
Avoiding trouble with factors in inla.stack()

Elias T. Krainski (elias@r-inla.org)

Aug 7th 2017

Introduction
This short note describe a way to work with factor covariates when working with inla.stack(). You can skip
the next section if you already know how to work with factors in functions such as lm() or glm().

Working with factors in R

Let the simple linear model
yijk = µ0 + ai + bj + fk + βxijk + eijk

and the following data from it
dat <- expand.grid(a=0:1, b=0:1, d=0:2) ### three discrete
dat$x <- runif(12) ### one continuous covariate
dat$y <- 3*dat$a - dat$b + (dat$d-1)*2 + dat$x + rnorm(12,0,0.1)

A factor with only two levels can be encoded as numeric 0 or 1 or as factor. A factor with more than two
levels always have to be encoded as factors. So we must encode d as factor

dat$d <- factor(dat$d)

The model can be fitted as
coef(lm(y ~ 1 + a + b + d + x, dat))

(Intercept) a b d1 d2 x
-2.015034 2.955168 -1.076419 2.100355 4.041895 1.046020

where we explicited each model term.

Let us pay attention for the fact that the default option for contrasts is the treatment. In this case a
reference level from each covariate coded as factor is droped, the first level by default. In this case the
‘(Intercept)’ is the scenario when each numeric covariate is zero and the factor covariates are at its reference
level. The coefficient associated to a numeric covariate measures the effect of changing one unity in this
covariate. For the covariates encoded as factors, there is one coefficient for each not droped level and it
measures the effect of changing from the reference level to this level.

The intercept is considered by default no needing to be explicited.
coef(lm(y ~ a + b + d + x, dat))

(Intercept) a b d1 d2 x
-2.015034 2.955168 -1.076419 2.100355 4.041895 1.046020

It can be removed by adding ‘-1’ in any part of the right side of the formula
coef(lm(y ~ -1 + a + b + d + x, dat))

1

a b d0 d1 d2 x
2.95516806 -1.07641869 -2.01503389 0.08532143 2.02686106 1.04602049

or writing a literal formula explicty saying ‘no intercept’ inserting ‘0’ in any part of the right side of it
coef(lm(y ~ 0 + a + b + d + x, dat))

a b d0 d1 d2 x
2.95516806 -1.07641869 -2.01503389 0.08532143 2.02686106 1.04602049

Notice that the ‘(Intercept)’ from before is now ‘d0’ because it is the scenario for the first level in ‘d’ and
when all the other terms (all numeric) as zero. When there is no intercept this happens to be the case for the
first factor in the formula.

When the ‘(Intercept)’ is in the model, changing the order of the terms in the formula does effect what is
being fitted, only the order

coef(lm(y ~ b + a + d + x, dat))

(Intercept) b a d1 d2 x
-2.015034 -1.076419 2.955168 2.100355 4.041895 1.046020

coef(lm(y ~ d + a + b + x, dat))

(Intercept) d1 d2 a b x
-2.015034 2.100355 4.041895 2.955168 -1.076419 1.046020

The covariates with only two levels encoded as “0” or “1” can be encoded as factor assuming any two labels
dat$a <- factor(dat$a, levels=0:1, labels=c('1st', '2nd'))
dat$b <- factor(dat$b, levels=1:0, labels=c('2nd', '1st')) ## OBS: reference level changed

and we will have the same coefficients as when not having it as factors only when ‘0’ is the reference level
coef(lm(y ~ a + b + d + x, dat))

(Intercept) a2nd b1st d1 d2 x
-3.091453 2.955168 1.076419 2.100355 4.041895 1.046020

When the intercept is not in the formula it will be the reference level of the first factor and the order matters
coef(lm(y ~ 0 + a + b + d + x, dat))

a1st a2nd b1st d1 d2 x
-3.0914526 -0.1362845 1.0764187 2.1003553 4.0418950 1.0460205

coef(lm(y ~ 0 + b + a + d + x, dat))

b2nd b1st a2nd d1 d2 x
-3.091453 -2.015034 2.955168 2.100355 4.041895 1.046020

coef(lm(y ~ 0 + d + a + b + x, dat))

d0 d1 d2 a2nd b1st x
-3.0914526 -0.9910973 0.9504424 2.9551681 1.0764187 1.0460205

It is important to notice that the way one codes de model matters. We showed the case under the contrast
parametrization. Other contrast options are available in R and one can see these in help(contrast).

Another important point is to notice that it is not a feature of the lm() or glm() function. The acual model
matrix being prepared using the model.matrix() function. This fuction is used internally to create tge dummie
variables. Everyone can use it directly just suplying the formula and data,

2

model.matrix(~a+b+d+x, dat)

and you can see what happens with each above cases.

Now we prepare ourselves to understand how to work with factors in inla.stack().

