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Abstract

Statistical analyses of directional or angular data have applications in a variety of
fields, such as geology, meteorology and bioinformatics. There is substantial literature on
descriptive and inferential techniques for univariate angular data, with the bivariate (or
more generally, multivariate) cases receiving more attention in recent years. More specif-
ically, the bivariate wrapped normal, von Mises sine and von Mises cosine distributions,
and mixtures thereof, have been proposed for practical use. However, there is a lack of
software implementing these distributions and the associated inferential techniques. In
this article, we introduce BAMBI, an R package for analyzing bivariate (and univariate)
angular data. We implement random data generation, density evaluation, and computa-
tion of theoretical summary measures (variances and correlation coefficients) for the three
aforementioned bivariate angular distributions, as well as two univariate angular distri-
butions: the univariate wrapped normal and the univariate von Mises distribution. The
major contribution of BAMBI to statistical computing is in providing Bayesian methods
for modeling angular data using finite mixtures of these distributions. We also provide
functions for visual and numerical diagnostics and Bayesian inference for the fitted mod-
els. In this article, we first provide a brief review of the distributions and techniques
used in BAMBI, then describe the capabilities of the package, and finally conclude with
demonstrations of mixture model fitting using BAMBI on the two real data sets included
in the package, one univariate and one bivariate.

Keywords: angular data, mixture models, bivariate data, von Mises distribution, wrapped
normal distribution, R, Hamiltonian Monte Carlo, MCMC, Gibbs sampler.

1. Introduction

Statistical analyses of angular or directional data have found applications in a variety of fields,
such as geology (Earth’s magnetic poles), meteorology (wind directions) and bioinformatics
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(backbone structures of proteins). Directional data can be univariate or multivariate, and
one way of representing such data is via angles measured on a circle [0, 2π) (element-wise
when multivariate), and hence the name angular. Angular methods are also applicable to any
interval that wraps around (e.g., [0, L) or [−L/2, L/2) for some L > 0) when transformed to
the circle [0, 2π). The wraparound condition on the support invalidates direct applicability of
many standard statistical methods. There is substantial literature devoted to the development
of descriptive and inferential techniques for directional data (see, e.g., Mardia and Jupp
(2009); Mardia (1972); Fisher (1995)), with the traditional univariate case as the primary
focus, although the bivariate case is gaining increasing interest (Singh, Hnizdo, and Demchuk
2002; Mardia, Taylor, and Subramaniam 2007) along with the emergence of new applications.
Bivariate angular data can now be found in a variety of modern scientific problems, with
many notable applications arising from the field of computational biology (Mardia et al.
2007; Boomsma, Mardia, Taylor, Ferkinghoff-Borg, Krogh, and Hamelryck 2008; Lennox,
Dahl, Vannucci, and Tsai 2009; Bhattacharya and Cheng 2015). A major area of research
in protein bioinformatics involves modeling and predicting protein 3-D structures, which
requires proper handling of the paired backbone torsion angles. Formal analyses of these
bivariate angle pairs thus require rigorous statistical techniques and models.

A unique feature in the modeling of directional data is the use of angular probability distri-
butions, or mixtures thereof (see Section 1.4), which are inherently different from their linear
(Euclidean) counterparts because of the wraparound nature of their supports. Bayesian meth-
ods provide flexible tools for analyzing and modeling such data. First, one may incorporate
prior information, if available, into modeling. Second, one may use powerful computational
methods, i.e., Markov chain Monte Carlo (MCMC, see Section 2.2) for sampling from the
posterior, to fit such models and assess the fitted models. Third, one may readily compute
posterior quantities of interest while coherently accounting for uncertainty in the model pa-
rameters. Within this context, this package was developed for fitting Bivariate Angular
Mixtures using Bayesian Inference (hence, the package name BAMBI). In BAMBI we im-
plement the two most popular angular distributions, namely the wrapped normal (or Gaus-
sian) and the von Mises distributions, and consider both univariate and bivariate versions
of these. BAMBI provides functionality for modeling univariate and bivariate angular data
using these distributions, and for fitting finite mixture models of these distributions. Pack-
age BAMBI (Chakraborty and Wong 2021) is available from the Comprehensive R Archive
Network (CRAN) at https://CRAN.R-project.org/package=BAMBI. We first introduce the
basics of these distributions and mixture models. It should be noted that the bivariate dis-
tributions considered in this paper have support [0, 2π)2 (i.e., on a torus), which are distinct
from those defined on the surface of the unit sphere, such as the von Mises-Fisher distribution.

1.1. Wrapped normal distributions

For univariate continuous data, the angular analogue of the normal distribution on the real
line is the wrapped normal distribution obtained by wrapping a normal random variable
around the unit circle (see, e.g., Jona-Lasinio, Gelfand, and Jona-Lasinio (2012)). Formally,
let X be a normal random variable with mean µ and variance σ2 > 0. Then the distribution
of ψ = X mod 2π is called the wrapped normal distribution with mean µ and variance σ2

https://CRAN.R-project.org/package=BAMBI
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(a) Wrapped normal density.
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(b) Von Mises density.

Figure 1: Univariate wrapped normal density fWN(φ|µ, κ) and univariate von Mises density
fvM(φ|µ, κ) with µ = π and different κ’s.

and is denoted by WN(µ, σ2). The density of ψ ∼WN(µ, σ2) is given by:

fWN(ψ|µ, σ) = 1
σ
√

2π
∑
ω∈Z

exp
[
− 1

2σ2 (ψ − µ− 2πω)2
]

; ψ ∈ [0, 2π) (1)

where Z denotes the set of all integers. Since the density contains a summation over entire Z,
without loss of generality, we let µ ∈ [0, 2π) to ensure identifiability. Figure 1(a) displays the
univariate wrapped density with µ = π and κ = 0.01, 1 and 10, which shows that the density
is symmetric around µ and becomes more concentrated as κ increases.
The multivariate generalization of the above distribution is straightforward (Jona-Lasinio
et al. 2012). The distribution of a random vector ψ = (ψ1, . . . , ψp)> with probability density

1√
|Σ|(2π)p

∑
ω∈Zp

exp
[
−1

2 (ψ − µ− 2πω)>Σ−1 (ψ − µ− 2πω)
]

; ψ ∈ [0, 2π)p (2)

with µ ∈ [0, 2π)p and Σ positive definite, is called the p-variate wrapped normal distribution
with mean vector µ and variance matrix Σ, denoted by WNp(µ,Σ). Although (1) and (2)
are the most common parameterizations of the wrapped normal distributions found in the
literature, to facilitate comparability with the von Mises distribution (defined in Section 1.2),
we shall use the equivalent representation(s) obtained through the re-parameterization(s)
κ = 1/σ2 and ∆ = Σ−1. BAMBI handles the univariate and bivariate cases, namely p = 1
and p = 2. Thus, the form of the univariate wrapped normal density we use is

fWN(ψ|µ, κ) =
√
κ

2π
∑
ω∈Z

exp
[
−κ2 (ψ − µ− 2πω)2

]
; ψ ∈ [0, 2π) (3)
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with µ ∈ [0, 2π) and κ > 0; and that of the bivariate density is

fWN2(ψ1, ψ2|µ1, µ2, κ1, κ2, κ3)

=

√
κ1κ2 − κ2

3

2π
∑

(ω1,ω2)∈Z2

exp
[
−1

2
{
κ1(ψ1 − µ1 − 2πω1)2 + κ2(ψ2 − µ2 − 2πω2)2

+2κ3(ψ1 − µ1 − 2πω1)(ψ2 − µ2 − 2πω2)}] (4)

where ψ1, ψ2, µ1, µ2 ∈ [0, 2π), κ1, κ2 > 0 and κ2
3 ≤ κ1κ2, obtained by letting µ = (µ1, µ2)>

and

∆ =
(
κ1 κ3
κ3 κ2

)
.

Similarly, the bivariate wrapped normal density is also symmetric around (µ1, µ2) and be-
comes more concentrated as κ1 and/or κ2 increases, while the parameter κ3 regulates the
association between the random coordinates. This can be visualized from Figure 2 displaying
the surfaces of the density created via BAMBI function surface_model, for different parame-
ter combinations (the code for generating these plots can be found in the replication script for
this paper). The upper panels of Figure 2 show how the density becomes more concentrated
when κ1 and κ2 are increased (while keeping κ3 fixed). In contrast, the lower panels of Fig-
ure 2 display density surfaces showing how the association between the random coordinates
changes (from positive to negative), when κ3 is changed (from negative to positive, since κ3
is the diagonal element of the inverse covariance matrix) while keeping κ1 and κ2 fixed.
Note that when κ → 0 (or ∆ → 02×2) then the distribution of ψ = X mod 2π converges to
the uniform distribution over [0, 2π) (or [0, 2π)2). Hence, we shall include the cases κ = 0
and κ1 = κ2 = κ3 = 0 in the support of these parameters, and define the associated densities
by their limits.
The precision parameter κ (κ1, κ2 in the bivariate case) is (are) conceptually similar to the
concentration parameters in the von Mises distribution (see Section 1.2). Therefore to aid
comparability, we shall call κ (κ1 and κ2) the concentration parameter(s) of the univariate (bi-
variate) wrapped normal model. In BAMBI, evaluation of univariate and bivariate wrapped
normal densities are implemented through the function dwnorm and dwnorm2 respectively.
Random data from these models can be generated using rwnorm and rwnorm2 respectively.

1.2. Von Mises distributions

Wrapped normal models have a high computational cost in practice. Although the sum
over Z in the expression for the density can be well-approximated by a sum over the set
A = {−3,−2,−1, 0, 1, 2, 3} (i.e., 3 integer displacements, covering ± 3 standard deviations
from the mean), it can be seen that the number of terms in the sum grows exponentially as
the dimension increases. For instance, in the bivariate case, even if Z is approximated by set
A, the (double) sum in the density consists of 49 terms.
Because of this difficulty, the von Mises distribution is an alternative that is widely used; it is
able to approximate the wrapped normal while being less computationally intensive (Mardia
and Jupp 2009, p. 36). A random variable ψ is said to follow the von Mises distribution (also
called the circular normal distribution, Jammalamadaka and Sengupta (2001)) with mean
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Figure 2: Bivariate wrapped normal density for µ1 = µ2 = π and various κ1, κ2, κ3.

parameter µ and concentration parameter κ, denoted ψ ∼ vM(µ, κ), if ψ has the density

fvM(ψ | µ, σ) = 1
2πI0(κ) exp(κ cos(ψ − µ)); ψ ∈ [0, 2π) (5)

where µ ∈ [0, 2π), κ ≥ 0 and Ir(·) denotes the modified Bessel function of the first kind
and order r. Letting κ = 0 makes (5) the uniform density over [0, 2π), and when κ → ∞,
(5) converges to a normal density. An intuitive explanation of the latter result follows from
the fact that when the concentration parameter κ is large, ψ − µ ≈ 0, so that cos(ψ − µ) ≈
1 − (ψ − µ)2/2, which makes the exponent in the density (5) approximately proportional to
the N(µ, (1/

√
κ)2) density. A formal proof can be found in Jammalamadaka and Sengupta

(2001, Proposition 2.2).
Figure 1(b) plots the von Mises densities with µ = π and κ = 0.01, 1 and 10, which shows
that the density is symmetric around µ and becomes more concentrated as κ increases, and
that the density is broadly similar to the associated univariate wrapped normal density.
A multivariate generalization for the univariate von Mises distribution is however not as
straightforward as the wrapped normal distribution, as there is not a unique way of defining
a multivariate distribution with univariate von Mises-like marginals. In the bivariate case,
two versions of the bivariate von Mises distribution have been suggested for practical use,
namely the sine model (Singh et al. 2002) and the cosine model (Mardia et al. 2007). They
are comparable to the bivariate normal model both in terms of number of parameters (five),
and the interpretability of those parameters. Other generalizations with more parameters
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have been studied theoretically (Mardia 1975; Rivest 1988).
Let ψ = (ψ1, ψ2)> be a random vector on R2 with support [0, 2π)2. Then ψ is said to
follow the (bivariate) von Mises sine distribution with mean parameters µ1, µ2, concentration
parameters κ1, κ2, and association parameter κ3, denoted ψ ∼ vMs

2(µ1, µ2, κ1, κ2, κ3)), if ψ
has the probability density

fvMs
2
(ψ1, ψ2 | µ1, µ2, κ1, κ2, κ3)

= Cs(κ1, κ2, κ3) exp[κ1 cos(ψ1 − µ1) + κ2 cos(ψ2 − µ2) + κ3 sin(ψ1 − µ1) sin(ψ2 − µ2)] (6)

where κ1, κ2 ≥ 0, −∞ < κ3 <∞, µ1, µ2 ∈ [0, 2π) and the normalizing constant is given by

Cs(κ1, κ2, κ3)−1 = 4π2
∞∑
m=0

(
2m
m

)(
κ2

3
4κ1κ2

)m
Im(κ1)Im(κ2). (7)

In contrast, ψ is said to follow the (bivariate) von Mises cosine distribution with mean
parameters µ1, µ2, concentration parameters κ1, κ2, and association parameter κ3, denoted
ψ ∼ vMc

2(µ1, µ2, κ1, κ2, κ3), if ψ has the probability density 1

fvMc
2
(ψ1, ψ2 | µ1, µ2, κ1, κ2, κ3)

= Cc(κ1, κ2, κ3) exp[κ1 cos(ψ1 − µ1) + κ2 cos(ψ2 − µ2) + κ3 cos(ψ1 − µ1 − ψ2 + µ2)]. (8)

Here, similar to the sine model, κ1, κ2 ≥ 0, −∞ < κ3 < ∞, µ1, µ2 ∈ [0, 2π) and the normal-
izing constant is given by

Cc(κ1, κ2, κ3)−1 = 4π2
{
I0(κ1)I0(κ2)I0(κ3) + 2

∞∑
m=0

Im(κ1)Im(κ2)Im(κ3)
}
. (9)

