/S0140-6736(20)30933-8

Journal of Statistical Software 39

Lindgren F, Rue H (2015). “Bayesian Spatial Modelling with R-INLA.” Journal of Statistical
Software, 63(19), 1–25. doi:10.18637/jss.v063.i19.

Lunn DJ, Thomas A, Best N, Spiegelhalter D (2000). “WinBUGS – A Bayesian Modelling
Framework: Concepts, Structure, and Extensibility.” Statistics and Computing, 10, 325–
337. doi:10.1023/a:1008929526011.

Mayr A, Fenske N, Hofner B, Kneib T, Schmid M (2012). “Generalized Additive Models
for Location, Scale and Shape for High Dimensional Data: A Flexible Approach Based on
Boosting.” Journal of the Royal Statistical Society C, 61(3), 403–427. doi:10.1111/j.
1467-9876.2011.01033.x.

Neal RM (2003). “Slice Sampling.” The Annals of Statistics, 31(3), 705–767. doi:10.1214/
aos/1056562461.

Nelder JA, Wedderburn RWM (1972). “Generalized Linear Models.” Journal of the Royal
Statistical Society A, 135, 370–384. doi:10.2307/2344614.

Pebesma E (2018). “Simple Features for R: Standardized Support for Spatial Vector Data.”
The R Journal, 10(1), 439–446. doi:10.32614/RJ-2018-009.

Plummer M (2003). “JAGS: A Program for Analysis of Bayesian Graphical Models Us-
ing Gibbs Sampling.” In K Hornik, F Leisch, A Zeileis (eds.), Proceedings of the 3rd
International Workshop on Distributed Statistical Computing, Vienna, Austria. URL
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Proceedings/.

Plummer M (2021). rjags: Bayesian Graphical Models using MCMC. R package version 4-12,
URL https://CRAN.R-project.org/package=rjags.

Plummer M, Best N, Cowles K, Vines K (2006). “coda: Convergence Diagnosis and Output
Analysis for MCMC.” R News, 6(1), 7–11. URL https://cran.r-project.org/doc/
Rnews/Rnews_2006-1.pdf.

Polson NG, Scott JG (2012). “On the Half-Cauchy Prior for a Global Scale Parameter.”
Bayesian Analysis, 7(4), 887–902. doi:10.1214/12-ba730.

R Core Team (2021). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rigby R, Stasinopoulos M, Heller G, Bastiani F (2019). Distributions for Modeling Loca-
tion, Scale, and Shape: Using GAMLSS in R. Chapman & Hall/CRC. doi:10.1201/
9780429298547.

Rigby RA, Stasinopoulos DM (2005). “Generalized Additive Models for Location, Scale
and Shape.” Journal of the Royal Statistical Society C, 54(3), 507–554. doi:10.1111/j.
1467-9876.2005.00510.x.

Rue H, Martino S, Chopin N (2009). “Approximate Bayesian Inference for Latent Gaus-
sian Models by Using Integrated Nested Laplace Approximations.” Journal of the Royal
Statistical Society B, 71(2), 319–392. doi:10.1111/j.1467-9868.2008.00700.x.

https://doi.org/10.18637/jss.v063.i19
https://doi.org/10.1023/a:1008929526011
https://doi.org/10.1111/j.1467-9876.2011.01033.x
https://doi.org/10.1111/j.1467-9876.2011.01033.x
https://doi.org/10.1214/aos/1056562461
https://doi.org/10.1214/aos/1056562461
https://doi.org/10.2307/2344614
https://doi.org/10.32614/RJ-2018-009
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Proceedings/
https://CRAN.R-project.org/package=rjags
https://cran.r-project.org/doc/Rnews/Rnews_2006-1.pdf
https://cran.r-project.org/doc/Rnews/Rnews_2006-1.pdf
https://doi.org/10.1214/12-ba730
https://www.R-project.org/
https://doi.org/10.1201/9780429298547
https://doi.org/10.1201/9780429298547
https://doi.org/10.1111/j.1467-9876.2005.00510.x
https://doi.org/10.1111/j.1467-9876.2005.00510.x
https://doi.org/10.1111/j.1467-9868.2008.00700.x

40 bamlss: A Lego Toolbox for Flexible Bayesian Regression

Schulz W, Cummins K, Diendorfer G, Dorninger M (2005). “Cloud-to-Ground Lightning
in Austria: A 10-Year Study Using Data from a Lightning Location System.” Journal of
Geophysical Research: Atmospheres, 110(D9). doi:10.1029/2004JD005332.

