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Abstract

The INLA package provides a tool for computationally efficient Bayesian modeling
and inference for various widely used models, more formally the class of latent Gaussian
models. It is a non-sampling based framework which provides approximate results for
Bayesian inference, using sparse matrices. The swift uptake of this framework for Bayesian
modeling is rooted in the computational efficiency of the approach and catalyzed by the
demand presented by the big data era. In this paper, we present new developments within
the INLA package with the aim to provide a computationally efficient mechanism for the
Bayesian inference of relevant challenging situations.

Keywords: INLA, joint model, non-separable, spatial, temporal, R.

1. Introduction to the R-INLA project

The R-INLA project is an evolving platform that hosts various projects, all interlinked with
respect to the INLA package (Rue, Martino, and Chopin 2011) in R (R Core Team 2021).
This package is based on the INLA methodology developed by Rue, Martino, and Chopin
(2009). This development revolutionized the availability and applicability of Bayesian mod-
eling approaches, even in high dimensions, to practitioners and statisticians alike. The INLA
methodology ensures computational efficiency by using sparse representations of high dimen-
sional matrices used in latent Gaussian models (LGMs). The computational efficiency of
the method offers great appeal to different fields of science and for various applications. In
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ecology, Quintero and Jetz (2018) studied bird diversity by using R-INLA while Braga, Ter
Braak, Thuiller, and Dray (2018) investigated environmental relationships by incorporating
phylogenetic information. Dalongeville, Benestan, Mouillot, Lobreaux, and Manel (2018)
used R-INLA to detect genes specific to salinity in the field of genomics. Air pollution was
assessed with the purpose of disease assessment by Shaddick et al. (2018) while Rodríguez de
Rivera, López-Quílez, and Blangiardo (2018) used R-INLA to determine forest species distri-
butions. A study into fire occurrences was conducted by Podschwit, Larkin, Steel, Cullen,
and Alvarado (2018) to develop a forecasting system with the use of R-INLA. The effect of
coral bleaching in the Great Barrier Reef on the marine ecosystem was investigated by Stuart-
Smith, Brown, Ceccarelli, and Edgar (2018). In social studies, R-INLA has been applied to
study the state of education (Graetz et al. 2018) and child growth (Osgood-Zimmerman et al.
2018) in Africa. These aforementioned works are but a few of many recent applications of
R-INLA. The pertinency of R-INLA is clear. We believe that the new developments presented
here will enable more applications in an even broader context.
We present a brief conceptual framework of the INLA methodology. LGMs represent a specific
subset of hierarchical Bayesian additive models. This class comprises well-known models such
as mixed models, temporal and spatial models. An LGM is defined as a model having a
specific hierarchical structure, as follows: The likelihood is conditionally independent based
on the likelihood parameters (hyper parameters), θ and the linear predictors, ηi, such that
the complete likelihood can be expressed as

π(Y |η,θ) =
N∏
i=1

π(Yi|ηi(X ),θ).

The linear predictor is formulated as follows:

ηi = β0 + β>Xi + ui(zi), (1)

where β represent the linear fixed effects of the covariates X and the unknown non-linear
functions u of the covariates z are the structured random effects. These include spatial
effects, temporal effects, non-separable spatio-temporal effects, frailties, subject- or group-
specific intercepts and slopes, etc. This class of models includes most models used in practice
since time series models, spline models and spatial models, amongst others, are all included
within this class. The main assumption is that the data, Y , is conditionally independent
given the partially observed latent field, X , and some hyper parameters θ1. The latent field
X is formed from the structured predictor as (β0,β,u,η) which forms a Gaussian Markov
random field with sparse precision matrix Q(θ2), i.e., X ∼ N(0,Q−1(θ2)). A prior, π(θ),
can then be formulated for the set of hyper parameters θ = (θ1,θ2). The joint posterior
distribution is then given by:

π(X ,θ) ∝ π(θ)π(X |θ)
N∏
i=1

π(Yi|X ,θ). (2)

The goal is to approximate the joint posterior density (2) and subsequently compute the
marginal posterior densities, π(Xj |Y ) and π(θ|Y ). Due to the possibility of a non-Gaussian
likelihood, the Laplace approximation is used to approximate this analytically intractable joint
posterior density. The sparseness assumption on the precision matrix which characterizes the
latent Gaussian field ensures efficient computation (Rue and Held 2005).
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In this paper we present some new developments within the INLA package in the fields of
complex survival models, spatio-temporal models and high performance computing. See Rue
et al. (2009), Martino, Akerkar, and Rue (2011), Lindgren and Rue (2015), Rue, Riebler,
Sørbye, Illian, Simpson, and Lindgren (2017), Bakka et al. (2018) and Krainski et al. (2019)
for more details on some main features of INLA. In Section 2 we discuss the implemen-
tation of complex survival models including joint longitudinal-survival models, competing
risks models and multi-state models. Each of these could incorporate spline, spatial, tem-
poral or clustering elements to mention a few. We then present the new extensions in the
spatio-temporal domain, non-separable space-time models in Section 3. Finally, we discuss in
Section 4 how the INLA package is adapted to a high performance computing environment
using the PARDISO package (https://www.pardiso-project.org/; Alappat et al. 2020;
Bollhöfer, Schenk, Janalik, Hamm, and Gullapalli 2020; Bollhöfer, Eftekhari, Scheidegger,
and Schenk 2019).

2. Complex (joint) survival models
Survival models are used extensively in clinical studies where the time to a certain event is of
interest. The hazard function, the instantaneous risk of experiencing the event, is most often
of interest to estimate. More importantly, the effects of covariates on the hazard function is of
interest for causal inference. Parametric and non-parametric approaches have been proposed
to model the hazard function, most are available in the INLA package. In this section, we
focus on more complex survival models and will not discuss standard survival models (see
Martino et al. 2011). We present joint longitudinal-survival models in this section, for other
complex survival models like competing risk models using INLA see Van Niekerk, Bakka, and
Rue (2021a).
A basic joint model comprises of two different likelihoods and these likelihoods are joined
by shared random effects (see Wulfsohn and Tsiatis 1997; Hu and Sale 2003; Guo and Carlin
2004). Extensions of linear joint models like spatial random effects and non-linear trajectories
are used in the context of joint models to address certain practical challenges (see Zhou,
Lawson, Hebert, Slate, and Hill 2008; Ratcliffe, Guo, and Ten Have 2004; Andrinopoulou,
Eilers, Takkenberg, and Rizopoulos 2018). Each of these new joint models is still an LGM
and thus no special implementation package is needed for each one (for more details see Van
Niekerk, Bakka, and Rue 2019). Most longitudinal likelihoods and hazard assumptions can
be facilitated in this framework, leaving no need to develop a new implementation for each
set of assumptions.

