
Short tutorials from old www-page

Haavard Rue (hrue@r-inla.org)

KAUST, Aug 2020

Contents
• Contents
• Introduction
• User-defined priors for the hyperparameters
• Does INLA support the use of different link-functions?
• How can I do predictions using INLA?
• Some of the models needs a graph, how do I specify it?
• How INLA deal with NA
• Can INLA deal with missing covariates?
• Compute cross-validation or predictive measures of fit
• I have access to a remote Linux/MacOS server, is it possible to run the computations remotely and

running R locally?
• Posteriors for linear combinations
• INLA seems to work great for near all cases, but are there cases where INLA is known to have problems?
• Can I have the linear predictor from one model as a covariate in a different model?
• Latent models, likelihoods and priors.
• Copying a model
• Replicate a model
• Models with more than one type of likelihood
• Models where the response/data depends on linear combinations of the “linear predictor” (or the sum

of “fixed” and “random” effects)

Introduction
This vignette is a copy and slightly edited FAQ-entries and other short tutorials from the old www.r-inla.org
page. The content comes is slightly random order, sorry about that.

User-defined priors for the hyperparameters
If you want to use a prior for the hyperparameter that is not yet implemented there are two choices. If you
think that your prior should be on the list and that other might use it to, please let us know. Alternatively,
you can define your own prior using \verb|prior = “expression:”|, or by specifiying a table of x and y
values which define the prior distribution.

There are three ways to specify prior distributions for hyperparameters in INLA:

• Use an available prior distribution
• Define your own prior distribution function using R-like (not equal) syntax as expression.
• Create a table of (x, y) values which represent your prior distribution.

In the following we will provide more details regarding the two last options. Finally, we will present an
example illustrating (and comparing) the three different possibilities by means of the log-gamma distribution
for the precision parameter.

1

mailto:hrue@r-inla.org

A user can specify any (univariate) prior distribution for the hyperparameter θ by defining an expression for
the log-density log π(θ), as a function of the corresponding θ. It is important to be aware that θ is on the
internal scale.

The format is
expression: statement; statement; ...; return(value)

where “statement” is any regular statement (more below) and “value” is the value for the log-density of the
prior, evaluated at the current value for θ.

Here, is an example defining the log-gamma distribution:
prior.expression = "expression:

a = 1;
b = 0.1;
precision = exp(log_precision);
logdens = log(bˆa) - lgamma(a)

+ (a-1)*log_precision - b*precision;
log_jacobian = log_precision;
return(logdens + log_jacobian);"

Some syntax specific notes: * No white-space before “(.)” in the return statement. * A “;” is needed to
terminate each expression. * A “_” is allowed in variable names.

Known functions that can be used within the expression statement are

• common math functions, such as exp, sin, . . .
• “gamma” denotes the gamma-function and “lgamma” is its log
• x^y is expressed as either x^y or pow(x;y)

Instead of defining a prior distribution function, it is possible to provide a table of suitable values x (internal
scale) and the corresponding log-density values y. INLA fits a spline through the provided points and
continues with this in the succeeding computations. Note, there is no transformation into a functional form
performed or required. The input-format for the table is a string, which starts with table: and is then
followed by a block of x-values and a block of the corresponding y-values, which represent the values of the
log-density evaluated on x. Thus

table: x_1 ... x_n y_1 ... y_n

We illustrate all three different ways of defining a prior distribution for the precision of a normal likelihood.
To show that the three definitions lead to the same result we inspect the logmarginal likelihood.
the loggamma-prior
prior.function = function(log_precision) {

a = 1;
b = 0.1;
precision = exp(log_precision);
logdens = log(bˆa) - lgamma(a) + (a-1)*log_precision - b*precision;
log_jacobian = log_precision;
return(logdens + log_jacobian)

}

implementing the loggamma-prior using "expression:"
prior.expression = "expression:
a = 1;
b = 0.1;
precision = exp(log_precision);
logdens = log(bˆa) - lgamma(a)

2

+ (a-1)*log_precision - b*precision;
log_jacobian = log_precision;
return(logdens + log_jacobian);"

use suitable support points x
lprec = seq(-10, 10, len=100)
link the x and corresponding y values into a
string which begins with "table:""
prior.table = paste(c("table:", cbind(lprec,

prior.function(lprec))), collapse=" ", sep="")

simulate some data
n = 50
y = rnorm(n)

use the built-in loggamma prior
r1 = inla(y~1,data = data.frame(y),
control.family = list(hyper = list(prec = list(

prior = "loggamma", param = c(1, 0.1)))))

use the definition using expression
r2 = inla(y~1, data = data.frame(y),

control.family = list(hyper = list(
prec = list(prior = prior.expression))))

use a table of x and y values representing the loggamma prior
r3 = inla(y~1, data = data.frame(y),

control.family = list(hyper = list(
prec = list(prior = prior.table))))

print(round(c(r1$mlik[1], r2$mlik[1], r3$mlik[1]), dig=3))

[1] -70.657 -70.657 -70.657

Does INLA support the use of different link-functions?
Yes, the type of link function is given in the control.family statement using control.link=..., and the
type of link-functions implemented are listed on the documentation for each likelihood. The default link is
default which corresponds to the second link function in the list. Here is an example
n = 100
z = rnorm(n)
eta = 1 + 0.1*z
N = 2

p = inla.link.invlogit(eta)
y = rbinom(n, size = N, prob = p)
r = inla(y ~ 1 + z, data = data.frame(y, z), family = "binomial", Ntrials = rep(N, n),

control.family = list(control.link = list(model="logit")),
control.predictor = list(compute=TRUE))

p = inla.link.invprobit(eta)
y = rbinom(n, size = N, prob = p)
rr = inla(y ~ 1 + z, data = data.frame(y, z), family = "binomial", Ntrials = rep(N, n),

3

control.family = list(control.link = list(model="probit")),
control.predictor = list(compute=TRUE))

p = inla.link.invcloglog(eta)
y = rbinom(n, size = N, prob = p)
rrr = inla(y ~ 1 + z, data = data.frame(y, z), family = "binomial", Ntrials = rep(N, n),

control.family = list(control.link = list(model="cloglog")),
control.predictor = list(compute=TRUE))

Other linkfunctions/models are also avilable from within R, see ?inla.link

How can I do predictions using INLA?
In INLA there is no function predict as for glm/lm in R. Predictions must to done as a part of the model
fitting itself. As prediction is the same as fitting a model with some missing data, we can simply set y[i] = NA
for those “locations” we want to predict. Here is a simple example
n = 100
n.pred = 10
y = arima.sim(n=n, model=list(ar=0.9))
N = n + n.pred
yy = c(y, rep(NA, n.pred))
i = 1:N
formula = yy ~ f(i, model="ar1")
r = inla(formula, data = data.frame(i,yy),

control.family = list(initial = 10, fixed=TRUE)) ## no observational noise

which gives predictions
r$summary.random$i[(n+1):N, c("mean", "sd")]

mean sd
101 2.820339 1.659864
102 2.552132 1.862689
103 2.314460 2.016377
104 2.103390 2.136153
105 1.915548 2.231183
106 1.748029 2.307544
107 1.598327 2.369503
108 1.464276 2.420175
109 1.344002 2.461896
110 1.235879 2.496449

Quantiles such like r$summary.fitted.values and r$marginals.fitted.values, if computed, use the
identity link if y[i] = NA by default. If you want the fitted.values computed with a different link function,
then there are two ways to doit.

