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Introduction
This vignette is a copy and slightly edited FAQ-entries and other short tutorials from the old www.r-inla.org
page. The content comes is slightly random order, sorry about that.

User-defined priors for the hyperparameters
If you want to use a prior for the hyperparameter that is not yet implemented there are two choices. If you
think that your prior should be on the list and that other might use it to, please let us know. Alternatively,
you can define your own prior using \verb|prior = “expression: . . . .”|, or by specifiying a table of x and y
values which define the prior distribution.

There are three ways to specify prior distributions for hyperparameters in INLA:

• Use an available prior distribution
• Define your own prior distribution function using R-like (not equal) syntax as expression.
• Create a table of (x, y) values which represent your prior distribution.

In the following we will provide more details regarding the two last options. Finally, we will present an
example illustrating (and comparing) the three different possibilities by means of the log-gamma distribution
for the precision parameter.
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A user can specify any (univariate) prior distribution for the hyperparameter θ by defining an expression for
the log-density log π(θ), as a function of the corresponding θ. It is important to be aware that θ is on the
internal scale.

The format is
expression: statement; statement; ...; return(value)

where “statement” is any regular statement (more below) and “value” is the value for the log-density of the
prior, evaluated at the current value for θ.

Here, is an example defining the log-gamma distribution:
prior.expression = "expression:

a = 1;
b = 0.1;
precision = exp(log_precision);
logdens = log(bˆa) - lgamma(a)

+ (a-1)*log_precision - b*precision;
log_jacobian = log_precision;
return(logdens + log_jacobian);"

Some syntax specific notes: * No white-space before “(.)” in the return statement. * A “;” is needed to
terminate each expression. * A “_” is allowed in variable names.

Known functions that can be used within the expression statement are

• common math functions, such as exp, sin, . . .
• “gamma” denotes the gamma-function and “lgamma” is its log
• x^y is expressed as either x^y or pow(x;y)

Instead of defining a prior distribution function, it is possible to provide a table of suitable values x (internal
scale) and the corresponding log-density values y. INLA fits a spline through the provided points and
continues with this in the succeeding computations. Note, there is no transformation into a functional form
performed or required. The input-format for the table is a string, which starts with table: and is then
followed by a block of x-values and a block of the corresponding y-values, which represent the values of the
log-density evaluated on x. Thus

table: x_1 ... x_n y_1 ... y_n

We illustrate all three different ways of defining a prior distribution for the precision of a normal likelihood.
To show that the three definitions lead to the same result we inspect the logmarginal likelihood.
## the loggamma-prior
prior.function = function(log_precision) {

a = 1;
b = 0.1;
precision = exp(log_precision);
logdens = log(bˆa) - lgamma(a) + (a-1)*log_precision - b*precision;
log_jacobian = log_precision;
return(logdens + log_jacobian)

}

## implementing the loggamma-prior using "expression:"
prior.expression = "expression:
a = 1;
b = 0.1;
precision = exp(log_precision);
logdens = log(bˆa) - lgamma(a)

2



+ (a-1)*log_precision - b*precision;
log_jacobian = log_precision;
return(logdens + log_jacobian);"

## use suitable support points x
lprec = seq(-10, 10, len=100)
## link the x and corresponding y values into a
## string which begins with "table:""
prior.table = paste(c("table:", cbind(lprec,

prior.function(lprec))), collapse=" ", sep="")

# simulate some data
n = 50
y = rnorm(n)

## use the built-in loggamma prior
r1 = inla(y~1,data = data.frame(y),
control.family = list(hyper = list(prec = list(

prior = "loggamma", param = c(1, 0.1)))))

## use the definition using expression
r2 = inla(y~1, data = data.frame(y),

control.family = list(hyper = list(
prec = list(prior = prior.expression))))

## use a table of x and y values representing the loggamma prior
r3 = inla(y~1, data = data.frame(y),

control.family = list(hyper = list(
prec = list(prior = prior.table))))

print(round(c(r1$mlik[1], r2$mlik[1], r3$mlik[1]), dig=3))

## [1] -70.657 -70.657 -70.657

Does INLA support the use of different link-functions?
Yes, the type of link function is given in the control.family statement using control.link=..., and the
type of link-functions implemented are listed on the documentation for each likelihood. The default link is
default which corresponds to the second link function in the list. Here is an example
n = 100
z = rnorm(n)
eta = 1 + 0.1*z
N = 2

p = inla.link.invlogit(eta)
y = rbinom(n, size = N, prob = p)
r = inla(y ~ 1 + z, data = data.frame(y, z), family = "binomial", Ntrials = rep(N, n),

control.family = list(control.link = list(model="logit")),
control.predictor = list(compute=TRUE))

p = inla.link.invprobit(eta)
y = rbinom(n, size = N, prob = p)
rr = inla(y ~ 1 + z, data = data.frame(y, z), family = "binomial", Ntrials = rep(N, n),
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control.family = list(control.link = list(model="probit")),
control.predictor = list(compute=TRUE))

p = inla.link.invcloglog(eta)
y = rbinom(n, size = N, prob = p)
rrr = inla(y ~ 1 + z, data = data.frame(y, z), family = "binomial", Ntrials = rep(N, n),

control.family = list(control.link = list(model="cloglog")),
control.predictor = list(compute=TRUE))

Other linkfunctions/models are also avilable from within R, see ?inla.link

How can I do predictions using INLA?
In INLA there is no function predict as for glm/lm in R. Predictions must to done as a part of the model
fitting itself. As prediction is the same as fitting a model with some missing data, we can simply set y[i] = NA
for those “locations” we want to predict. Here is a simple example
n = 100
n.pred = 10
y = arima.sim(n=n, model=list(ar=0.9))
N = n + n.pred
yy = c(y, rep(NA, n.pred))
i = 1:N
formula = yy ~ f(i, model="ar1")
r = inla(formula, data = data.frame(i,yy),

control.family = list(initial = 10, fixed=TRUE)) ## no observational noise

which gives predictions
r$summary.random$i[(n+1):N, c("mean", "sd") ]

## mean sd
## 101 2.820339 1.659864
## 102 2.552132 1.862689
## 103 2.314460 2.016377
## 104 2.103390 2.136153
## 105 1.915548 2.231183
## 106 1.748029 2.307544
## 107 1.598327 2.369503
## 108 1.464276 2.420175
## 109 1.344002 2.461896
## 110 1.235879 2.496449

Quantiles such like r$summary.fitted.values and r$marginals.fitted.values, if computed, use the
identity link if y[i] = NA by default. If you want the fitted.values computed with a different link function,
then there are two ways to doit.

In the case you want to use the link-function from the likelihood already used (most often the case), there
is the argument link in control.predictor. If the response y[idx] = NA, then set link[idx] = 1, to
indicate that you want to compute that fitted value using the link function from family[1]. With several
likelihoods, set link[idx] to family-index which is correct, ie the column number in the response. The
following example shows the usage:
## simple poisson regression
n = 100
x = sort(runif(n))
eta = 1 + x

4



lambda = exp(eta)
y = rpois(n, lambda = lambda)

## missing values:
y[1:3] = NA
y[(n-2):n] = NA

## link = 1 is a shortcut for rep(1, n) where n is the appropriate
## length. here '1' is a reference to the first 'family', ie
## 'family[1]'
r = inla(y ~ 1 + x, family = "poisson",

data = data.frame(y, x),
control.predictor = list(link = 1))

plot(exp(eta),type ="l")
points(r$summary.fitted.values$mean, pch=19)
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We only need to define link where there are missing values. Entries for which the observation is not NA, is
ignored.