2.1. Joint models as LGMs

In this section, we present relevant details of the joint model as an LGM as defined in Section 1,
full details are available in Van Niekerk et al. (2019). We first present details of the two
submodels that form the joint model, a survival and a longitudinal submodel, respectively,
and then focus on the joint model in its entirety. Suppose the hazard rate for individual
i, i = 1, . . . , NS at time s is defined by

hi(s) = h0(s) exp(ηSi (s)),

where h0(s) is the baseline hazard function which can be parametrically or non-parametrically

https://www.pardiso-project.org/
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specified and ηSi (s) is the linear predictor (possibly time-dependent), based on covariates, for
individual i. Currently, the exponential, Weibull, log-Gaussian and log-Logistic survival distri-
butions are included in the INLA package, under the parametric hazard function assumption.
The Cox proportional hazards model is included as a semi-parametric model resulting from
a non-parametric constant baseline hazard in each of many time partitions (see Cox 1972).
In this case, the random walk prior is adopted for the logarithm of the piece-wise constant
baseline hazard function, achieving a non-parametric estimate of the baseline hazard function.
Now define the density function of the time to event as

fi(s|ηSi (s)) = hi(s) exp
(
−
∫ s

0
hi(u)du

)
,

then the likelihood function for the survival submodel is

πS(s|ηS) =
NS∏
i=1

πi(s|ηSi ) =
NS∏
i=1

fi(s|ηSi )ci [1− Fi(s|ηSi )]1−ci , (3)

where ci = I(non-censored observation) indicates if an observation is not censored. An obser-
vation is censored when the exact event time is not observed but rather the most informative
non-event time. Right, left or interval censoring are common censoring approaches and can
be accommodated in our approach. The observations are thus a mixture of event times and
censored times, depending on the status of each individual.
Now, for the longitudinal data (Y ) suppose that each individual has Ni, i = 1, . . . , NS ob-
servations for a total longitudinal data set size of NL = ∑NS

i=1Ni. We specify the linear
predictor ηLl (t), based on covariates at time t, and a conditional density function g(Yl|ηLl (t))
for observation l, resulting in the likelihood for the longitudinal submodel as

πL(Y |ηL) =
NL∏
l=1

g(Yl|ηLl (t)). (4)

Now consider the linear predictors of the joint model,

ηL,Jl (t) = ηLl (t)
ηS,Ji (s) = ηSi (s) + g(ηLi (s)), (5)

where ηS and ηL are of the form (1) and g : < → < is a smooth function of ηLi (t). The
function h facilitates the joint estimation of the models and can assume various forms. A
common approach is to use the entire longitudinal linear predictor (see Ibrahim, Chu, and
Chen 2010), while traditionally only the subject-specific intercept and slope of the time effect
have been used, i.e., g(ηLi (s)) = ν1w1 +ν2w2s. In the latter we assume the structure specified
by Henderson, Diggle, and Dobson (2000) as follows,[

w1
w2

]
∼ N

([
0
0

]
,

[
σ2
w1 ρσw1σw2

ρσw1σw2 σ2
w2

])
.

Note that either ν1 or ν2 can be defined to be zero if desired.
Based on this reconstruction of the joint model, it was demonstrated by Van Niekerk et al.
(2019) that the joint model is indeed an LGM and can be successfully applied with the INLA
package.
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To this end, we present two illustrative examples. Firstly, we use data from a randomized
clinical trial used to investigate the efficacy of two antiretroviral drugs in HIV patients avail-
able in the JMBayes package (Rizopoulos 2016), where g(ηLi (s)) = ν1w1 + ν2w2s. Secondly,
we present an example with a non-linear trajectory and informative dropout event process
with g(ηLi (s)) = νηLi (s), from a prostate cancer study using post treatment PSA levels as a
longitudinal biomarker.

2.2. Example 1: HIV antiretroviral treatments efficacy

In this example the efficacy and safety of two antiretroviral treatments, Didanosine and
Zalcitabine, are investigated and presented in Guo and Carlin (2004). This randomized
trial includes NS = N = 467 patients who had failed or were intolerant to Zidovudine (AZT)
therapy. The longitudinal response is CD4, the CD4 cell counts (higher implies healthier),
at timepoint obstime for each patient, such that NL = 1405. Covariates are the gender,
prevOI which denotes if the patient has been diagnosed with AIDS at study entry or not and
AZT which indicates if there is an intolerance to AZT or if AZT has failed in treatment. The
survival responses is the Time until death (death = 1) or censoring (death = 0). In the joint
model, we use the same association structure as in Guo and Carlin (2004), i.e.,

ηL,Jl (t) = ηLl (t) + w1 + w2t

ηS,Ji (s) = ηSi (s) + ν1w1 + ν2w2s. (6)

This model estimates the treatment effect on the survival as well as CD4 count jointly. We
can then evaluate the treatments for efficacy in both endpoints by the inclusion thereof as a
covariate in both submodels. The specific submodels are then

ηL,Jl (t) = βL0 + βL1 Gender + βL2 Drug + βL3 Previous OI + βL4 AZT Resistance + w1 + w2t

ηS,Ji (s) = βS0 + βS1 Gender + βS2 Drug + βS3 Previous OI + βS4 AZT Resistance + ν1w1 + ν2w2s.

The data is loaded and visualized by the following code (see Figure 1).

R> inla.setOption(short.summary = TRUE)
R> data("aids", package = "JMbayes")
R> par(mfrow = c(1, 2))
R> interaction.plot(aids$obstime[1:100], aids$patient[1:100],
+ aids$CD4[1:100], xlab = "Time(years)", ylab = "CD4 count",
+ legend = FALSE, col = 1:100)
R> hist(aids$CD4, main = "", xlab = "CD4 count")

In Guo and Carlin (2004) the CD4 counts were transformed with the square root function
to use the Gaussian distribution for the response model. In this example we use the original
counts and assume a Poisson distribution instead. In Figure 1 it is clear that no zero inflation is
evident, although such phenomena could be incorporated into the model using a zero-inflated
Poisson distribution for the longitudinal response (available as zeroinflatedpoisson0 or
zeroinflatedpoisson1 for types 0 and 1, respectively). The individual CD4 trajectories
are very different from one another and the need for individual-specific models are clear.
This motivates the inclusion of subject-specific intercepts and slopes into the longitudinal
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Figure 1: Individual profiles (only first 100 patients) and histogram of CD4 counts.

submodel. In this example we assume the Weibull distribution for the survival times, although
the exponential, log-Gaussian, log-Logistic or Cox proportional hazards assumptions could be
used as well. We also rescale the time axis to the unit axis using the maximum time for this
data set:

R> data1 <- aids
R> mtime <- max(data1$Time, data1$obstime)
R> mtime

[1] 21.4

R> data1$Time <- data1$Time / mtime
R> data1$obstime <- data1$obstime / mtime

All the times hereafter should thus be rescaled to (0; 21.4) for interpretation.