In the case you want to use the link-function from the likelihood already used (most often the case), there
is the argument link in control.predictor. If the response y[idx] = NA, then set link[idx] = 1, to
indicate that you want to compute that fitted value using the link function from family[1]. With several
likelihoods, set link[idx] to family-index which is correct, ie the column number in the response. The
following example shows the usage:
simple poisson regression
n = 100
x = sort(runif(n))
eta = 1 + x

4

lambda = exp(eta)
y = rpois(n, lambda = lambda)

missing values:
y[1:3] = NA
y[(n-2):n] = NA

link = 1 is a shortcut for rep(1, n) where n is the appropriate
length. here '1' is a reference to the first 'family', ie
'family[1]'
r = inla(y ~ 1 + x, family = "poisson",

data = data.frame(y, x),
control.predictor = list(link = 1))

plot(exp(eta),type ="l")
points(r$summary.fitted.values$mean, pch=19)

0 20 40 60 80 100

3
4

5
6

7

Index

ex
p(

et
a)

We only need to define link where there are missing values. Entries for which the observation is not NA, is
ignored.

For more than one likelihood, use ‘2’ to refer to the second likelihood. Here is an example where we split the
data in two, and assign the second half the nbinomial distribution.
n2 = n %/% 2L
Y = matrix(NA, n, 2)
Y[1:n2, 1] = y[1:n2]
Y[1:n2 + n2, 2] = y[1:n2 + n2]
link = rep(NA, n)

5

link[which(is.na(y[1:n2]))] = 1
link[n2 + which(is.na(y[1:n2 + n2]))] = 2

r = inla(Y ~ 1 + x, family = c("poisson", "nbinomial"),
data = list(Y=Y, x=x),
control.predictor = list(link = link))

plot(exp(eta),type ="l")
points(r$summary.fitted.values$mean, pch=19)

0 20 40 60 80 100

3
4

5
6

7

Index

ex
p(

et
a)

We can transform marginals manually using the function inla.marginal.transform or compute expectations
using inla.emarginal, like in this example (taken from demo(Tokyo)).
Load the data
data(Tokyo)
summary(Tokyo)

y n time
Min. :0.0000 Min. :1.000 Min. : 1.00
1st Qu.:0.0000 1st Qu.:2.000 1st Qu.: 92.25
Median :0.0000 Median :2.000 Median :183.50
Mean :0.5246 Mean :1.997 Mean :183.50
3rd Qu.:1.0000 3rd Qu.:2.000 3rd Qu.:274.75
Max. :2.0000 Max. :2.000 Max. :366.00

Tokyo$y[300:366] <- NA

Define the model

6

formula = y ~ f(time, model="rw2", scale.model=TRUE,
constr=FALSE, cyclic=TRUE,
hyper = list(prec=list(prior="pc.prec",

param=c(2,0.01)))) -1

We'll get a warning since we have not defined the link argument
result = inla(formula, family="binomial", Ntrials=n, data=Tokyo,

control.compute = list(return.marginals.predictor = TRUE),
control.predictor=list(compute=T))

need to recompute the fitted values for those with data[i] = NA,
as the identity link is used.
n = 366
fitted.values.mean = numeric(n)
for(i in 1:366) {

if (is.na(Tokyo$y[i])) {
if (FALSE) {

either like this, which is slower
marg = inla.marginal.transform(

function(x) exp(x)/(1+exp(x)),
result$marginals.fitted.values[[i]])

fitted.values.mean[i] = inla.emarginal(function(x) x, marg)
} else {

or like this, which is faster
fitted.values.mean[i] = inla.emarginal(

function(x) exp(x)/(1 +exp(x)),
result$marginals.fitted.values[[i]])

}
} else {

fitted.values.mean[i] = result$summary.fitted.values[i,"mean"]
}

}
plot(fitted.values.mean)

7

0 100 200 300

0.
20

0.
25

0.
30

0.
35

Index

fit
te

d.
va

lu
es

.m
ea

n

Some of the models needs a graph, how do I specify it?
Some of the models in INLA needs the user to specify a graph, saying which nodes are neighbours to each
other. A ‘graph’ can be specified in three different ways.

• As an ascii or binary file with a graph specification, or the same contents given as (possible list of) mix
of character and numerics arguments.

• As a symmetric (dense or sparse) matrix, where the non-zero pattern of the matrix defines the graph.
• As an inla.graph-object

A graph defined in an ascii-file, must have the following format. The first entry is the number of nodes in the
graph, n. The nodes in the graph are labelled 1, 2, . . . , n. The next entries, specify the number of neighbours
and the neighbours for each node. A simple example is the following
4
1 2 3 4
2 0
3 1 1
4 1 1

This defines a graph with four nodes, where node 1 has 2 neighbours 3 and 4, node 2 as 0 neighbours, node 3
has 1 neighbour 1, and node 4 has 1 neighbour 1, and the graph looks like this
g = inla.read.graph("4 1 2 3 4 2 0 3 1 1 4 1 1")
plot(g)

8

1 2

3

4
Note that we need to specify the implied symmetry as well. In this example 4 is a neighbour of 1, then we
also need to specify that 1 is a neighbour of 4.

Instead of storing the graph specification on a file, it can also be specified as a character string with the same
contents as a file, like
"4 1 2 3 4 2 0 3 1 1 4 1 1"

as used in inla.read.graph above.

Due to imitations of the length of a string/line, so in practice, this way specifying the graph, seems more
useful for teaching or demonstration purposes than for practical analysis.

Within INLA, this would look like
formula = y ~ f(idx, model = "besag", graph = "graph.dat")

or
formula = y ~ f(idx, model = "besag", graph = "4 1 2 3 4 2 0 3 1 1 4 1 1")

A graph can also be defined as a symmetric (dense or sparse) matrix, where the non-zero pattern of the
matrix defines the graph A neighbour matrix is often used for defining which nodes that are neighbours, with
the convention that if Q[i,j] != 0 then i and j are neighbours if i 6= j.

For example, the (dense) matrix C
C = matrix(c(1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1),4,4)
C

[,1] [,2] [,3] [,4]

9

[1,] 1 0 1 1
[2,] 0 1 0 0
[3,] 1 0 1 0
[4,] 1 0 0 1

defines the same graph show above.

Since graphs tends to be large, we often define them as a sparse matrix
C.sparse= inla.as.sparse(C)
C.sparse

4 x 4 sparse Matrix of class "dgTMatrix"
##
[1,] 1 . 1 1
[2,] . 1 . .
[3,] 1 . 1 .
[4,] 1 . . 1

We can then use graph=C or graph=C.sparse in the formula.

We can also define the graph as an inla.graph-object, which is used internally, represent a graph. For
example
str(g)

List of 4
$ n : int 4
$ nnbs: num [1:4] 2 0 1 1
$ nbs :List of 4
..$: int [1:2] 3 4
..$: num(0)
..$: int 1
..$: int 1
$ cc :List of 3
..$ id : int [1:4] 1 2 1 1
..$ n : int 2
..$ nodes:List of 2
.. ..$: int [1:3] 1 3 4
.. ..$: int 2
- attr(*, "class")= chr "inla.graph"

and use graph = g as the argument.

The internal format, are as follows. n is the size of the graph. nnbs are the number of neighbours to each
node, nbs list all the neighbours to each node, and the class is inla.graph. The cc-list is for internal use
only and specify the connected components in the graph.

INLA has some functions to work with graphs, and here is a short summary.

• inla.read.graph() and inla.write.graph(), read and write graphs using any of the graph specifi-
cations above.

• You can plot a inla.graph-object using plot() and get a summary using summary(). The plotting
requires the Rgraphviz package.

• From a graph specification, you can generate the neighbour matrix, using inla.graph2matrix(). You
can plot a graph specification as a neighbour matrix, using inla.spy()

• If you have ‘errors’ in your graph, you may read it using inla.debug.graph(). This is only available
for a graph specification in an ascii-file.

10

How INLA deal with NA

For a formula like
formula = y ~ x + f(k, model= <some model>)

then NA’s in either y, x or k are treated differently.

NA’s in the response y. If y[i] = NA, this means that y[i] is not observed, hence gives no contribution to
the likelihood.