For more than one likelihood, use ‘2’ to refer to the second likelihood. Here is an example where we split the
data in two, and assign the second half the nbinomial distribution.
n2 = n %/% 2L
Y = matrix(NA, n, 2)
Y[1:n2, 1] = y[1:n2]
Y[1:n2 + n2, 2] = y[1:n2 + n2]
link = rep(NA, n)
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link[which(is.na(y[1:n2]))] = 1
link[n2 + which(is.na(y[1:n2 + n2]))] = 2

r = inla(Y ~ 1 + x, family = c("poisson", "nbinomial"),
data = list(Y=Y, x=x),
control.predictor = list(link = link))

plot(exp(eta),type ="l")
points(r$summary.fitted.values$mean, pch=19)

0 20 40 60 80 100

3
4

5
6

7

Index

ex
p(

et
a)

We can transform marginals manually using the function inla.marginal.transform or compute expectations
using inla.emarginal, like in this example (taken from demo(Tokyo)).
## Load the data
data(Tokyo)
summary(Tokyo)

## y n time
## Min. :0.0000 Min. :1.000 Min. : 1.00
## 1st Qu.:0.0000 1st Qu.:2.000 1st Qu.: 92.25
## Median :0.0000 Median :2.000 Median :183.50
## Mean :0.5246 Mean :1.997 Mean :183.50
## 3rd Qu.:1.0000 3rd Qu.:2.000 3rd Qu.:274.75
## Max. :2.0000 Max. :2.000 Max. :366.00

Tokyo$y[300:366] <- NA

## Define the model
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formula = y ~ f(time, model="rw2", scale.model=TRUE,
constr=FALSE, cyclic=TRUE,
hyper = list(prec=list(prior="pc.prec",

param=c(2,0.01)))) -1

## We'll get a warning since we have not defined the link argument
result = inla(formula, family="binomial", Ntrials=n, data=Tokyo,

control.compute = list(return.marginals.predictor = TRUE),
control.predictor=list(compute=T))

## need to recompute the fitted values for those with data[i] = NA,
## as the identity link is used.
n = 366
fitted.values.mean = numeric(n)
for(i in 1:366) {

if (is.na(Tokyo$y[i])) {
if (FALSE) {

## either like this, which is slower
marg = inla.marginal.transform(

function(x) exp(x)/(1+exp(x)),
result$marginals.fitted.values[[i]] )

fitted.values.mean[i] = inla.emarginal(function(x) x, marg)
} else {

## or like this, which is faster
fitted.values.mean[i] = inla.emarginal(

function(x) exp(x)/(1 +exp(x)),
result$marginals.fitted.values[[i]])

}
} else {

fitted.values.mean[i] = result$summary.fitted.values[i,"mean"]
}

}
plot(fitted.values.mean)
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Some of the models needs a graph, how do I specify it?
Some of the models in INLA needs the user to specify a graph, saying which nodes are neighbours to each
other. A ‘graph’ can be specified in three different ways.

• As an ascii or binary file with a graph specification, or the same contents given as (possible list of) mix
of character and numerics arguments.

• As a symmetric (dense or sparse) matrix, where the non-zero pattern of the matrix defines the graph.
• As an inla.graph-object

A graph defined in an ascii-file, must have the following format. The first entry is the number of nodes in the
graph, n. The nodes in the graph are labelled 1, 2, . . . , n. The next entries, specify the number of neighbours
and the neighbours for each node. A simple example is the following
4
1 2 3 4
2 0
3 1 1
4 1 1

This defines a graph with four nodes, where node 1 has 2 neighbours 3 and 4, node 2 as 0 neighbours, node 3
has 1 neighbour 1, and node 4 has 1 neighbour 1, and the graph looks like this
g = inla.read.graph("4 1 2 3 4 2 0 3 1 1 4 1 1")
plot(g)
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3

4
Note that we need to specify the implied symmetry as well. In this example 4 is a neighbour of 1, then we
also need to specify that 1 is a neighbour of 4.

Instead of storing the graph specification on a file, it can also be specified as a character string with the same
contents as a file, like
"4 1 2 3 4 2 0 3 1 1 4 1 1"

as used in inla.read.graph above.

Due to imitations of the length of a string/line, so in practice, this way specifying the graph, seems more
useful for teaching or demonstration purposes than for practical analysis.

Within INLA, this would look like
formula = y ~ f(idx, model = "besag", graph = "graph.dat")

or
formula = y ~ f(idx, model = "besag", graph = "4 1 2 3 4 2 0 3 1 1 4 1 1")

A graph can also be defined as a symmetric (dense or sparse) matrix, where the non-zero pattern of the
matrix defines the graph A neighbour matrix is often used for defining which nodes that are neighbours, with
the convention that if Q[i,j] != 0 then i and j are neighbours if i 6= j.

For example, the (dense) matrix C
C = matrix(c(1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1),4,4)
C

## [,1] [,2] [,3] [,4]
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## [1,] 1 0 1 1
## [2,] 0 1 0 0
## [3,] 1 0 1 0
## [4,] 1 0 0 1

defines the same graph show above.

Since graphs tends to be large, we often define them as a sparse matrix
C.sparse= inla.as.sparse(C)
C.sparse

## 4 x 4 sparse Matrix of class "dgTMatrix"
##
## [1,] 1 . 1 1
## [2,] . 1 . .
## [3,] 1 . 1 .
## [4,] 1 . . 1

We can then use graph=C or graph=C.sparse in the formula.

We can also define the graph as an inla.graph-object, which is used internally, represent a graph. For
example
str(g)

## List of 4
## $ n : int 4
## $ nnbs: num [1:4] 2 0 1 1
## $ nbs :List of 4
## ..$ : int [1:2] 3 4
## ..$ : num(0)
## ..$ : int 1
## ..$ : int 1
## $ cc :List of 3
## ..$ id : int [1:4] 1 2 1 1
## ..$ n : int 2
## ..$ nodes:List of 2
## .. ..$ : int [1:3] 1 3 4
## .. ..$ : int 2
## - attr(*, "class")= chr "inla.graph"

and use graph = g as the argument.

The internal format, are as follows. n is the size of the graph. nnbs are the number of neighbours to each
node, nbs list all the neighbours to each node, and the class is inla.graph. The cc-list is for internal use
only and specify the connected components in the graph.

INLA has some functions to work with graphs, and here is a short summary.

• inla.read.graph() and inla.write.graph(), read and write graphs using any of the graph specifi-
cations above.

• You can plot a inla.graph-object using plot() and get a summary using summary(). The plotting
requires the Rgraphviz package.

• From a graph specification, you can generate the neighbour matrix, using inla.graph2matrix(). You
can plot a graph specification as a neighbour matrix, using inla.spy()

• If you have ‘errors’ in your graph, you may read it using inla.debug.graph(). This is only available
for a graph specification in an ascii-file.
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How INLA deal with NA

For a formula like
formula = y ~ x + f(k, model= <some model>)

then NA’s in either y, x or k are treated differently.

NA’s in the response y. If y[i] = NA, this means that y[i] is not observed, hence gives no contribution to
the likelihood.

NA’s in fixed effect x. If x[i] = NA this means that x[i] is not part of the linear predictor for y[i]. For
fixed effects, this is equivalent to x[i]=0, hence internally we make this change: x[is.na(x)] = 0.

NA’s in random effect k. If k[i] = NA, this means that the random effect does not contribute to the linear
predictor for y[i].

NA’s in a factor x. NA’s in a factor x is not allowed unless NA is a level in itself, or
control.fixed = list(expand.factor.strategy = "inla")

is set. With this option, then NA is interpreted similarly as a fixed effect, where NA means no contribution
from x. The effect of expand.factor.strategy="inla", is best explained with an example.
r = inla(y ~ 1 + x, data = data.frame(y=1:3, x=factor(c("a","b","c"))))
as.matrix(r$model.matrix)

## (Intercept) xb xc
## 1 1 0 0
## 2 1 1 0
## 3 1 0 1

for default value of the argument contrasts. The effect of xa is removed to make the corresponding matrix
non-singular. If we want to expand x into each of each three effects, then we can do
r = inla(y ~ 1 + x, data = data.frame(y=1:3,x=factor(c("a","b","c"))),

control.fixed = list(expand.factor.strategy="inla"))
as.matrix(r$model.matrix)

## (Intercept) xa xb xc
## 1 1 1 0 0
## 2 1 0 1 0
## 3 1 0 0 1

As we see, each level of the factor is now treated symetrically. Although the corresponding frequentist matrix
is singular as we have confounding with the intercept, the Bayesian posterior is still proper with proper priors.

