
Binomial and negative binomial distribution

Parametrisation

The Binomial distribution is

Prob(y) =

(
n

y

)
py(1− p)n−y

for responses y = 0, 1, 2, . . . , n, where

n: number of trials.

p: probability of success in each trial.

The negative binomial distribution is

Prob(n) =

(
n− 1

y − 1

)
py(1− p)n−y

for given y = 1, 2, . . . and response n− y = 0, 1, 2, . . ..

Link-function

The mean and variance of y are given in the binomial case as

µ = np and σ2 = np(1− p)

and the probability p is linked to the linear predictor by

p(η) =
exp(η)

1 + exp(η)

Hyperparameters

None.

Hyperparameter spesification and default values

doc The Binomial likelihood

hyper

survival FALSE

discrete TRUE

link default logit loga cauchit probit cloglog loglog log sslogit logitoffset quantile pquantile robit sn

pdf binomial

Specification

• family = binomial

• Required arguments: y and n (keyword Ntrials)

• Optional argument: variant=0 for binomial (default), and variant=1 for the negative bino-
mial.
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Expert version

There is also an “expert” version were you are supposed to know what you are doing. Here, we allow
y and n to be non-integers (whatever that means), however, the condition 0 ≤ y ≤ n apply. The
normalizing constant is computed as above using the integer part of y and n. This is similar to using
floor(y) and floor(n) in R. The marginal likelihood estimate will in this case make less sense.

• family = xbinomial

• Required arguments: y and n (keyword Ntrials)

• Optional argument: scale=q, which scales the probability with 0 < q ≤ 1 into p′, where

p′ = qp(η).

By default, q = 1. Note that “fitted values” will still be be p(η).

doc The Binomial likelihood (expert version)

hyper

survival FALSE

discrete TRUE

link default logit loga cauchit probit cloglog loglog log sslogit logitoffset quantile pquantile robit sn

pdf binomial

status experimental

Examples

In the following example we estimate the parameters in a simulated example with binomial responses.

## binomial

n=100

a = 1

b = 1

z = rnorm(n)

eta = a + b*z

formula <- y ~ 1 + z

prob = exp(eta)/(1 + exp(eta))

Ntrials = sample(1:10, size=n, replace=TRUE)

y = rbinom(n, size = Ntrials, prob = prob)

data = data.frame(y, z, Ntrials)

r = inla(formula, family = "binomial", data = data, Ntrials=Ntrials)

summary(r)

## negative binomial

y = sample(1:3, size=n, replace=TRUE)

Ntrials = y + rnbinom(n, size = y, prob = prob)

r = inla(formula,

family = "binomial",

control.family = list(variant = 1),
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Ntrials = Ntrials,

data = data.frame(y, x, Ntrials))

summary(r)

In the following example we estimate the parameters in a simulated example with binomial
responses using the scale-argument as well. This require the use of the expert-version “xbinomial”.

n <- 10000

x <- rnorm(n, sd = 1)

q <- runif(n)

eta <- 0.88 + 0.77*x

p <- q * 1.0/(1+exp(-eta))

ntrials <- sample(1:25, size=n, replace=TRUE)

y <- rbinom(n = n, size=ntrials, prob = p)

r <- inla(y ~ 1 + x,

family = "xbinomial",

Ntrials = ntrials,

scale = q,

data = data.frame(y, x, q, ntrials))

summary(r)

Notes

• If the response is a factor it must be converted to {0, 1} before calling inla(), as this con-
version is not done automatic (as for example in glm()).

• This version of the negative binomial mimics the binomial distribution, and the “data” kind of
enter in the Ntrials argument (as y is pre-determinded) which both can appear, and should
appear, strange. There is also an alternative implementation, family="nbinomial", which
mimics the Poisson distribution.
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