NA’s in fixed effect x. If x[i] = NA this means that x[i] is not part of the linear predictor for y[i]. For
fixed effects, this is equivalent to x[i]=0, hence internally we make this change: x[is.na(x)] = 0.

NA’s in random effect k. If k[i] = NA, this means that the random effect does not contribute to the linear
predictor for y[i].

NA’s in a factor x. NA’s in a factor x is not allowed unless NA is a level in itself, or
control.fixed = list(expand.factor.strategy = "inla")

is set. With this option, then NA is interpreted similarly as a fixed effect, where NA means no contribution
from x. The effect of expand.factor.strategy="inla", is best explained with an example.
r = inla(y ~ 1 + x, data = data.frame(y=1:3, x=factor(c("a","b","c"))))
as.matrix(r$model.matrix)

(Intercept) xb xc
1 1 0 0
2 1 1 0
3 1 0 1

for default value of the argument contrasts. The effect of xa is removed to make the corresponding matrix
non-singular. If we want to expand x into each of each three effects, then we can do
r = inla(y ~ 1 + x, data = data.frame(y=1:3,x=factor(c("a","b","c"))),

control.fixed = list(expand.factor.strategy="inla"))
as.matrix(r$model.matrix)

(Intercept) xa xb xc
1 1 1 0 0
2 1 0 1 0
3 1 0 0 1

As we see, each level of the factor is now treated symetrically. Although the corresponding frequentist matrix
is singular as we have confounding with the intercept, the Bayesian posterior is still proper with proper priors.

With a NA in x, we get
r = inla(y ~ 1 + x, data = data.frame(y=1:3,x=factor(c("a","b",NA))),

control.fixed = list(expand.factor.strategy="inla"))
as.matrix(r$model.matrix)

(Intercept) xa xb
1 1 1 0
2 1 0 1
3 1 0 0

so that the 3rd element of the linear predictor has no contribution from x, as it should.

11

Can INLA deal with missing covariates?
No, INLA has no generic way to “impute” or integrate-out missing covariates. You have to adjust your
model to account for missing covariates, like using one of the measurement error models (“meb”, “mec”), or
construct a joint model for the data and the covariates, but this is case-specific.

Compute cross-validation or predictive measures of fit
INLA provides two types of leave-one-out predictive measures of fit. It is the CPO value, which is

Prob(yi|y−i),

the PIT value
Prob(ynew

i ≤ yi|y−i)

To enable the computation of these quantities, you will need to add the argument
control.compute=list(cpo=TRUE)

We can also compute PO values
Prob(yi|y),

when argument po=TRUE is added.

If the resulting object is result, then you will find the predictive quantities as resultcpocpo and
resultcpopit.

Implicit assumptions made in for computations, and there are internal checks that these are satisfied. The re-
sults of these checks will appear as resultcpofailure. In short, if resultcpofailure[i] > 0
then some assumption is violated, the higher the value (maximum 1) the more seriously. If
resultcpofailure[i] == 0 then the assumptions should be ok.

You may want to recompute those with non-zero failure. However, this must be done manually by removing
y[i] from the dataset, fit the model and then predict y[i]. To provide a more efficient implementation of
this, we have provided
improved.result = inla.cpo(result)

which take an inla-object which is the output from inla(), and recompute (in an efficient way) the cpo/pit for
which resultcpofailure > 0, and return ‘result’ with the improved estimates of cpo/pit. See ?inla.cpo
for details.

I have access to a remote Linux/MacOS server, is it possible to run the compu-
tations remotely and running R locally?
Yes! This option allow INLA to use a remote server to do the computations. In order to use this feature, you
need to do some setup which is different from (various) Linux distributions, Mac and Windows. In short:

• install R and R-INLA a remote server, for example foo.bar.org.
• Install your public ssh-key on foo.bar.org to setup password free access to the remove server using

ssh. And please check that this is indeed working before moving forward!
• On your local host, run inla.remote() to initialise the init-file ~/.inlarc and then edit this file to fit

your needs.
• You may now have to log out and log in again, to make sure your ssh key is signed out.
• You can now use option inla.call="remote" to do the computations on your remote server, or set

this globally with inla.setOption("inla.call", "remote")

12

You can also submit a job on the remote server, so you do not need to sit and wait for it to finish, but you
can collect the results later. Basically, you do
r = inla(..., inla.call = "submit")

which will start the job on the server. You can start many jobs, and list them using
inla.qstat()

and you can fetch the results (for the job above) using
r = inla.qget(r)

You can also delete jobs and fetch the jobs from another machine; see ?inla.q for further details.

HOWTO setup ssh-keys: For the unexperienced user, this is somewhat tricky; sorry about that. The easiest
is to find a friend that knows this and can help you. Newer system do a lot of these things very nicely these
days.

It is also possible to setup this from Windows using CYGWIN, and INLA can work with this interface as
well. Please see the old web-page for details, which are long and technical. HOWEVER, I am no longer
convinced that this work anymore, as I haven’t seen this is use for years. It is much much easier to use a
virtual machine with Linux on Windows.

Posteriors for linear combinations
I have some linear combinations of the nodes in the latent field that I want to compute the posterior
marginal of, is that possible? Yes! These are called ‘linear combinations’. There are handy functions,
‘inla.make.lincomb()’ and ‘inla.make.lincombs()’, to define one or many such linear combinations. Single
linear combinations made by using ‘inla.make.lincomb()’ can easily be joined into many. Its use is easiest
explained using a rather long example. . .

Here is the example, that explains these features.
A simple model
n = 100
a = rnorm(n)
b = rnorm(n)
idx = 1:n

y = rnorm(n) + a + b
formula = y ~ 1 + a + b + f(idx, model="iid")

assume we want to compute the posterior for
##
2 * beta_a + 3 * beta_b + idx[1] - idx[2]
##
which we specify as follows (and giving it a unique name)

lc1 = inla.make.lincomb(a=2, b=3, idx = c(1,-1,rep(NA,n-2)))
names(lc1) = "lc1"

strictly speaking, it is sufficient to use `idx = c(1,-1)', as the
remaining idx's are not used in any case.

r = inla(formula, data = data.frame(a,b,y),
add the linear combinations here
lincomb = lc1,

13

force noise variance to be essiatially zero
control.family = list(initial=10, fixed=TRUE))

to verify the result, we can compare the mean but the variance and
marginal cannot be computed from the simpler marginals alone.
lc1.1 = 2 * r$summary.fixed["a", "mean"] + 3 * r$summary.fixed["b",

"mean"] + r$summary.random$idx$mean[1] -
r$summary.random$idx$mean[2]

lc1.2= r$summary.lincomb.derived$mean
print(round(c(lc1.1 = lc1.1, lc1.2 = lc1.2), dig=3))

lc1.1 lc1.2
5.152 5.152

The marginals are available as r$marginals.lincomb$...

There is an another function which is handy for specifying many linear combinations at once, that is
inla.make.lincombs() (note the plural s). Here each ‘row’ define one linear combination
let wa and wb be vectors, and we want to compute the marginals for
beta_a * wa[i] + beta_b * wb[i], for i=1..m. this is done
conveniently as follows

m = 10
wa = runif(m)
wb = runif(m)
lc.many = inla.make.lincombs(a = wa, b=wb)

we can give them names as well, but there are also default names, like
print(names(lc.many))

[1] "lc01" "lc02" "lc03" "lc04" "lc05" "lc06" "lc07" "lc08" "lc09" "lc10"

r = inla(formula, data = data.frame(a,b,y),
lincomb = lc.many,
control.family = list(initial=10, fixed=TRUE))

print(round(r$summary.lincomb.derived, dig=3))

ID mean sd 0.025quant 0.5quant 0.975quant mode kld
lc01 1 0.402 0.040 0.324 0.402 0.481 0.402 0
lc02 2 1.096 0.088 0.924 1.096 1.269 1.096 0
lc03 3 0.945 0.077 0.794 0.945 1.096 0.945 0
lc04 4 1.158 0.121 0.919 1.158 1.396 1.158 0
lc05 5 0.389 0.034 0.323 0.389 0.455 0.389 0
lc06 6 1.570 0.120 1.334 1.570 1.807 1.570 0
lc07 7 1.453 0.128 1.201 1.453 1.704 1.453 0
lc08 8 1.074 0.084 0.908 1.074 1.240 1.074 0
lc09 9 0.974 0.073 0.830 0.974 1.117 0.974 0
lc10 10 1.495 0.120 1.260 1.495 1.731 1.495 0

Terms like ‘idx’ above, can be added as idx = IDX into inla.make.lincombs(), where IDX is a matrix.
Again, each column of the arguments define one linear combination.