Dealing with factors in inla.stack()

The inla.stack() function helps to organize data when the model has components with different projection
matrices. Let us consider the Tokyo data which is data about rain each day over two years grouped by day of
the year.
data(Tokyo)
str(Tokyo)

’data.frame’: 366 obs. of 3 variables:
$ y : int 0 0 1 1 0 1 1 0 0 0 ...
$ n : int 2 2 2 2 2 2 2 2 2 2 ...
$ time: int 1 2 3 4 5 6 7 8 9 10 ...

y is 0, 1 or 2, n is 1 (February 29) or 2 and time is 1, 2, . . . , 366.

Let us have a set of knots over time in order to build a model, see Lindgren and Rue (2015).
knots <- seq(1, 367, length = 25)
mesh <- inla.mesh.1d(knots, interval = c(1, 367), degree = 2, boundary = "cyclic")
spde <- inla.spde2.pcmatern(mesh,

prior.sigma=c(1, 0.01), ## P(sigma > 1) = 0.01
prior.range=c(1, 0.01)) ## P(range < 1) = 0.01

A <- inla.spde.make.A(mesh, loc = Tokyo$time)
time.index <- inla.spde.make.index("time", n.spde = spde$n.spde)

Let us add two factor covariates to Tokyo data and a numeric one.
Tokyo$a <- factor(rbinom(366, 1, 0.5))
Tokyo$b <- factor(rbinom(366, 2, 0.5))
Tokyo$x <- runif(366)

When working with factor covariates it is better to to build the design matrix and supply it to inla.stack().
We can include the other covariates as well.
abx <- model.matrix(~a+b+x, Tokyo)[, -1]

The automatic intercept at the first column was droped. When supplying it in inla.stack() we will join an
explict intercept as we usually do when working with SPDE models.
stack <- inla.stack(

data = list(y = Tokyo$y, link = 1, Ntrials = Tokyo$n),
A = list(A, 1),
effects = list(time.index, data.frame(mu0=1, abx)),
tag = "est")

formula <- y ~ 0 + mu0 + a1 + b1 + b2 + x + f(time, model = spde)
data <- inla.stack.data(stack)
result <- inla(formula, family = "binomial",

data = data,
Ntrials = data$Ntrials,
control.predictor = list(

A = inla.stack.A(stack),
link = data$link,

3

compute = TRUE))
result$summary.fixed[, 1:5]

mean sd 0.025quant 0.5quant 0.975quant
mu0 -0.85887927 0.3765360 -1.6082648 -0.85753371 -0.1168142
a1 -0.08349511 0.1764784 -0.4307615 -0.08323583 0.2619790
b1 -0.35130963 0.2099219 -0.7620836 -0.35179342 0.0617706
b2 -0.29609102 0.2407794 -0.7702223 -0.29562111 0.1749524
x 0.06139516 0.3140021 -0.5542072 0.06107691 0.6781813

When there is a prediction scenario

Let us build a prediction scenario
pred.sc <- expand.grid(a1=0:1, b1=0:1, b2=0, x=c(0.5))
pred.sc

a1 b1 b2 x
1 0 0 0 0.5
2 1 0 0 0.5
3 0 1 0 0.5
4 1 1 0 0.5

For the random effect, over time, we do need to build a projection as well.
A.pred <- inla.spde.make.A(mesh, loc=rep(180, nrow(pred.sc)))

This scenario can be supplied in a new data stack as
stack.pred <- inla.stack(

data = list(y = NA, link = 1, Ntrials = 2),
A = list(A.pred, 1),
effects = list(time.index, data.frame(mu0=1, pred.sc)),
tag = "pred")

stack.full <- inla.stack(stack, stack.pred)
data <- inla.stack.data(stack.full)
result <- inla(formula, family = "binomial",

data = data,
Ntrials = data$Ntrials,
control.predictor = list(

A = inla.stack.A(stack.full),
link = data$link,
compute = TRUE),

control.mode=list(theta=result$mode$theta,
restart=FALSE))

Getting the predictions
idx.pred <- inla.stack.index(stack.full, tag='pred')$data
result$summary.fitted.val[idx.pred, 1:5]

mean sd 0.025quant 0.5quant 0.975quant
fitted.APredictor.367 0.5554407 0.08321556 0.3936469 0.5554953 0.7168272
fitted.APredictor.368 0.5351031 0.08556526 0.3707997 0.5344362 0.7029186
fitted.APredictor.369 0.4707244 0.07731822 0.3266274 0.4684716 0.6273348
fitted.APredictor.370 0.4504131 0.08012771 0.3028858 0.4474570 0.6142912

4

References
Lindgren, F., and H. Rue. 2015. “Bayesian Spatial and Spatio-Temporal Modelling with R-INLA.” Journal

of Statistical Software 63 (19).

5

	Introduction
	Working with factors in R
	Dealing with factors in inla.stack()
	When there is a prediction scenario

	References