From (6) and (8) it is easy to see that when κ3 = 0, both the von Mises sine and cosine
densities become products of univariate von Mises densities, implying independence between
the two random coordinates. In addition, when κ1 and κ2 are also zero, both densities become
uniform over [0, 2π)2. Singh et al. (2002) and Mardia et al. (2007) provide explicit forms for
the marginal and conditional distributions in the sine and cosine models; the conditional
distributions in both sine and cosine models are univariate von Mises, whereas the marginal
distributions, although not von Mises, are symmetric around µ1 and µ2.
One key difference between the bivariate wrapped normal model and the bivariate von Mises
models is that κ2

3 is not required to be bounded above by κ1κ2 in the latter, and thus can
take any value in (−∞,∞). Consequently, the densities can be bimodal; Mardia et al. (2007)
show that the sine (cosine) joint density is unimodal if κ2

3 < κ1κ2 (κ3 ≥ −κ1κ2/(κ1 + κ2)),
and bimodal otherwise. This flexibility gives the two bivariate von Mises distributions richer
sets of possible contour plots and the ability to model a larger class of angular data.
Figures 3 and 4 display the surfaces of the von Mises sine and von Mises cosine densities
respectively with µ1 = µ2 = π, κ1 = κ2 = 1 and various κ3’s. From Figure 3, it can
be seen that the density is bimodal when κ3 = ±2 (or more generally for |κ3| ≥ 1 when

1Mardia et al. (2007) define the density with −κ3 instead of κ3 in the exponent. However, that makes the
normalizing constant equal to Cc(κ1, κ2,−κ3) in our current notation (i.e., in the form shown in (9)) and not
Cc(κ1, κ2, κ3) as given in the paper. See Appendix A for a proof.
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Figure 3: Von Mises sine density for µ1 = µ2 = π, κ1 = κ2 = 1 and various κ3.
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Figure 4: Von Mises cosine density for µ1 = µ2 = π, κ1 = κ2 = 1 and various κ3.
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κ1 = κ2 = 1), and unimodal when |κ3| < 1. It can also be seen that the density surface (or
the contours) of a sine model with κ3 = ξ is essentially a mirror image of that with κ3 = −ξ,
for any ξ ∈ (−∞,∞); see, e.g., the upper-left and the lower-right panels of Figure 3. Such is
however, not the case for the cosine density, as depicted in Figure 4. The cosine density is
bimodal when κ3 is very negative (κ3 ≤ −0.5 when κ1 = κ2 = 1, see, e.g., the upper-left and
upper-middle panels of Figure 4), and is unimodal otherwise. Moreover, flipping the sign of
κ3 does not yield density surfaces (or contours) that are mirror images of each other.
An interesting feature of both sine and cosine densities is that they both approximate the reg-
ular bivariate normal density (on R2) when the concentration parameters κ1 and κ2 are large,
and the densities are unimodal (Singh et al. 2002, Section 2, Mardia et al. 2007, Theorem 1).
This property is analogous to the univariate von Mises distribution. A heuristic explanation
of this result again follows from the fact that when the distributions are unimodal and κ1, κ2
are large, then φ1 and φ2 are highly concentrated around µ1 and µ2. This means φi − µi ≈ 0
so that sin(φi − µi) ≈ (φi − µi) and cos(φi − µi) ≈ 1− (φi − µi)2/2 for i = 1, 2.

1.3. Summary measures for univariate and bivariate angular distributions

Circular summary measures are useful for describing various aspects of angular distributions.
The circular mean or mean direction (see Jammalamadaka and Sengupta 2001) of an angular
random variable ψ is defined as

Ec(ψ) = arctan
[
E(sinψ)
E(cosψ)

]
and the circular variance of ψ is given by

Varc(ψ) = 1− E[cos(ψ − Ec(ψ))].

Note that 0 ≤ Varc(ψ) ≤ 1.
When considering the joint distribution of paired angular random variables (φ, ψ), their asso-
ciation can be measured using circular correlation. Multiple parametric circular correlation
coefficients have been proposed in the literature, and here we consider two of them. Let µ1
and µ2 be the circular means of ψ1 and ψ2 respectively. Then the Jammalamadaka-Sarma
(JS) circular correlation coefficient (Jammalamadaka and Sarma 1988) is defined as

ρJS(ψ1, ψ2) = E [sin(ψ1 − µ1) sin(ψ2 − µ2)]√
E
[
sin2(ψ1 − µ1)

]
E
[
sin2(ψ2 − µ2)

] . (10)

Now let (ψ(1)
1 , ψ

(1)
2 ) and (ψ(2)

1 , ψ
(2)
2 ) be independent and identically distributed (IID) copies

of (ψ1, ψ2). Then the Fisher-Lee (FL) circular correlation coefficient (Fisher and Lee 1983) is
defined by

ρFL(ψ1, ψ2) =
E
[
sin
(
ψ

(1)
1 − ψ

(2)
1

)
sin
(
ψ

(1)
2 − ψ

(2)
2

)]
√
E
[
sin2

(
ψ

(1)
1 − ψ

(2)
1

)]
E
[
sin2

(
ψ

(1)
2 − ψ

(2)
2

)] . (11)

Both ρJS and ρFL have properties similar to the ordinary correlation coefficient. In particular,
ρJS, ρFL ∈ [−1, 1] and they are equal to 1 (−1) under perfect positive (negative) toroidal-linear
(T-linear) relationship (Fisher and Lee 1983; Jammalamadaka and Sarma 1988).
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Note that all distributions considered in BAMBI have circular mean(s) equal to the respec-
tive mean parameter(s). For the univariate models, the circular variances are just func-
tions of the associated concentration parameter (see Mardia and Jupp 2009). In partic-
ular, if ψ ∼ WN(µ, κ) then Varc(ψ) = 1 − exp(−σ2/2) with σ2 = 1/κ, and for ψ ∼
vM(µ, κ), Varc(ψ) = 1 − I1(κ)/I0(κ). For a bivariate wrapped normal model with Σ =
(Σij) = ∆−1, the marginal circular variance of the first coordinate is 1 − exp(−Σ11/2),
ρFL = sinh(2Σ12)/

√
sinh(2Σ11) sinh(2Σ22) and ρJS = sinh(Σ12)/

√
sinh(Σ11) sinh(Σ22) (Fisher

and Lee 1983; Jammalamadaka and Sarma 1988), where sinh denotes the hyperbolic sine
function. For bivariate von Mises models (both sine and cosine forms), these expressions,
provided in Appendix B, are much more complicated, and involve infinite series of product of
modified Bessel functions (see Singh et al. 2002; Chakraborty and Wong 2018). In BAMBI
we implement circular variances and correlation coefficients for all the three bivariate models
considered in this article. In addition, a function for calculating sample circular correlation
coefficients is also provided, where the sample analogs of ρJS and ρFL, along with two other
non-parametric circular correlation coefficients are considered (see Section 3.3.3).

1.4. Mixture models

Mixture models are convex combinations (mixtures) of two or more probability distributions,
and provide a semi-parametric approach to modeling complex data sets with multiple notice-
ably distinct clusters. Mixture models of both univariate and multivariate (non-wrapped)
normal distributions are well studied in the literature (e.g., see Lindsay 1995), and imple-
mented in many statistical packages, such as the R (R Core Team 2021) packages mixtools
(Benaglia, Chauveau, Hunter, and Young 2009), mclust (Fraley, Raftery, Murphy, and Scrucca
2012; Fraley and Raftery 2002), and Rmixmod (Langrognet, Lebret, Poli, Iovleff, Auder, and
Iovleff 2019). However, these are not applicable to mixture models for angular data. This
is a key motivation for our creation of BAMBI, which considers finite mixture models of
univariate and bivariate angular distributions (the single function fit_angmix handles the
fitting of all such models; see Section 3.3).
Let K denote the number of components (where K is finite), {f(· | θj) : j = 1, . . . ,K} denote
the component densities (f can be univariate or bivariate) with θj denoting the parameter
vector associated with the j-th component, and let p = (p1, . . . , pK)> denote the vector of
mixing proportions (or weights) with pj ≥ 0 and ∑K

j=1 pj = 1. Then the mixture density is
defined as

f̃(· | p;θ1, . . . ,θK) =
K∑
j=1

pjf(· | θj) (12)

In practice, the number of components K necessary to fit the data is usually unknown, and
thus should be estimated on the basis of the data itself. (See Section 2.8 for a discussion on
number of components estimation.)
An important special case of the general mixture model (12) is the mixture of product com-
ponents, also called a conditional independence model. Here, one assumes each multivariate
component density f(· | θj) to be a product of univariate densities; specifically for the bi-
variate angular models considered in BAMBI, this is achieved by letting κ3 = 0 in each
component. Note that a mixture of product components does not imply independence in the
final mixture density. In fact, such a model can reasonably approximate a wide class of more
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complicated models, while being computationally less involved (see Grim 2017); however, one
often needs a larger K compared to a general (non-product) mixture model to achieve simi-
lar results, thus offsetting some of the potential computational gains. In BAMBI a product
component mixture can be fitted via fit_angmix by setting the argument cov.restrict =
"ZERO" (see Section 3.3).
It is also noteworthy to mention the aspect of bimodality of bivariate von Mises distributions in
the context of mixture modeling. In practice, often each component of a mixture model is used
to represent one single (unimodal) cluster in data. However, as discussed in Section 1.2, both
von Mises sine and cosine models can be bimodal depending on the values of the concentration
and association parameters. When bimodality is present in some of the component specific
densities, the final mixture model can be harder to interpret. To avoid this issue, it is
possible to restrict the parameter spaces associated with the concentration and association
parameters (by letting κ2

3 < κ1κ2 in the sine model, and κ3 ≥ −κ1κ2/(κ1 + κ2) in the cosine
model) in these angular models to force unimodality in each component specific density.
Consequently, a larger K may be needed to achieve similar results, which increases model
complexity. In BAMBI we provide an option of having only unimodal von Mises component
densities. This is achieved by setting the logical argument unimodal.component = TRUE in
fit_angmix (defaults to FALSE). See the discussion in Section 3.3.

1.5. Related work and motivation for BAMBI

Literature

Several papers have addressed inferential problems relating to mixtures of bivariate angular
distributions. Mardia et al. (2007) consider the mixture of bivariate von Mises cosine distri-
butions, and suggest an expectation–maximization (EM) algorithm for frequentist estimation
of the associated parameters. Their approach is used in Boomsma et al. (2008) in the con-
text of modeling protein backbone angles. In other work, Lennox et al. (2009) consider a
Bayesian non-parametric model involving an infinite mixture of von Mises sine distributions.
In BAMBI we focus on classical finite mixtures, providing a unifying framework for Bayesian
estimation of all three bivariate angular models presented earlier.

Software

To the best of our knowledge, no previous packages or libraries handle finite mixture modeling
for univariate or bivariate angular data, whether in R or otherwise. In fact, the only available
software (as of the time of writing this manuscript) that has functionality for bivariate von
Mises models is the C++ library mocapy++ (Paluszewski, Frellsen, and Hamelryck 2010) in
the context of Dynamic Bayesian Networks (Paluszewski and Hamelryck 2010; Mardia et al.
2007). However, mocapy++ does not implement bivariate wrapped normal models.
The overarching goal of BAMBI is to create a unified platform that implements descriptive and
inferential statistical tools required to analyze bivariate and univariate angular data. First,
BAMBI provides functions for density evaluation, computation of various summary measures
(such as circular mean, variance and correlation coefficient), and random data generation from
bivariate and univariate angular models and their mixtures. Second, it has functions for fitting
these models to real angular data using Bayesian methods. Third, it implements a number of
post-processing steps required in any Bayesian statistical analysis. For example, visual and
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numerical assessment of the goodness of fits can be done using a number of native BAMBI
functions, as well as coda (Plummer, Best, Cowles, and Vines 2006) package functions, which
are applicable on BAMBI outputs (‘angmcmc’ objects) through a convenient as.mcmc.list
method. Furthermore, BAMBI has functions for model selection as well as random data
generation and density evaluation from fitted models, which are useful in posterior predictive
analyses.
It is to be noted that while it is possible to use general-purpose MCMC samplers such as Stan
(Carpenter et al. 2017), JAGS (Plummer 2003) and WinBUGS (Lunn, Thomas, Best, and
Spiegelhalter 2000) for fitting the angular mixture models considered in BAMBI, there are
important motivations for developing specialized implementations for these models. First,
special care needs to be taken while handling the normalizing constants in the von Mises
sine and cosine densities, which contain infinite series of product of Bessel functions that
can be numerically unstable for some ranges of parameter values; such cases are handled
in BAMBI via (quasi) Monte Carlo approximations. Second, computations for Bayesian
mixture modeling benefit from using a latent allocation structure, as done in BAMBI (see
Section 2.3), which allows independent sampling of the component specific parameters. Such
an approach cannot be used in Stan due to the discreteness of the allocation (p. 79, Section 6.2
of the reference manual v2.18.0); instead Stan requires marginalizing out the latent allocation
variables. In contrast, JAGS/WinBUGS allows incorporation of discrete latent allocation;
however, their sampling techniques do not make use of the gradient of the target (log) posterior
density. As discussed in Section 2.5, Hamiltonian Monte Carlo uses the gradient and hence
is typically more efficient for sampling from intractable distributions. Finally, the analytic
gradients necessary for efficient MCMC sampling in these models are built into BAMBI.

1.6. Organization of the paper
The remainder of this article is organized as follows. In Section 2, we review Bayesian methods
for fitting angular mixture models to data. In Section 3 we describe the capabilities of BAMBI,
by describing all functions and data sets available in BAMBI, and providing brief overviews
on their usage. Following, in Section 4 we illustrate angular mixture modeling on data sets
included in BAMBI. The paper concludes with a brief summary and possible directions for
future development in Section 5. A derivation for the von Mises cosine model normalizing
constant, formulas for circular variances and correlation coefficients in the von Mises sine and
cosine models, analytic forms of gradients needed for efficient MCMC sampling (discussed in
Section 2.5), and MCMC parameter traceplots associated with one of the examples considered
in Section 4 are provided in the Appendices.