There is a further option available for the derived linear combinations, that is the option to compute also the
posterior correlation matrix between all the linear combinations. To activate this option, use
control.inla = list(lincomb.derived.correlation.matrix = TRUE)

14

and you will find the resulting posterior correlation matrix as
result$misc$lincomb.derived.correlation.matrix

Here is a small example where we compute the correlation matrix for the predicted values of a hidden AR(1)
model with an intercept.
n = 100
nPred = 10
phi = 0.9
x = arima.sim(n, model = list(ar=phi)) * sqrt(1-phiˆ2)
y = 1 + x + rnorm(n, sd=0.1)

time = 1:(n + nPred)
Y = c(y, rep(NA, nPred))
formula = Y ~ 1 + f(time, model="ar1")

make linear combinations which are the nPred linear predictors
B = matrix(NA, nPred, n+nPred)
for(i in 1:nPred) {

B[i, n+i] = 1
}
lcs = inla.make.lincombs(Predictor = B)

r = inla(formula, data = data.frame(Y, time),
control.predictor = list(compute=TRUE),
lincomb = lcs,
control.inla = list(lincomb.derived.correlation.matrix=TRUE))

print(round(r$misc$lincomb.derived.correlation.matrix,dig=3))

lc01 lc02 lc03 lc04 lc05 lc06 lc07 lc08 lc09 lc10
lc01 1.000 0.608 0.425 0.315 0.241 0.189 0.151 0.123 0.102 0.086
lc02 0.608 1.000 0.697 0.514 0.391 0.305 0.243 0.196 0.161 0.135
lc03 0.425 0.697 1.000 0.734 0.556 0.431 0.340 0.273 0.223 0.184
lc04 0.315 0.514 0.734 1.000 0.753 0.580 0.454 0.362 0.292 0.240
lc05 0.241 0.391 0.556 0.753 1.000 0.764 0.594 0.469 0.376 0.305
lc06 0.189 0.305 0.431 0.580 0.764 1.000 0.771 0.604 0.479 0.386
lc07 0.151 0.243 0.340 0.454 0.594 0.771 1.000 0.776 0.610 0.486
lc08 0.123 0.196 0.273 0.362 0.469 0.604 0.776 1.000 0.779 0.615
lc09 0.102 0.161 0.223 0.292 0.376 0.479 0.610 0.779 1.000 0.782
lc10 0.086 0.135 0.184 0.240 0.305 0.386 0.486 0.615 0.782 1.000

INLA seems to work great for near all cases, but are there cases where INLA is
known to have problems?
The methodology needs the full conditional density for the latent field to be “near” Gaussian. This is usually
achived by either replications or smoothing/“borrowing strength”. A simple example which do not have this,
is the following:
n = 100
u = rnorm(n)
eta = 1 + u
p = exp(eta)/(1+exp(eta))
y = rbinom(n, size=1, prob = p)

15

idx = 1:n
result = inla(y ~ 1 + f(idx, model="iid",

hyper = list(prec = list(prior="pc.prec",
prior = c(1,0.01)))),

data =data.frame(y,idx), family = "binomial",
Ntrials = 1)

summary(result)

##
Call:
c("inla(formula = y ~ 1 + f(idx, model = \"iid\", hyper = list(prec =
list(prior = \"pc.prec\", ", " prior = c(1, 0.01)))), family =
\"binomial\", data = data.frame(y, ", " idx), Ntrials = 1)")
Time used:
Pre = 0.401, Running = 0.144, Post = 0.0102, Total = 0.556
Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) 0.407 0.205 0.01 0.406 0.813 0.402 0
##
Random effects:
Name Model
idx IID model
##
Model hyperparameters:
mean sd 0.025quant 0.5quant 0.975quant mode
Precision for idx 84075.62 1408395.78 9.19 211.28 143336.70 13.13
##
Marginal log-Likelihood: -68.05
Posterior summaries for the linear predictor and the fitted values are computed
(Posterior marginals needs also ’control.compute=list(return.marginals.predictor=TRUE)’)

For each binary observation there is an iid “random effect” u, and there is no smoothing/“borrowing strength’ ’
(apart from the weak intercept). If you plot the loglikelihood for eta for y = 1, say, then its an increasing
function for increasing eta, so the likelihood itself would like η =∞. With an unknown precision for u we run
into problems; INLA has a tendency to estimate a to high precision for u. However, it must be noted that
the model is almost singular and you’ll have a strong prior sensitivity in the (exact) results as well. There is
a similar discussion in here as well for the Salamander data example.

Can I have the linear predictor from one model as a covariate in a different
model?
Yes, this is possible. Essentially, you have to set the linear predictor for the first model equal to ‘u’, and then
you can copy ‘u’ and use the scaling to get the regression coefficient. A simple example will illustrate the idea:
simple example
n = 100
x1 = rnorm(n)
eta1 = 1 + x1
x2 = rnorm(n)
eta2 = 2 + 2*eta1 + 2*x2
y1 = rnorm(n, mean=eta1, sd = 0.01)
y2 = rnorm(n, mean=eta2, sd = 0.01)

the trick is to create a vector 'u' (iid) which is
equal to eta1, and then we can copy 'u' to

16

create beta*u or beta*eta1. we do this by
using 0 = eta1 -u + tiny.noise

formula = Y ~ -1 + intercept1 + X1 + intercept2 + f(u, w, model="iid",
hyper = list(prec = list(initial = -6, fixed=TRUE))) + f(b.eta2,
copy="u", hyper = list(beta = list(fixed = FALSE))) + X2

Y = matrix(NA, 3*n, 3)

part 1: y1
intercept1 = rep(1, n)
X1 = x1
intercept2 = rep(NA, n)
u = rep(NA, n)
w = rep(NA, n)
b.eta2 = rep(NA, n)
X2 = rep(NA, n)
Y[1:n, 1] = y1

part 2: 0 = eta1 - u + tiny.noise
intercept1 = c(intercept1, intercept1)
X1 = c(X1, x1)
intercept2 = c(intercept2, rep(NA, n))
u = c(u, 1:n)
w = c(w, rep(-1, n))
b.eta2 = c(b.eta2, rep(NA, n))
X2 = c(X2, rep(NA, n))
Y[n + 1:n, 2] = 0

part 3: y2
intercept1 = c(intercept1, rep(NA, n))
X1 = c(X1, rep(NA, n))
intercept2 = c(intercept2, rep(1, n))
u = c(u, rep(NA, n))
w = c(w, rep(NA, n))
b.eta2 = c(b.eta2, 1:n)
X2 = c(X2, x2)
Y[2*n + 1:n, 3] = y2

r = inla(formula,
data = list(Y=Y, intercept1=intercept1, X1=X1,

intercept2=intercept2, u=u, w=w, b.eta2=b.eta2, X2=X2),
family = rep("gaussian", 3),
control.inla = list(h = 1e-3),
control.family = list(

list(),
list(hyper = list(prec = list(initial = 10, fixed=TRUE))),
list()))

summary(r)