Simon T (2021). FlashAustria: Data and Model for Reanalyzing Flash Counts in Austria. R
package version 0.4-2/r4223, URL https://R-Forge.R-project.org/projects/bayesr/.

Simon T, Fabsic P, Mayr GJ, Umlauf N, Zeileis A (2018). “Probabilistic Forecasting of
Thunderstorms in the Eastern Alps.” Monthly Weather Review, 146, 2999–3009. doi:
10.1175/MWR-D-17-0366.1.

Simon T, Mayr GJ, Umlauf N, Zeileis A (2019). “NWP-Based Lightning Prediction Using
Flexible Count Data Regression.” Advances in Statistical Climatology, Meteorology and
Oceanography, 5(1), 1–16. doi:10.5194/ascmo-5-1-2019.

Smyth GK (1996). “Partitioned Algorithms for Maximum Likelihood and Other Non-Linear
Estimation.” Statistics and Computing, 6(3), 201–216. doi:10.1007/bf00140865.

South A (2017). rnaturalearth: World Map Data from Natural Earth. R package version
0.1.0, URL https://CRAN.R-project.org/package=rnaturalearth.

Spiegelhalter DJ, Best NG, Carlin BP, Van der Linde A (2002). “Bayesian Measures of
Model Complexity and Fit.” Journal of the Royal Statistical Society B, 64(4), 583–639.
doi:10.1111/1467-9868.00353.

Stadlmann S (2021). distreg.vis: Framework for the Visualization of Distributional Regression
Models. R package version 1.7.2, URL https://CRAN.R-project.org/package=distreg.
vis.

Stasinopoulos DM, Rigby RA (2021a). gamlss: Generalised Additive Models for Location,
Scale and Shape. R package version 5.3-4, URL https://CRAN.R-project.org/package=
gamlss.

Stasinopoulos DM, Rigby RA (2021b). gamlss.dist: Distributions for Generalized Ad-
ditive Models for Location, Scale and Shape. R package version 5.3-2, URL https:
//CRAN.R-project.org/package=gamlss.dist.

Stasinopoulos MD, Rigby RA, Heller GZ, Voudouris V, Bastiani FD (2017). Flexible Regres-
sion and Smoothing: Using GAMLSS in R. CRC Press. doi:10.1201/b21973.

Umlauf N, Adler D, Kneib T, Lang S, Zeileis A (2015). “Structured Additive Regression
Models: An R Interface to BayesX.” Journal of Statistical Software, 63(21), 1–46. doi:
10.18637/jss.v063.i21.

Umlauf N, Adler D, Kneib T, Lang S, Zeileis A (2021). BayesXsrc: R Package Distribution
of the BayesX C++ Sources. R package version 3.0-1.1, URL https://CRAN.R-project.
org/package=BayesXsrc.

Umlauf N, Klein N, Zeileis A (2018). “BAMLSS: Bayesian Additive Models for Location,
Scale, and Shape (and Beyond).” Journal of Computational and Graphical Statistics, 27(3),
612–627. doi:10.1080/10618600.2017.1407325.

https://doi.org/10.1029/2004JD005332
https://R-Forge.R-project.org/projects/bayesr/
https://doi.org/10.1175/MWR-D-17-0366.1
https://doi.org/10.1175/MWR-D-17-0366.1
https://doi.org/10.5194/ascmo-5-1-2019
https://doi.org/10.1007/bf00140865
https://CRAN.R-project.org/package=rnaturalearth
https://doi.org/10.1111/1467-9868.00353
https://CRAN.R-project.org/package=distreg.vis
https://CRAN.R-project.org/package=distreg.vis
https://CRAN.R-project.org/package=gamlss
https://CRAN.R-project.org/package=gamlss
https://CRAN.R-project.org/package=gamlss.dist
https://CRAN.R-project.org/package=gamlss.dist
https://doi.org/10.1201/b21973
https://doi.org/10.18637/jss.v063.i21
https://doi.org/10.18637/jss.v063.i21
https://CRAN.R-project.org/package=BayesXsrc
https://CRAN.R-project.org/package=BayesXsrc
https://doi.org/10.1080/10618600.2017.1407325

Journal of Statistical Software 41

Umlauf N, Kneib T (2018). “A Primer on Bayesian Distributional Regression.” Statistical
Modelling, 18(3-4), 219–247. doi:10.1177/1471082X18759140.