2. Methods

2.1. Overview
We adopt a Bayesian approach for fitting angular mixture models to data. Let Ψ> =
(ψ1, . . . ,ψn) be the data matrix (or data vector in the univariate case) with each ψi being
a bivariate vector of angles (or a univariate angle) [0, 2π)2 (or in [0, 2π)). We are interested
in fitting a mixture density of the form (12) for a given number of components K. For ex-
ample, in bivariate wrapped normal mixtures, the density for the j-th component is given
by fj ≡ fWN2(· | θj) =: fWN2,j , where θ>j = (κ1j , κ2j , κ3j , µ1j , µ2j) denotes the vector of
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(model) parameters for the j-th component, j = 1, . . . ,K, and the mixture density is given
by f̃WN2 = ∑K

j=1 pjfWN2,j . For a specified K, our objective is to estimate the parameter
vector η> = (θ>,p>), which consists of the model parameters θ> = (θ>1 , . . . ,θ>K) and the
mixing proportions p> = (p1, . . . , pK), based on Ψ. Often, K itself will also need to be
estimated. In the following, we review some commonly used techniques in Bayesian mixture
model fitting.

2.2. Bayesian mixture modeling
Under a Bayesian framework a prior distribution must be specified for the parameter vector,
which can be non-informative (or diffuse) if a priori information is unavailable. Let π(θ,p)
denote the joint prior density for η. Often the prior distributions of θ and p are assumed to
be independent so that (with a slight abuse of notation; here π(y) stands for the appropriate
prior density of the random variable y) π(θ,p) = π(θ)π(p). Moreover, parameters from
different components are often assumed to be independent, so that π(θ) = ∏K

j=1 π(θj). Let
L(Ψ | θ,p) = ∏n

i=1 f̃(ψi | θ,p) denote the likelihood function of the data. Then the posterior
density of η given the data is

π(θ,p | Ψ) ∝ L(Ψ | θ,p) π(p)
K∏
j=1

π(θj), (13)

which is the basis for Bayesian inference on η. It is to be noted that the prior densities π(θj)’s
all need to be proper in order to ensure that the posterior density π(θ,p | Ψ) is proper (see,
e.g., Diebolt and Robert 1994, Section 2.2). Specific comments about the choice of priors
used in the current setting are provided in Section 2.7. Note that the associated posterior
mean, median or mode, commonly used as point estimates of the parameters, are not available
in closed form for our distributions of interest. Additionally, π(θ,p | Ψ) is intractable for
directly simulating IID samples, and thus some kind of Markov chain Monte Carlo (MCMC)
technique is used in practice as an alternative. Starting from some initial point, an MCMC
algorithm generates a Markov chain which has the target posterior density π(θ,p | Ψ) as the
invariant distribution. Various summary measures of the posterior distributions – such as
mean, mode (known as the maximum a posteriori or MAP parameter value), and quantiles
– can then be approximated based on the MCMC realizations. In practice, the MCMC
algorithm must be run long enough for the Markov chain to converge, so that the realizations
approximately follow the target posterior distribution. For this purpose the chain is given a
burn-in period, where the initial iterations are discarded.
In BAMBI the function fit_angmix fits a Bayesian angular mixture model with a specified
number of components, and the function fit_incremental_angmix fits angular mixtures
with incremental number of components to determine an optimum number of components.
In the following we briefly review the MCMC generation techniques Gibbs sampler (GS),
Metropolis Hastings and Hamiltonian Monte Carlo (HMC), and describe how they are used
for sampling from the posterior distributions of model parameters and mixing proportions in
these two BAMBI functions.

2.3. Gibbs sampler (GS)
The Gibbs sampler (GS) (Geman and Geman 1984; Gelfand and Smith 1990) breaks the
Markov chain updates for the parameter vector into blocks. For example, when η = (η1,η2)
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the GS generates the N -th state of the Markov chain (η(N)
1 ,η

(N)
2 ) from the previous state

(η(N−1)
1 ,η

(N−1)
2 ) with the steps

1. Generate η(N)
1 from π(η1 | η(N−1)

2 ,data).

2. Generate η(N)
2 from π(η2 | η(N)

1 , data).

The GS is most effective when it is easy to sample from the (full) conditional posterior
densities π(η1 | η2, data) and π(η2 | η1,data). Note that when η1 and η2 are vectors, this is
sometimes called the blocked Gibbs sampler.
For mixture models, an efficient Gibbs sampling step for the mixing proportions p (when
K > 1) can be obtained by adopting a so-called Data Augmentation scheme, where one intro-
duces (“augments”) unobserved data to make the conditional distributions simpler (Diebolt
and Robert 1994). Here, we introduce (hidden) component indicators ζ>i = (ζi1, . . . , ζiK)
corresponding to each observation ψi where ζij is 1 if the i-th observation comes from the
j-th component, and 0 otherwise, for i = 1, . . . , n and j = 1, . . . ,K. Thus, given ζij = 1, the
density of ψi is simply f (ψi | θj), i.e., the density in the j-th component evaluated at ψi.
Moreover, nj := ∑n

i=1 ζij is the total number of observations coming from this density. It is
customary to assume a Dirichlet(α) prior for p, where α> = (α1, . . . , αK) with αj > 0 for all
j, so that π(p) ∝ ∏K

j=1 p
αj−1
j . Note that αj = 1 for all j represents the uniform prior. Let

Z> = (ζ>1 , . . . , ζ>n ) and let θ(N−1), p(N−1) and Z(N−1) be the (N − 1)-th MCMC realizations
of θ, p and Z respectively. Then the N -th realization of p (and Z) are obtained as follows:

1. For i = 1, . . . , n, generate ζ(N)
i from Multinomial

(
1; p̃(N−1)

i1 , . . . , p̃
(N−1)
iK

)
independently,

and define n(N)
j := ∑n

i=1 ζ
(N)
ij , where

p̃
(N−1)
ij =

p
(N−1)
j f

(
ψi | θ(N−1)

j

)
∑K
h=1 p

(N−1)
h f

(
ψi | θ(N−1)

h

) (14)

are the posterior membership probabilities.

2. Generate p(N) from Dirichlet
(
α1 + n

(N)
1 , . . . , αK + n

(N)
K

)
.

Thus when K > 1, the latent allocation ζi’s generated during the Gibbs sampling step for
p leads to simplifications that reduce the computational burden substantially. Note that,
conditional on ζi’s, all ψi’s have independent single component densities f(· | θji), with ji
being the non-zero position of ζi. Thus, given ζi’s, all θj ’s are independent with only data
points coming from component j contributing to the respective likelihoods. Consequently θj ’s
can be sampled independently from their (component-specific) conditional posterior densities.
To complete the GS scheme for the mixture model, it remains to sample θj ’s from π(θj |
Z,Ψ,p). As these distributions are still intractable for direct IID simulation, we use a Markov
chain simulation technique for sampling, and then combine this step with the GS updates for
p and Z. In the following we describe two such Markov chain simulation techniques, and how
they are used in BAMBI.



14 BAMBI: Bivariate Angular Mixture Models in R

2.4. Metropolis-Hastings algorithm
The Metropolis-Hastings algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller
1953; Hastings 1970) is simple and widely-used for Markov chain simulation. Formally, let x
be the current state of a Markov chain Φ with stationary density q. Let q̃(· | x) be a proposal
density defined on the state space of Φ that is easy to sample from. Then the next state x′
of the Markov chain Φ is obtained as follows:

1. Generate x∗ from q̃x.

2. Define r(x∗, x) = min
{

1, q(x
∗)

q(x)
q̃(x|x∗)
q̃(x∗|x)

}
, and define the next state x′ equal to x∗ with

probability r(x∗, x) and equal to x with probability 1− r(x∗, x).

The random walk variant of Metropolis-Hastings (RWMH) uses a proposal density q̃(· | x)
that is symmetric about x; e.g., by taking q̃(· | x) to be the density of Yx = x+ Y0, where Y0
is a normal random variable with mean zero. Under RWMH, q̃(x | x∗) = q̃(x∗ | x), and hence
r(x∗, x) = min

{
1, q(x

∗)
q(x)

}
, thus simplifying computations. In BAMBI, RWMH is implemented

with independent normal proposals.
Note that the variance of the density q̃(· | x) strongly affects the acceptance probabilities
r(x∗, x). Convergence of the Markov chain will be slow if the variance of q̃(· | x) is too
large or too small. Roberts, Rosenthal et al. (2001) suggest maintaining an acceptance rate
of 20-30% as a general rule-of-thumb. In BAMBI we provide an auto-tuning feature that
implements adaptive tuning during the burn-in period. Briefly, the acceptance rate and scale
of the sampled parameters are monitored at regular intervals, and the proposal variances are
adjusted accordingly (see the documentation of fit_angmix for details). We limit adaptation
to the burn-in period, so that the desired properties of the final MCMC samples are retained.

2.5. Hamiltonian/Hybrid Monte Carlo (HMC)
Simple RWMH can become quite inefficient in multi-dimensional problems. A powerful al-
ternative to RWMH when the gradient of the posterior density has an analytical form is
Hamiltonian (also called Hybrid) Monte Carlo (HMC) (Duane, Kennedy, Pendleton, and
Roweth 1987; Neal 1996). HMC makes use of the gradient of the log posterior density and an
auxiliary random variable, and incorporates tools from molecular dynamics to furnish pro-
posal states coming from high posterior density regions. This allows a much faster exploration
of the state space than a RWMH scheme. A gentle and detailed introduction to HMC with
applications to statistical problems can be found in Neal (2011). Briefly, in HMC first an aux-
iliary random variable r called momentum is considered along with the variable of interest
(vector of model parameters θ in our case), which is classically called the position in physical
problems, denoted by q2. Furthermore, two energy functions U(q) and K(r) are introduced,
followed by a Hamiltonian function H(q, r) which is usually the sum of those two energies,
i.e., H(q, r) = U(q) +K(r). U(q), called the potential energy, is defined as the negative log
posterior density of q (plus any fixed constant) in MCMC applications, and K(r), called the
kinetic energy, is usually defined as K(r) = r>M−1r for some fixed positive definite matrix
M . This form for K(r) corresponds to the negative log density (plus a constant) of the zero-
mean normal distribution with variance matrix M . In practice, M is typically taken to be

2In classical HMC literature, the auxiliary variable is denoted by p; however, we will keep that notation for
mixing proportions.
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diagonal, often the identity matrix (as used in BAMBI), or a scalar multiple of the identity
matrix. Let ∇U(q) denote the gradient vector of U(q) with respect to q. Further, let ε > 0
be a small real number, called the step-size, and L ≥ 2, a positive integer, called the number
of leapfrog steps. Then one step of HMC that updates (via leapfrog method) the current state
q to the next state q′ can be described as follows:

1. Generate r from N(0,M) and let q(0) = q and r(0) = r − (ε/2)∇U(q(0)).

2. For t = 1, . . . , L define q(t) = q(t−1) + ε r(t−1) and r(t) = r(t−1) − (ε/γl)∇U(q(t)), where
γl = 1 for l = 1, . . . , L− 1 and γL = 2.

3. Let q∗ = q(L), r∗ = −r(L), and define β(q∗, r∗; q, r) = min {1, exp [H(q∗, r∗)−H(q, r)]}.

4. Finally, define the new state q′ equal to q∗ with probability β(q∗, r∗; q, r), and equal
to q with probability 1− β(q∗, r∗; q, r).

Special care needs to be taken for the cases where the variables being sampled are constrained:
for our angular models, µi’s are angles in [0, 2π), and the (raw) concentration parameters are
positive. See Neal (2011, Section 5.5.1.5) for more details.
Since HMC approximates the dynamics by discretization, the step-size ε needs to be suffi-
ciently small for the proposals to have a high acceptance rate. However, if ε is too small,
convergence of the Markov chain will be slow. Thus, ε requires tuning to obtain a reasonable
acceptance rate (∼40-90%, with 65% being optimal, as suggested by Neal 2011). In BAMBI
we provide an auto-tune feature for ε similar to the one for the proposal standard deviation
in RWMH (see Section 2.4), which adaptively tunes ε during burn-in to ensure a reasonable
acceptance rate (60-90% by default).
Care is required for choosing the number of leapfrog steps L, since a L that is too large or
too small can lead to poor convergence. While setting an appropriate L can be challenging
for high dimensional parameter vectors, here the independence of components π(θj | Z,Ψ,p)
means that only two (for univariate models) or five (for bivariate models) parameters need
to be sampled at a time. Thus, the default L = 10 used in BAMBI, which works well
empirically, suffices for mixtures with any number of components. As suggested in Neal
(2011) and Mackenze (1989), randomly choosing ε and L from some fairly small interval at
the beginning of every HMC step may improve convergence of the chain. In BAMBI ε is by
default randomly chosen at each iteration from an interval of the form (ε0(1 − δ), ε0(1 + δ))
for a fixed ε0 > 0 (can be auto-tuned in BAMBI) and a given δ ∈ (0, 1), while L is kept fixed.
However, these settings can be changed; in particular, L can also be randomly chosen from
the set of integers contained in an interval (L0/ exp(A), L0 exp(A)) for some given L0 > 0
and A > 0, or both ε and L can be specified to be non-random. See the documentation of
fit_angmix for more details.
When properly tuned, HMC can achieve faster convergence and better exploration of the
target density than RWMH, for a similar computational cost. Note that the computational
cost for each HMC iteration is higher due to L gradient evaluations, however, HMC usually
requires fewer iterations to reach stationarity and successive samples have lower autocorrela-
tion. Hence, HMC is our recommended sampling approach in BAMBI. HMC, while powerful,
does not solve all the challenges associated with MCMC sampling algorithms; in particu-
lar, both RWMH and HMC can get trapped in local modes. One possible remedy is to use
multiple independent chains, see Section 2.10.
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By default, BAMBI uses HMC to sample θ. All angular densities considered here, both
univariate and bivariate, admit analytic gradients for efficient programming implementation.
Expressions for the conditional log posterior density and its gradients are provided in the
following section.

2.6. Using RMWH or HMC for angular mixture models
Consider the mixture model (12) with density f(· | θj) for the j-th component, j = 1, . . . ,K.
It follows that given the component indicators Z, information on p is superfluous, and the
complete-data (i.e., given Ψ and Z) likelihood for θ = (θ1, . . . ,θK) is given by:

likelihood(θ | Z,Ψ) ∝
n∏
i=1

K∏
j=1

f(ψi | θj)ζij .