##
Call:
c("inla(formula = formula, family = rep(\"gaussian\", 3), data = list(Y

17

= Y, ", " intercept1 = intercept1, X1 = X1, intercept2 = intercept2, ",
" u = u, w = w, b.eta2 = b.eta2, X2 = X2), control.family =
list(list(), ", " list(hyper = list(prec = list(initial = 10, fixed =
TRUE))), ", " list()), control.inla = list(h = 0.001))")
Time used:
Pre = 0.483, Running = 0.366, Post = 0.0195, Total = 0.868
Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant mode kld
intercept1 0.999 0.001 0.997 0.999 1.000 0.999 0
X1 1.002 0.001 1.000 1.002 1.003 1.002 0
intercept2 2.005 0.003 1.999 2.005 2.011 2.005 0
X2 1.999 0.002 1.996 1.999 2.001 1.999 0
##
Random effects:
Name Model
u IID model
b.eta2 Copy
##
Model hyperparameters:
mean sd 0.025quant 0.5quant
Precision for the Gaussian observations 15431.23 154.394 14880.44 15458.90
Precision for the Gaussian observations[3] Inf NaN 0.00 0.00
Beta for b.eta2 2.00 0.002 1.99 2.00
0.975quant mode
Precision for the Gaussian observations 15941.34 15381.62
Precision for the Gaussian observations[3] Inf NaN
Beta for b.eta2 2.00 2.00
##
Marginal log-Likelihood: 211.38
Posterior summaries for the linear predictor and the fitted values are computed
(Posterior marginals needs also ’control.compute=list(return.marginals.predictor=TRUE)’)

Latent models, likelihoods and priors.
The list of latent models, likelihood and priors implemented, can be found by doing (or give a spesific section,
see ?inla.list.models)
inla.list.models()

Section [group]
ar AR(p) correlations
ar1 AR(1) correlations
besag Besag model
exchangeable Exchangeable correlations
exchangeablepos Exchangeable positive correlations
iid Independent model
rw1 Random walk of order 1
rw2 Random walk of order 2
Section [hazard]
iid An iid model for the log-hazard
rw1 A random walk of order 1 for the log-hazard
rw2 A random walk of order 2 for the log-hazard
Section [latent]
2diid (This model is obsolute)
ar Auto-regressive model of order p (AR(p))

18

ar1 Auto-regressive model of order 1 (AR(1))
ar1c Auto-regressive model of order 1 w/covariates
besag The Besag area model (CAR-model)
besag2 The shared Besag model
besagproper A proper version of the Besag model
besagproper2 An alternative proper version of the Besag model
bym The BYM-model (Besag-York-Mollier model)
bym2 The BYM-model with the PC priors
clinear Constrained linear effect
copy Create a copy of a model component
crw2 Exact solution to the random walk of order 2
dmatern Dense Matern field
fgn Fractional Gaussian noise model
fgn2 Fractional Gaussian noise model (alt 2)
generic A generic model
generic0 A generic model (type 0)
generic1 A generic model (type 1)
generic2 A generic model (type 2)
generic3 A generic model (type 3)
iid Gaussian random effects in dim=1
iid1d Gaussian random effect in dim=1 with Wishart prior
iid2d Gaussian random effect in dim=2 with Wishart prior
iid3d Gaussian random effect in dim=3 with Wishart prior
iid4d Gaussian random effect in dim=4 with Wishart prior
iid5d Gaussian random effect in dim=5 with Wishart prior
iidkd Gaussian random effect in dim=k with Wishart prior
intslope Intecept-slope model with Wishart-prior
linear Alternative interface to an fixed effect
log1exp A nonlinear model of a covariate
logdist A nonlinear model of a covariate
matern2d Matern covariance function on a regular grid
meb Berkson measurement error model
mec Classical measurement error model
ou The Ornstein-Uhlenbeck process
revsigm Reverse sigmoidal effect of a covariate
rgeneric Generic latent model spesified using R
rw1 Random walk of order 1
rw2 Random walk of order 2
rw2d Thin-plate spline model
rw2diid Thin-plate spline with iid noise
seasonal Seasonal model for time series
sigm Sigmoidal effect of a covariate
slm Spatial lag model
spde A SPDE model
spde2 A SPDE2 model
spde3 A SPDE3 model
z The z-model in a classical mixed model formulation
Section [likelihood]
agaussian The aggregated Gaussian likelihoood
beta The Beta likelihood
betabinomial The Beta-Binomial likelihood
betabinomialna The Beta-Binomial Normal approximation likelihood
bgev The blended Generalized Extreme Value likelihood
binomial The Binomial likelihood

19

cbinomial The clustered Binomial likelihood
cenpoisson Then censored Poisson likelihood
cenpoisson2 Then censored Poisson likelihood (version 2)
circularnormal The circular Gaussian likelihoood
coxph Cox-proportional hazard likelihood
dgp Discrete generalized Pareto likelihood
exponential The Exponential likelihood
exponentialsurv The Exponential likelihood (survival)
fmri fmri distribution (special nc-chi)
fmrisurv fmri distribution (special nc-chi)
gamma The Gamma likelihood
gammacount A Gamma generalisation of the Poisson likelihood
gammajw A special case of the Gamma likelihood
gammajwsurv A special case of the Gamma likelihood (survival)
gammasurv The Gamma likelihood (survival)
gaussian The Gaussian likelihoood
gev The Generalized Extreme Value likelihood
gompertz gompertz distribution
gompertzsurv gompertz distribution
gp Generalized Pareto likelihood
gpoisson The generalized Poisson likelihood
iidgamma (experimental)
iidlogitbeta (experimental)
loggammafrailty (experimental)
logistic The Logistic likelihoood
loglogistic The loglogistic likelihood
loglogisticsurv The loglogistic likelihood (survival)
lognormal The log-Normal likelihood
lognormalsurv The log-Normal likelihood (survival)
logperiodogram Likelihood for the log-periodogram
nbinomial The negBinomial likelihood
nbinomial2 The negBinomial2 likelihood
nmix Binomial-Poisson mixture
nmixnb NegBinomial-Poisson mixture
poisson The Poisson likelihood
poisson.special1 The Poisson.special1 likelihood
pom Likelihood for the proportional odds model
qkumar A quantile version of the Kumar likelihood
qloglogistic A quantile loglogistic likelihood
qloglogisticsurv A quantile loglogistic likelihood (survival)
simplex The simplex likelihood
sn The Skew-Normal likelihoood
stochvol The Gaussian stochvol likelihood
stochvolnig The Normal inverse Gaussian stochvol likelihood
stochvolsn The SkewNormal stochvol likelihood
stochvolt The Student-t stochvol likelihood
t Student-t likelihood
tstrata A stratified version of the Student-t likelihood
tweedie Tweedie distribution
weibull The Weibull likelihood
weibullcure The Weibull-cure likelihood (survival)
weibullsurv The Weibull likelihood (survival)
wrappedcauchy The wrapped Cauchy likelihoood
xbinomial The Binomial likelihood (expert version)