With a NA in x, we get
r = inla(y ~ 1 + x, data = data.frame(y=1:3,x=factor(c("a","b",NA))),

control.fixed = list(expand.factor.strategy="inla"))
as.matrix(r$model.matrix)

## (Intercept) xa xb
## 1 1 1 0
## 2 1 0 1
## 3 1 0 0

so that the 3rd element of the linear predictor has no contribution from x, as it should.
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Can INLA deal with missing covariates?
No, INLA has no generic way to “impute” or integrate-out missing covariates. You have to adjust your
model to account for missing covariates, like using one of the measurement error models (“meb”, “mec”), or
construct a joint model for the data and the covariates, but this is case-specific.

Compute cross-validation or predictive measures of fit
INLA provides two types of leave-one-out predictive measures of fit. It is the CPO value, which is

Prob(yi|y−i),

the PIT value
Prob(ynew

i ≤ yi|y−i)

To enable the computation of these quantities, you will need to add the argument
control.compute=list(cpo=TRUE)

We can also compute PO values
Prob(yi|y),

when argument po=TRUE is added.

If the resulting object is result, then you will find the predictive quantities as result$cpo$cpo and
result$cpo$pit.

Implicit assumptions made in for computations, and there are internal checks that these are satisfied. The re-
sults of these checks will appear as result$cpo$failure. In short, if result$cpo$failure[i] > 0
then some assumption is violated, the higher the value (maximum 1) the more seriously. If
result$cpo$failure[i] == 0 then the assumptions should be ok.

You may want to recompute those with non-zero failure. However, this must be done manually by removing
y[i] from the dataset, fit the model and then predict y[i]. To provide a more efficient implementation of
this, we have provided
improved.result = inla.cpo(result)

which take an inla-object which is the output from inla(), and recompute (in an efficient way) the cpo/pit for
which result$cpo$failure > 0, and return ‘result’ with the improved estimates of cpo/pit. See ?inla.cpo
for details.

I have access to a remote Linux/MacOS server, is it possible to run the compu-
tations remotely and running R locally?
Yes! This option allow INLA to use a remote server to do the computations. In order to use this feature, you
need to do some setup which is different from (various) Linux distributions, Mac and Windows. In short:

• install R and R-INLA a remote server, for example foo.bar.org.
• Install your public ssh-key on foo.bar.org to setup password free access to the remove server using

ssh. And please check that this is indeed working before moving forward!
• On your local host, run inla.remote() to initialise the init-file ~/.inlarc and then edit this file to fit

your needs.
• You may now have to log out and log in again, to make sure your ssh key is signed out.
• You can now use option inla.call="remote" to do the computations on your remote server, or set

this globally with inla.setOption("inla.call", "remote")
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You can also submit a job on the remote server, so you do not need to sit and wait for it to finish, but you
can collect the results later. Basically, you do
r = inla(..., inla.call = "submit")

which will start the job on the server. You can start many jobs, and list them using
inla.qstat()

and you can fetch the results (for the job above) using
r = inla.qget(r)

You can also delete jobs and fetch the jobs from another machine; see ?inla.q for further details.

HOWTO setup ssh-keys: For the unexperienced user, this is somewhat tricky; sorry about that. The easiest
is to find a friend that knows this and can help you. Newer system do a lot of these things very nicely these
days.

It is also possible to setup this from Windows using CYGWIN, and INLA can work with this interface as
well. Please see the old web-page for details, which are long and technical. HOWEVER, I am no longer
convinced that this work anymore, as I haven’t seen this is use for years. It is much much easier to use a
virtual machine with Linux on Windows.

Posteriors for linear combinations
I have some linear combinations of the nodes in the latent field that I want to compute the posterior
marginal of, is that possible? Yes! These are called ‘linear combinations’. There are handy functions,
‘inla.make.lincomb()’ and ‘inla.make.lincombs()’, to define one or many such linear combinations. Single
linear combinations made by using ‘inla.make.lincomb()’ can easily be joined into many. Its use is easiest
explained using a rather long example. . .

Here is the example, that explains these features.
## A simple model
n = 100
a = rnorm(n)
b = rnorm(n)
idx = 1:n

y = rnorm(n) + a + b
formula = y ~ 1 + a + b + f(idx, model="iid")

## assume we want to compute the posterior for
##
## 2 * beta_a + 3 * beta_b + idx[1] - idx[2]
##
## which we specify as follows (and giving it a unique name)

lc1 = inla.make.lincomb(a=2, b=3, idx = c(1,-1,rep(NA,n-2)))
names(lc1) = "lc1"

## strictly speaking, it is sufficient to use `idx = c(1,-1)', as the
## remaining idx's are not used in any case.

r = inla(formula, data = data.frame(a,b,y),
## add the linear combinations here
lincomb = lc1,
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## force noise variance to be essiatially zero
control.family = list(initial=10, fixed=TRUE))

## to verify the result, we can compare the mean but the variance and
## marginal cannot be computed from the simpler marginals alone.
lc1.1 = 2 * r$summary.fixed["a", "mean"] + 3 * r$summary.fixed["b",

"mean"] + r$summary.random$idx$mean[1] -
r$summary.random$idx$mean[2]

lc1.2= r$summary.lincomb.derived$mean
print(round(c(lc1.1 = lc1.1, lc1.2 = lc1.2), dig=3))

## lc1.1 lc1.2
## 5.152 5.152

The marginals are available as r$marginals.lincomb$...

There is an another function which is handy for specifying many linear combinations at once, that is
inla.make.lincombs() (note the plural s). Here each ‘row’ define one linear combination
## let wa and wb be vectors, and we want to compute the marginals for
## beta_a * wa[i] + beta_b * wb[i], for i=1..m. this is done
## conveniently as follows

m = 10
wa = runif(m)
wb = runif(m)
lc.many = inla.make.lincombs(a = wa, b=wb)

## we can give them names as well, but there are also default names, like
print(names(lc.many))

## [1] "lc01" "lc02" "lc03" "lc04" "lc05" "lc06" "lc07" "lc08" "lc09" "lc10"

r = inla(formula, data = data.frame(a,b,y),
lincomb = lc.many,
control.family = list(initial=10, fixed=TRUE))

print(round(r$summary.lincomb.derived, dig=3))

## ID mean sd 0.025quant 0.5quant 0.975quant mode kld
## lc01 1 0.402 0.040 0.324 0.402 0.481 0.402 0
## lc02 2 1.096 0.088 0.924 1.096 1.269 1.096 0
## lc03 3 0.945 0.077 0.794 0.945 1.096 0.945 0
## lc04 4 1.158 0.121 0.919 1.158 1.396 1.158 0
## lc05 5 0.389 0.034 0.323 0.389 0.455 0.389 0
## lc06 6 1.570 0.120 1.334 1.570 1.807 1.570 0
## lc07 7 1.453 0.128 1.201 1.453 1.704 1.453 0
## lc08 8 1.074 0.084 0.908 1.074 1.240 1.074 0
## lc09 9 0.974 0.073 0.830 0.974 1.117 0.974 0
## lc10 10 1.495 0.120 1.260 1.495 1.731 1.495 0

Terms like ‘idx’ above, can be added as idx = IDX into inla.make.lincombs(), where IDX is a matrix.
Again, each column of the arguments define one linear combination.