Preprocessing for joint modeling in INLA
Some preprocessing of the data is required to perform the joint analysis. The full details
are omitted here but the concept is illustrated in (7) and the structuring is evident from
the forthcoming example code. For each submodel the responses and covariates of the other
submodel is stacked with NA’s or 0. For the current example define,

Y =



y1 NA
y2 NA
. . . . . .
yNL NA
NA s1
NA s2
. . . . . .
NA sN


, β = [βL1 βS1 . . .], X =



xL1,1 0 . . .

xL1,2 0 . . .

. . . 0 . . .
xL1,NL 0 . . .

0 xS1,1 . . .

0 xS1,2 . . .

0 . . . . . .
0 xS1,N . . .


,
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u(t) =



w1,1 w2,1t1 NA NA
w1,1 w2,1t2 NA NA
. . . . . . . . . . . .
w1,N w2,N tnL NA NA
NA NA ν1w1,1 ν2w2,1s1
NA NA ν1w1,2 ν2w2,2s2
. . . . . . . . . . . .
NA NA ν1w1,N ν2w2,NsN


. (7)

Then the joint model in (6) is an LGM similar to (1).
For this example, the construction of the responses and covariates for the joint model is done
in the following manner.
First we create the joint fixed effects fixed.covariate by padding the covariates with NA’s
or 0’s, for factors or numeric covariates, respectively. The covariates for the joint random
effects random.covariate are constructed as a list of the padded random covariates. Here
all covariates are padded with NA. Since we use model (6), random.covariate contains the
patient identifiers patient for the random intercept and slope effects.
Finally, we construct a list of the longitudinal responses y.long and the survival repsonses
y.surv, which forms our joint response object, Yjoint.
Then, the new dataset jointdataCD4 is constructed from column binding fixed.covariate
and random.covariate, and defining the response Y to be the list we created Yjoint.

R> datas <- data1[data1$obstime == 0, ]
R> datal <- data1[, c(1, 4:12)]
R> ns <- nrow(datas)
R> nl <- nrow(datal)
R> N <- length(unique(data1$patient))
R> fixed.covariate <- data.frame(
+ beta0 = as.factor(c(rep(1, nl), rep(2, ns))),
+ l.drug = as.factor(c(as.factor(datal$drug), rep(NA, ns))),
+ l.gender = as.factor(c(as.factor(datal$gender), rep(NA, ns))),
+ l.prevOI = as.factor(c(as.factor(datal$prevOI) , rep(NA, ns))),
+ l.AZT = as.factor(c(as.factor(datal$AZT) , rep(NA, ns))),
+ s.drug = as.factor(c( rep(NA, nl), as.factor(datas$drug))),
+ s.gender = as.factor(c(rep(NA, nl), as.factor(datas$gender))),
+ s.prevOI = as.factor(c(rep(NA, nl), as.factor(datas$prevOI))),
+ s.AZT = as.factor(c(rep(NA, nl), as.factor(datas$AZT))),
+ l.time = c(datal$obstime, rep(NA, ns)),
+ s.time = c(rep(NA, nl), datas$Time))
R> random.covariate <- list(U11 = c(datal$patient, rep(NA, ns)),
+ U21 = c(datal$patient, rep(NA, ns)),
+ U12 = c(rep(NA, nl), datas$patient),
+ U22 = c(rep(NA, nl), datas$patient))
R> joint.dataCD4 <- c(fixed.covariate,random.covariate)
R> y.long <- c(round(datal$CD4), rep(NA, ns))
R> y.surv <- inla.surv(time = c(rep(NA, nl), datas$Time),
+ event = c(rep(NA, nl), rep(1, ns) - datas$death))
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R> Yjoint <- list(y.long, y.surv)
R> joint.dataCD4$Y <- Yjoint

Inference for the joint model

The joint model can be fit using the inla function with the defined formula. The family ar-
gument contains the information of the likelihood model(s) and subsequently the appropriate
link function(s) for the linear predictor. Since the joint model consists of two likelihoods and
hence two linear predictors, we specify the poisson distribution for the longitudinal series
and the Weibull (weibullsurv) distribution for the time to death (in the context of survival
data the Weibull distribution is defined by weibullsurv). We use the new PC prior for the
shape parameter of the Weibull model (Van Niekerk, Bakka, and Rue 2021b), since we do
not have any strong prior information.

R> JointmodelCD4 = inla(Y ~ -1 + beta0 + l.gender + l.drug + l.prevOI +
+ l.AZT + s.gender + s.drug + s.prevOI + s.AZT +
+ f(U11, model = "iid2d", n = 2 * length(joint.dataCD4$beta0)) +
+ f(U21, l.time, copy = "U11", fixed = TRUE) +
+ f(U12, copy = "U11", fixed = FALSE) +
+ f(U22, s.time, copy = "U11", fixed = FALSE),
+ family = c("poisson", "weibullsurv"), data = joint.dataCD4,
+ verbose = FALSE, control.compute = list(dic = TRUE),
+ control.family = list(list(), list(hyper = list(theta =
+ list(prior = "pc.alphaw", param = c(1))), variant = 1)))
R> summary(JointmodelCD4)

Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant mode kld

beta01 2.310 0.098 2.118 2.309 2.505 2.308 0
beta02 0.279 0.032 0.213 0.280 0.339 0.281 0
l.gender2 -0.007 0.092 -0.186 -0.007 0.174 -0.007 0
l.drug2 0.057 0.054 -0.048 0.058 0.163 0.058 0
l.prevOI2 -0.706 0.067 -0.838 -0.706 -0.574 -0.705 0
l.AZT2 -0.033 0.070 -0.170 -0.033 0.104 -0.033 0
s.gender2 -0.031 0.031 -0.090 -0.032 0.033 -0.034 0
s.drug2 -0.009 0.018 -0.045 -0.009 0.027 -0.009 0
s.prevOI2 0.033 0.022 -0.011 0.034 0.077 0.034 0
s.AZT2 -0.059 0.025 -0.108 -0.059 -0.010 -0.059 0