20

xpoisson The Poisson likelihood (expert version)
zeroinflatedbetabinomial0 Zero-inflated Beta-Binomial, type 0
zeroinflatedbetabinomial1 Zero-inflated Beta-Binomial, type 1
zeroinflatedbetabinomial2 Zero inflated Beta-Binomial, type 2
zeroinflatedbinomial0 Zero-inflated Binomial, type 0
zeroinflatedbinomial1 Zero-inflated Binomial, type 1
zeroinflatedbinomial2 Zero-inflated Binomial, type 2
zeroinflatedcenpoisson0 Zero-inflated censored Poisson, type 0
zeroinflatedcenpoisson1 Zero-inflated censored Poisson, type 1
zeroinflatednbinomial0 Zero inflated negBinomial, type 0
zeroinflatednbinomial1 Zero inflated negBinomial, type 1
zeroinflatednbinomial1strata2 Zero inflated negBinomial, type 1, strata 2
zeroinflatednbinomial1strata3 Zero inflated negBinomial, type 1, strata 3
zeroinflatednbinomial2 Zero inflated negBinomial, type 2
zeroinflatedpoisson0 Zero-inflated Poisson, type 0
zeroinflatedpoisson1 Zero-inflated Poisson, type 1
zeroinflatedpoisson2 Zero-inflated Poisson, type 2
zeroninflatedbinomial2 Zero and N inflated binomial, type 2
zeroninflatedbinomial3 Zero and N inflated binomial, type 3
Section [link]
cauchit The cauchit-link
cloglog The complementary log-log link
default The default link
identity The identity link
inverse The inverse link
log The log-link
loga The loga-link
logit The logit-link
logitoffset Logit-link with an offset
loglog The log-log link
logoffset Log-link with an offset
neglog The negative log-link
pquantile The population quantile-link
probit The probit-link
quantile The quantile-link
robit Robit link
sn Skew-normal link
special1 A special1-link function (experimental)
special2 A special2-link function (experimental)
sslogit Logit link with sensitivity and specificity
tan The tan-link
test1 A test1-link function (experimental)
Section [lp.scale]
NA Section [mix]
gaussian Gaussian mixture
loggamma LogGamma mixture
mloggamma Minus-LogGamma mixture
Section [predictor]
predictor (do not use)
Section [prior]
betacorrelation Beta prior for the correlation
dirichlet Dirichlet prior
expression: A generic prior defined using expressions
flat A constant prior

21

gamma Gamma prior
gaussian Gaussian prior
invalid Void prior
jeffreystdf Jeffreys prior for the doc
linksnintercept Skew-normal-link intercept-prior
logflat A constant prior for log(theta)
loggamma Log-Gamma prior
logiflat A constant prior for log(1/theta)
logitbeta Logit prior for a probability
logtgaussian Truncated Gaussian prior
logtnormal Truncated Normal prior
minuslogsqrtruncnormal (obsolete)
mvnorm A multivariate Normal prior
none No prior
normal Normal prior
pc Generic PC prior
pc.alphaw PC prior for alpha in Weibull
pc.ar PC prior for the AR(p) model
pc.cor0 PC prior correlation, basemodel cor=0
pc.cor1 PC prior correlation, basemodel cor=1
pc.dof PC prior for log(dof-2)
pc.fgnh PC prior for the Hurst parameter in FGN
pc.gamma PC prior for a Gamma parameter
pc.gammacount PC prior for the GammaCount likelihood
pc.gevtail PC prior for the tail in the GEV likelihood
pc.matern PC prior for the Matern SPDE
pc.mgamma PC prior for a Gamma parameter
pc.prec PC prior for log(precision)
pc.range PC prior for the range in the Matern SPDE
pc.sn PC prior for the skew-normal
pc.spde.GA (experimental)
pom #classes-dependent prior for the POM model
ref.ar Reference prior for the AR(p) model, p<=3
table: A generic tabulated prior
wishart1d Wishart prior dim=1
wishart2d Wishart prior dim=2
wishart3d Wishart prior dim=3
wishart4d Wishart prior dim=4
wishart5d Wishart prior dim=5
wishartkd Wishart prior
Section [wrapper]
joint (experimental)

Copying a model
We often encounter the situation where an element of a model is needed more than once for each observation.
One example is where
y = a + b*w + ...

for fixed weights w and where (ai, bi) is bivariate Normal and all 2-vectors are independent.

Using the model
f(idx, model="iid2d", n=2*m, ...)

22

provide a random vector v, say, with length 2m stored as

v = (a1, a2, ..., am, b1, b2,, bm).

To implement this, we simply create an indentical copy of v, v∗, where v == v∗ (nearly). Using the
copy-feature, we can do
idx = 1:m
idx.copy = m + 1:m
formula = y ~ f(idx, model="iid2d", n=2*m) + f(idx.copy, w, copy="idx") +

recalling that the first m elements is a and the last m elements are b, and where w are the weights.

The second f() terms define itself as a copy of f(idx, ...), and it inherit some of its features, like n and
values.

A copied model may also have an unknown scaling (hyperparameter), which is default fixed to be 1. In
the following example, we will use this feature to estimate the unknown scaling (in this case, scaling is 2),
assuming we know the precision for z.
n=1000
i=1:n
j = i
z = rnorm(n)
w = runif(n)
y = z + 2*z*w + rnorm(n)
formula = y ~ f(i, model="iid",initial=0, fixed=T) +

f(j, w, copy="i", fixed=FALSE)
r = inla(formula, data = data.frame(i,j,w,y))
summary(r)

##
Call:
"inla(formula = formula, data = data.frame(i, j, w, y))"
Time used:
Pre = 0.539, Running = 1.14, Post = 0.0389, Total = 1.72
Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) -0.071 0.068 -0.205 -0.071 0.062 -0.071 0
##
Random effects:
Name Model
i IID model
j Copy
##
Model hyperparameters:
mean sd 0.025quant 0.5quant
Precision for the Gaussian observations 0.65 0.115 0.455 0.639
Beta for j 1.72 0.144 1.443 1.719
0.975quant mode
Precision for the Gaussian observations 0.908 0.617
Beta for j 2.007 1.713
##
Marginal log-Likelihood: -2244.58
Posterior summaries for the linear predictor and the fitted values are computed
(Posterior marginals needs also ’control.compute=list(return.marginals.predictor=TRUE)’)

23

If the scaling parameter is within given range, then option \verb|range = c(low, high)|, can be given. In this
case
beta = low + (high-low)*exp(beta.local)/(1+exp(beta.local))

and the prior is defined on beta.local.

If low=high or range = NULL, then the identity mapping is used. If high=Inf and |verb|low!=Inf|, then the
mapping low + exp(beta.local) is used. The case low=Inf and high!=Inf is not yet implemented.

A model or a copied model can be copied several times. The degree of closeness of v and v∗ is specified by
the argument precision, as the precision of the noise added to v to get v∗.

Replicate a model
Independent replications of a model with the same hyperparmeters can be defined using the argument
replicate,
f(idx, model = .., replicate = r)

Here, r is a vector of the same length as idx. In this case, we use a two-dimensional index to index this
(sub-)model: (idx, r), so (1,2) identify the first value of the second replication of this model (component).
Number of replications are defined as max(replicate), unless it is defined by the argument nrep.

One example is the model ‘iid’:
i = 1:n
formula = y ~ f(i, model = "iid") + ...

which has an alternative equivalent formulation as ‘n’ replications of an iid-model with length 1
i = rep(1,n)
r = 1:n
formula = y ~ f(i, model="iid", replicate = r) + ...