There is a further option available for the derived linear combinations, that is the option to compute also the
posterior correlation matrix between all the linear combinations. To activate this option, use
control.inla = list(lincomb.derived.correlation.matrix = TRUE)
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and you will find the resulting posterior correlation matrix as
result$misc$lincomb.derived.correlation.matrix

Here is a small example where we compute the correlation matrix for the predicted values of a hidden AR(1)
model with an intercept.
n = 100
nPred = 10
phi = 0.9
x = arima.sim(n, model = list(ar=phi)) * sqrt(1-phiˆ2)
y = 1 + x + rnorm(n, sd=0.1)

time = 1:(n + nPred)
Y = c(y, rep(NA, nPred))
formula = Y ~ 1 + f(time, model="ar1")

## make linear combinations which are the nPred linear predictors
B = matrix(NA, nPred, n+nPred)
for(i in 1:nPred) {

B[i, n+i] = 1
}
lcs = inla.make.lincombs(Predictor = B)

r = inla(formula, data = data.frame(Y, time),
control.predictor = list(compute=TRUE),
lincomb = lcs,
control.inla = list(lincomb.derived.correlation.matrix=TRUE))

print(round(r$misc$lincomb.derived.correlation.matrix,dig=3))

## lc01 lc02 lc03 lc04 lc05 lc06 lc07 lc08 lc09 lc10
## lc01 1.000 0.608 0.425 0.315 0.241 0.189 0.151 0.123 0.102 0.086
## lc02 0.608 1.000 0.697 0.514 0.391 0.305 0.243 0.196 0.161 0.135
## lc03 0.425 0.697 1.000 0.734 0.556 0.431 0.340 0.273 0.223 0.184
## lc04 0.315 0.514 0.734 1.000 0.753 0.580 0.454 0.362 0.292 0.240
## lc05 0.241 0.391 0.556 0.753 1.000 0.764 0.594 0.469 0.376 0.305
## lc06 0.189 0.305 0.431 0.580 0.764 1.000 0.771 0.604 0.479 0.386
## lc07 0.151 0.243 0.340 0.454 0.594 0.771 1.000 0.776 0.610 0.486
## lc08 0.123 0.196 0.273 0.362 0.469 0.604 0.776 1.000 0.779 0.615
## lc09 0.102 0.161 0.223 0.292 0.376 0.479 0.610 0.779 1.000 0.782
## lc10 0.086 0.135 0.184 0.240 0.305 0.386 0.486 0.615 0.782 1.000

INLA seems to work great for near all cases, but are there cases where INLA is
known to have problems?
The methodology needs the full conditional density for the latent field to be “near” Gaussian. This is usually
achived by either replications or smoothing/“borrowing strength”. A simple example which do not have this,
is the following:
n = 100
u = rnorm(n)
eta = 1 + u
p = exp(eta)/(1+exp(eta))
y = rbinom(n, size=1, prob = p)
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idx = 1:n
result = inla(y ~ 1 + f(idx, model="iid",

hyper = list(prec = list(prior="pc.prec",
prior = c(1,0.01)))),

data =data.frame(y,idx), family = "binomial",
Ntrials = 1)

summary(result)

##
## Call:
## c("inla(formula = y ~ 1 + f(idx, model = \"iid\", hyper = list(prec =
## list(prior = \"pc.prec\", ", " prior = c(1, 0.01)))), family =
## \"binomial\", data = data.frame(y, ", " idx), Ntrials = 1)")
## Time used:
## Pre = 0.401, Running = 0.144, Post = 0.0102, Total = 0.556
## Fixed effects:
## mean sd 0.025quant 0.5quant 0.975quant mode kld
## (Intercept) 0.407 0.205 0.01 0.406 0.813 0.402 0
##
## Random effects:
## Name Model
## idx IID model
##
## Model hyperparameters:
## mean sd 0.025quant 0.5quant 0.975quant mode
## Precision for idx 84075.62 1408395.78 9.19 211.28 143336.70 13.13
##
## Marginal log-Likelihood: -68.05
## Posterior summaries for the linear predictor and the fitted values are computed
## (Posterior marginals needs also ’control.compute=list(return.marginals.predictor=TRUE)’)

For each binary observation there is an iid “random effect” u, and there is no smoothing/“borrowing strength’ ’
(apart from the weak intercept). If you plot the loglikelihood for eta for y = 1, say, then its an increasing
function for increasing eta, so the likelihood itself would like η =∞. With an unknown precision for u we run
into problems; INLA has a tendency to estimate a to high precision for u. However, it must be noted that
the model is almost singular and you’ll have a strong prior sensitivity in the (exact) results as well. There is
a similar discussion in here as well for the Salamander data example.

Can I have the linear predictor from one model as a covariate in a different
model?
Yes, this is possible. Essentially, you have to set the linear predictor for the first model equal to ‘u’, and then
you can copy ‘u’ and use the scaling to get the regression coefficient. A simple example will illustrate the idea:
## simple example
n = 100
x1 = rnorm(n)
eta1 = 1 + x1
x2 = rnorm(n)
eta2 = 2 + 2*eta1 + 2*x2
y1 = rnorm(n, mean=eta1, sd = 0.01)
y2 = rnorm(n, mean=eta2, sd = 0.01)

## the trick is to create a vector 'u' (iid) which is
## equal to eta1, and then we can copy 'u' to
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## create beta*u or beta*eta1. we do this by
## using 0 = eta1 -u + tiny.noise

formula = Y ~ -1 + intercept1 + X1 + intercept2 + f(u, w, model="iid",
hyper = list(prec = list(initial = -6, fixed=TRUE))) + f(b.eta2,
copy="u", hyper = list(beta = list(fixed = FALSE))) + X2

Y = matrix(NA, 3*n, 3)

## part 1: y1
intercept1 = rep(1, n)
X1 = x1
intercept2 = rep(NA, n)
u = rep(NA, n)
w = rep(NA, n)
b.eta2 = rep(NA, n)
X2 = rep(NA, n)
Y[1:n, 1] = y1

## part 2: 0 = eta1 - u + tiny.noise
intercept1 = c(intercept1, intercept1)
X1 = c(X1, x1)
intercept2 = c(intercept2, rep(NA, n))
u = c(u, 1:n)
w = c(w, rep(-1, n))
b.eta2 = c(b.eta2, rep(NA, n))
X2 = c(X2, rep(NA, n))
Y[n + 1:n, 2] = 0

## part 3: y2
intercept1 = c(intercept1, rep(NA, n))
X1 = c(X1, rep(NA, n))
intercept2 = c(intercept2, rep(1, n))
u = c(u, rep(NA, n))
w = c(w, rep(NA, n))
b.eta2 = c(b.eta2, 1:n)
X2 = c(X2, x2)
Y[2*n + 1:n, 3] = y2

r = inla(formula,
data = list(Y=Y, intercept1=intercept1, X1=X1,

intercept2=intercept2, u=u, w=w, b.eta2=b.eta2, X2=X2),
family = rep("gaussian", 3),
control.inla = list(h = 1e-3),
control.family = list(

list(),
list(hyper = list(prec = list(initial = 10, fixed=TRUE))),
list()))

summary(r)

