
The Classical Measurement Error (MEC) model

Parametrization

This is an implementation of the classical ME model for a fixed effect. It is best described by an
example, let the model be

η = βx+ ε

where η is the linear predictor, β the effect of the true covariate x with zero mean Gaussian noise ε.
The issue is that x is not observed directly, but only through w, where

w = x+ u

where u is zero mean Gaussian noise. Even though this setup is possible to implement using basic
features (”copy” and multiple likelihoods), we provide the following model which reparametrizes the
above,

η = ν + ε

where ν = βx has the correct distribution depending on various parameters: β has prior π(β), and x
is apriori N (µxI, τxI)1. The error is apriori u ∼ N (0, τuD), where τu is the observational precision of
the error Prec(u|x)) with possible heteroscedasticy, encoded in the entries di of the diagonal matrix
D. The vector s contains the fixed scalings s = (d1, . . . , dn) (with n the number of data points).

Hyperparameters

This model has 4 hyperparameters, θ = (θ1, θ2, θ3, θ4) where θ2, θ3 and θ4 are default set to be fixed
(ie defined to be known). The values of θ2, θ3 and θ4 are set to mimic a classical fixed effect, so they
will always make sense. To achieve the ME model, please use the appropriate choices for (some of)
these parameters!

The hyperparameter specification is as follows:

θ1 = β

and the prior is defined on θ1,
θ2 = log(τu)

and the prior is defined on θ2,
θ3 = µx

and the prior is defined on θ3,
θ4 = log(τx)

and the prior is defined on θ4.

Specification

The MEC is specified inside the f() function as

f(w, [<weights>,] model="mec", scale = <s>, values= <w>, hyper = <hyper>)

The w are the observed values of the true but unknown covariates x, with the assumption, that if
two or more elements of w are identical, then they refer to the same element in the true covariate x.
If data points with identical w values belong to different x values (e.g., different individuals), please
add a tiny random value to w to make this difference obvious to the model.

The fixed scaling of the observational precision is given in argument scale. If the argument
scale is not given, then s is set to 1.

1Note: The second argument in N (,) is the precision not the variance.

1

Hyperparameter specification and default values

doc Classical measurement error model

hyper

theta1

hyperid 2001

name beta

short.name b

prior gaussian

param 1 0.001

initial 1

fixed FALSE

to.theta function(x) x

from.theta function(x) x

theta2

hyperid 2002

name prec.u

short.name prec

prior loggamma

param 1 1e-04

initial 9.21034037197618

fixed TRUE

to.theta function(x) log(x)

from.theta function(x) exp(x)

theta3

hyperid 2003

name mean.x

short.name mu.x

prior gaussian

param 0 1e-04

initial 0

fixed TRUE

to.theta function(x) x

from.theta function(x) x

theta4

hyperid 2004

name prec.x

short.name prec.x

prior loggamma

param 1 10000

initial -9.21034037197618

fixed TRUE

to.theta function(x) log(x)

from.theta function(x) exp(x)

2

constr FALSE

nrow.ncol FALSE

augmented FALSE

aug.factor 1

aug.constr

n.div.by

n.required FALSE

set.default.values FALSE

pdf mec

Example

n = 100

beta = 4

prec.y = 1

prec.u = 1

prec.x = 1

true unobserved covariate

x = rnorm(n, sd = 1/sqrt(prec.x))

the observed covariate with heteroscedastic scaling

s = runif(n,min=0.5,max=2)

w = x + rnorm(n, sd = 1/sqrt(prec.u*s))

regression model using the unobserved ’x’

y = 1 + beta*x + rnorm(n, sd = 1/sqrt(prec.y))

prior parameters

prior.beta = c(0, 0.0001)

prior.prec.u = c(10, 9)

prior.prec.x = c(10, 9)

prior.prec.y = c(10, 9)

formula = y ~ 1 +

f(w, model="mec", scale=s, values=w,

hyper = list(

beta = list(

prior = "gaussian",

param = prior.beta,

fixed = FALSE

),

prec.u = list(

prior = "loggamma",

param = prior.prec.u,

initial = log(prec.u),

fixed = FALSE

),

3

prec.x = list(

prior = "loggamma",

param = prior.prec.x,

initial = log(prec.x),

fixed = FALSE

),

mean.x = list(

prior = "gaussian",

initial = 0,

fixed=TRUE

)

)

)

r = inla(formula,

data = data.frame(y, w, s),

family = "gaussian",

control.family = list(

hyper = list(

prec = list(param = prior.prec.y,

initial = log(prec.y),

fixed=FALSE

)

)

)

)

summary(r)

Notes

• INLA provides the posteriors of νi = βxi and NOT xi.

• The posteriors of νi come (default) in the order given by the sorted (from low to high) values
of w. The entry $ID gives the mapping.

• The option scale defines the scaling in the same order as argument values. It is therefore
adviced to also give argument values when scale is used to be sure that they are consistent.

4