In the following example, we estimate the parameters in three AR(1) time-series with the same hyperparameters
(ie its replicated) but with separate means:
n = 100
y1 = arima.sim(n=n, model=list(ar=c(0.9)))+10
y2 = arima.sim(n=n, model=list(ar=c(0.9)))+20
y3 = arima.sim(n=n, model=list(ar=c(0.9)))+30

formula = y ~ mean -1 + f(i, model="ar1", replicate=r)
y = c(y1,y2,y3)
i = rep(1:n, 3)
r = rep(1:3, each=n)
mean = as.factor(r)
result = inla(formula, family = "gaussian",

data = data.frame(y, i, mean),
control.family = list(initial = 12, fixed=TRUE))

summary(result)

##
Call:
c("inla(formula = formula, family = \"gaussian\", data = data.frame(y,
", " i, mean), control.family = list(initial = 12, fixed = TRUE))")
Time used:
Pre = 0.456, Running = 0.468, Post = 0.0168, Total = 0.941

24

Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant mode kld
mean1 10.088 1.465 7.207 10.071 13.072 10.047 0.001
mean2 18.118 1.476 15.010 18.168 20.915 18.231 0.001
mean3 31.066 1.483 27.909 31.128 33.839 31.206 0.001
##
Random effects:
Name Model
i AR1 model
##
Model hyperparameters:
mean sd 0.025quant 0.5quant 0.975quant mode
Precision for i 0.143 0.044 0.070 0.139 0.241 0.131
Rho for i 0.936 0.020 0.893 0.938 0.969 0.941
##
Marginal log-Likelihood: -431.54
Posterior summaries for the linear predictor and the fitted values are computed
(Posterior marginals needs also ’control.compute=list(return.marginals.predictor=TRUE)’)

All other arguments is interpreted for the basic model and also replicated. Like argument constr=TRUE, is
interpreted as each replication sums to zero, and additional constraints are also replicated.

Models with more than one type of likelihood
There is no constraint in INLA that the type of likelihood must be the same for all observations. In fact,
every observation could have its own likelihood. Extentions include more than one familily, like the Normal,
Poisson, etc, but also having in the model groups of observations with separate hyperparameters within each
group, where the family, for example, can be the same.

In the formula
y ~ a + 1

we allow y to be a matrix. In this case each column of y define one likelihood where the family is the same
the hyperparameters are the same. For each row, only one of the columns could (but don’t have to) have an
observation (non-NA value), the other colums must have value NA. All other parameters to the likelihood, like
E Ntrials, offset and scale are used as appropriate. Example: If row i column j is a Poission observation,
then E[i] is used as the scaling. Similar with the others. This works as only one column for each row is
non-NA.

The argument family is in the case where y is a matrix, a list of families. The argument control.family is
then a list of lists; one for each family.

The first example, is a simple linear regression, where the first half of the data is observed with unknown
precision tau.1 (with a ‘default’ noninformative prior) and the second half of the data is observed with
unknown precision tau.2. Otherwise, the two models have the same form for the linear predictor.
Simple linear regression with observations with two different
variances.
n = 100
N = 2*n
y = numeric(N)
x = rnorm(N)

y[1:n] = 1 + x[1:n] + rnorm(n, sd = 1/sqrt(1))
y[1:n + n] = 1 + x[1:n + n] + rnorm(n, sd = 1/sqrt(2))

25

Y = matrix(NA, N, 2)
Y[1:n, 1] = y[1:n]
Y[1:n + n, 2] = y[1:n + n]

formula = Y ~ x + 1
result = inla(

formula,
data = list(Y=Y, x=x),
family = c("gaussian", "gaussian"),
control.family = list(list(prior = "flat", param = numeric()),

list()))
summary(result)

##
Call:
c("inla(formula = formula, family = c(\"gaussian\", \"gaussian\"), data
= list(Y = Y, ", " x = x), control.family = list(list(prior = \"flat\",
param = numeric()), ", " list()))")
Time used:
Pre = 0.418, Running = 0.195, Post = 0.0181, Total = 0.631
Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) 1.029 0.051 0.929 1.029 1.128 1.029 0
x 1.033 0.048 0.938 1.033 1.128 1.032 0
##
Model hyperparameters:
mean sd 0.025quant 0.5quant
Precision for the Gaussian observations 0.998 0.142 0.744 0.99
Precision for the Gaussian observations[2] 3.010 0.425 2.249 2.98
0.975quant mode
Precision for the Gaussian observations 1.30 0.976
Precision for the Gaussian observations[2] 3.92 2.940
##
Marginal log-Likelihood: -248.42
Posterior summaries for the linear predictor and the fitted values are computed
(Posterior marginals needs also ’control.compute=list(return.marginals.predictor=TRUE)’)

The second example shows how to use information from two sources to estimate the effect of the covariate x.
Simple example with two types of likelihoods
n = 10
N = 2*n

common covariates
x = rnorm(n)

Poisson, depends on x
E1 = runif(n)
y1 = rpois(n, lambda = E1*exp(x))

Binomial, depends on x
size = sample(1:10, size=n, replace=TRUE)
prob = exp(x)/(1+exp(x))
y2 = rbinom(n, size= size, prob = prob)

26

Join them together
Y = matrix(NA, N, 2)
Y[1:n, 1] = y1
Y[1:n + n, 2] = y2

The E for the Poisson
E = numeric(N)
E[1:n] = E1
E[1:n + n] = NA

Ntrials for the Binomial
Ntrials = numeric(N)
Ntrials[1:n] = NA
Ntrials[1:n + n] = size

Duplicate the covariate which is shared
X = numeric(N)
X[1:n] = x
X[1:n + n] = x

Formula involving Y as a matrix
formula = Y ~ X - 1

`family' is now
result = inla(formula,

family = c("poisson", "binomial"),
data = list(Y=Y, X=X),
E = E, Ntrials = Ntrials)

summary(result)

##
Call:
c("inla(formula = formula, family = c(\"poisson\", \"binomial\"), data
= list(Y = Y, ", " X = X), E = E, Ntrials = Ntrials)")
Time used:
Pre = 0.424, Running = 0.116, Post = 0.00552, Total = 0.546
Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant mode kld
X 1.054 0.182 0.674 1.062 1.39 1.078 0
##
Marginal log-Likelihood: -28.28
Posterior summaries for the linear predictor and the fitted values are computed
(Posterior marginals needs also ’control.compute=list(return.marginals.predictor=TRUE)’)

If the covariate ‘x’ is different for the two families, x and xx, say, then we only need to make the following
changes
X = numeric(N)
X[1:n] = x
X[1:n + n] = NA

XX = numeric(N)
XX[1:n] = NA
XX[1:n + n] = xx

27

formula = Y ~ X + XX -1

and add XX into the data.frame. Note how we can express the joint model as a ‘union’ of models with the use
of NA’s to remove terms.

In the next example, we use also the replicate feature to estimate three replicated AR(1) models with the
same hyperparamters, each observed differently.
An example with three independent AR(1)'s with separate means, but
with the same hyperparameters. These are observed with three
different likelihoods.

n = 100
x1 = arima.sim(n=n, model=list(ar=c(0.9))) + 0
x2 = arima.sim(n=n, model=list(ar=c(0.9))) + 1
x3 = arima.sim(n=n, model=list(ar=c(0.9))) + 2

Binomial observations
Nt = 10 + rpois(n,lambda=1)
y1 = rbinom(n, size=Nt, prob = exp(x1)/(1+exp(x1)))

Poisson observations
Ep = runif(n, min=1, max=10)
y2 = rpois(n, lambda = Ep*exp(x2))

Gaussian observations
y3 = rnorm(n, mean=x3, sd=0.1)

stack these in a 3-column matrix with NA's where not observed
y = matrix(NA, 3*n, 3)
y[1:n, 1] = y1
y[n + 1:n, 2] = y2
y[2*n + 1:n, 3] = y3

define the model
r = c(rep(1,n), rep(2,n), rep(3,n))
rf = as.factor(r)
i = rep(1:n, 3)
formula = y ~ f(i, model="ar1", replicate=r, constr=TRUE) + rf -1
data = list(y=y, i=i, r=r, rf=rf)

parameters for the binomial and the poisson
Ntrial = rep(NA, 3*n)
Ntrial[1:n] = Nt
E = rep(NA, 3*n)
E[1:n + n] = Ep

result = inla(formula, family = c("binomial", "poisson", "normal"),
data = data, Ntrial = Ntrial, E = E,
control.family = list(

list(),
list(),
list()))

summary(result)