Recall that the joint prior density of θ is ∏K
j=1 π(θj). Hence, the complete-data posterior

density of θ is given by:

π(θ | Z,Ψ) ∝


n∏
i=1

K∏
j=1

f(ψi | θj)ζij


K∏
j=1

π(θj).

Therefore, by taking the logarithm, the complete-data log posterior density (LPD) for θ =
(θ1, . . . ,θK) given the component indicators Z is obtained as

l̃complete-data(θ) := log π(θ | Z,Ψ) = C +
n∑
i=1

K∑
j=1

ζij log f(ψi | θj) +
K∑
j=1

log π(θj)

= C +
K∑
j=1

{
n∑
i=1

ζij log f(ψi | θj) + log π(θj)
}

= C +
K∑
j=1

 ∑
i : ζij=1

log f(ψi | θj) + log π(θj)

 (15)

where C is a constant free of θ. The above expression shows that conditional on Z, θj ’s are
independent, and that the complete-data log posterior density of θj is of the form

l̃j(θj) = Cj +
∑

i : ζij=1
log f(ψi | θj) + log π(θj) (16)

where Cj ’s are constants (free of θ). Given the current GS draw of Z, samples from the
conditional posterior density l̃j in (16) can therefore be drawn independently for all j =
1, . . . ,K. For each j ≥ 1, we let l̃j play the role of the target density q (see Section 2.4)
in RWMH, or let −l̃j play the role of the potential energy U (see Section 2.5) in HMC; the
gradient of U with respect to θj , ∇U , is therefore the negative of the gradient ∇l̃j . From
(16), it follows that

∇l̃j(θ) =

 ∑
i : ζij=1

∂ log f(ψi | θj)
∂θj

+ ∂ log π(θj)
∂θj

(17a)

=

 ∑
i : ζij=1

1
f(ψi | θj)

· ∂f(ψi | θj)
∂θj

+ ∂ log π(θj)
∂θj

(17b)
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For the von Mises distributions (both univariate and bivariate), form (17a) is easier to work
with, whereas form (17b) is more useful for the wrapped normal distributions. Full analytic
expressions for all model specific gradients are provided in Appendix C.
Note that parameters with a non-negative support are often sampled more efficiently on the
log scale; we use this strategy for sampling the concentration parameters κ (in univariate
models) and κ1, κ2 (in bivariate models).

2.7. Choice of priors

Selection of prior constitutes an important step in Bayesian analyses, as they play a key role
in the final inference. This is comparatively more standard for the component-specific model
parameters θ. As discussed, proper prior distributions for the model parameters are required
to ensure posterior propriety. For the mean parameters µ (in univariate models) and µ1, µ2
(in bivariate models), their prior distributions can be taken to be a member of the same family
of the distribution which are being used in the mixture model (e.g., von Mises sine prior for
(µ1, µ2) in a von Mises sine mixture model) to aid conjugacy. Lennox et al. (2009) use this
conjugate prior for the mean parameters in their von Mises sine (infinite) mixture model. Note
that conjugacy for the mean parameter is not achievable except in trivial cases in the wrapped
normal distributions (both univariate and bivariate). In BAMBI we set a uniform prior over
[0, 2π) (if univariate) or [0, 2π)2 (if bivariate) for the mean parameter(s), which can be viewed
as a special case of the von Mises and wrapped normal distributions (see Sections 1.1 and 1.2).
Conjugacy is also possible for the concentration and association parameters, e.g., Lennox et al.
(2009) consider such a family for von Mises sine model. However, that approach does not aid
sampling, as the resulting unnormalized densities involve infinite sums of products of modified
Bessel functions. As a simple alternative, we suggest using independent normal distributions
with zero mean as the prior for the association parameter κ3, as well as for the log of the
concentration parameters κ, κ1, and κ2 (i.e., the prior for concentration parameters are log
normal). These prior distributions can be made informative or diffuse through appropriate
choices of the variance hyper-parameter. Priors are assigned independently to each parameter,
and truncation is performed to reflect any specified constraints in the model (such as κ2

3 < κ1κ2
in a bivariate wrapped normal model, and a von Mises sine model with unimodal density).
Care is required in the selection of prior for the mixing proportions p, as an ill-chosen prior
may result in very poor fits. This is particularly true when K is too large (i.e., the mixture is
overfitted). Note that overfitting is a necessary step when the true number of components is
unknown and needs to be estimated, see Section 2.8 for more details. It is customary to assume
a Dirichlet(α) prior for p, where α> = (α1, . . . , αK) with αj > 0, often with the special case
αj = α0 for all j. When the mixture is overfitted, the asymptotic results in Rousseau and
Mengersen (2011) show that αj ’s strongly influence how the spurious mixture components
are handled by the limiting posterior density. In particular, if maxj=1,...,K αj < d/2, where
d = dim θj , then the spurious components vanish asymptotically. On the other hand, if
minj=1,...,K αj > d/2, then the spurious components asymptotically get superimposed on
some of the existing components with positive mixing proportions (Frühwirth-Schnatter 2011,
Section 10.3.1). The subsequent estimation of K depends on which way the overfitting is
handled by the posterior density (see Section 2.8); thus αj ’s all need to be appropriately either
small or large (Frühwirth-Schnatter 2011, Section 10.3.2). A uniform prior with αj = α0 = 1
is a rather poor choice in this regard. In BAMBI estimation of K is done assuming the
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use of αj > d/2 for all j in conjunction with a model selection criterion; our default is
αj = α0 = (r + r(r + 1)/2)/2 + 3 as used in Frühwirth-Schnatter (2011, Section 10.3.4),
where r denotes the dimension of the data, i.e., r is 1 or 2 according as whether the model is
univariate or bivariate (and consequently, all αj ’s are either 4 or 5.5).

2.8. Estimating the number of components K from data

Suppose the data were generated from a mixture of Ktrue (non-empty, non-identical) com-
ponents. In practice, Ktrue will not be known, and therefore mixture modeling requires
estimating the appropriate number of components from the data.
In the Bayesian setting, the estimation of Ktrue requires an overfitted mixture model, i.e., one
that has spurious or superfluous components. There are two ways of introducing superfluous
components to overfit a mixture model, and the subsequent estimation of Ktrue should reflect
which way is taken. First, the superfluous components can be arbitrarily introduced at re-
gions with no data points (“leave some groups empty”), and assigned zero mixing proportions.
Then, the number of non-empty components in the fitted mixture provides a good estimate
of Ktrue. Second, the spurious components can be superimposed on some of the existing com-
ponents (“let two component-specific parameters be identical”), and assigned positive mixing
proportions. Here, the total number of components in the fitted mixture, after accounting
for model complexity (via some model selection criterion), provides a reasonable estimate for
Ktrue. Note that the prior distribution of the mixing proportion p affects the way overfit-
ting is handled by the posterior, and hence the associated prior hyper-parameters need to
be wisely chosen (see Section 2.7). A detailed discussion on the estimation of the number of
components can be found in Frühwirth-Schnatter (2011, Section 10.3.1).
In BAMBI we assume that the superfluous components are introduced in the second (“let two
component-specific parameters be identical”) way. Consequently, Ktrue is estimated by first
incrementally fitting the data with one additional component (starting from K = 1), until a
model with K + 1 component fails to improve upon the previous fit with K component (as
determined through a model selection criterion); that value of K is then used as an estimate
of Ktrue. There exist multiple model selection criteria in the literature; we review six such
criteria implemented in BAMBI and comment on their applicability in MCMC simulations.
In the following, η = (θ,p) denotes the entire parameter vector, and y = (y1, . . . , yn) is the
vector/matrix of n independent observations.

1. Watanabe-Akaike Information Criterion (WAIC) (Watanabe (2013); Gelman, Hwang,
and Vehtari (2014)). Given the dataset y1, . . . , yn, the Markov chain realizations {η1, . . . ,
ηN} of the parameter vector, and the pointwise densities {p(yi | ηs) : i = 1, . . . , n; s =
1, . . . , N}, define the computed log pointwise posterior predictive density

LPPD =
n∑
i=1

log
(

1
N

N∑
s=1

p(yi | ηs)
)
.

Then WAIC is defined as
WAIC = LPPD− pW

where pW is a correction term to adjust for effective number of parameters. Two forms
for the adjustment terms are proposed in the literature, both being approximations
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based on Bayesian cross validation. In the first approach, (computed) pW is defined as

pW = 2
n∑
i=1

[
log

(
1
N

N∑
s=1

p(yi | ηs)
)
− 1
N

N∑
s=1

log p(yi | ηs)
]

whereas, in the second approach, (computed) pW is defined by pW = ∑n
i=1 v̂ar log p(yi |

η), where for i = 1, . . . , n, v̂ar log p(yi | η) denotes the estimated variance of p(yi | η)
based on the realizations η1, . . . ,ηN .

2. Leave One Out Cross Validation Information Criterion (LOOIC) (Vehtari, Gelman,
and Gabry 2017). Under the same set-up as WAIC, the LOOIC is defined as

LOOIC =
n∑
i=1

log
(∑N

s=1w
s
i p(yi | ηs)∑N
s=1w

s
i

)

where for each s = 1, . . . , N , ws = (ws1, . . . , wsn) is a vector of importance sampling
weights, typically calculated via the Pareto smoothed importance sampling method
(PSIS; Vehtari, Gelman, and Gabry 2015). Because of the importance sampling weights,
LOOIC can be more stable in practice than WAIC. See Vehtari et al. (2017) for a gentle
and thorough introduction to both WAIC and LOOIC, including applications and case
studies.
Because both WAIC and LOOIC are based on the mixture likelihood and do not explic-
itly depend on the sampled model parameters (thus, remain unaffected by the presence
of multiple permutation and non-permutation modes), in BAMBI we recommend using
either of these two criteria for selecting the number of mixture components. Both WAIC
and LOOIC are made available in BAMBI via their implementations in the R package
loo (Vehtari, Gabry, Magnusson, Yao, Bürkner, Paananen, and Gelman 2020), which
also provides a compare() function for comparing WAICs/LOOICs based on estimated
difference in expected log predictive density (ELPD). In BAMBI, during an incremental
model fitting via fit_incremental_angmix with crit = "WAIC" or crit = "LOOIC",
a test of hypothesis H0K : ELPD for the fitted model with K components ≥ ELPD
for the fitted model with K + 1 components, is performed at every K ≥ 1. The test
statistic used for the test is an approximate z score based on the normalized estimated
ELPD difference between the two models (obtained from compare(), which provides
estimated ELPD difference along with its standard error). The incremental fitting stops
if H0K cannot be rejected at a level alpha (defaults to 0.05, adjusted for multiplicity)
for some K ≥ 1; this K is then regarded as the optimum number of components.

3. Marginal Likelihood (ML). Marginal likelihood is arguably the most natural and intuitive
model selection criterion that is used in the Bayesian paradigm. As the name suggests,
marginal likelihood is the likelihood obtained by integrating out the parameters from
the joint density of the data and parameters, and provides a natural way of measuring
the “marginal” effect of data. In the context of Bayesian model selection, marginal
likelihood provides a way of selecting an optimum model in that the model with largest
marginal likelihood provides the best fit. Given the likelihood L(y | η) and prior density
π(η), marginal likelihood is the constant (dependent only on the data):

m(y) =
∫
E
L(y | η)π(η) dη
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where E denotes the support of the parameter vector η. Note thatm(y) is the reciprocal
of the normalizing constant required to define the posterior density. Evaluation of
the marginal likelihood m(y) in practice however is typically challenging, as it tends
to be a high-dimensional intractable integral (as in our case). Multiple estimation
techniques based on samples from the posterior density π(η | y) have been proposed in
the literature; in BAMBI we implement bridge sampling (Meng and Wong 1996; Meng
and Schilling 2002). Briefly, the key idea is to first write m(y) as

m(y) =
∫
E h(η)L(y | η)π(η)g(η) dη∫
E h(η)g(η)π(η | y) dη = Eg [h(η)L(y | η)π(η)]

Eπ(·|y) [h(η)g(η)]

where g is a density, called the proposal density, and h is a function, called the bridge
function. Then one approximates the above ratio by

m̂(y) =
1
n2

∑n2
j=1 h(η∗j )L(y | η∗j )π(η∗j )
1
n1

∑n1
j=1 h(η†j)g(η†j)

where η†1, . . . ,η†n1 are MCMC samples from the posterior density π(· | y) and η∗1, . . . ,η∗n2
are samples from the proposal density g. Note that h and g play crucial roles in the es-
timation of m(y), and must be optimally chosen for accurate results. See Gronau et al.
(2017) for a gentle and detailed tutorial on bridge sampling. In BAMBI, marginal likeli-
hood can be used to select the optimal number of mixture component in a
fit_incremental_angmix run, by specifying crit = "LOGML". This will ensure com-
putation of the log marginal likelihood via bridge sampling for every mixture model
during the incremental run, and the model attaining the first minimum negative log
marginal likelihood will be treated as the optimum model.
It should however be noted that for mixture models, optimal selection of h and g is
typically difficult due to the multi-modality of the posterior density; see Frühwirth-
Schnatter (2006, Chapter 5), for a review of some of the available methods. In BAMBI,
marginal likelihood is computed by leveraging the function bridge_sampler from the
R package bridgesampling (Gronau, Singmann, and Wagenmakers 2020), and the au-
thors of bridgesampling warn against the use of bridge_sampler in mixture models (see
the discussion section in Gronau et al. 2020). As such, use of this method in BAMBI
is not recommended, even though the functionality is available.

4. Akaike Information Criterion (AIC, Akaike 1974). Let L̂ be the maximum value of the
likelihood function for the model and let m be the number of estimated parameters in
the model. Then AIC is defined as

AIC = −2 log L̂+ 2m.

5. Bayesian Information Criterion (BIC, Schwarz 1978). Under the same setup, if n
denotes the number of data points, BIC is defined by

BIC = −2 log L̂+m log(n).