Van Buuren S, Fredriks M (2001). “Worm Plot: A Simple Diagnostic Device for Modelling
Growth Reference Curves.” Statistics in Medicine, 20(8), 1259–1277. doi:10.1002/sim.
746.

Wasserstein RL, Lazar NA (2016). “The ASA Statement on p Values: Context, Process,
and Purpose.” The American Statistician, 70(2), 129–133. doi:10.1080/00031305.2016.
1154108.

Watanabe S (2010). “Asymptotic Equivalence of Bayes Cross Validation and Widely Applica-
ble Information Criterion in Singular Learning Theory.” The Journal of Machine Learning
Research, 11, 3571–3594. URL http://jmlr.org/papers/v11/watanabe10a.html.

Westra S, Fowler HJ, Evans JP, Alexander LV, Berg P, Johnson F, Kendon EJ, Lenderink G,
Roberts NM (2014). “Future Changes to the Intensity and Frequency of Short-Duration
Extreme Rainfall.” Reviews of Geophysics, 52(3), 522–555. doi:10.1002/2014RG000464.

Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York.
URL https://ggplot2.tidyverse.org.

Wood SN (2016). “Just Another Gibbs Additive Modeler: Interfacing JAGS and mgcv.”
Journal of Statistical Software, 75(7), 1–15. doi:10.18637/jss.v075.i07.

Wood SN (2017). Generalized Additive Models: An Introduction with R. 2nd edition. Chapman
& Hall/CRC, Boca Raton.

Wood SN (2021). mgcv: Mixed GAM Computation Vehicle with Automatic Smoothness
Estimation. R package version 1.8-38, URL https://CRAN.R-project.org/package=mgcv.

Wood SN, Li Z, Shaddick G, Augustin NH (2017). “Generalized Additive Models for Gigadata:
Modelling the UK Black Smoke Network Daily Data.” Journal of the American Statistical
Association, 112(519), 1199–1210. doi:10.1080/01621459.2016.1195744.

Wood SN, Pya N, Säfken B (2016). “Smoothing Parameter and Model Selection for General
Smooth Models.” Journal of the American Statistical Association, 111(516), 1548–1563.
doi:10.1080/01621459.2016.1180986.

Yee TW (2010). “The VGAM Package for Categorical Data Analysis.” Journal of Statistical
Software, 32(10), 1–34. doi:10.18637/jss.v032.i10.

Zeileis A, Croissant Y (2010). “Extended Model Formulas in R: Multiple Parts and Multiple
Responses.” Journal of Statistical Software, 34(1), 1–13. doi:10.18637/jss.v034.i01.

Zeileis A, Fisher JC, Hornik K, Ihaka R, McWhite CD, Murrell P, Stauffer R, Wilke CO
(2020). “colorspace: A Toolbox for Manipulating and Assessing Colors and Palettes.”
Journal of Statistical Software, 96(1), 1–49. doi:10.18637/jss.v096.i01.

https://doi.org/10.1177/1471082X18759140
https://doi.org/10.1002/sim.746
https://doi.org/10.1002/sim.746
https://doi.org/10.1080/00031305.2016.1154108
https://doi.org/10.1080/00031305.2016.1154108
http://jmlr.org/papers/v11/watanabe10a.html
https://doi.org/10.1002/2014RG000464
https://ggplot2.tidyverse.org
https://doi.org/10.18637/jss.v075.i07
https://CRAN.R-project.org/package=mgcv
https://doi.org/10.1080/01621459.2016.1195744
https://doi.org/10.1080/01621459.2016.1180986
https://doi.org/10.18637/jss.v032.i10
https://doi.org/10.18637/jss.v034.i01
https://doi.org/10.18637/jss.v096.i01