Model hyperparameters:
mean sd 0.025quant 0.5quant

alpha parameter for weibullsurv[2] 6.864 0.332 6.269 6.841
Precision for U11 (component 1) 4.207 0.434 3.357 4.212
Precision for U11 (component 2) 0.338 0.124 0.162 0.316
Rho1:2 for U11 -0.289 0.250 -0.735 -0.297
Beta for U12 -0.211 0.198 -0.617 -0.204
Beta for U22 0.332 0.237 -0.112 0.323
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0.975quant mode
alpha parameter for weibullsurv[2] 7.573 6.777
Precision for U11 (component 1) 5.052 4.257
Precision for U11 (component 2) 0.642 0.278
Rho1:2 for U11 0.216 -0.307
Beta for U12 0.159 -0.177
Beta for U22 0.818 0.290

Deviance Information Criterion (DIC) ...............: 6276.81
Deviance Information Criterion (DIC, saturated) ....: 2053.32
Effective number of parameters .....................: 378.23

Similarly to Guo and Carlin (2004), from the estimated joint model we can see that the status
of previous AIDS infection (prevOI) is a significant covariate in the longitudinal model but
not the survival model, and the reason for inclusion in the study (AZT failure or intolerance)
is a significant covariate in the survival model. Both intercepts are significant. The random
intercepts and slopes (w1 and w2) can be viewed through their estimated covariance matrix
components, σ̂−2

w1 = Precision for U11 (component 1) = 4.176, σ̂−2
w2 = Precision for

U11 (component 2) = 3.930 and a non-significant correlation of Rho1:2 for U11 = 0.030.
The association between the longitudinal and survival models can be investigated by the
random values and credible intervals of ν1 and ν2 from the summary of the hyper parameters.
Both the association parameters are significant, ν̂1 = Beta for U12 = -0.188 and ν̂2 =
Beta for U22 = 0.302, with respective credible intervals (-0.342; -0.023) and (0.061;
0.531). The random intercepts are negatively associated and the random slopes are positively
associated. A higher starting value of CD4 thus has a negative effect on the hazard of death,
as expected. The positive association of the slopes is also expected since the hazard of
death biologically increases over time, as affirmed by the shape parameter estimate of the
Weibull model alpha parameter for weibullsurv[2] = 6.679. A competing risks model
to accomodate death from other causes, might provide more insight.

Patient-specific predictions

To use the model for patient-specific predictions we extract the necessary components from the
latent field of the longitudinal and survival submodels. We use the data in dataH to calculate
the survival functions (corresponding to indices (nl+1):(nl+ns)) and dataL1 to illustrate
the observed and estimated longitudinal trajectories (corresponding to indices 1:nl). The
fitted values are extracted using JointmodelCD4$summary.fitted.values$mean.
First, the observed event times are extracted as well as the observed longitudinal responses
and covariates:

R> datas <- data1[data1$obstime == 0, ]
R> datal <- data1[, c(1, 4:12)]

Data frames are then created for the estimated survival functions using the observed event
times and for the estimated longitudinal trajectories using the observed longitudinal responses
and covariates.
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R> dataH <- data.frame(datas,
+ lambda1 = JointmodelCD4$summary.fitted.values$mean[(nl+1):(nl+ns)])
R> dataL1 <- data.frame(datal,
+ fitted_l = JointmodelCD4$summary.fitted.values$mean[1:nl],
+ random_l = JointmodelCD4$summary.random$U11$mean[1:nl],
+ randoms_l = JointmodelCD4$summary.random$U21$mean[1:nl])

For illustration, we calculate the patient-specific CD4 trajectories and survival curves for two
patients, one with AIDS at entry and AZT failure (patient 4, prevOI = 2, AZT = 2) and
one without AIDS at entry and AZT intolerance (patient 35, prevOI = 1, AZT = 1), and
present these in Figure 2. The solid line is the observed trajectory and the dashed line is the
model-based trajectory. We also calculate the parametric model-based survival curve for the
Weibull model and indicate the median survival time for each patient with a horizontal line
at 0.5.

R> patients <- c(4, 35)
R> par(mfrow = c(2, 2))
R> par(mar = c(4, 4, 4, 4))
R> alpha <- JointmodelCD4$summary.hyperpar$mean[1]
R> j_est <- JointmodelCD4$summary.hyperpar$mean[2:6]
R> f_est <- JointmodelCD4$summary.fixed$mean
R> for (patientnr in patients) {
+ dataHi <- dataH[dataH$patient == patientnr, ]
+ with(datal[datal$patient == patientnr, ], plot(obstime * mtime, CD4,
+ ylab = "CD4 count", xlab = "Time (months)", type = "l",
+ xlim = c(0, 21.4), ylim = c(0, 20),
+ main = paste("CD4 trajectory - patient", patientnr)))
+ with(dataL1[dataL1$patient == patientnr, ], lines(obstime * mtime,
+ fitted_l + random_l + randoms_l * obstime, col = "blue", lty = 2))
+ pred_time <- seq(0, 1, by = 0.01)
+ lambda <- dataHi$lambda1
+ plot((pred_time * mtime), exp(-(pred_time * lambda)^alpha),
+ type = "l", ylab = "Survival probability", xlab = "Time (months)",
+ main = paste("Survival curve - patient", patientnr))
+ abline(h = 0.5, col = "red")
+ }

2.3. Example 2: PSA levels and informative dropout

Here we use the prostate and dropout datasets from the JointModel package (Kim 2016)
for NS = 100 patients with NL = 697 longitudinal observations. The longitudinal response
is the logarithm of PSA levels after radiation therapy logPSA.postRT at time VisitTime for
patient with number ID. The covariate is the entry PSA level logPSA.base. In the dropout
dataset the time of dropout is given by DropTime for patient ID2 with informative dropout
indicator Status = 1, and also the entry PSA level logPSA.base2 as a covariate.
We follow Hu and Sale (2003) and Kim, Zeng, and Taylor (2017) to estimate the longitudinal
trajectory by correcting for the bias introduced by the informative dropout. Since the main
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Figure 2: Patient-specific plots – longitudinal trajectories (left, solid line is observed and
dashed line is model-based) and model-based survival functions (right).

objective of the analysis is to estimate the non-linear longitudinal trajectories while correcting
the bias introduced by informative dropout, we will use the entire longitudinal predictor as
the shared random effect, i.e., h(ηLl (s)) = νηLl (s). To model the non-linear trajectory we use
a random walk order two component over time α(t). The model is thus:

ηL,Jl (t) = βL0 + α(t) + βL1 PSAbase

ηS,Ji (s) = βS0 + νηL,Ji (s),

where we assume a Weibull model for the dropout process. Again, we preprocess the original
data in the JointModel package. The resulting data set is available in the INLA package as
exampledata/psa/jointdataPSA.rds.

