
“Expression”: a do-it-yourself prior

This prior allow the user to define an expression for the log-density of any (univariate) prior log π(θ),
as a function of the corresponding θ (which is in the internal scale; be aware).

The expression is evaluated using the muparser-library1, with some local configuration changes
to make it more “R”-like in style. The format is

expression: <statement>; <statement>; ...; return(<value>)

where “<statement>” is any regular statement (more below) and value returned, “<value>” is the
value for the log-density of the prior, evaluated at the current value for θ.

The following expression implements the normal prior (in not a good way...)

expression:

mean = 0; sigma = 1;

dens = 1/sqrt(2*pi) * 1/sigma * exp(-0.5*(x-mean)^2/sigma^2);

logdens = log(dens);

return(logdens)

All variables in the expression are initialised with the current value of θ before the expression is
evaluated. In this way, the variable x in this example will be θ.

Notes

1. return (x) (with a space before “(.)”) is NOT allowed, it must be return(x).

2. A “;” is needed to terminate each expression, a newline DOES NOT terminate an expression.

3. You can use “_” in variable-names, like log_precision = <whatever>; see the following ex-
ample.

Known functions

Known functions (besides common math-functions like “exp(·)”, “sin(·)”, etc...) are

• gamma(x) is the Gamma-function and lgamma(x) is its log, and the derivaties digamma(x) and
trigamma(x) (see ?gamma in R).

• pi is π

• xy is expressed as either x^y or pow(x;y)

Example

y = rnorm(1)

using buildt-in prior

a = 1

b = 0.1

hyper = list(prec = list(prior = "loggamma", param = c(a, b)))

r = inla(y ~ 1, data = data.frame(y),

control.family = list(hyper = hyper))

implementing the loggamma-prior using "expression:"

1See http://muparser.sourceforge.net/ for more documentation

1

loggamma = "expression:

a = 1;

b = 0.1;

precision = exp(log_precision);

logdens = log(b^a) - lgamma(a)

+ (a-1)*log_precision - b*precision;

log_jacobian = log_precision;

return(logdens + log_jacobian);"

hyper.new = list(prec = list(prior = loggamma))

r.new = inla(y ~ 1, data = data.frame(y),

control.family = list(hyper = hyper.new))

and we verify that we get the same result...

print(r$summary.hyperpar[1,"mean"])

print(r.new$summary.hyperpar[1,"mean"])

2