42 bamlss: A Lego Toolbox for Flexible Bayesian Regression

A. Gaussian family object
The following R code shows an example implementation of the Gaussian distribution as pre-
sented in Section 4.2.
R> Gauss_bamlss <- function(...) {
+ f <- list(
+ "family" = "mygauss",
+ "names" = c("mu", "sigma"),
+ "links" = c(mu = "identity", sigma = "log"),
+ "d" = function(y, par, log = FALSE) {
+ dnorm(y, mean = par$mu, sd = par$sigma, log = log)
+ },
+ "p" = function(y, par, ...) {
+ pnorm(y, mean = par$mu, sd = par$sigma, ...)
+ },
+ "r" = function(n, par) {
+ rnorm(n, mean = par$mu, sd = par$sigma)
+ },
+ "q" = function(p, par) {
+ qnorm(p, mean = par$mu, sd = par$sigma)
+ },
+ "score" = list(
+ mu = function(y, par, ...) {
+ drop((y - par$mu) / (par$sigma^2))
+ },
+ sigma = function(y, par, ...) {
+ drop(-1 + (y - par$mu)^2 / (par$sigma^2))
+ }
+),
+ "hess" = list(
+ mu = function(y, par, ...) {
+ drop(1 / (par$sigma^2))
+ },
+ sigma = function(y, par, ...) {
+ rep(2, length(y))
+ }
+)
+)
+ class(f) <- "family.bamlss"
+ return(f)
+ }

B. Special model terms
The default estimation engines opt_bfit() and sam_GMCMC() (also the gradient boosting op-
timizer function boost()) in bamlss provide support for the implementation of special model
terms, i.e., model terms that cannot be represented by the mgcv smooth term constructor

Journal of Statistical Software 43

infrastructure. One simple example of such a special model term is a nonlinear growth curve,
e.g., a nonlinear Gompertz curve

f(x; β) = β1 · exp(−β2 · exp(−β3 · x)),

but also the lasso model term constructor la() presented in Section 2.2 is a special bamlss
model term. The special model term constructor is needed in this case, since the growth
curve is nonlinear in the parameters β, hence, the default backfitting and sampling strategies
cannot be applied. Fortunately, estimation algorithms in distributional regression can be split
into separate updating equations (see also Section 3.2). This means that each model term
can have its own updating function. The user interested in this feature only needs to write a
new smooth.construct() and Predict.matrix() method.
The following R code implements a Gompertz growth model term which can be used by the
default optimizer function opt_bfit() and sampling function sam_GMCMC() of the bamlss
package. The new smooth.construct() method is

R> smooth.construct.gc.smooth.spec <- function(object, data, knots)
+ {
+ object$X <- matrix(as.numeric(data[[object$term]]), ncol = 1)
+ center <- if(!is.null(objectxtcenter)) {
+ objectxtcenter
+ } else TRUE
+ object$by.done <- TRUE
+ if(object$by != "NA")
+ stop("by variables not supported!")
+
+ ## Begin special elements to be used with opt_bfit() and sam_GMCMC().
+ object$fit.fun <- function(X, b, ...) {
+ f <- b[1] * exp(-b[2] * exp(-b[3] * drop(X)))
+ if(center)
+ f <- f - mean(f)
+ f
+ }
+ object$update <- bfit_optim
+ object$propose <- GMCMC_slice
+ object$prior <- function(b) { sum(dnorm(b, sd = 1000, log = TRUE)) }
+ object$fixed <- TRUE
+ object$state$parameters <- c("b1" = 0, "b2" = 0.5, "b3" = 0.1)
+ object$state$fitted.values <- rep(0, length(object$X))
+ object$state$edf <- 3
+ object$special.npar <- 3 ## Important!
+ ## End special elements.
+
+ ## Important, This is a special smooth constructor!
+ class(object) <- c("gc.smooth", "no.mgcv", "special")
+
+ object
+ }

44 bamlss: A Lego Toolbox for Flexible Bayesian Regression

In principle, the setup is very similar to the smooth constructor functions provided by the
mgcv package. Only few elements need to be added:

• fit.fun(): A function of the data X and parameter vector b that evaluates the fitted
values.

• update(): An updating function to be used with optimizer opt_bfit().

• propose(): A MCMC propose function to be used with sampler sam_GMCMC().

• prior(): Function of the parameters b that evaluates the log-prior. Note, additional
functions can be grad() and hess that evaluate the first and second derivative of the
log-prior w.r.t. the parameters b.