Structure of the joint model in INLA

R> library("JointModel")
R> inla.setOption(short.summary = TRUE)
R> data1 <- prostate
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R> data2 <- dropout
R> ng <- nrow(data1)
R> ns <- nrow(data2)
R> data1 <- data1[order(data1$VisitTime), ]
R> joint.dataPSA <- readRDS(system.file("exampledata/psa/jointdataPSA.rds",
+ package = "INLA"))
R> joint.dataPSA$beta0 <- joint.dataPSA$mu
R> JointmodelPSA <- inla(Y ~ -1 + beta0 + f(inla.group(V1, n = 50),
+ model = "rw2", scale.model = TRUE,
+ hyper = list(prec = list(prior = "pc.prec", param = c(1, 0.01)))) +
+ b13.PSAbase + f(u, w, model = "iid",
+ hyper = list(prec = list(initial = -6, fixed = TRUE))) +
+ f(b.eta, copy = "u", hyper = list(beta = list(fixed = FALSE))),
+ family = c("gaussian", "gaussian", "weibullsurv"),
+ data = joint.dataPSA, verbose = FALSE,
+ control.compute = list(dic = TRUE, config = TRUE),
+ control.family = list(list(), list(hyper = list(prec =
+ list(initial = 10, fixed = TRUE))), list()))

In this case we have three likelihoods. The first set of responses consists of the longitudinal ob-
servations, the second of the estimated linear predictors from the longitudinal model and the
third of the survival object. This is needed to copy the entire longitudinal linear predictor as a
Gaussian random effect (second "gaussian"), into the survival submodel ("weibullsurv").
The longitudinal linear predictor is added as the second set of responses with a fixed preci-
sion of 10 (i.e., variance of 0.1) to ensure that the near-identical linear predictor is copied.
The data thus needs to be padded with an additional set of NA’s in the second response
vector to achieve this specific association term, i.e., h(ηLl (s)) = νηLl (s). Also note the term
f(inla.group(V1, n = 50), model = "rw2") is the second order random walk two model
used as a spline to capture the non-linear effect of time, where we use 50 bins of time to
fit this model component. We use the scale.model = TRUE option to ensure a generalized
variance of 1 (this results in an interpretable precision parameter for different intrinsic Gaus-
sian Markov random fields, like the random walk order two model) and we assume the PC
prior for the precision hyperparameter with the option hyper = list(prec = list(prior
= "pc.prec", param = c(1, 0.01))) (Simpson, Rue, Riebler, Martins, and Sørbye 2017).

Inference for the joint model

We extract the results as follows:

R> summary(JointmodelPSA)

Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant mode kld

beta01 0.083 0.038 0.008 0.083 0.158 0.083 0
beta02 -0.985 0.185 -1.364 -0.980 -0.638 -0.968 0
b13.PSAbase 0.421 0.026 0.370 0.421 0.472 0.421 0
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Figure 3: Average PSA trajectory (red line), estimated PSA levels (blue) and observed PSA
levels (grey).

Model hyperparameters:
mean sd 0.025quant

Precision for the Gaussian observations 2.084 0.112 1.870
alpha parameter for weibullsurv[3] 0.814 0.068 0.691
Precision for inla.group(V1, n = 50) 5.949 4.325 1.198
Beta for b.eta 1.166 0.246 0.681

0.5quant 0.975quant mode
Precision for the Gaussian observations 2.082 2.312 2.079
alpha parameter for weibullsurv[3] 0.809 0.959 0.799
Precision for inla.group(V1, n = 50) 4.847 17.334 3.048
Beta for b.eta 1.165 1.650 1.165

Deviance Information Criterion (DIC) ...............: -3750.72
Deviance Information Criterion (DIC, saturated) ....: 1186.96
Effective number of parameters .....................: 183.49

Both the intercepts and the logPSA.base covariate are significant. From the hyper param-
eters, the spline is significant in its departure from linearity as deduced from the precision
of the spline Precision for inla.group(V1, n = 50) = 5.643. The shape parameter for
the Weibull model is estimated as alpha parameter for weibullsurv[3] = 0.814 which
implies a decreasing hazard of dropout over time.
The association parameter ν̂ = Beta for b.eta = 1.167 is significant and it is thus clear
that the joint model approach is necessary for this data set, to account for the informative
dropout.
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For illustration we can extract the spline component with JointmodelPSA$summary.random$‘
inla.group(V1, n = 50)‘ and the model-based PSA levels with JointmodelPSA$summary.
fitted.values as in Example 1. The estimated non-linear longitudinal average trajectory
is illustrated in Figure 3 by the red line, the model-based PSA levels are given by the blue
circles and the grey circles represent the observed PSA levels.

R> par(mfrow = c(1, 1))
R> plot(data1$VisitTime, data1$logPSA.postRT, xlab = "Time (years)",
+ ylab = "log(PSA+0.1)", col = "lightgrey")
R> points(data1$VisitTime, JointmodelPSA$summary.fitted.values[1:ng, 1],
+ col = "blue", lwd = 1)
R> lines(JointmodelPSA$summary.random$`inla.group(V1, n = 50)`[1:50, 1],
+ JointmodelPSA$summary.random$`inla.group(V1, n = 50)`[1:50, 2],
+ col = "red", lwd = 3)

3. Non-separable space-time models
The INLA package has been very successful in space and space-time modeling by representing
spatial models with sparse matrices using the stochastic partial differential equations (SPDE)
approach (Lindgren, Rue, and Lindström 2011; Bakka et al. 2018; Krainski et al. 2019).
Space-time models are usually constructed as Kronecker products, resulting in separable
models, where the space-time covariance function is a product of a spatial and a temporal
covariance function. In INLA this is coded using the group and control.group arguments
of the function f.
Instead of constructing a space-time model as an interaction between a spatial and a temporal
model, Bakka, Krainski, Bolin, Rue, and Lindgren (2020) are developing a class of space-time
models directly from the principles of diffusion processes in space-time. The basic building
block is a Matérn model in space, which is smoothed by a space-time diffusion process. The
spatial Matérn model is a natural starting point due to its wide use in spatial modeling in
general, and in INLA in particular. Define the spatial differential operator