28

##
Call:
c("inla(formula = formula, family = c(\"binomial\", \"poisson\",
\"normal\"), ", " data = data, E = E, Ntrials = Ntrial, control.family
= list(list(), ", " list(), list()))")
Time used:
Pre = 0.413, Running = 0.532, Post = 0.0173, Total = 0.963
Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant mode kld
rf1 -0.480 0.095 -0.670 -0.478 -0.298 -0.475 0
rf2 1.490 0.040 1.409 1.491 1.566 1.493 0
rf3 1.107 0.001 1.105 1.107 1.109 1.107 0
##
Random effects:
Name Model
i AR1 model
##
Model hyperparameters:
mean sd 0.025quant
Precision for the Gaussian observations[3] 1.74e+04 1.72e+04 1380.251
Precision for i 2.29e-01 4.60e-02 0.147
Rho for i 8.61e-01 2.80e-02 0.802
0.5quant 0.975quant mode
Precision for the Gaussian observations[3] 1.24e+04 6.32e+04 3843.856
Precision for i 2.27e-01 3.26e-01 0.224
Rho for i 8.62e-01 9.11e-01 0.863
##
Marginal log-Likelihood: -847.82
Posterior summaries for the linear predictor and the fitted values are computed
(Posterior marginals needs also ’control.compute=list(return.marginals.predictor=TRUE)’)

Models where the response/data depends on linear combinations of the “linear
predictor” (or the sum of “fixed” and “random” effects)
In some cases, the data/response might depend on a linear combination of the “linear predictor” defined in
the formula, like
y ~ 1 + z

then this implies that y[1] depends on intercept + beta*z[1]. Suppose if y[1] depends on
2*intercept + beta*z[1] + beta*z[2]? Although it is possible to express this, using the tools we already
have, it is more convenient to add another layer into the model. Let A be a m x n matrix, which defines new
linear predictors, eta~ from eta, like
eta~ = A %*% eta

Here, eta is the ordinary linear predictor defined using the formula, and the data depends on the linear
predictor eta~. So we might express this as
y ~ 1 + z, with addition matrix A

meaning in short, that
y ~ eta~ ## no intercept...
eta~ = A %*% eta
eta = intercept + beta*z

29

This is specified by adding the A-matrix, using
control.predictor=list(A=A)

The argument offset, which might be defined in the formula as offset(value) or as an argument
inla(..., offset = value), does have different interpretation in the case where the A-matrix is used. The
rule is that offset in the formula, goes into eta, whereas an argument offset goes into eta~. If we write
out the expressions above adding offsets, offset.formula and offset.arg, we get
eta~ = A %*% eta + offset.arg
eta = intercept + beta*z + offset.formula

In the case where there is no A-matrix, then \verb|offset.total = offset.arg + offset.formula|.

The following example should provide more insight. You may change n and m, such that m < n, m = n
or m > n. Note that since the response has dimension m and the covariates dimension n, we need to use
list(y=y, z=z) and not a data.frame(). This example also illustrates the use of offset’s.
'm' is the number of observations of eta*, where eta* = A eta +
offset.arg, and A is a fixed m x n matrix, and eta has length n. An
offset in the formula goes into 'eta' whereas an offset in the
argument of the inla-call, goes into eta*
n = 10
m = 100
offset.formula = 10+ 1:n
offset.arg = 1 + 1:m

a covariate
z = runif(n)

the linear predictor eta
eta = 1 + z + offset.formula

the linear predictor eta* = A eta + offset.arg.
A = matrix(runif(n*m), m, n);
##A = inla.as.sparse(A) ## sparse is ok
need 'as.vector', as 'Eta' will be a sparseMatrix if 'A' is sparse
even if ncol(Eta) = 1
Eta = as.vector(A %*% eta) + offset.arg

s = 1e-6
Y = Eta + rnorm(m, sd=s)

for a check, we can use several offsets. here, m1=-1 and p1=1, so
they m1+p1 = 0.
r = inla(Y ~ 1+z + offset(offset.formula) + offset(m1) + offset(p1),

The A-matrix defined here
control.predictor = list(A = A, compute=TRUE, precision = 1e6),
we need to use a list() as the different lengths of Y
and z
data = list(Y=Y, z=z,

m1 = rep(-1, n),
p1 = rep(1, n),
offset.formula = offset.formula,
offset.arg = offset.arg),

this is the offset defined in the argument of inla

30

offset = offset.arg,
##
control.family = list(initial = log(1/sˆ2), fixed=TRUE))

Warning in inla(Y ~ 1 + z + offset(offset.formula) + offset(m1) + offset(p1), : The A-matrix in the predictor (see ?control.predictor) is specified
but an intercept is in the formula. This will likely result
in the intercept being applied multiple times in the model, and is likely
not what you want. See ?inla.stack for more information.
You can remove the intercept adding ‘‘-1’’ to the formula.

summary(r)

##
Call:
c("inla(formula = Y ~ 1 + z + offset(offset.formula) + offset(m1) + ",
" offset(p1), data = list(Y = Y, z = z, m1 = rep(-1, n), p1 = rep(1, ",
" n), offset.formula = offset.formula, offset.arg = offset.arg), ", "
offset = offset.arg, control.predictor = list(A = A, compute = TRUE, ",
" precision = 1e+06), control.family = list(initial = log(1/s^2), ", "
fixed = TRUE))")
Time used:
Pre = 0.392, Running = 0.116, Post = 0.00636, Total = 0.515
Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) 1 0.001 0.999 1 1.001 1 0
z 1 0.001 0.997 1 1.003 1 0
##
Marginal log-Likelihood: -47639.10
Posterior summaries for the linear predictor and the fitted values are computed
(Posterior marginals needs also ’control.compute=list(return.marginals.predictor=TRUE)’)

this should be a small number
print(max(abs(r$summary.linear.predictor$mean - c(Eta, eta))))

[1] 8.041647e-06

Here is a another example where the informal formula is
y = intercept + s[j] + 0.5*s[k] + noise

Instead of using the copy feature, we can implement this model using the A-matrix feature. What we do, is
to first define a linear predictor being the intercept and s, then we use the A-matrix to ‘construct the model’.
n = 100
s = c(-1, 0, 1)
nS = length(s)
j = sample(1L:nS, n, replace=TRUE)
k = j
k[j == 1L] = 2
k[j == 2L] = 3
k[k == 3L] = 1

noise = rnorm(n, sd=0.0001)
y = 1 + s[j] + 0.5*s[k] + noise

build the formula such that the linear predictor is the intercept
(index 1) and the 's' term (index 2:(n+1)). then kind of

31

'construct' the model using the A-matrix.
formula = y ~ -1 + intercept + f(idx)
A = matrix(0, n, nS+1L)
for(i in 1L:n) {

A[i, 1L] = 1
A[i, 1L + j[i]] = 1
A[i, 1L + k[i]] = 0.5

}

data = list(intercept = c(1, rep(NA, nS)), idx = c(NA, 1L:nS))
result = inla(formula, data=data, control.predictor=list(A=A))
should be a straight line
plot(result$summary.random$idx$mean, s, pch=19)
abline(a=0,b=1)

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

result$summary.random$idx$mean

s

32

	Contents
	Introduction
	User-defined priors for the hyperparameters
	Does INLA support the use of different link-functions?
	How can I do predictions using INLA?
	Some of the models needs a graph, how do I specify it?
	How deal with
	Can INLA deal with missing covariates?
	Compute cross-validation or predictive measures of fit
	I have access to a remote Linux/MacOS server, is it possible to run the computations remotely and running R locally?
	Posteriors for linear combinations
	INLA seems to work great for near all cases, but are there cases where INLA is known to have problems?
	Can I have the linear predictor from one model as a covariate in a different model?
	Latent models, likelihoods and priors.
	Copying a model
	Replicate a model
	Models with more than one type of likelihood
	Models where the response/data depends on linear combinations of the ``linear predictor'' (or the sum of ``fixed'' and ``random'' effects)