• fixed: Is the number of degrees of freedom fixed or not?

• state: This is a named list with starting values for the "parameters", the "fitted.values"
and degrees of freedom "edf". Note that regression coefficients are always named with
"b*" and shrinkage or smoothing variances with "tau2*" in the "parameters" vector.

• special.npar: How many parameters does this model term have in total? This is
needed for internal setup, because the Gompertz function has three parameters but the
design matrix only one column.

To compute predictions of this model term a new method for the Predict.matrix() function
needs to be implemented, too.

R> Predict.matrix.gc.smooth <- function(object, data, knots)
+ {
+ X <- matrix(as.numeric(data[[object$term]]), ncol = 1)
+ X
+ }

Special model terms can then be used with the constructor function s2(). To illustrate the
this feature in bamlss, we simulate heteroskedastic growth data with

y ∼ N (µ = 2 + 1/(1 + exp(0.5 · (15− time))), log(σ) = −3 + 2 · cos(time/30 · 6− 3))

and subsequently estimate the model with slice sampling (Neal 2003) for β in the MCMC
algorithm using the following R code

R> set.seed(111)
R> d <- data.frame("time" = 1:30)
R> d$y <- 2 + 1 / (1 + exp(0.5 * (15 - d$time))) +
+ rnorm(30, sd = exp(-3 + 2 * cos(d$time/30 * 6 - 3)))
R> f <- list(
+ y ~ s2(time, bs = "gc"),
+ sigma ~ s(time)
+)
R> b <- bamlss(f, data = d, optimizer = opt_bfit, sampler = sam_GMCMC)
R> plot(b)

Journal of Statistical Software 45

0 5 10 15 20 25 30

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

µ

time

y

log(σ)

time

s(
tim

e)
.s

ig
m

a

−
4

−
2

0
2

0 5 10 15 20 25 30

Figure 13: Estimated nonlinear effects on parameter µ and σ of the simulated growth curve
example. Gray shaded areas represent 95% credible intervals.

The estimated effects are shown in Figure 13. The growth curve mean function estimate
seems to fit the data quite well. Also, the nonlinear relationship for parameter σ could be
captured by the model.
In summary, in order to build up special bamlss model terms only a few things have to be
considered. The example R code for the Gompertz smooth constructor given here is a good
starting point for readers interested in using this feature.

C. Model fitting engines for linear regression
In the following, to explain the setup and the naming convention of estimation engines in
more detail, we implement

• a new family object for simple linear models y = x>β + ε with ε ∼ N(0, σ2),

• and set up an optimizer function,

• and additionally a MCMC sampling function.

For illustration, the family object is kept very simple, we only model the mean function in
terms of covariates.

R> lm_bamlss <- function(...) {
+ f <- list(
+ "family" = "LM",
+ "names" = "mu",
+ "links" = "identity",
+ "d" = function(y, par, log = FALSE) {
+ sigma <- sqrt(sum((y - par$mu)^2) / (length(y) - .lm_bamlss.p))
+ dnorm(y, mean = par$mu, sd = sigma, log = log)
+ },

46 bamlss: A Lego Toolbox for Flexible Bayesian Regression

+ "p" = function(y, par, ...) {
+ sigma <- sqrt(sum((y - par$mu)^2) / (length(y) - .lm_bamlss.p))
+ pnorm(y, mean = par$mu, sd = sigma, ...)
+ }
+)
+ class(f) <- "family.bamlss"
+ return(f)
+ }

Now, for setting up the estimation functions we first simulate some data using the GAMart()
function, afterwards the necessary "bamlss.frame" can be created with

R> d <- GAMart()
R> bf <- bamlss.frame(num ~ x1 + x2, data = d, family = "lm")
R> print(bf)

'bamlss.frame' structure:
..$ call
..$ model.frame
..$ formula
..$ family
..$ terms
..$ x
.. ..$ mu
..$ formula
..$ fake.formula
..$ terms
..$ model.matrix
..$ y
.. ..$ num
..$ delete

As noted above, the object is a named list with elements "x" and "y", which will be passed
to the estimation functions. For the moment, since we only implement a linear model, we
need to work with the linear model matrix that is part of the bf object.