Observe that both AIC and BIC depend on the maximum value L̂, which, in general,
is not directly available in MCMC simulations. A possibly suboptimal estimate of the
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global maximum is given by the maximum value of the likelihood function computed at
the MCMC samples.
During model selection, the model with minimum AIC (or BIC) can be treated as the
optimal model. In BAMBI AIC/BIC can be used for selecting optimum number of
components in an fit_incremental_angmix run by specifying crit = "AIC" or crit
= "BIC". This will ensure computation of AIC/BIC of every mixture model fitted
during the incremental fitting; the model attaining the first minimum AIC/BIC will be
treated as the optimum model.
It should to be noted, however, that AIC and BIC are both based on asymptotic normal-
ity results that do not hold for mixture models with multiple modes, and hence their
use in selecting the number of mixture components may lead to inconsistent results.
Thus, though implemented, using AIC or BIC is not recommended in BAMBI.

6. Deviance Information Criterion (DIC, Spiegelhalter, Best, Carlin, and Van der Linde
2002). DIC is another model selection criterion, which, similar to AIC and BIC, is
based on an asymptotic result for large samples. Let D(η) = −2 log p(data | η) denote
the deviance, where η denotes the vector of all parameters in the model and p(data | η)
denotes the likelihood. Let {η1, . . . ,ηN} denote the MCMC realizations of the param-
eters. Define (estimated) effective number of parameters pD by pD = D̄(η) − D(η̄),
where D̄(η) = N−1∑N

s=1D(ηs) and η̄ = N−1∑N
s=1 ηs. Another commonly used form

for pD is given by pD = v̂arD(η)/2, (Gelman, Carlin, Stern, Dunson, Vehtari, and Ru-
bin 2013) where v̂arD(η) denotes the estimated variance of D(η) based on η1, . . . ,ηN .
Then DIC is defined as

DIC = pD + D̄(η) = D(η̄) + 2pD.

In BAMBI AIC/BIC can be used for selecting optimum number of components in an
fit_incremental_angmix run by specifying crit = "DIC". This will ensure compu-
tation of DIC of every mixture model fitted during the incremental fitting; the model
attaining the first minimum DIC will be treated as the optimum model.
It should be noted that use of DIC can be unstable in practice. For example, if the
first form of pD, i.e., pD = D̄(η) −D(η̄)) is used, DIC becomes heavily dependent on
the plug-in estimator η̄. However, in Bayesian mixture modeling the posterior mean is
not always a suitable plug-in estimator for the parameter vector as it may lie between
different modes of the posterior density (Plummer 2008). The problem is exacerbated
by the presence of label switching in the MCMC samples (see Section 2.9). Moreover,
depending on how the information on latent component indicators are handled, multiple
versions of DIC can be constructed here. Celeux, Forbes, Robert, and Titterington
(2006) consider no less than eight variants, but are unable to recommend any of them
for practical use. Likewise we caution against the use of DIC, although the functionality
is available in BAMBI.

2.9. Label switching

Label switching is a fundamental aspect of Bayesian mixture modeling that requires proper
care. Briefly, when exchangeable priors π(θj)’s are placed on the model parameters θj ’s,
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the resulting posterior distribution becomes invariant to permutation in the component la-
bel j’s. As a result, the posterior density consists of symmetric or permutation modes that
are identical up to permutation of component labels. A well mixing MCMC algorithm will
explore these permutation modes, causing the component labels to switch over the course
of an MCMC simulation. This phenomenon is called label switching, and is required in
MCMC-based Bayesian mixture modeling to justify convergence. A fundamental limitation
of MCMC-based Bayesian mixture modeling is that the chains may become trapped at local
modes, rather than fully exploring the symmetric modes. One possible remedy is to run
multiple independent chains to improve exploration of the posterior. Alternatively, one may
embed a deliberate random relabeling step into the sampler, i.e., adopt a so-called permuta-
tion sampling scheme (Frühwirth-Schnatter 2001): after each draw of the random allocation,
components are relabeled according to a random permutation of 1, . . . ,K. This is, in fact,
a specific example of a sandwich algorithm (Meng and Van Dyk 1999; Yu and Meng 2011;
Hobert, Roy, and Robert 2011), where a computationally inexpensive step (of drawing a ran-
dom permutation of {1, . . . ,K}, and then relabeling the components according to that ran-
dom permutation) is sandwiched in between the two steps (drawing the allocation vector, and
drawing the component-specific parameters) of a Data Augmentation algorithm. Sandwich
algorithms often converge faster than the original Data Augmentation algorithm; in the case
of permutation sampling, the chain is forced to visit the permutation modes (and potentially
the non-permutation modes) more frequently. These potential improvements in convergence
would not be achieved by simply randomly switching labels of the MCMC samples post-hoc.
In permutation sampling, inclusion of the random label switching step results in a modified
MCMC algorithm that is theoretically proven to be at least as good as the original Data
Augmentation algorithm in terms of convergence rates (Khare and Hobert 2011). However,
care must be taken if RWMH or HMC updates for the component specific parameters are
adaptively tuned according to the scales and variabilities of the sampled model parameters
(to do so properly requires keeping track of each component label). In BAMBI permutation
sampling can be done after burn-in, by setting perm_sampling = TRUE (defaults to FALSE)
in a fit_angmix call.

Although label switching is required for MCMC convergence in Bayesian mixture modeling,
its presence in MCMC samples makes inference on the different components via posterior
means or quantiles challenging (note that MAP estimation is not affected). A number of
techniques have been proposed to handle this problem; see, e.g., Jasra, Holmes, and Stephens
(2005) and Rodríguez and Walker (2014). The available methods either need to be applied
during MCMC sampling (on-line) or after simulating the entire chain (post processing).

Several post-processing techniques that undo label switching are implemented in the useful
R package label.switching (Papastamoulis 2016), and in BAMBI, we provide a wrapper called
fix_label for the main label.switching function from that package. All the methods
available in label.switching are appropriately implemented in fix_label, which takes an
‘angmcmc’ object (see Section 3.1) as input, and may require additional user inputs depending
on the method used. The Kullback-Leibler divergence based method by Stephens (2000)
(method = "STEPHENS") is used by default if the permutation sampling is performed during
original MCMC run; otherwise, the default method is the data-based algorithm of Rodríguez
and Walker (2014) (method = "DATA-BASED"); neither requires any additional input other
than an ‘angmcmc’ object.
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2.10. Initialization of the parameters, and the use of multiple chains

MCMC algorithms can converge faster if the initial values are chosen well. The function
fit_angmix, when called without supplying starting parameter values, will automatically
initialize the latent allocation to the mixture components. The default (and recommended)
option is initialization via a k-means algorithm: toroidal angle pairs are first projected onto
the surface of a unit sphere, and then Cartesian coordinates of the projected spherical points
are clustered. Random initial allocation is also provided as an option, but is not recommended
as it may lead to slow convergence. Once an initial allocation is obtained, component specific
parameters are estimated via method of moments (see Jammalamadaka and Sengupta 2001;
Singh et al. 2002; Mardia et al. 2007, for more details on these estimators), and the mixing
proportions are estimated by the sample proportions.
When explicit starting values of the model parameters and mixing proportions are provided
to fit_angmix, no initial allocation is necessary. This is particularly useful for estimating
the number of components, when mixture models are being fitted incrementally (e.g., via
fit_incremental_angmix). Under incremental model fitting the parameters of a K+1 com-
ponent mixture can be initialized directly from the parameter estimates from a K component
mixture; the extra component is simply taken as a “copy” of an existing component (prefer-
ably the one with the largest mixing proportion), and the associated mixing proportion is
distributed equally between the two identical components. This method is expected to work
well when the posterior density handles overfitting in the “let two component-specific param-
eters be identical” way (see Sections 2.7 and 2.8), which is the approach taken in BAMBI.
As such, this is the default method of initializing parameters in fit_incremental_angmix
when K > 2; however k-means allocation followed by moment estimation can also be used,
by setting prev_par = FALSE.
Finally, we note that even with good initial values, MCMC samplers can still get trapped in
local modes for a large number of iterations, rather than fully exploring the posterior density.
One possible remedy is to run multiple independent chains to improve exploration of the
posterior, which is implemented in BAMBI. The argument n.chains (set to 3 by default)
specifies the number of independent chains to run in fit_angmix. These chains can be run
in parallel, see Section 3.3 for more details.

3. BAMBI Package
This section overviews the functionalities of BAMBI. At the core of the package is the
‘angmcmc’ object, which is created when a model fitting function is used. In the following
we first describe the ‘angmcmc’ objects, then describe the data sets included in BAMBI, and
finally discuss the functions available in BAMBI and comment on their usability. However,
this is not an exhaustive manual; all functions in BAMBI include R documentations, which
should serve as the definitive resources.

3.1. ‘angmcmc’ objects

‘angmcmc’ objects are classified lists belonging to the S3 class ‘angmcmc’ that are created
when the function fit_angmix is used. An ‘angmcmc’ object contains a number of elements,
including the dataset and its dimension (i.e., univariate or bivariate), the model being fitted,
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the tuning parameters used, MCMC samples of the parameter vector, and at each iteration
the (hidden) component indicators for data points, log-likelihood and log posterior density
values (up to additive constants). When printed, an ‘angmcmc’ object returns a brief summary
of the function arguments used and the acceptance rate of the proposal states (in HMC and
RWMH). An ‘angmcmc’ object can be used as an argument for the diagnostic and post-
processing functions available in BAMBI for making further inferences.

3.2. Data sets

BAMBI contains two illustrative data sets, namely wind (univariate) and tim8 (bivariate),
each measured in the radian scale [0, 2π).

wind This dataset consists of 239 observations on wind direction (originally measured in
10s of degrees, and then converted into radians) measured at Saturna Island, British
Columbia, Canada during October 1–10, 2016 (obtained from Environment Canada
website). There was a severe storm during October 4-7 in Saturna Island, which caused
significant fluctuations in wind direction.

tim8 This consists of 490 pairs of backbone dihedral angles (φ, ψ) for Triose Phosphate Iso-
merase (8TIM). The three dimensional structure of 8TIM is available from the protein
data bank (PDB). The protein is an example of a TIM barrel, a common type of protein
fold exhibiting alternating α-helices and β-sheets. The backbone angles for this protein
were obtained by using the DSSP software (Touw, Baakman, Black, Te Beek, Krieger,
Joosten, and Vriend (2015); Kabsch and Sander (1983)) on the PDB file for 8TIM, and
then converted into radians.

3.3. Functions

In BAMBI, all five models described in Section 1, namely the univariate von Mises (vm), uni-
variate wrapped normal (wnorm), bivariate von Mises sine (vmsin), bivariate von Mises cosine
(vmcos) and bivariate wrapped normal (wnorm2), and their (within same model) mixtures are
implemented. The functions in BAMBI can be classified into six major categories.

Density and random samples from an angular distribution

The functions dvm, dwnorm, dvmsin, dvmcos and dwnorm2 evaluate the density and the func-
tions rvm, rwnorm, rvmsin, rvmcos and rwnorm2 generate random samples from the models
vm, wnorm, vmsin, vmcos and wnorm2 respectively. The parameters of the models are specified
as arguments; otherwise, default values (zero means, unit concentrations, and zero associa-
tion) are used.
Density evaluations require computation of the normalizing constants, which for the vmcos
model requires proper care, especially when κ1, κ2 or |κ3| is large. This is because the
analytic expression involves infinite (alternating if κ3 < 0) series of product of modified
Bessel functions, which become numerically unstable when these parameters are large. As
such, when κ3 < −5 or max(κ1, κ2, |κ3|) > 50, the reciprocal of the integral for the normalizing
constant is evaluated numerically using a (quasi) Monte Carlo method. By default, n_qrnd
= 104 pairs of Sobol numbers are used for this purpose; however, n_qrnd, or a two-column
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matrix qrnd containing random/quasi-random numbers between 0 and 1 can be supplied for
this approximation3. For vmsin model, evaluation of the constant via its analytic form is
much more stable, as the associated infinite series consists only of non-negative terms. For
univariate and bivariate wrapped normal models, the default absolute integer displacement
for approximating the wrapped normal sum is 3, which can be changed to any value in
{1, 2, 3, 4, 5}, through the argument int.displ. Note that int.displ regulates how many
terms would be used to approximate the infinite sum present in the univariate and bivariate
wrapped normal densities in (3) and (4). For example, int.displ = M implies that the
infinite sum in the univariate wrapped normal density will be approximated by a finite sum
of 2M +1 values, with the summation index ω ranging over {0,±1, . . . ,±M}. For a bivariate
wrapped normal density, setting int.displ = M will ensure that the infinite double sum is
approximated by a finite double sum, with the paired summation index (ω1, ω2) ranging over
{0,±1, . . . ,±M}2.
Random data generation from the von Mises models (both univariate and bivariate) is done
via rejection sampling. In the univariate case, the von Mises random deviates are efficiently
generated using a rejection sampling scheme from a wrapped Cauchy distribution (Best and
Fisher 1979; Mardia and Jupp 2009). For the bivariate models, two forms of random samplings
are implemented. In the first method, random deviates are generated via a naive bivariate
rejection sampler with uniform proposal density (the majorization constant is numerically
evaluated). In the second method (proposed in the web appendix of Mardia et al. (2007)),
random deviates are first generated from the marginal distribution of one coordinate, then
the other coordinate is drawn from the corresponding conditional distribution (which is von
Mises in both models). The authors note that this latter scheme has a typical efficiency rate
of at least 60%. It is to be noted that while this scheme is usually more efficient than the naive
rejection sampler (especially when the concentration is high), it does have an often substantial
overhead due to the numerical computations required for determining appropriate proposal
density parameters. These overheads often outweigh efficiency gains, especially if the sample
size and/or concentration parameters are small. In BAMBI, therefore, the naive rejection
sampler is used by default when the sample size is moderate or small (< 100), or when
the concentration parameters are small (< 0.1)4. For wrapped normal distributions (both
univariate and bivariate) a random deviate is easily obtained by sampling from the unwrapped
normal distribution (using rnorm if univariate, and rvmnorm from package mvtnorm (Genz,
Bretz, Miwa, Mi, and Hothorn 2021) if bivariate), and then wrapping into [0, 2π).