##
## Call:
## c("inla(formula = formula, family = rep(\"gaussian\", 3), data = list(Y
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## = Y, ", " intercept1 = intercept1, X1 = X1, intercept2 = intercept2, ",
## " u = u, w = w, b.eta2 = b.eta2, X2 = X2), control.family =
## list(list(), ", " list(hyper = list(prec = list(initial = 10, fixed =
## TRUE))), ", " list()), control.inla = list(h = 0.001))")
## Time used:
## Pre = 0.483, Running = 0.366, Post = 0.0195, Total = 0.868
## Fixed effects:
## mean sd 0.025quant 0.5quant 0.975quant mode kld
## intercept1 0.999 0.001 0.997 0.999 1.000 0.999 0
## X1 1.002 0.001 1.000 1.002 1.003 1.002 0
## intercept2 2.005 0.003 1.999 2.005 2.011 2.005 0
## X2 1.999 0.002 1.996 1.999 2.001 1.999 0
##
## Random effects:
## Name Model
## u IID model
## b.eta2 Copy
##
## Model hyperparameters:
## mean sd 0.025quant 0.5quant
## Precision for the Gaussian observations 15431.23 154.394 14880.44 15458.90
## Precision for the Gaussian observations[3] Inf NaN 0.00 0.00
## Beta for b.eta2 2.00 0.002 1.99 2.00
## 0.975quant mode
## Precision for the Gaussian observations 15941.34 15381.62
## Precision for the Gaussian observations[3] Inf NaN
## Beta for b.eta2 2.00 2.00
##
## Marginal log-Likelihood: 211.38
## Posterior summaries for the linear predictor and the fitted values are computed
## (Posterior marginals needs also ’control.compute=list(return.marginals.predictor=TRUE)’)

Latent models, likelihoods and priors.
The list of latent models, likelihood and priors implemented, can be found by doing (or give a spesific section,
see ?inla.list.models)
inla.list.models()

## Section [group]
## ar AR(p) correlations
## ar1 AR(1) correlations
## besag Besag model
## exchangeable Exchangeable correlations
## exchangeablepos Exchangeable positive correlations
## iid Independent model
## rw1 Random walk of order 1
## rw2 Random walk of order 2
## Section [hazard]
## iid An iid model for the log-hazard
## rw1 A random walk of order 1 for the log-hazard
## rw2 A random walk of order 2 for the log-hazard
## Section [latent]
## 2diid (This model is obsolute)
## ar Auto-regressive model of order p (AR(p))
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## ar1 Auto-regressive model of order 1 (AR(1))
## ar1c Auto-regressive model of order 1 w/covariates
## besag The Besag area model (CAR-model)
## besag2 The shared Besag model
## besagproper A proper version of the Besag model
## besagproper2 An alternative proper version of the Besag model
## bym The BYM-model (Besag-York-Mollier model)
## bym2 The BYM-model with the PC priors
## clinear Constrained linear effect
## copy Create a copy of a model component
## crw2 Exact solution to the random walk of order 2
## dmatern Dense Matern field
## fgn Fractional Gaussian noise model
## fgn2 Fractional Gaussian noise model (alt 2)
## generic A generic model
## generic0 A generic model (type 0)
## generic1 A generic model (type 1)
## generic2 A generic model (type 2)
## generic3 A generic model (type 3)
## iid Gaussian random effects in dim=1
## iid1d Gaussian random effect in dim=1 with Wishart prior
## iid2d Gaussian random effect in dim=2 with Wishart prior
## iid3d Gaussian random effect in dim=3 with Wishart prior
## iid4d Gaussian random effect in dim=4 with Wishart prior
## iid5d Gaussian random effect in dim=5 with Wishart prior
## iidkd Gaussian random effect in dim=k with Wishart prior
## intslope Intecept-slope model with Wishart-prior
## linear Alternative interface to an fixed effect
## log1exp A nonlinear model of a covariate
## logdist A nonlinear model of a covariate
## matern2d Matern covariance function on a regular grid
## meb Berkson measurement error model
## mec Classical measurement error model
## ou The Ornstein-Uhlenbeck process
## revsigm Reverse sigmoidal effect of a covariate
## rgeneric Generic latent model spesified using R
## rw1 Random walk of order 1
## rw2 Random walk of order 2
## rw2d Thin-plate spline model
## rw2diid Thin-plate spline with iid noise
## seasonal Seasonal model for time series
## sigm Sigmoidal effect of a covariate
## slm Spatial lag model
## spde A SPDE model
## spde2 A SPDE2 model
## spde3 A SPDE3 model
## z The z-model in a classical mixed model formulation
## Section [likelihood]
## agaussian The aggregated Gaussian likelihoood
## beta The Beta likelihood
## betabinomial The Beta-Binomial likelihood
## betabinomialna The Beta-Binomial Normal approximation likelihood
## bgev The blended Generalized Extreme Value likelihood
## binomial The Binomial likelihood
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## cbinomial The clustered Binomial likelihood
## cenpoisson Then censored Poisson likelihood
## cenpoisson2 Then censored Poisson likelihood (version 2)
## circularnormal The circular Gaussian likelihoood
## coxph Cox-proportional hazard likelihood
## dgp Discrete generalized Pareto likelihood
## exponential The Exponential likelihood
## exponentialsurv The Exponential likelihood (survival)
## fmri fmri distribution (special nc-chi)
## fmrisurv fmri distribution (special nc-chi)
## gamma The Gamma likelihood
## gammacount A Gamma generalisation of the Poisson likelihood
## gammajw A special case of the Gamma likelihood
## gammajwsurv A special case of the Gamma likelihood (survival)
## gammasurv The Gamma likelihood (survival)
## gaussian The Gaussian likelihoood
## gev The Generalized Extreme Value likelihood
## gompertz gompertz distribution
## gompertzsurv gompertz distribution
## gp Generalized Pareto likelihood
## gpoisson The generalized Poisson likelihood
## iidgamma (experimental)
## iidlogitbeta (experimental)
## loggammafrailty (experimental)
## logistic The Logistic likelihoood
## loglogistic The loglogistic likelihood
## loglogisticsurv The loglogistic likelihood (survival)
## lognormal The log-Normal likelihood
## lognormalsurv The log-Normal likelihood (survival)
## logperiodogram Likelihood for the log-periodogram
## nbinomial The negBinomial likelihood
## nbinomial2 The negBinomial2 likelihood
## nmix Binomial-Poisson mixture
## nmixnb NegBinomial-Poisson mixture
## poisson The Poisson likelihood
## poisson.special1 The Poisson.special1 likelihood
## pom Likelihood for the proportional odds model
## qkumar A quantile version of the Kumar likelihood
## qloglogistic A quantile loglogistic likelihood
## qloglogisticsurv A quantile loglogistic likelihood (survival)
## simplex The simplex likelihood
## sn The Skew-Normal likelihoood
## stochvol The Gaussian stochvol likelihood
## stochvolnig The Normal inverse Gaussian stochvol likelihood
## stochvolsn The SkewNormal stochvol likelihood
## stochvolt The Student-t stochvol likelihood
## t Student-t likelihood
## tstrata A stratified version of the Student-t likelihood
## tweedie Tweedie distribution
## weibull The Weibull likelihood
## weibullcure The Weibull-cure likelihood (survival)
## weibullsurv The Weibull likelihood (survival)
## wrappedcauchy The wrapped Cauchy likelihoood
## xbinomial The Binomial likelihood (expert version)
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## xpoisson The Poisson likelihood (expert version)
## zeroinflatedbetabinomial0 Zero-inflated Beta-Binomial, type 0
## zeroinflatedbetabinomial1 Zero-inflated Beta-Binomial, type 1
## zeroinflatedbetabinomial2 Zero inflated Beta-Binomial, type 2
## zeroinflatedbinomial0 Zero-inflated Binomial, type 0
## zeroinflatedbinomial1 Zero-inflated Binomial, type 1
## zeroinflatedbinomial2 Zero-inflated Binomial, type 2
## zeroinflatedcenpoisson0 Zero-inflated censored Poisson, type 0
## zeroinflatedcenpoisson1 Zero-inflated censored Poisson, type 1
## zeroinflatednbinomial0 Zero inflated negBinomial, type 0
## zeroinflatednbinomial1 Zero inflated negBinomial, type 1
## zeroinflatednbinomial1strata2 Zero inflated negBinomial, type 1, strata 2
## zeroinflatednbinomial1strata3 Zero inflated negBinomial, type 1, strata 3
## zeroinflatednbinomial2 Zero inflated negBinomial, type 2
## zeroinflatedpoisson0 Zero-inflated Poisson, type 0
## zeroinflatedpoisson1 Zero-inflated Poisson, type 1
## zeroinflatedpoisson2 Zero-inflated Poisson, type 2
## zeroninflatedbinomial2 Zero and N inflated binomial, type 2
## zeroninflatedbinomial3 Zero and N inflated binomial, type 3
## Section [link]
## cauchit The cauchit-link
## cloglog The complementary log-log link
## default The default link
## identity The identity link
## inverse The inverse link
## log The log-link
## loga The loga-link
## logit The logit-link
## logitoffset Logit-link with an offset
## loglog The log-log link
## logoffset Log-link with an offset
## neglog The negative log-link
## pquantile The population quantile-link
## probit The probit-link
## quantile The quantile-link
## robit Robit link
## sn Skew-normal link
## special1 A special1-link function (experimental)
## special2 A special2-link function (experimental)
## sslogit Logit link with sensitivity and specificity
## tan The tan-link
## test1 A test1-link function (experimental)
## Section [lp.scale]
## NA Section [mix]
## gaussian Gaussian mixture
## loggamma LogGamma mixture
## mloggamma Minus-LogGamma mixture
## Section [predictor]
## predictor (do not use)
## Section [prior]
## betacorrelation Beta prior for the correlation
## dirichlet Dirichlet prior
## expression: A generic prior defined using expressions
## flat A constant prior
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## gamma Gamma prior
## gaussian Gaussian prior
## invalid Void prior
## jeffreystdf Jeffreys prior for the doc
## linksnintercept Skew-normal-link intercept-prior
## logflat A constant prior for log(theta)
## loggamma Log-Gamma prior
## logiflat A constant prior for log(1/theta)
## logitbeta Logit prior for a probability
## logtgaussian Truncated Gaussian prior
## logtnormal Truncated Normal prior
## minuslogsqrtruncnormal (obsolete)
## mvnorm A multivariate Normal prior
## none No prior
## normal Normal prior
## pc Generic PC prior
## pc.alphaw PC prior for alpha in Weibull
## pc.ar PC prior for the AR(p) model
## pc.cor0 PC prior correlation, basemodel cor=0
## pc.cor1 PC prior correlation, basemodel cor=1
## pc.dof PC prior for log(dof-2)
## pc.fgnh PC prior for the Hurst parameter in FGN
## pc.gamma PC prior for a Gamma parameter
## pc.gammacount PC prior for the GammaCount likelihood
## pc.gevtail PC prior for the tail in the GEV likelihood
## pc.matern PC prior for the Matern SPDE
## pc.mgamma PC prior for a Gamma parameter
## pc.prec PC prior for log(precision)
## pc.range PC prior for the range in the Matern SPDE
## pc.sn PC prior for the skew-normal
## pc.spde.GA (experimental)
## pom #classes-dependent prior for the POM model
## ref.ar Reference prior for the AR(p) model, p<=3
## table: A generic tabulated prior
## wishart1d Wishart prior dim=1
## wishart2d Wishart prior dim=2
## wishart3d Wishart prior dim=3
## wishart4d Wishart prior dim=4
## wishart5d Wishart prior dim=5
## wishartkd Wishart prior
## Section [wrapper]
## joint (experimental)