R> head(bfxmu$model.matrix)

(Intercept) x1 x2
1 1 0.8900343 0.7833063691
2 1 0.5579411 0.0009382977
3 1 0.9245978 0.7372933284
4 1 0.4532554 0.3819316742
5 1 0.5021393 0.0152245569
6 1 0.4715666 0.1129542917

and the response y

Journal of Statistical Software 47

R> head(bf$y)

num
1 -0.2649470
2 -0.4907917
3 -0.5134658
4 -0.1233677
5 -0.2206055
6 0.3200742

to setup the optimizer function with:

R> opt_LM <- function(x, y, ...)
+ {
+ ## Only univariate response.
+ y <- y[[1L]]
+
+ ## For illustration this is easier to read.
+ X <- xmumodel.matrix
+
+ ## Estimate model parameters.
+ par <- drop(chol2inv(chol(crossprod(X))) %*% crossprod(X, y))
+
+ ## Set parameter names.
+ names(par) <- paste0("mu.p.", colnames(X))
+
+ ## Return estimated parameters and fitted values.
+ rval <- list(
+ "parameters" = par,
+ "fitted.values" = drop(X %*% par),
+ "edf" = length(par),
+ "sigma" = drop(sqrt(crossprod(y - X %*% par) / (length(y) - ncol(X))))
+)
+
+ ## Set edf within .GlobalEnv for the
+ ## loglik() function in the lm_bamlss() family.
+ .lm_bamlss.p <<- length(par)
+
+ return(rval)
+ }

This optimizer function can already be used with the bamlss() wrapper function and all
extractor functions are readily available.

R> f <- num ~ x1 + poly(x2, 5) + poly(x3, 5)
R> b <- bamlss(f, data = d, family = "lm", optimizer = opt_LM, sampler = FALSE)
R> summary(b)

48 bamlss: A Lego Toolbox for Flexible Bayesian Regression

Call:
bamlss(formula = f, family = "lm", data = d, optimizer = lm.opt,

sampler = FALSE)

Family: LM
Link function: mu = identity
*---
Formula mu:

num ~ x1 + poly(x2, 5) + poly(x3, 5)
-
Parametric coefficients:

parameters
(Intercept) 0.193
x1 -0.599
poly(x2, 5)1 -1.402
poly(x2, 5)2 2.300
poly(x2, 5)3 0.612
poly(x2, 5)4 -1.388
poly(x2, 5)5 0.861
poly(x3, 5)1 -0.107
poly(x3, 5)2 3.581
poly(x3, 5)3 -0.203
poly(x3, 5)4 -0.276
poly(x3, 5)5 0.087

Optimizer summary:
-
edf = 12 sigma = 0.2215

R> nd <- data.frame("x2" = seq(0, 1, length = 100))
R> nd$p <- predict(b, newdata = nd, term = "x2")

Plot the estimated effect of variable x2.

R> plot2d(p ~ x2, data = nd)

The next step is to setup a full Bayesian MCMC sampling function. Fortunately, if we assume
multivariate normal priors for the regression coefficients and an inverse Gamma prior for the
variance, a Gibbs sampler with multivariate normal and inverse Gamma full conditionals
can be created. The MCMC algorithm consecutively samples for t = 1, . . . , T from the full
conditionals

β(t)|· ∼ N
(
µ

(t−1)
β ,Σ(t−1)

β

)
and

σ2(t)|· ∼ IG
(
a′

(t−1)
, b′

(t−1)
)
,

Journal of Statistical Software 49

where IG(·) is the inverse Gamma distribution for sampling the variance parameter. The
covariance matrix for β is given by

Σβ =
(1
σ2 X>X + 1

σ2 M−1
)−1

and the mean
µβ = Σβ

(1
σ2 X>y + 1

σ2 M−1m
)
,

where m is the prior mean and M the prior covariance matrix. Similarly, for σ2 parameters
a′ and b′ are computed by

a′ = a+ n

2 + p

2
and

b′ = b+ 1
2(y−Xβ)>(y−Xβ) + 1

2(β −m)>M−1(β −m),

where a and b are usually set small, e.g., with a = 1 and b = 0.0001, such that the prior is
flat and uninformative.
We can implement the MCMC algorithm in the following sampling function

