inla.mesh.2d {INLA} | R Documentation |
Create a triangle mesh based on initial point locations, specified or automatic boundaries, and mesh quality parameters.
inla.mesh.2d( loc = NULL, loc.domain = NULL, offset = NULL, n = NULL, boundary = NULL, interior = NULL, max.edge = NULL, min.angle = NULL, cutoff = 1e-12, max.n.strict = NULL, max.n = NULL, plot.delay = NULL, crs = NULL )
loc |
Matrix of point locations to be used as initial triangulation
nodes. Can alternatively be a |
loc.domain |
Matrix of point locations used to determine the domain
extent. Can alternatively be a |
offset |
The automatic extension distance. One or two values, for an inner and an optional outer extension. If negative, interpreted as a factor relative to the approximate data diameter (default=-0.10???) |
n |
The number of initial nodes in the automatic extensions (default=16) |
boundary |
A list of one or two |
interior |
An |
max.edge |
The largest allowed triangle edge length. One or two values. |
min.angle |
The smallest allowed triangle angle. One or two values. (Default=21) |
cutoff |
The minimum allowed distance between points. Point at most as far apart as this are replaced by a single vertex prior to the mesh refinement step. |
max.n.strict |
The maximum number of vertices allowed, overriding
|
max.n |
The maximum number of vertices allowed, overriding
|
plot.delay |
On Linux (and Mac if appropriate X11 libraries are
installed), specifying a nonnegative numeric value activates a rudimentary
plotting system in the underlying On all systems, specifying any negative value activates displaying the result after each step of the multi-step domain extension algorithm. |
crs |
An optional |
An inla.mesh
object.
Finn Lindgren finn.lindgren@gmail.com
inla.mesh.create()
, inla.delaunay()
,
inla.nonconvex.hull()
loc <- matrix(runif(10 * 2), 10, 2) if (require("splancs")) { boundary <- list( inla.nonconvex.hull(loc, 0.1, 0.15), inla.nonconvex.hull(loc, 0.2, 0.2) ) offset <- NULL } else { boundary <- NULL offset <- c(0.1, 0.2) } mesh <- inla.mesh.2d(loc, boundary = boundary, offset = offset, max.edge = c(0.05, 0.1)) plot(mesh)