Copying a model
We often encounter the situation where an element of a model is needed more than once for each observation.
One example is where
y = a + b*w + ...

for fixed weights w and where (ai, bi) is bivariate Normal and all 2-vectors are independent.

Using the model
f(idx, model="iid2d", n=2*m, ...)
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provide a random vector v, say, with length 2m stored as

v = (a1, a2, ..., am, b1, b2, ...., bm).

To implement this, we simply create an indentical copy of v, v∗, where v == v∗ (nearly). Using the
copy-feature, we can do
idx = 1:m
idx.copy = m + 1:m
formula = y ~ f(idx, model="iid2d", n=2*m) + f(idx.copy, w, copy="idx") + ....

recalling that the first m elements is a and the last m elements are b, and where w are the weights.

The second f() terms define itself as a copy of f(idx, ...), and it inherit some of its features, like n and
values.

A copied model may also have an unknown scaling (hyperparameter), which is default fixed to be 1. In
the following example, we will use this feature to estimate the unknown scaling (in this case, scaling is 2),
assuming we know the precision for z.
n=1000
i=1:n
j = i
z = rnorm(n)
w = runif(n)
y = z + 2*z*w + rnorm(n)
formula = y ~ f(i, model="iid",initial=0, fixed=T) +

f(j, w, copy="i", fixed=FALSE)
r = inla(formula, data = data.frame(i,j,w,y))
summary(r)

##
## Call:
## "inla(formula = formula, data = data.frame(i, j, w, y))"
## Time used:
## Pre = 0.539, Running = 1.14, Post = 0.0389, Total = 1.72
## Fixed effects:
## mean sd 0.025quant 0.5quant 0.975quant mode kld
## (Intercept) -0.071 0.068 -0.205 -0.071 0.062 -0.071 0
##
## Random effects:
## Name Model
## i IID model
## j Copy
##
## Model hyperparameters:
## mean sd 0.025quant 0.5quant
## Precision for the Gaussian observations 0.65 0.115 0.455 0.639
## Beta for j 1.72 0.144 1.443 1.719
## 0.975quant mode
## Precision for the Gaussian observations 0.908 0.617
## Beta for j 2.007 1.713
##
## Marginal log-Likelihood: -2244.58
## Posterior summaries for the linear predictor and the fitted values are computed
## (Posterior marginals needs also ’control.compute=list(return.marginals.predictor=TRUE)’)
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If the scaling parameter is within given range, then option \verb|range = c(low, high)|, can be given. In this
case
beta = low + (high-low)*exp(beta.local)/(1+exp(beta.local))

and the prior is defined on beta.local.

If low=high or range = NULL, then the identity mapping is used. If high=Inf and |verb|low!=Inf|, then the
mapping low + exp(beta.local) is used. The case low=Inf and high!=Inf is not yet implemented.

A model or a copied model can be copied several times. The degree of closeness of v and v∗ is specified by
the argument precision, as the precision of the noise added to v to get v∗.

Replicate a model
Independent replications of a model with the same hyperparmeters can be defined using the argument
replicate,
f(idx, model = .., replicate = r)

Here, r is a vector of the same length as idx. In this case, we use a two-dimensional index to index this
(sub-)model: (idx, r), so (1,2) identify the first value of the second replication of this model (component).
Number of replications are defined as max(replicate), unless it is defined by the argument nrep.

One example is the model ‘iid’:
i = 1:n
formula = y ~ f(i, model = "iid") + ...

which has an alternative equivalent formulation as ‘n’ replications of an iid-model with length 1
i = rep(1,n)
r = 1:n
formula = y ~ f(i, model="iid", replicate = r) + ...