L =
(
γ2
s + ∆

)
,

where γ2
s is a constant, and ∆ = (d2/dx2, d2/dy2) is the Laplacian. The space-time diffusion

process is governed by the differential operator(
γt
d

dt
+ L

)
,

known as a reaction-diffusion operator in physics, and used in many physical models. This
operator is used in systems where mass (which can represent mass, energy, individuals, disease
counts, or other characteristics) changes in time due to diffusion and replication.
In this section we discuss an implementation of the new models using the computational
methods based on Gaussian Markov random fields (GMRFs), in INLA, by writing R code
for the inference explicitly instead of using the inla function call. The main purpose of this
section is to show clearly how the GMRF framework can be used to code inference in the
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context of complex spatio-temporal random effects. Further, the reader can study the sparsity
structure of the matrices we present to see how well this approach fits with the research on
parallel computations presented in Section 4. The code herein is meant for understanding
software implementation, and is not suitable for applications, for that we refer to the online
code examples in the Supplementary Material of Bakka et al. (2020).

R> library("fields")
R> library("viridisLite")
R> set.seed(2019)

3.1. Define precision matrices

We use simple temporal and spatial meshes as follows. The spatial mesh can be plotted by
plot(mesh) and is described in Krainski et al. (2019).

R> t.max <- 8
R> mesh.time <- inla.mesh.1d(1:t.max)
R> fake.locations <- matrix(c(0, 0, 10, 10, 0, 10, 10, 0), nrow = 4,
+ byrow = TRUE)
R> mesh.space <- inla.mesh.2d(loc = fake.locations, max.edge = c(1.5, 2))

We use the model DEMF(1, 2, 1) in Bakka et al. (2020), corresponding to the SPDE(
γt
d

dt
+ L

)
L1/2γεu(s, t) =W(s, t),

where the γ’s are hyper parameters, and W is a white noise process.
Before we can define the separable and the non-separable models, we need to decide the hyper
parameters for our two space-time models. We choose the following hyper parameters (γ’s)
to give reasonable random fields, and to make the separable and non-separable models as
similar as possible when it comes to scale parameters, see Bakka et al. (2020).
We select the following hyper parameters of the random effects for the separable model

R> range.time <- 20
R> range.space <- 6
R> sigma.u <- 1

and for the non-separable model

R> gt <- 2.23
R> gs2 <- 0.2222
R> ge2 <- 0.0805

We use the finite element method (FEM) from Lindgren et al. (2011), adopted by Bakka et al.
(2020) to the following M -notation. We note that the temporal model is first order Markov,
and that a higher order Markov structure would be used for models with a higher smoothness
in time (Bakka et al. 2020).
We first preprocess the spatial and temporal FEM matrices.
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R> sfe <- inla.mesh.fem(mesh.space, order = 4)
R> tfe <- inla.mesh.fem(mesh.time, order = 2)
R> M0 <- tfe$c0
R> N.t <- nrow(M0)
R> M1 <- sparseMatrix(i = c(1, N.t), j = c(1, N.t), x = 0.5)
R> M2 <- tfe$g1

Conditional on the chosen hyper parameters, we define the precision matrices (Q) for the
separable and the non-separable models.

R> kappa <- 2/range.time
R> Q.M <- kappa^2 * M0 + 2 * kappa * M1 + M2
R> Q.M <- Q.M/2/kappa
R> Q.space.alpha2 <- gs2^2 * sfe$c0 + 2 * gs2 * sfe$g1 + sfe$g2
R> Q.space.alpha2 <- Q.space.alpha2/(4 * pi * gs2)
R> Q.separ <- kronecker(Q.M, Q.space.alpha2)
R> Q.nonsep <- (kronecker(gt^2 * M2, gs2 * sfe$c0 + sfe$g1) +
+ kronecker(M0, gs2^3 * sfe$c0 + gs2^2 * sfe$g1 + gs2 * sfe$g2 + sfe$g3) +
+ kronecker(2 * gt * M1, gs2^2 * sfe$c0 + 2 * gs2 * sfe$g1 + sfe$g2 )) *
+ ge2

We can study the prior marginal variance as follows. Importantly, we note that the marginal
variance is near 1 for both models.

R> summary(diag(inla.qinv(Q.separ)))

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.022 1.165 1.311 1.576 1.798 3.141

R> summary(diag(inla.qinv(Q.nonsep)))

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.076 1.255 1.422 1.720 1.990 3.566

3.2. Prior simulation

We simulate a Matérn field for t = 1. This can be done through the separable or the non-
separable model, since they are both Matérn marginally for t = 1. We use the seed and
num.threads = 1 arguments to get reproducible simulations. Further, we add a small noise
to the observations to give a more realistic inference problem. The dataframe df is represented
for all of space and time, but we replace the observations by NA after year 1.

R> u <- inla.qsample(n = 1, Q.nonsep, seed = 2019, num.threads = 1)[, 1]
R> N.st <- length(u)
R> sig.eps <- 0.01
R> noise <- rnorm(N.st, 0, 1) * sig.eps
R> df <- data.frame(y = u * sigma.u + noise, st = 1:N.st)
R> df$y[-(1:mesh.space$n)] <- NA
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Note that N.st is equal to nrow(Q.separ) and nrow(Q.nonsep).

3.3. Inference in R

We follow the book Rue and Held (2005) and compute posterior precision matrices and means,
by conditioning on df$y. The following code chunk replaces the call to inla in this example,
showing how the sparsity of the precision matrices impacts the main computational part of
the INLA inference procedure.
First the precision matrix for observation noise Qeps, the projection matrix for the observed
latent field A.observe and the posterior/conditional precision matrix post.Q are specified.

R> Qeps <- Diagonal(n = mesh.space$n)
R> A.observe <- sparseMatrix(i = 1:mesh.space$n, j = 1:mesh.space$n,
+ dims = c(mesh.space$n, N.st))
R> post.Q <- function(sig.eps = 0.01, Q.model) {
+ Q <- sig.eps^{-2} * t(A.observe) %*% Qeps %*% A.observe + Q.model
+ return(Q)
+ }

Then the point estimates are determined using the posterior means.