Density and random samples from a finite mixture model
Analogous to the functions for single component densities, the functions dvmmix, dwnormmix,
dvmsinmix, dvmcosmix and dwnorm2mix evaluate the density and the functions rvmmix,
rwnormmix, rvmsinmix, rvmcosmix and rwnorm2mix generate random samples from mix-
tures of vm, wnorm, vmsin, vmcos and wnorm2 respectively. All model parameters and mixing
proportions must be provided as input arguments.

3The user may perform a Monte Carlo approximation for the normalizing constant even when numerical
evaluation of the analytic formula is stable, by changing force_approx_const to TRUE from its default value
FALSE.

4When the concentration parameters are large, the density becomes concentrated in (a) very narrow re-
gion(s). As such, efficiency of the naive sampler, which draws proposal random deviates from a uniform density
over the entire support, can be 15-20% or less. However, even then the overall run times of the naive method
are often still comparable to Mardia et al. (2007)’s method when the sample size is moderate or small.
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Visualizing and summarizing bivariate models
To visualize the density for any of the three bivariate angular mixture models (with specified
parameters and number of components) considered in this paper, the functions surface_model
and contour_model can be used, which respectively plot the surface and the contour of a
mixture density. To compute summary statistics for a single bivariate angular distribution,
the function circ_varcor_model can be used, which calculates the circular variance and
correlation coefficients (both Jammalamada-Sarma and Fisher-Lee forms, see Section 1.3).
However, summarizing angular mixture models via circular variances and correlations is not
recommended, as interpretations of the results can be challenging when multiple clusters are
present in the data5. The function circ_cor implements the sample Jammalamada-Sarma
and Fisher-Lee circular correlation coefficients, as well as two forms of Kendall’s tau (Fisher
and Lee 1983; Zhan, Ma, Liu, and Shimizu 2019) as non-parametric measures. The sample
circular variance can be computed using the var.circular function from R package circular
(Agostinelli and Lund 2017).

Fitting a single component model or a finite mixture model using MCMC
Given a dataset, using methods discussed in Section 2, the function fit_angmix generates
MCMC samples for parameters in an angular mixture model with a specified number of com-
ponents. Available models for bivariate input data (which must be supplied as a two-column
matrix or data frame) are vmsin, vmcos and wnorm2, and for univariate data are vm and
wnorm. The argument ncomp specifies number of components in the mixture model, with
ncomp = 1 representing the single component case (i.e., fitting a single density). A Gibbs
sampler is used to generate latent component indicators, and conditional on this allocation
the model parameters are sampled either by HMC (default), or by RWMH (can be specified
through the argument method). A permutation sampling step can be added after burn-in
by setting the logical argument perm_sampling to TRUE. The tuning parameters epsilon
and L in HMC, and propscale in RWMH have pre-specified default values, and there is
an auto-tuning feature for epsilon and propscale which is used by default, but can be
turned off by setting the logical argument autotune = FALSE. The burn-in proportion can
be specified through the argument burnin.prop, which is set to 0.5 by default. For HMC,
the option to use random epsilon and L at each iteration is specified via the logical ar-
guments epsilon.random and L.random respectively. In practice, using multiple chains is
recommended, and the argument n.chains specifies the number of chains to be used. These
chains can be run in parallel, if the logical argument chains_parallel is set to TRUE. The
parallelization is implemented using future_lapply from R package future.apply (Bengtsson
2021b); an appropriate future::plan() must be set in advance to ensure that the chains
run in parallel (otherwise the chains will run sequentially), see Section 4 for an example.
To retain reproducibility while running multiple chains in parallel, the same RNG state is
passed at the beginning of each chain. This is done by specifying future.seed = TRUE in
future.apply::future_lapply call. Then at the beginning of the i-th chain, before drawing
any parameters, i-many Uniform(0, 1) random numbers are generated using runif(i) (and
then thrown away). This ensures that the RNG states across chains prior to sampling of the
parameters are different (but reproducible), and hence, no two chains can become identical,
even if they have the same starting and tuning parameters. This however, creates a differ-

5To calculate the circular variances and correlations for a mixture density, one can simulate from the density
first, and then approximate the population quantities by their sample analogs on the basis of the simulated
data.
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ence between a fit_angmix call with multiple chains which is run sequentially by setting
chains_parallel = FALSE, and another call which is run sequentially because of a sequen-
tial plan() (or no plan()), with chains_parallel = TRUE. In the former, base::lapply
instead of future_lapply is used, which means that different RNG states are passed at the
initiation of each chain.
There are options for choosing prior hyperparameters. The prior for the association parameter
κ3 in bivariate models, and the log of the concentration parameters κ (in univariate models),
κ1 and κ2 (in bivariate models) are taken to be the normal distribution (i.e., the priors for
κ, κ1, κ2 are log normal), all with zero mean. The default variance for the normal prior is
1000, which provide diffuse priors, although they can be set by the user via the argument
norm.var. A fixed non-informative Uniform(0, 2π) prior is used for the mean parameters.
The Dirichlet prior parameters αj ’s for the mixing proportions pj ’s can be supplied through
the argument pmix.alpha, which can either be a positive real number (same for all αj), or
a vector of the same length as pmix. It is recommended that αj ’s be chosen large for proper
handling of overfitted mixtures; following Frühwirth-Schnatter (2011, Section 1.3.2), all αj ’s
default to (r + r(r + 1)/2)/2 + 3, where r denotes dimension of the data (i.e., r = 1 for
univariate data, and r = 2 for bivariate data). See Sections 2.7 and 2.8 for more details.
The argument cov.restrict specifies any (additional) restriction to be imposed on the com-
ponent specific association parameters while fitting the model. The available choices are
"POSITIVE", "NEGATIVE", "ZERO" and "NONE". Note that when cov.restrict = "ZERO",
fit_angmix fits a mixture with product components. By default, cov.restrict = "NONE",
which does not impose any (additional) restriction. When model is "vmsin" or "vmcos",
the component densities can be bimodal. However, one can restrict these densities to be uni-
modal, by setting the logical argument unimodal.component to TRUE (defaults to FALSE). For
"wnorm" and "wnorm2" models, the default absolute integer displacement for approximating
the wrapped normal sum is 3, which can be changed to any value in {1, 2, 3, 4, 5}, through
the argument int.displ. For "vmcos" model, the normalizing constant is numerically ap-
proximated using quasi Monte Carlo method when analytic evaluation suffers from numerical
instability. The arguments qrnd and n_qrnd can be used to alter the default settings used
for these approximations. See the documentation of fit_angmix for more details.
The function fit_angmix creates an ‘angmcmc’ object, which can be used for assessing the
fit, post processing, and estimating parameters.

Assessing the fit
Goodness of fit for MCMC-based Bayesian modeling depends on both convergence of the
Markov chain and the appropriateness of the model used. BAMBI contains a number of
functions that can be used to examine these two aspects. The functions paramtrace and
lpdtrace respectively plot the parameter and log posterior density traces for visual assess-
ment of convergence. These two functions are called together in the plot method for ‘angmcmc’
objects. The as.mcmc.list method for ‘angmcmc’ objects provides a convenient way of con-
verting an ‘angmcmc’ object to an ‘mcmc.list’ object from package coda, which provides
several additional functions for convergence diagnostics.
Once convergence is justified, the appropriateness of the fitted model can be visually assessed
by the S3 functions densityplot from lattice (Sarkar 2021) and contour. The first function
plots the density surface (for bivariate data) or density curve (for univariate data) of the fitted
mixture model, and the second plots the associated contour of a bivariate model. Note that
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these plots provide visual assessment of the goodness of fit by assuming the Markov chains
have converged and the parameters can be estimated on the basis of the MCMC samples. As
such, convergence of the MCMC samples must be ensured prior to this step. Otherwise these
visual diagnostics will lead to misleading conclusions.
The comparative goodness of fit for two mixture models can be assessed on the basis of model
selection criteria implemented in BAMBI, namely, marginal likelihood, AIC, BIC, DIC, WAIC
and LOOIC via the functions bridge_sampler.angmcmc, AIC, BIC, DIC, waic.angmcmc and
loo.angmcmc. As with the diagnostic plots, one general caveat for using any of these model
selection criteria is that one should ensure convergence of the associated Markov chain first;
otherwise, the results may be misleading.

Post-processing and estimating parameters
BAMBI provides several post-processing functions to aid inference on the basis of the gen-
erated MCMC samples. The function add_burnin_thin adds additional burn-in and/or
thinning to an ‘angmcmc’ object and the function select_chains extracts a subset of chains.
These two functions can be helpful if convergence diagnostics indicate that some of the chains
are poor mixing and/or require additional burn-in and thinning for convergence.
As described in Section 2.9, care should be taken to ensure that there is no label switching
in the MCMC output if inference is being made on the basis of posterior mean/median. If
present, label switching can be fixed by applying the wrapper function fix_label on the
‘angmcmc’ object, which will output another ‘angmcmc’ object with label switching fixed.
Point estimates of the parameters are obtained using the BAMBI function pointest on a
fitted ‘angmcmc’ object. The function pointest calculates point estimates by applying fn
on the MCMC samples, where fn is either a function, or a character string specifying the
name of the function. Default for fn is mean, which computes posterior mean. If fn is
"MODE" or "MAP" then the (MCMC-based approximate) MAP estimate is returned. Posterior
quantiles can be estimated by (sample) quantiles of the MCMC realizations using the S3
function quantile.angmcmc. These quantiles can be used to construct credible sets. For
example, if ξζ denotes the ζ-th (sample) quantile of the MCMC observations for 0 < ζ < 1,
the central 95% credible interval is given by (ξ0.025, ξ0.975). Both of these functions can be
applied on specific parameters and/or component labels by setting the arguments par.name
and comp.label accordingly. The S3 function summary.angmcmc prints (estimated) posterior
means and the central 95% credible intervals for all the parameters.
The estimated latent allocation from an ‘angmcmc’ object can be obtained using the func-
tion latent_allocation, which first estimates parameters via pointest, computes posterior
membership probabilities (see (14)) for each data point, and then assigns each data point
the class with largest membership probability. The (estimated) log-likelihood of an ‘angmcmc’
object can be extracted as a ‘logLik’ object using the S3 function logLik.angmcmc. Note
that there are two methods of obtaining the log-likelihood from an ‘angmcmc’ object. In the
default method (method = 1), the final log-likelihood is computed by applying a function
fn (defaults to max) on the iteration wise log-likelihood values obtained during the original
MCMC sampling. On the other hand, if method = 2, first the parameters are estimated
(using pointest), and then the log-likelihood is computed at the estimated parameters.
Density evaluations and random data generation from a fitted model can be done using the
functions d_fitted and r_fitted respectively. Both functions take an ‘angmcmc’ object as
input and apply the appropriate model specific density evaluation and random data generation
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functions with the estimate η̂ of the parameter vector η obtained via pointest. The actual
MCMC samples for one or more parameters in one or more components from one or more
chains can be extracted via extractsamples on an ‘angmcmc’ object for further analysis.

Incremental mixture model fitting and number of components estimation
Using the methods and model selection criteria described in Sections 2.7 and 2.8, the function
fit_incremental_angmix fits mixture models with incremental number of components by
calling fit_angmix at each step, and uses a Bayesian model selection criterion to determine
an optimal number of components. The arguments start_ncomp and max_ncomp provide the
starting and maximum number of components to be used in the incremental fitting, which
are respectively set to 1 and 10 by default. The available model selection criterion to use
(specified via the argument crit) are "LOGML", "AIC", "BIC", "WAIC", "LOOIC" and "DIC",
which is computed for every intermediate fit. The initial values of the starting model (or a
model with ≤ 2 components) are obtained by default using moment estimation on k-means
clusters (they can also be directly supplied by the user). For the subsequent models (with
number of components ≥ 3), the initial values are by default obtained from the MCMC-based
MAP parameter estimates for the previous model with one fewer component (see Section 2.8).
This can be overridden by setting prev_par = FALSE, to use k-means clustering followed by
moment estimation instead. By default, only the “best” chain, i.e., the one with maximum
average log posterior density, is used for computation of model selection criterion, and param-
eter estimation (if prev_par is set to TRUE). This default helps safeguard against situations
where some of the chains may get trapped at local optima. However, samples from all chains
can be used for these computations by setting use_best_chain = FALSE. The function stops
when crit achieves its first minimum, or when max_ncomp is reached, and returns a list with
the following elements:

• fit.best is an ‘angmcmc’ object corresponding to the optimum or best fit.

• crit.all provides a vector (list) of model selection criterion values for each incremental
model fitted.

• crit.best is the value of the model selection criterion for the model with optimal
number of components.

• maxllik.all is the maximum (obtained from MCMC iterations) log-likelihood for all
fitted models.

• maxllik.best is maximum log-likelihood for the optimal model.

• ncomp.best is the optimal number of components associated with the “best” model.

• fit.all is a list consisting of ‘angmcmc’ objects for all number of components fitted
during the model selection process. Any element of this list can be used as an argument
for any function that takes ‘angmcmc’ objects as input. However, this can be very
memory intensive, and as such, by default not returned (can be returned by setting
return_all = TRUE).

The ‘angmcmc’ object corresponding to the best fit and the associated value of the model selec-
tion criterion can also be extracted from the output of fit_incremental_angmix extracted
using the convenience functions bestmodel and bestcriterion respectively.
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4. Illustrations
In this section we illustrate functionalities of BAMBI by fitting mixture models to the angular
data sets included in the package. The following command

R> library("BAMBI")

loads the package after it has been installed. For reproducibility of the results presented, the
same random seed 12321 is used for all of our examples.

4.1. Fitting mixture models on the tim8 bivariate data

The tim8 dataset consists of 490 backbone torsion angle pairs (φ, ψ) for the protein 8TIM. The
protein is an example of a TIM barrel, a common type of protein fold exhibiting alternating
α-helices and β-sheets. Its Ramachandran plot (i.e., a scatterplot of (φ, ψ) pairs) is generated
using the following R command and shown in Figure 5.