In the following example, we estimate the parameters in three AR(1) time-series with the same hyperparameters
(ie its replicated) but with separate means:
n = 100
y1 = arima.sim(n=n, model=list(ar=c(0.9)))+10
y2 = arima.sim(n=n, model=list(ar=c(0.9)))+20
y3 = arima.sim(n=n, model=list(ar=c(0.9)))+30

formula = y ~ mean -1 + f(i, model="ar1", replicate=r)
y = c(y1,y2,y3)
i = rep(1:n, 3)
r = rep(1:3, each=n)
mean = as.factor(r)
result = inla(formula, family = "gaussian",

data = data.frame(y, i, mean),
control.family = list(initial = 12, fixed=TRUE))

summary(result)

##
## Call:
## c("inla(formula = formula, family = \"gaussian\", data = data.frame(y,
## ", " i, mean), control.family = list(initial = 12, fixed = TRUE))" )
## Time used:
## Pre = 0.456, Running = 0.468, Post = 0.0168, Total = 0.941
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## Fixed effects:
## mean sd 0.025quant 0.5quant 0.975quant mode kld
## mean1 10.088 1.465 7.207 10.071 13.072 10.047 0.001
## mean2 18.118 1.476 15.010 18.168 20.915 18.231 0.001
## mean3 31.066 1.483 27.909 31.128 33.839 31.206 0.001
##
## Random effects:
## Name Model
## i AR1 model
##
## Model hyperparameters:
## mean sd 0.025quant 0.5quant 0.975quant mode
## Precision for i 0.143 0.044 0.070 0.139 0.241 0.131
## Rho for i 0.936 0.020 0.893 0.938 0.969 0.941
##
## Marginal log-Likelihood: -431.54
## Posterior summaries for the linear predictor and the fitted values are computed
## (Posterior marginals needs also ’control.compute=list(return.marginals.predictor=TRUE)’)

All other arguments is interpreted for the basic model and also replicated. Like argument constr=TRUE, is
interpreted as each replication sums to zero, and additional constraints are also replicated.

Models with more than one type of likelihood
There is no constraint in INLA that the type of likelihood must be the same for all observations. In fact,
every observation could have its own likelihood. Extentions include more than one familily, like the Normal,
Poisson, etc, but also having in the model groups of observations with separate hyperparameters within each
group, where the family, for example, can be the same.

In the formula
y ~ a + 1

we allow y to be a matrix. In this case each column of y define one likelihood where the family is the same
the hyperparameters are the same. For each row, only one of the columns could (but don’t have to) have an
observation (non-NA value), the other colums must have value NA. All other parameters to the likelihood, like
E Ntrials, offset and scale are used as appropriate. Example: If row i column j is a Poission observation,
then E[i] is used as the scaling. Similar with the others. This works as only one column for each row is
non-NA.

The argument family is in the case where y is a matrix, a list of families. The argument control.family is
then a list of lists; one for each family.

The first example, is a simple linear regression, where the first half of the data is observed with unknown
precision tau.1 (with a ‘default’ noninformative prior) and the second half of the data is observed with
unknown precision tau.2. Otherwise, the two models have the same form for the linear predictor.
## Simple linear regression with observations with two different
## variances.
n = 100
N = 2*n
y = numeric(N)
x = rnorm(N)

y[1:n] = 1 + x[1:n] + rnorm(n, sd = 1/sqrt(1))
y[1:n + n] = 1 + x[1:n + n] + rnorm(n, sd = 1/sqrt(2))
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Y = matrix(NA, N, 2)
Y[1:n, 1] = y[1:n]
Y[1:n + n, 2] = y[1:n + n]

formula = Y ~ x + 1
result = inla(

formula,
data = list(Y=Y, x=x),
family = c("gaussian", "gaussian"),
control.family = list(list(prior = "flat", param = numeric()),

list()))
summary(result)

##
## Call:
## c("inla(formula = formula, family = c(\"gaussian\", \"gaussian\"), data
## = list(Y = Y, ", " x = x), control.family = list(list(prior = \"flat\",
## param = numeric()), ", " list()))")
## Time used:
## Pre = 0.418, Running = 0.195, Post = 0.0181, Total = 0.631
## Fixed effects:
## mean sd 0.025quant 0.5quant 0.975quant mode kld
## (Intercept) 1.029 0.051 0.929 1.029 1.128 1.029 0
## x 1.033 0.048 0.938 1.033 1.128 1.032 0
##
## Model hyperparameters:
## mean sd 0.025quant 0.5quant
## Precision for the Gaussian observations 0.998 0.142 0.744 0.99
## Precision for the Gaussian observations[2] 3.010 0.425 2.249 2.98
## 0.975quant mode
## Precision for the Gaussian observations 1.30 0.976
## Precision for the Gaussian observations[2] 3.92 2.940
##
## Marginal log-Likelihood: -248.42
## Posterior summaries for the linear predictor and the fitted values are computed
## (Posterior marginals needs also ’control.compute=list(return.marginals.predictor=TRUE)’)

The second example shows how to use information from two sources to estimate the effect of the covariate x.
## Simple example with two types of likelihoods
n = 10
N = 2*n

## common covariates
x = rnorm(n)

## Poisson, depends on x
E1 = runif(n)
y1 = rpois(n, lambda = E1*exp(x))

## Binomial, depends on x
size = sample(1:10, size=n, replace=TRUE)
prob = exp(x)/(1+exp(x))
y2 = rbinom(n, size= size, prob = prob)
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## Join them together
Y = matrix(NA, N, 2)
Y[1:n, 1] = y1
Y[1:n + n, 2] = y2

## The E for the Poisson
E = numeric(N)
E[1:n] = E1
E[1:n + n] = NA

## Ntrials for the Binomial
Ntrials = numeric(N)
Ntrials[1:n] = NA
Ntrials[1:n + n] = size

## Duplicate the covariate which is shared
X = numeric(N)
X[1:n] = x
X[1:n + n] = x

## Formula involving Y as a matrix
formula = Y ~ X - 1

## `family' is now
result = inla(formula,

family = c("poisson", "binomial"),
data = list(Y=Y, X=X),
E = E, Ntrials = Ntrials)

summary(result)

##
## Call:
## c("inla(formula = formula, family = c(\"poisson\", \"binomial\"), data
## = list(Y = Y, ", " X = X), E = E, Ntrials = Ntrials)")
## Time used:
## Pre = 0.424, Running = 0.116, Post = 0.00552, Total = 0.546
## Fixed effects:
## mean sd 0.025quant 0.5quant 0.975quant mode kld
## X 1.054 0.182 0.674 1.062 1.39 1.078 0
##
## Marginal log-Likelihood: -28.28
## Posterior summaries for the linear predictor and the fitted values are computed
## (Posterior marginals needs also ’control.compute=list(return.marginals.predictor=TRUE)’)

If the covariate ‘x’ is different for the two families, x and xx, say, then we only need to make the following
changes
X = numeric(N)
X[1:n] = x
X[1:n + n] = NA

XX = numeric(N)
XX[1:n] = NA
XX[1:n + n] = xx
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formula = Y ~ X + XX -1

and add XX into the data.frame. Note how we can express the joint model as a ‘union’ of models with the use
of NA’s to remove terms.

In the next example, we use also the replicate feature to estimate three replicated AR(1) models with the
same hyperparamters, each observed differently.
## An example with three independent AR(1)'s with separate means, but
## with the same hyperparameters. These are observed with three
## different likelihoods.

n = 100
x1 = arima.sim(n=n, model=list(ar=c(0.9))) + 0
x2 = arima.sim(n=n, model=list(ar=c(0.9))) + 1
x3 = arima.sim(n=n, model=list(ar=c(0.9))) + 2

## Binomial observations
Nt = 10 + rpois(n,lambda=1)
y1 = rbinom(n, size=Nt, prob = exp(x1)/(1+exp(x1)))

## Poisson observations
Ep = runif(n, min=1, max=10)
y2 = rpois(n, lambda = Ep*exp(x2))

## Gaussian observations
y3 = rnorm(n, mean=x3, sd=0.1)

## stack these in a 3-column matrix with NA's where not observed
y = matrix(NA, 3*n, 3)
y[1:n, 1] = y1
y[n + 1:n, 2] = y2
y[2*n + 1:n, 3] = y3

## define the model
r = c(rep(1,n), rep(2,n), rep(3,n))
rf = as.factor(r)
i = rep(1:n, 3)
formula = y ~ f(i, model="ar1", replicate=r, constr=TRUE) + rf -1
data = list(y=y, i=i, r=r, rf=rf)