R> post.mu <- function (sig.eps = 0.01, Q.model) {
+ a <- df$y[1:mesh.space$n]
+ b <- sig.eps^{-2} * t(A.observe) %*% Qeps %*% a
+ res <- inla.qsolve(post.Q(sig.eps, Q.model = Q.model), b)
+ return(res)
+ }
R> mu.post.separ <- post.mu(Q.model = Q.separ)
R> mu.post.nonsep <- post.mu(Q.model = Q.nonsep)

For convenience, we set up a local function for plotting, designed for our example. This is
developed from the code in Krainski et al. (2019).

R> local.plot.field <- function(field, mesh, time = 1, ...) {
+ field <- field[1:mesh$n + (time-1) * mesh$n]
+ proj <- inla.mesh.projector(mesh, dims = c(200, 200))
+ field.proj <- inla.mesh.project(proj, field)
+ image.plot(list(x = proj$x, y = proj$y, z = field.proj),
+ col = plasma(64), ...)
+ }

The function first subsets field to use only the relevant part of the incoming vector and then
projects the mesh onto a 200× 200 grid.
We plot the point predictions (posterior mean) in space-time, in Figure 4. Note that in year 1
the field is conditioned on data on nearby locations, hence the separable and the non-separable
models give very similar results. Year 2 and 3, however, represent forecasts based on the data
observed in year 1. The plots shown here are for the first three years, but the for loop can
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be extended to show all six. In the figure we see a clear difference between the separable and
the non-separable models. The separable model forecasts a simple decay to the mean of the
current observations, while the non-separable model results in smoother forecasts. Due to the
very long temporal range, the decay to the mean is hard to spot visually. We argue that the
non-separable forecast is more appropriate in most applied situations. When forecasting, e.g.,
the temperature in a location in the future, the model should use not just the temperature
in the same location today, but also use the temperature in nearby locations, resulting in
a smoother forecast. One classical example of this is hot water poured into cold water; we
expect the two temperatures to regress to the mean by mixing and smoothing out differences.

R> par(mfrow = c(3, 2))
R> zlim2 <- range(c(mu.post.separ, mu.post.nonsep))
R> for (tp in 1:3) {
+ local.plot.field(mu.post.separ, mesh.space, time = tp,
+ main = paste0("Separable mean, t=", tp),
+ xlim = c(0, 10), ylim = c(0, 10), zlim = zlim2)
+ local.plot.field(mu.post.nonsep, mesh.space, time = tp,
+ main = paste0("Non-separable mean, t=", tp),
+ xlim = c(0, 10), ylim = c(0, 10), zlim = zlim2)
+ }

3.4. Posterior simulations

Finally, we show how to simulate from the posterior, in Figure 5. As before, the first year
is very similar, because we conditioned on data here, while year 2 and 3 show different
simulations into the future. This code is a replacement for inla.posterior.sample, showing
the similarity between posterior simulations for the separable and non-separable models.

R> post.sim.separ <- inla.qsample(1, Q = post.Q(Q.model = Q.separ),
+ reordering = "identity", seed = 1, num.threads = 1)
R> post.sim.separ = drop(post.sim.separ + mu.post.separ)
R> post.sim.nonsep = inla.qsample(1, Q = post.Q(Q.model = Q.nonsep),
+ reordering = "identity", seed = 1, num.threads = 1)
R> post.sim.nonsep <- drop(post.sim.nonsep + mu.post.nonsep)

Then we plot the simulations.

R> zlim1 <- range(c(post.sim.separ, post.sim.nonsep))
R> par(mfrow = c(3, 2))
R> for (tp in c(1, 2, 3)) {
+ local.plot.field(post.sim.separ, mesh.space, time = tp,
+ main = paste0("Separable sim, t=", tp),
+ xlim = c(0, 10), ylim = c(0, 10), zlim = zlim1)
+ local.plot.field(post.sim.nonsep, mesh.space, time = tp,
+ main = paste0("Non-separable sim, t=", tp),
+ xlim = c(0, 10), ylim = c(0, 10), zlim = zlim1)
+ }
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Figure 4: Posterior mean estimates from the separable and non-separable models.
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Figure 5: Posterior simulations from the separable and non-separable models.
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In this code we used the option reordering = "identity" in the inla.qsample function.
The purpose of this is to use the same random noise, and the same reordering, to get a close
comparison between the simulations. In general, we recommend to use inla.qsample with a
seed to get deterministic and reproducible behavior, but to use the default reordering scheme
to speed up computations.

4. High performance and parallel computing with INLA
The widespread acceptance of the INLA approach and the R-INLA software manifested as
the INLA package, were not foreseen when the INLA methodology was originally developed:
Hence, the INLA package has continuously evolved from research code started more than 15
years ago, adopting designs made for single-core execution in mind. Today, there is a growing
demand for analyzing much larger models: typically, either a large amount of observations
and/or a large number of latent variables (read space-time models, for simplicity). And we
have already started to provide better support for the increasingly larger statistical models
of today running on computational platforms of tomorrow (typically multicore or manycore
and possibly hardware accelerated).
At the core of the INLA algorithm, is numerical linear algebra for large sparse matrices. The
tasks that are required, are for a symmetric positive definite matrix Q of dimension n, the
ability to repeatedly compute

• the Cholesky factorization Q = LL>, where L is a lower triangular matrix,

• solve linear systems like Lx = b, L>x = b, LL>x = b, and

• compute selected elements of the inverse of Q, (Q−1)ij , for all ij where Qij is non-zero.

Additionally, we need also log |Q|, but since the Cholesky factor is available, it is simply∑
i 2 logLii. During the entire INLA algorithm, the non-zero pattern of Q is the same, which

simplifies some of the initial procedures, like finding a good reordering scheme.
For smaller n, like n ∼ 104 to 105 for a spatial model, the serial algorithms for these tasks
will run fine, as we have parallelized (using OpenMP) on a higher level like factorizing several
matrices at once. For larger n, like n ∼ 105 to 106, this approach is no longer practical. Also,
the type of model considered plays a role here; space-time models are O(

√
n) more costly,

and require more memory, than a spatial one, hence dimension where the serial sparse matrix
algorithms is no longer practical, will be less.
The need for parallel numerical methods for large sparse matrices on shared-memory and
distributed-memory multiprocessors, has been evident for quite some time. While there
is a vast literature on the development of efficient algorithms for the direct solution of
sparse linear systems of equations, only a few software package are available, such as, e.g.,
MUMPS (Amestoy, Duff, Koster, and L’Excellent 2001; Amestoy, Guermouche, L’Excellent,
and Pralet 2006), WSMP (Gupta 2002), SuperLU (Li 2005), CHOLMOD (Davis 2006). Nei-
ther of these libraries provide parallel algorithms for all our required matrix operations listed
above, as they do not have a parallel implementation of the algorithm to compute selected
elements of the inverse. (CHOLMOD supports a serial version of this algorithm.) How to
efficiently compute selected elements of the inverse of a sparse matrix, has been known for a
quite some time (Takahashi, Fagan, and Chen 1973; Erisman and Tinney 1975), but a parallel
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Figure 6: The running time doing Cholesky factorization (left) and computing the partial
inverse for the 3D Laplace equation matrix with additional 25 dense row and columns. The
dimension is n3 + 25 with n vary from 100 to 200. The number of cores are 1 (top), 2, 4, 8,
12, 16 and 32 (bottom).