R> sam_LM <- function(x, y, start = NULL,
+ n.iter = 12000, burnin = 2000, thin = 10,
+ m = 0, M = 1e+05,
+ a = 1, b = 1e-05,
+ verbose = TRUE, ...)
+ {
+ ## How many samples are saved?
+ itrthin <- seq.int(burnin, n.iter, by = thin)
+ nsaves <- length(itrthin)
+
+ ## Only univariate response.
+ y <- y[[1L]]
+
+ ## For illustration this is easier to read.
+ X <- xmumodel.matrix
+
+ ## Again, set edf within .GlobalEnv for the
+ ## loglik() function in the lm_bamlss() family.
+ .lm_bamlss.p <<- ncol(X)
+
+ ## Number of observations and parameters.
+ n <- length(y)
+ p <- ncol(X)
+
+ ## Matrix saving the samples.
+ samples <- matrix(0, nsaves, p + 1L)
+
+ ## Stick to the naming convention.

50 bamlss: A Lego Toolbox for Flexible Bayesian Regression

+ pn <- paste0("mu.p.", colnames(X))
+ colnames(samples) <- c(
+ pn, ## Regression coefficients and
+ "sigma" ## variance samples.
+)
+
+ ## Setup coefficient vector,
+ ## again, use correct names.
+ beta <- rep(0, p)
+ names(beta) <- pn
+ sigma <- sd(y)
+
+ ## Check for starting values obtained,
+ ## e.g., from lm.opt() from above.
+ if(!is.null(start)) {
+ sn <- names(start)
+ for(j in names(beta)) {
+ if(j %in% sn)
+ beta[j] <- start[j]
+ }
+ }
+
+ ## Process prior information.
+ m <- rep(m, length.out = p)
+ if(length(M) < 2)
+ M <- rep(M, length.out = p)
+ if(!is.matrix(M))
+ M <- diag(M)
+ Mi <- solve(M)
+
+ ## Precompute cross products.
+ XX <- crossprod(X)
+ Xy <- crossprod(X, y)
+
+ ## Inverse gamma parameter.
+ a <- a + n / 2 + p / 2
+
+ ## Start sampling.
+ ii <- 1
+ for(i in 1:n.iter) {
+ ## Sampling sigma
+ b2 <- b + 1 / 2 * t(y - X %*% beta) %*% (y - X %*% beta) +
+ 1 / 2 * t(beta - m) %*% Mi %*% (beta - m)
+ sigma2 <- sqrt(1 / rgamma(1, a, b2))
+
+ ## Sampling beta.
+ sigma2i <- 1 / sigma2

Journal of Statistical Software 51

+ Sigma <- chol2inv(chol(sigma2i * XX + sigma2i * Mi))
+ mu <- Sigma %*% (sigma2i * Xy + sigma2i * Mi %*% m)
+ beta <- MASS::mvrnorm(1, mu, Sigma)
+
+ if(i %in% itrthin) {
+ samples[ii, pn] <- beta
+ samples[ii, "sigma"] <- sqrt(sigma2)
+ ii <- ii + 1
+ }
+ if(verbose) {
+ if(i %% 1000 == 0)
+ cat("iteration:", i, "\n")
+ }
+ }
+
+ ## Convert to "mcmc" object.
+ samples <- as.mcmc(samples)
+
+ return(samples)
+ }

The new sampling function can be directly used with the bamlss() wrapper

R> b <- bamlss(f, data = d, family = "lm", optimizer = opt_LM,
+ sampler = sam_LM)

iteration: 1000
iteration: 2000
iteration: 3000
iteration: 4000
iteration: 5000
iteration: 6000
iteration: 7000
iteration: 8000
iteration: 9000
iteration: 10000
iteration: 11000
iteration: 12000

R> summary(b)

Call:
bamlss(formula = f, family = "lm", data = d, optimizer = lm.opt,

sampler = lm.mcmc)

Family: LM
Link function: mu = identity

52 bamlss: A Lego Toolbox for Flexible Bayesian Regression

x1

E
ffe

ct
 o

f x
1

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

0.0 0.2 0.4 0.6 0.8 1.0

x2

E
ffe

ct
 o

f x
2

−
0.

5
0.

0
0.

5
0.0 0.2 0.4 0.6 0.8 1.0

x3

E
ffe

ct
 o

f x
3

−
0.

5
0.

0
0.