R> plot(tim8, pch = 16, xlim = c(0, 2*pi), ylim = c(0, 2*pi),
+ main = "8TIM", col = scales::alpha("black", 0.6))

Note that this scatterplot projects the torus onto a 2D surface, which cannot show the
wraparound nature of the angles. This projection is not unique and affects the appearance of
the scatterplot depending on how the angles are represented, e.g., in [−π, π) instead of [0, 2π).

0 1 2 3 4 5 6

0
1

2
3

4
5

6

8TIM

φ

ψ

Figure 5: Ramachandran plot for 8TIM.
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Moreover, one should be careful to note that the top and bottom boundaries in these plots
join together, as do the left and right boundaries. In Figure 5, about 3-6 visually distinct
clusters can be seen; however, we need to note that the points around (4.5, 0) and (5.5, 6)
in fact may form a single cluster. Such features cannot be correctly modeled with statistical
methods that ignore circularity. Thus, this is a suitable example for illustrating the need for
mixtures of (bivariate) angular distributions.
To fit a bivariate mixture model with a specified number of components to the dataset, we can
use the BAMBI function fit_angmix by specifying a model and the number of components
to be used. For example, the following R command fits a 4 component vmsin mixture by
generating 3 MCMC chains with 20,000 samples each for the mixture model parameters. HMC
is used for sampling the model parameters, with tuning parameter epsilon adaptively tuned
during burn-in (which is by default constituted by the first half of all iterations, i.e., first 10,000
iterations), and L taking its default value 10. A fit_angmix call creates an ‘angmcmc’ object,
which can then be used for various post-processing tasks, including convergence assessment,
parameter estimation and visualizing goodness of fit.

R> set.seed(12321)
R> fit.vmsin.4comp <- fit_angmix("vmsin", tim8, ncomp = 4, n.iter = 2e4,
+ n.chains = 3)

Note that in order for the independent chains to be run in parallel, an appropriate plan()
from R package future (Bengtsson 2021a) needs to be set first; otherwise the chains will run
sequentially. For example, running the commands

R> library("future")
R> plan(multisession, gc = TRUE)

before the fit_angmix call will ensure that the three chains are run in parallel, provided
resources are available. We suggest setting gc = TRUE in plan, to allow proper garbage
collection from the parallel workers, even though it adds some overhead. This is because the
parallel workers can end up leaving heavy memory footprints, especially when mixture models
are being fitted incrementally.
In the previous example with fit_angmix, the number of componentsK was specified through
ncomp. However, the “true” K generally needs to be estimated from the data. For this pur-
pose, we use fit_incremental_angmix with start_ncomp = 2, which fits angular mixtures
with incremental number of components (starting with 2 components), and uses a Bayesian
model selection criterion to determine an optimal model. We use this function to fit optimal
mixtures of vmsin, vmcos and wnorm2 models separately. By specifying n.chains = 3 and
n.iter = 20,000 in fit_incremental_angmix, each incremental model will be fitted using
three chains with 20,000 iterations each (with first 10,000 iterations treated as burn-in, where
epsilon in HMC is tuned).
By default, the algorithm uses MCMC-based MAP estimates from the preceding fitted model
with one fewer component (if available) as starting parameter values (see Section 2.10). We
use the default leave one out cross validation information criterion ("LOOIC") as the model
selection criterion for determining the optimal model. When the function stops, we extract
the best fitted model using the function bestmodel, and assess convergence of the associated
chains. After justifying convergence, we provide point and interval estimates of the parameters
and visually examine goodness of fit.
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Fitting the vmsin mixture model
We start with the vmsin model. The R commands are as follows:

R> set.seed(12321)
R> fit.vmsin <- fit_incremental_angmix(model = "vmsin", data = tim8,
+ crit = "LOOIC", start_ncomp = 2, max_ncomp = 10, n.iter = 2e4,
+ n.chains = 3)

The algorithm stops at 5 components and determines the optimal number of components to
be 4 on the basis of the "LOOIC" values. The MCMC-based maximum log-likelihood estimates
for the intermediate models are −945.4840, −853.5790, −803.3334, and −794.3692 which are
steadily increasing. This is expected, since a “smaller” mixture should be nested within a
“larger” mixture when properly fitted. We extract the optimum fitted model from the output
of fit_incremental_angmix via bestmodel:

R> fit.vmsin.best <- bestmodel(fit.vmsin)

Before estimating parameters, we first need to assess convergence and stationarity of the
Markov chains. For this purpose, we first look at the (non-normalized) log posterior density
(LPD) traceplots, which can be obtained using the BAMBI function lpdtrace: 1

R> lpdtrace(fit.vmsin.best)

The resulting plot displayed in Figure 6 shows that all three chains have stabilized into
similar LPD ranges after burn-in, without noticeable trends or patterns. Next, we look at
the parameter traces, plotted using BAMBI function paramtrace:

R> paramtrace(fit.vmsin.best)

These traceplots are displayed in the panels of Figures 18–21 in Appendix D, which show
adequate signs of convergence and stationarity for samples within each chain. Stationarity of
a chain can be formally tested using Geweke’s convergence diagnostic (Geweke 1991), which
tests equality (of means) of the first and last part of a Markov chain using standard z scores.
The test is implemented in R package coda, and can be applied on fit.vmsin.best, first by
converting it into a coda ‘mcmc.list’ object via S3 function as.mcmc.list:

R> mcmc.vmsin.best <- coda::as.mcmc.list(fit.vmsin.best)

and then by applying the coda function geweke.diag on the output. We apply geweke.diag
on mcmc.vmsin.best by setting both frac1 and frac2 equal to 0.5, to test the equality of
the first and second halves. This produces a list of size 3 containing z statistics for each chain.
These values are displayed in Figure 7 as barplots. The R commands are as follows:

R> geweke_res <- coda::geweke.diag(mcmc.vmsin.best, frac1 = 0.5, frac2 = 0.5)
R> par(mfrow = c(1, 3), mar = c(5, 6, 2, 1))
R> for(j in 1:3) {
+ barplot(geweke_res[[j]]$z, horiz = TRUE, names = names(geweke_res[[j]]$z),
+ xlim = range(geweke_res[[j]]$z, -3, 3), ylab = "", xaxt = 'n', las = 2)
+ axis(1, las = 1)
+ title(main = paste("Chain", j), xlab = "geweke.diag")
+ }
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Figure 6: Log posterior traceplot for the Markov chain associated with the best fitted vmsin
mixture model.
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Figure 7: Geweke diagnostic z scores for the three Markov chains associated with the best
(4 component) vmsin mixture model.
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From these barplots, we see that all the z scores more or less lie between ±3, thus indicating
adequate similarity between the first and second halves of the chains.
Package coda provides functions for a number of additional diagnostic plots and formal tests
that may be used after conversion to a ‘mcmc.list’ object. Note that not all tests are
applicable in every situation. For example, the Gelman-Rubin test (Gelman and Rubin 1992),
available via coda function gelman.diag, assumes normality of the posterior density; this
assumption is clearly violated when the posterior density is multimodal. In this example, as
well as for mixture models with several components in general, multimodality in the posterior
density can be commonly observed.
Posterior multimodality is evident in the parameter traceplots for the current fit: the sample
values of the same parameter across the independent chains exhibit noticeable differences
(see, e.g., the panels of Figure 19). Note that this can be due to both permutation (i.e., label-
switching) and non-permutation modes. These modes are from similar posterior density
regions, as the LPD traces show. This also indicates that various regions of the posterior
density are being well explored by the three chains together.
Next, we consider parameter estimation and assessing goodness of fit. Since the combined
MCMC samples are multimodal, the posterior mean point estimates from raw MCMC samples
will not be meaningful, as they will lie in between modes. A simple alternative is to use the
MCMC based approximate MAP estimate, which is unaffected by multimodality; proper
care must be taken otherwise. The inferential difficulties associated with having permutation
modes in the MCMC samples can be (potentially) solved by undoing label switching. The
BAMBI function fix_label (with the default settings) can be used for this purpose:

R> fit.vmsin.best <- fix_label(fit.vmsin.best)

The parameter traceplots obtained (using paramtrace after undoing label switching) are
displayed in Figures 22–25 in Appendix D. Compare these traceplots to the ones displayed in
Figures 18–21. It can be seen that this procedure indeed removes some of the permutation
modes, in that the parameter traces for the three independent chains now largely overlap.
However, some non-unique modes are still present, as can be seen in the traces of κ3 and µ2
in component 4, displayed in panel (d) and (f) of Figure 25: e.g., κ3 “jumps” between modes
at approximately 2 and -2 over the course of the MCMC simulation. These modes might be
genuine non-permutation modes, or permutation modes that fix_label is unable to resolve.
In BAMBI, parameter estimates are computed using the function pointest, which can find
point estimates of the whole parameter vector, as well as its sub-vectors. Note that the
function supports multiple methods of estimation. In particular, the argument fn in pointest
specifies what function to evaluate on the MCMC samples for estimation. For example, fn
= mean computes the MCMC posterior mean, while fn = "MODE" returns an MCMC based
approximate MAP estimate. We use pointest to find the MAP and posterior mean estimates
(after applying fix_label), and then note their differences. The R commands are as follows.

R> round(pointest(fit.vmsin.best, fn = "MODE"), 2)

1 2 3 4
pmix 0.43 0.15 0.36 0.07
kappa1 33.11 8.10 4.20 4.98
kappa2 24.59 1.76 9.37 0.00
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kappa3 -11.86 0.06 -1.67 -1.74
mu1 5.21 4.63 4.42 1.67
mu2 5.56 6.22 2.44 5.01

R> round(pointest(fit.vmsin.best, fn = mean), 2)

1 2 3 4
pmix 0.43 0.17 0.34 0.07
kappa1 36.49 7.39 4.35 4.23
kappa2 29.19 2.08 8.10 0.07
kappa3 -12.78 -0.40 -1.07 -0.03
mu1 5.23 4.67 4.43 1.73
mu2 5.55 6.17 2.43 3.44

We note that both the approximate MAP estimate and the posterior mean estimate reason-
ably agree on the first three components. However, they disagree on the remaining fourth
component regarding the value of mu2 and kappa3. This is not surprising, since the MCMC
samples for these two parameters have (possibly non-permutation) multiple modes, as we
saw earlier. In this case, their posterior mean estimates lie in between modes, and hence
are not good point estimates. To visualize the differences between these estimates, we plot
the contours and surfaces of the corresponding fitted model densities using the S3 functions
contour from base R graphics (R Core Team 2021) and densityplot from lattice (Sarkar
2021) for ‘angmcmc’ objects:

R> contour(fit.vmsin.best, fn = "MODE")
R> lattice::densityplot(fit.vmsin.best, fn = "MODE")
R> contour(fit.vmsin.best, fn = mean)
R> lattice::densityplot(fit.vmsin.best, fn = mean)

The contour plots are shown in Figures 8(a) and 8(b), and the density surfaces in Figures 9(a)
and 9(b). As can be seen, these plots are visually quite similar, despite the differences in the
point estimates. This is due to the fact the component mostly affected by the existence of
multiple modes has a low mixing proportion. Nonetheless, in the current setting, the MAP
estimate is the better of the two for the reasons described.
Finally, we compute interval estimates of the parameters. This done by the S3 function
summary for ‘angmcmc’ objects, which computes the MCMC posterior mean along with a 95%
credible interval:

R> summary(fit.vmsin.best)

1 2 3
pmix 0.43 (0.38, 0.48) 0.17 (0.12, 0.22) 0.34 (0.29, 0.38)
kappa1 36.49 (28.98, 45.60) 7.39 (4.99, 10.84) 4.35 (3.44, 5.46)
kappa2 29.19 (21.90, 38.89) 2.08 (1.19, 3.24) 8.10 (5.98, 10.63)
kappa3 -12.78 (-18.50, -7.51) -0.40 (-1.81, 1.15) -1.07 (-2.26, 0.041)
mu1 5.23 (5.20, 5.26) 4.67 (4.54, 4.80) 4.43 (4.35, 4.52)
mu2 5.55 (5.51, 5.58) 6.17 (5.99, 6.28) 2.43 (2.36, 2.49)
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Contour plot for fitted 4 component vmsin mixtures
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(a) Approximate MAP estimate from MCMC
samples.
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Figure 8: Contour plots for fitted 4 component vmsin mixture model with parameters esti-
mated via MCMC-based MAP estimation (left) and posterior mean estimation (right).
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(a) Approximate MAP estimate from MCMC
samples.
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(b) MCMC posterior mean after resolving label
switching.

Figure 9: Density surfaces for fitted 4 component vmsin mixture model with parameters
estimated via MCMC-based MAP estimation (left) and posterior mean estimation (right).
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Figure 10: Ramachandran plot for the data generated from the best fitted vmsin mixture
model.

4
pmix 0.065 (0.044, 0.093)
kappa1 4.23 (1.31, 7.73)
kappa2 0.067 (0.00012, 0.51)
kappa3 -0.025 (-3.04, 3.04)
mu1 1.73 (1.44, 2.12)
mu2 3.44 (0.74, 5.96)

We also use this example to illustrate r_fitted, which generates random deviates from a fit-
ted model, with parameters estimated using pointest. The corresponding function d_fitted
evaluates the density. These can be useful for posterior predictive checks. We draw observa-
tions from the best (4 component) fitted vmsin model, construct the Ramachandran plot for
the generated dataset (exhibited in Figure 10) and compare it with the original Ramachandran
plot. The following are the R commands used for this purpose.