version of this algorithm was not available in a main sparse matrix library before the work
of Verbosio, Coninck, Kourounis, and Schenk (2017) was made available in the PARDISO
package (Schenk and Gärtner 2004; Kuzmin, Luisier, and Schenk 2013; Petra, Schenk, Lubin,
and Gärtner 2014). According to Gould, Scott, and Hu (2007), PARDISO is one of the best
performing parallel libraries for numerical computations for large sparse matrices.
A collaboration between the PARDISO1 and INLA projects was initiated early 2018, ending
up with a special version of the PARDISO package for INLA which was integrated into INLA
and released in May 2018. With this new tool, we are now able to run successfully statistical
models with n in the millions on KAUST computational servers. The paralellization strategy,
that currently is supported using argument control.compute = list(openmp.strategy =
"pardiso.parallel"), is to do one matrix at the time using a parallel algorithm to factor-
ize, solve and compute selected entries of the inverse. The future plans for this collaboration,
includes improvement of the integration with the INLA algorithm including nested paral-
lelism, and also to extend the PARDISO interface so we can make use of more efficiently
computing capabilities exploiting the parallel computing support in PARDISO to enable par-
allel distributed and accelerated execution of the main numerical tasks required in the INLA
algorithm.
To illustrate the abilities of the PARDISO package to work with huge matrices, we ran a
series of tests on our computational server, with 512 Gb of RAM, 2 sockets with 16 cores per
socket, and with Intel Xeon Gold 6130 CPUs @2.10GHz. The test matrix is constructed to
be very challenging, mimicking a large space-time model with the same non-zero structure as
the 3-dimensional Laplace equation on a n × n × n cube (which is the worst configuration).
Additionally, we added 25 dense rows/columns to mimic the presence of fixed effects in the

1Some may be aware of a former version of PARDISO which has been integrated into the Intel Math Kernel
Library (MKL), a library of optimized math routines for science, engineering, and financial applications.



Journal of Statistical Software 23

model. For the (n3 + 25)× (n3 + 25) sparse matrix, have about 56 neighbors for each node.
The storage required is about 0.22 Gb for n = 100 and 1.72 Gb for n = 200, to store its
non-zero elements. Additionally, we need to store their (relative) location within the matrix.
Figure 6 shows the results for n = 100, 120, 140, 160, 180 and 200, using nc = 1, 2, 4, 8, 12, 16
and 32 cores, for doing Cholesky factorization (left) and the partial inverse (right). The results
demonstrate a consistent behaviour for the running time both with varying n and nc. The
computational cost reduces nicely from nc = 1 and 2 and to 4, but then the speedup fades
off. We do not gain much going beyond 16 cores for this example, and the partial inverse is
somewhat more expensive to compute than the Cholesky factorization. The results are very
encouraging as it shows that PARDISO can handle sparse matrices of this size and structure
without problems. The integration of INLA and PARDISO will be further improved and we
are currently working on this issue.

5. Discussion
Bayesian modeling is ever present and still increasing in popularity in applied fields of science.
Initially, the inference was performed using sampling-based methods like Gibbs sampling.
These methods, however, are often time-consuming and computationally inefficient. From
this impediment, approximate Bayesian inference approaches sprouted. (One of) The most
popular non-sampling based Bayesian inference approach is the INLA methodology, facilitated
through the INLA package. INLA is developed for the class of LGMs, that contains most
well-known statistical models. Since the inception of INLA in 2009 through the seminal paper
(Rue et al. 2009), the use of the INLA methodology has been cited more than 3000 times.
The success of INLA as a computational inferential framework for Bayesian modeling is partly
attributed to the continual development and expansion of package INLA. As evident in this
paper, relevant statistical methodology is developed and implemented incessantly in INLA as
to provide scientists with a computational platform for state-of-the-art Bayesian models.
The specific developments presented herein address some current Bayesian modeling demands.
In biomedical applications, the use of joint models for survival and longitudinal data is im-
perative. The efficacy of treatments as measured on multiple endpoints is a crucial step in
drug design, and necessitates the use of joint modeling of the endpoints. In this paper, we
presented the implementation of joint models with one survival and one longitudinal endpoint.
Future developments in this field are under way and the need for a unique interface for these
joint models, based on the INLA architecture is clear. The potential for further developments
in this realm based on INLA is encouraging. In the flavor of joint models, the extension to
spatial joint models, joint models with competing risks or recurrent events and generalized
multiple endpoint modeling are some examples of models that could be implemented in INLA
based on the approach presented herein. Multi-state models and competing risks models are
also of major interest in the biomedical field, and with their implementation in INLA the
extensions to spatial or smoothing spline random effects would be trivial.
The innovative SPDE approach for space and space-time models as used in INLA serves as
a gateway for extensions in the field of space-time modeling. The development of a class of
non-separable space-time models is motivated by current needs in the analysis of complex real
space-time data, and is based on physical diffusion processes. This extension is based on the
definition of a particular SPDE which is then solved using finite element methods, and con-



24 New Frontiers in the INLA Package

trasts to more common attempts at generalizing the covariance matrix or the spectrum. This
approach is unique to INLA (within software for Bayesian modeling, as far as we know) and
ensures unequivocal computational efficiency, without additional approximations, compared
to other methods in the literature.
Based on the generalization to non-separable space-time models and the increasing compu-
tational demand through big data, the ability of INLA to perform in a high performance
computing environment necessitates the development of tools available in INLA that can op-
timally facilitate the computational burden using high performance computing architecture.
To this end, we present the current and future collaborative work on this front using the
PARDISO package in conjunction with INLA. This project promotes the use of INLA to
an even wider audience and ensures the applicability of INLA for Bayesian inference in the
future.
INLA equips the user with powerful Bayesian modeling tools that are computationally efficient
and relevant. The ongoing research and development of INLA ensures congruence to state-
of-the-art statistical methodology and places the user at the vanguard of their field.
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