## parameters for the binomial and the poisson
Ntrial = rep(NA, 3*n)
Ntrial[1:n] = Nt
E = rep(NA, 3*n)
E[1:n + n] = Ep

result = inla(formula, family = c("binomial", "poisson", "normal"),
data = data, Ntrial = Ntrial, E = E,
control.family = list(

list(),
list(),
list()))

summary(result)
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##
## Call:
## c("inla(formula = formula, family = c(\"binomial\", \"poisson\",
## \"normal\"), ", " data = data, E = E, Ntrials = Ntrial, control.family
## = list(list(), ", " list(), list()))")
## Time used:
## Pre = 0.413, Running = 0.532, Post = 0.0173, Total = 0.963
## Fixed effects:
## mean sd 0.025quant 0.5quant 0.975quant mode kld
## rf1 -0.480 0.095 -0.670 -0.478 -0.298 -0.475 0
## rf2 1.490 0.040 1.409 1.491 1.566 1.493 0
## rf3 1.107 0.001 1.105 1.107 1.109 1.107 0
##
## Random effects:
## Name Model
## i AR1 model
##
## Model hyperparameters:
## mean sd 0.025quant
## Precision for the Gaussian observations[3] 1.74e+04 1.72e+04 1380.251
## Precision for i 2.29e-01 4.60e-02 0.147
## Rho for i 8.61e-01 2.80e-02 0.802
## 0.5quant 0.975quant mode
## Precision for the Gaussian observations[3] 1.24e+04 6.32e+04 3843.856
## Precision for i 2.27e-01 3.26e-01 0.224
## Rho for i 8.62e-01 9.11e-01 0.863
##
## Marginal log-Likelihood: -847.82
## Posterior summaries for the linear predictor and the fitted values are computed
## (Posterior marginals needs also ’control.compute=list(return.marginals.predictor=TRUE)’)

Models where the response/data depends on linear combinations of the “linear
predictor” (or the sum of “fixed” and “random” effects)
In some cases, the data/response might depend on a linear combination of the “linear predictor” defined in
the formula, like
y ~ 1 + z

then this implies that y[1] depends on intercept + beta*z[1]. Suppose if y[1] depends on
2*intercept + beta*z[1] + beta*z[2]? Although it is possible to express this, using the tools we already
have, it is more convenient to add another layer into the model. Let A be a m x n matrix, which defines new
linear predictors, eta~ from eta, like
eta~ = A %*% eta

Here, eta is the ordinary linear predictor defined using the formula, and the data depends on the linear
predictor eta~. So we might express this as
y ~ 1 + z, with addition matrix A

meaning in short, that
y ~ eta~ ## no intercept...
eta~ = A %*% eta
eta = intercept + beta*z
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This is specified by adding the A-matrix, using
control.predictor=list(A=A)

The argument offset, which might be defined in the formula as offset(value) or as an argument
inla(..., offset = value), does have different interpretation in the case where the A-matrix is used. The
rule is that offset in the formula, goes into eta, whereas an argument offset goes into eta~. If we write
out the expressions above adding offsets, offset.formula and offset.arg, we get
eta~ = A %*% eta + offset.arg
eta = intercept + beta*z + offset.formula

In the case where there is no A-matrix, then \verb|offset.total = offset.arg + offset.formula|.

The following example should provide more insight. You may change n and m, such that m < n, m = n
or m > n. Note that since the response has dimension m and the covariates dimension n, we need to use
list(y=y, z=z) and not a data.frame(). This example also illustrates the use of offset’s.
## 'm' is the number of observations of eta*, where eta* = A eta +
## offset.arg, and A is a fixed m x n matrix, and eta has length n. An
## offset in the formula goes into 'eta' whereas an offset in the
## argument of the inla-call, goes into eta*
n = 10
m = 100
offset.formula = 10+ 1:n
offset.arg = 1 + 1:m

## a covariate
z = runif(n)

## the linear predictor eta
eta = 1 + z + offset.formula

## the linear predictor eta* = A eta + offset.arg.
A = matrix(runif(n*m), m, n);
##A = inla.as.sparse(A) ## sparse is ok
## need 'as.vector', as 'Eta' will be a sparseMatrix if 'A' is sparse
## even if ncol(Eta) = 1
Eta = as.vector(A %*% eta) + offset.arg

s = 1e-6
Y = Eta + rnorm(m, sd=s)

## for a check, we can use several offsets. here, m1=-1 and p1=1, so
## they m1+p1 = 0.
r = inla(Y ~ 1+z + offset(offset.formula) + offset(m1) + offset(p1),

## The A-matrix defined here
control.predictor = list(A = A, compute=TRUE, precision = 1e6),
## we need to use a list() as the different lengths of Y
## and z
data = list(Y=Y, z=z,

m1 = rep(-1, n),
p1 = rep(1, n),
offset.formula = offset.formula,
offset.arg = offset.arg),

## this is the offset defined in the argument of inla
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offset = offset.arg,
##
control.family = list(initial = log(1/sˆ2), fixed=TRUE))

## Warning in inla(Y ~ 1 + z + offset(offset.formula) + offset(m1) + offset(p1), : The A-matrix in the predictor (see ?control.predictor) is specified
## but an intercept is in the formula. This will likely result
## in the intercept being applied multiple times in the model, and is likely
## not what you want. See ?inla.stack for more information.
## You can remove the intercept adding ‘‘-1’’ to the formula.

summary(r)

##
## Call:
## c("inla(formula = Y ~ 1 + z + offset(offset.formula) + offset(m1) + ",
## " offset(p1), data = list(Y = Y, z = z, m1 = rep(-1, n), p1 = rep(1, ",
## " n), offset.formula = offset.formula, offset.arg = offset.arg), ", "
## offset = offset.arg, control.predictor = list(A = A, compute = TRUE, ",
## " precision = 1e+06), control.family = list(initial = log(1/s^2), ", "
## fixed = TRUE))")
## Time used:
## Pre = 0.392, Running = 0.116, Post = 0.00636, Total = 0.515
## Fixed effects:
## mean sd 0.025quant 0.5quant 0.975quant mode kld
## (Intercept) 1 0.001 0.999 1 1.001 1 0
## z 1 0.001 0.997 1 1.003 1 0
##
## Marginal log-Likelihood: -47639.10
## Posterior summaries for the linear predictor and the fitted values are computed
## (Posterior marginals needs also ’control.compute=list(return.marginals.predictor=TRUE)’)

## this should be a small number
print(max(abs(r$summary.linear.predictor$mean - c(Eta, eta))))

## [1] 8.041647e-06

Here is a another example where the informal formula is
y = intercept + s[j] + 0.5*s[k] + noise

Instead of using the copy feature, we can implement this model using the A-matrix feature. What we do, is
to first define a linear predictor being the intercept and s, then we use the A-matrix to ‘construct the model’.
n = 100
s = c(-1, 0, 1)
nS = length(s)
j = sample(1L:nS, n, replace=TRUE)
k = j
k[j == 1L] = 2
k[j == 2L] = 3
k[k == 3L] = 1

noise = rnorm(n, sd=0.0001)
y = 1 + s[j] + 0.5*s[k] + noise

## build the formula such that the linear predictor is the intercept
## (index 1) and the 's' term (index 2:(n+1)). then kind of
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## 'construct' the model using the A-matrix.
formula = y ~ -1 + intercept + f(idx)
A = matrix(0, n, nS+1L)
for(i in 1L:n) {

A[i, 1L] = 1
A[i, 1L + j[i]] = 1
A[i, 1L + k[i]] = 0.5

}

data = list(intercept = c(1, rep(NA, nS)), idx = c(NA, 1L:nS))
result = inla(formula, data=data, control.predictor=list(A=A))
## should be a straight line
plot(result$summary.random$idx$mean, s, pch=19)
abline(a=0,b=1)
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