5
1.

0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 14: Estimated effects for covariates x1, x2 and x3 in the simulated data example.

*---
Formula mu:

num ~ x1 + poly(x2, 5) + poly(x3, 5)
-
Parametric coefficients:

Mean 2.5% 50% 97.5% parameters
(Intercept) 0.193433 0.104863 0.192858 0.281712 0.193
x1 -0.599433 -0.747700 -0.600058 -0.451035 -0.599
poly(x2, 5)1 -1.387117 -2.351893 -1.390560 -0.429834 -1.402
poly(x2, 5)2 2.333106 1.418701 2.334373 3.264135 2.300
poly(x2, 5)3 0.622568 -0.341720 0.614777 1.577756 0.612
poly(x2, 5)4 -1.401156 -2.319579 -1.412909 -0.510414 -1.388
poly(x2, 5)5 0.880996 -0.002737 0.899331 1.742269 0.861
poly(x3, 5)1 -0.115377 -1.107490 -0.108267 0.802904 -0.107
poly(x3, 5)2 3.578458 2.634068 3.594275 4.531447 3.581
poly(x3, 5)3 -0.215304 -1.158019 -0.216776 0.763266 -0.203
poly(x3, 5)4 -0.293656 -1.166910 -0.318136 0.673257 -0.276
poly(x3, 5)5 0.087389 -0.817009 0.093475 1.120255 0.087

Sampler summary:
-
DIC = 7.0055 pd = 53.6796 runtime = 2.513

Optimizer summary:
-
edf = 12 sigma = 0.2215

Predict for all terms including 95% credible intervals:

R> nd$x1 <- nd$x3 <- seq(0, 1, length = 100)

Journal of Statistical Software 53

R> for(j in c("x1", "x2", "x3")) {
+ nd[[paste0("p.", j)]] <- predict(b, newdata = nd, term = j,
+ FUN = c95, intercept = FALSE)
+ }

The estimated effects are shown in Figure 14 and can be plotted with:

R> par(mfrow = c(1, 3))
R> plot2d(p.x1 ~ x1, data = nd, fill.select = c(0, 1, 0, 1), lty = c(2, 1, 2))
R> plot2d(p.x2 ~ x2, data = nd, fill.select = c(0, 1, 0, 1), lty = c(2, 1, 2))
R> plot2d(p.x3 ~ x3, data = nd, fill.select = c(0, 1, 0, 1), lty = c(2, 1, 2))

Affiliation:
Nikolaus Umlauf, Achim Zeileis, Thorsten Simon
Department of Statistics
Faculty of Economics and Statistics
Universität Innsbruck
Universitätsstr. 15
6020 Innsbruck, Austria
E-mail: Nikolaus.Umlauf@uibk.ac.at,

Achim.Zeileis@R-project.org,
Thorsten.Simon@uibk.ac.at

URL: https://eeecon.uibk.ac.at/~umlauf/,
https://www.zeileis.org/

Nadja Klein
Humboldt Universität zu Berlin
School of Business and Economics
Applied Statistics
Unter den Linden 6
10099 Berlin, Germany
E-mail: nadja.klein@hu-berlin.de
URL: https://hu.berlin/NK

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/
November 2021, Volume 100, Issue 4 Submitted: 2019-09-27
doi:10.18637/jss.v100.i04 Accepted: 2021-06-10

mailto:Nikolaus.Umlauf@uibk.ac.at
mailto:Achim.Zeileis@R-project.org
mailto:Thorsten.Simon@uibk.ac.at
https://eeecon.uibk.ac.at/~umlauf/
https://www.zeileis.org/
mailto:nadja.klein@hu-berlin.de
https://hu.berlin/NK
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v100.i04

	Introduction
	Motivating examples
	Basic Bayesian regression: Logit model
	Flexible model terms and estimators
	Location-scale model

	A flexible Bayesian model framework
	Model structure
	Posterior estimation
	Model choice and evaluation
	Measures of performance
	Evaluation and interpretation

	The bamlss package
	The BAMLSS model frame
	Family objects
	Estimation engines

	Flexible count regression for lightning reanalysis
	Motivation and data
	Model specification
	Model diagnostics
	Predictions and visualizations

	Conclusion
	Gaussian family object
	Special model terms
	Engines for linear regression