R> set.seed(12321)
R> vmsin.data <- r_fitted(nrow(tim8), fit.vmsin.best, fn = "MODE")
R> plot(vmsin.data, xlab = "phi", ylab = "psi", xlim = c(0, 2*pi),
+ ylim = c(0, 2*pi), pch = 16, col = scales::alpha("black", 0.6))
R> title("Data generated from best fitted vmsin")

Observe the similarity between Figures 5 and 10. The different clusters of the actual data
points are reproduced well in the simulated data, which corroborate the goodness of fit.
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Fitting the vmcos mixture model

Next, we fit vmcos mixtures to the data, by using fit_incremental_angmix with model =
"vmcos". We set n_qrnd = 1e4 (the default used in dvmcos), which specifies that 10,000
pairs of quasi-random Sobol numbers would be used to approximate the vmcos normalizing
constant in cases where its analytic computation is unstable. In a small dimensional problem
with finite variance (such as ours), the Sobol sequence (or low discrepancy quasi-random se-
quences in general) often provides a better Monte Carlo approximation than (pseudo-) random
sequences. In fact, for two dimensional problems, the rate of convergence for a Sobol sequence
based Monte Carlo approximation is O((logN)2/N) as opposed to O(1/

√
N) for an ordinary

(pseudo-) random sequence based Monte Carlo approximation (Lemieux and Faure 2009),
where N denotes the number of (quasi) random pairs used. See the documentation of dvmcos
for examples comparing analytic, quasi Monte Carlo, and ordinary Monte Carlo approxima-
tions of the (normalizing constant of the) vmcos density. For fit_incremental_angmix (or
more specifically in fit_angmix), Monte Carlo approximations based on 104 pairs of Sobol
numbers typically provide reasonable approximations, while keeping the computational bur-
den moderate.
The following are the R commands used for incrementally fitting vmcos mixture models.

R> set.seed(12321)
R> fit.vmcos <- fit_incremental_angmix(model = "vmcos", data = tim8,
+ crit = "LOOIC", start_ncomp = 2, max_ncomp = 10, n.iter = 2e4,
+ n.chains = 3, use_best_chain = FALSE, n_qrnd = 1e4)

Similar to the vmsin case, here also the algorithm stops at 5 components and determines
the optimal number of components to be 4. We first extract the “best” fitted model, via
bestmodel:

R> fit.vmcos.best <- bestmodel(fit.vmcos)

and then plot the log posterior and parameter traces. These plots show similar convergence
properties, and are omitted for brevity. For parameter estimation, we compute both (ap-
proximate) MAP and posterior mean estimates (after undoing label switching), and plot the
contour and surface of the associated fitted model densities. The following are the associated
R commands:

R> fit.vmcos.best <- fix_label(fit.vmcos.best)
R> contour(fit.vmcos.best, fn = "MODE")
R> lattice::densityplot(fit.vmcos.best, fn = "MODE")
R> contour(fit.vmcos.best, fn = mean)
R> lattice::densityplot(fit.vmcos.best, fn = mean)

The fitted contours are displayed in Figures 11(a) and 11(b), and the density surfaces are
displayed in Figures 12(a) and 12(b), are noticeably similar. They are also broadly similar
to the ones obtained for the fitted vmsin models. Estimated posterior means along with
estimated 95% credible intervals are obtained using the S3 function summary.angmcmc as
follows.
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(a) Approximate MAP estimate from MCMC
samples.
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(b) MCMC posterior mean after resolving label
switching.

Figure 11: Contour plots for fitted 4 component vmcos mixture model with parameters esti-
mated via MCMC-based MAP estimation (left) and posterior mean estimation (right)
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(a) Approximate MAP estimate from MCMC
samples.
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(b) MCMC posterior mean after resolving label
switching.

Figure 12: Density surfaces for fitted 4 component vmcos mixture model with parameters
estimated via MCMC-based MAP estimation (left) and posterior mean estimation (right).
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R> summary(fit.vmcos.best)

1 2 3
pmix 0.43 (0.38, 0.49) 0.16 (0.12, 0.21) 0.34 (0.29, 0.38)
kappa1 48.68 (37.97, 61.62) 7.89 (5.16, 11.92) 5.15 (3.82, 6.69)
kappa2 41.27 (30.56, 55.34) 2.00 (0.00049, 4.11) 8.77 (6.36, 11.70)
kappa3 -12.57 (-18.65, -7.29) 0.11 (-1.57, 2.24) -0.97 (-2.14, 0.094)
mu1 5.23 (5.20, 5.26) 4.67 (4.53, 4.80) 4.43 (4.34, 4.51)
mu2 5.55 (5.51, 5.58) 6.17 (5.99, 6.28) 2.43 (2.37, 2.50)

4
pmix 0.064 (0.043, 0.091)
kappa1 3.63 (1.19, 6.69)
kappa2 0.18 (0.00013, 1.30)
kappa3 -0.20 (-1.55, 0.91)
mu1 1.60 (1.35, 1.92)
mu2 3.06 (0.13, 6.09)

Fitting the wnorm2 mixture model

Finally, we fit wnorm2 mixtures to the data. The R commands used are as follows:

R> set.seed(12321)
R> library(future)
R> plan(multiprocess(workers = 3))
R> fit.wnorm2 <- fit_incremental_angmix(model = "wnorm2", data = tim8,
+ crit = "LOOIC", start_ncomp = 2, max_ncomp = 10, n.iter = 2e4,
+ n.chains = 3, use_best_chain = FALSE)

Here also, the function stops at 5 components and determines the optimal number of compo-
nents to be 46. As done in the previous two cases, after extracting the best model, we assess
convergence via trace plots (omitted for brevity). We find MCMC-based MAP and posterior
mean estimates (after undoing label switching), and also find credible interval estimates. Fi-
nally we assess goodness of fit through fitted contour and density surfaces. The following are
the R commands that perform these tasks.

R> fit.wnorm2.best <- bestmodel(fit.wnorm2)
R> lpdtrace(fit.wnorm2.best)
R> paramtrace(fit.wnorm2.best)
R> fit.wnorm2.best <- fix_label(fit.wnorm2.best)
R> contour(fit.wnorm2.best, fn = "MODE")
R> lattice::densityplot(fit.wnorm2.best, fn = "MODE")
R> contour(fit.wnorm2.best, fn = mean)
R> lattice::densityplot(fit.wnorm2.best, fn = mean)
R> summary(fit.wnorm2.best)

6It should be noted that the runtime for wrapped normal fitting is considerably longer than the von Mises
sine models, due to the computational burden; see Section 1.1.
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(a) Approximate MAP estimate from MCMC
samples.

Contour plot for fitted 4 component wnorm2 mixtures

φ

ψ

 2.172945e−05 

 2.172945e−05 

 6.916972e−05 

 6.916972e−05 

 0.0002201828 

 0.0002201828 

 0.0007008912 

 0.0007008912 

 0.0007008912 

 0.002231094 

 0.002231094 

 0.002231094 

 0.002231094 

 0.002231094 

 0.007102074 

 0.007102074 

 0.007102074 

 0.007102074 

 0.007102074 

 0.007102074 

 0.0226075 

 0.0226075 

 0.07196474 

 0.07196474 

0 1 2 3 4 5 6
0

1
2

3
4

5
6

(b) MCMC posterior mean after resolving label
switching.

Figure 13: Contour plots for fitted 4 component wnorm2 mixture model with parameters
estimated via MCMC-based MAP estimation (left) and posterior mean estimation (right).
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(a) Approximate MAP estimate from MCMC
samples.
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(b) MCMC posterior mean after resolving label
switching.

Figure 14: Density surfaces for fitted 4 component wnorm2 mixture model with parameters
estimated via MCMC-based MAP estimation (left) and posterior mean estimation (right).
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The contours and density surfaces displayed in Figures 13 and 14) are noticeably similar.
They are also broadly similar to the fitted vmsin and vmcos mixture model density contours
and surfaces. The estimated credible intervals along with MCMC posterior means for fitted 4
component wnorm2 mixture are obtained using the S3 function summary.angmcmc as follows.

R> summary(fit.wnorm2.best)

1 2 3
pmix 0.39 (0.31, 0.46) 0.17 (0.12, 0.24) 0.32 (0.27, 0.37)
kappa1 39.76 (30.19, 52.15) 9.41 (5.93, 13.60) 4.74 (3.57, 6.14)
kappa2 36.80 (24.43, 54.02) 6.51 (1.46, 11.82) 6.55 (4.35, 9.62)
kappa3 11.78 (4.77, 19.61) 3.39 (-0.26, 7.21) 0.28 (-0.80, 1.29)
mu1 5.24 (5.21, 5.27) 4.81 (4.63, 4.97) 4.47 (4.39, 4.56)
mu2 5.52 (5.48, 5.57) 6.09 (5.90, 6.27) 2.41 (2.33, 2.49)

4
pmix 0.12 (0.085, 0.16)
kappa1 2.69 (1.08, 4.42)
kappa2 8.17 (3.60, 13.08)
kappa3 4.61 (1.91, 7.51)
mu1 5.39 (4.28, 6.22)
mu2 1.53 (1.05, 2.17)

Comparative analysis of the three fitted models

So far, we have considered mixtures of vmsin, vmcos and wnorm2 densities, and have fitted
them to tim8 data. The associated optimal number of components were determined via
leave one out information criterion (LOOIC) in incremental fitting schemes. We then plotted
the fitted density contours and surfaces to assess the goodness of fit, and noticed that these
plots are broadly similar across the three optimal fitted mixture models (of vmsin, vmcos
and wnorm2 densities). It is natural to then consider the question of which among these
three fitted bivariate mixture models best explains the data. This can again be answered via
LOOIC. For ‘angmcmc’ objects LOOIC can be conveniently computed using the S3 function
looic from package loo. However, here we do not need to recompute them since they were
already computed during incremental model fitting, and can be extracted via the convenience
function bestcriterion as follows:

R> looic.all.bi <- list(
+ vmsin.4 = bestcriterion(fit.vmsin),
+ vmcos.4 = bestcriterion(fit.vmcos),
+ wnorm2.4 = bestcriterion(fit.wnorm2)
+ )

Now we compare the three models via loo::compare on the basis of their LOOIC’s:

R> comp <- loo::loo_compare(x = looic.all.bi)
R> comp
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elpd_diff se_diff
wnorm2.4 0.0 0.0
vmsin.4 -7.4 7.6
vmcos.4 -12.3 7.3

The documentation of loo_compare from package loo v2.4.1 says “When comparing two fitted
models, we can estimate the difference in their expected predictive accuracy by the difference
in elpd_loo or elpd_waic (or multiplied by −2, if desired, to be on the deviance scale).
When using loo_compare(), the returned matrix will have one row per model and several
columns of estimates. The values in the elpd_diff and se_diff columns of the returned
matrix are computed by making pairwise comparisons between each model and the model
with the largest ELPD (the model in the first row)”.
Thus the above output provides a ranking among the three models based on their (estimated)
expected log predictive density (ELPD) values; a higher ELPD indicates a better predictive
accuracy and thus a better fit. The fitted wnorm2 model appears to have the highest ELPD (see
the column elpd_diff in the above output), followed by the fitted vmsin model and the fitted
vmcos model. However, these ELPD’s are estimates, and the variabilities of these estimates
need to be considered when making comparisons. To address this, we make use of the standard
errors of the differences provided in the column se_diff and construct approximate 95%
uncertainty interval estimates of the pairwise ELPD differences (viz., elpd_diff± 2 se_diff)
for the fitted model pairs (vmsin, wnorm2) and (vmcos, wnorm2). An ELPD difference is
considered to be significant (at the 95% level) if the corresponding interval estimate does not
contain zero. The R commands are as follows.

R> find_ci <- function(x, digits = 1) {
+ round(c(lower = unname(x[1] - 2*x[2]), upper = unname(x[1] + 2*x[2])),
+ digits = digits)
+ }
R> t(apply(comp[-1, c("elpd_diff", "se_diff")], 1, find_ci))

lower upper
vmsin.4 -22.5 7.8
vmcos.4 -26.9 2.3

This shows that approximate 95% interval estimates of the ELPD differences between the
fitted best vmsin and the best wnorm2 model, and the best vmcos and the best wnorm2 model,
are (−22.5, 7.8) and (−26.9, 2.3) respectively, both containing zero. It therefore follows that
all three of the fitted (four component) mixture models are not significantly different in terms
of their goodness of fit to these data.

4.2. Fitting mixture models on the wind (univariate) data

The wind data contains 239 observations on wind direction in radians measured at Saturna
Island, British Columbia, Canada, during October 1–10, 2016. As a result of a severe storm
that occurred during that period, the data shows significant variability with an interesting bi-
(or possibly tri-) modality. Figure 15 shows a histogram of the data, constructed by applying
the default hist function on wind[, "angle"].
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Figure 15: Histogram for the wind dataset.

Similar to the bivariate case, we use fit_incremental_angmix to fit mixtures of vm and wnorm
separately with incremental number of components (starting at 1) and determine an optimum
size in each case. To fit each mixture model, we first generate 20,000 MCMC samples for
the parameters, with the (default) first half taken as burn-in. Except for n.iter, defaults
for all other arguments are used in these examples. After generating the MCMC samples, we
assess their convergence via LPD and parameter trace plots. Following, we visualize the fits
via density curves constructed using the S3 function densityplot (which requires lattice).
Finally, we compute point and interval estimates for each parameter using the S3 function
summary.angmcmc.

Fitting the vm mixture model
We start with vm. The R commands are as follows:

R> set.seed(12321)
R> fit.vm <- fit_incremental_angmix(model = "vm", data = wind[, "angle"],
+ crit = "LOOIC", start_ncomp = 1, max_ncomp = 10, n.iter = 2e4,
+ n.chains = 3)

The function stops at 3 components and determines the optimal number of components to
be 2. After it stops, we extract the ‘angmcmc’ object corresponding to the best model from
its output, and inspect its LPD and parameter traces for convergence (omitted for brevity).

R> fit.vm.best <- bestmodel(fit.vm)



Journal of Statistical Software 45

0 1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

Density plot for fitted 2 component vm mixtures

φ

ψ

Density plot for fitted 2 component vm mixtures

(a) Approximate MAP estimate from MCMC
samples.

0 1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

Density plot for fitted 2 component vm mixtures

φ

ψ

Density plot for fitted 2 component vm mixtures
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Figure 16: Density curves for fitted 2 component vm mixture model with parameters estimated
via MCMC-based MAP estimation (left) and posterior mean estimation (right).

R> lpdtrace(fit.vm.best)
R> paramtrace(fit.vm.best)

We first use fix_label to undo label switching, and then assess goodness of fit through
density curves fitted using MAP and posterior mean estimation:

R> fit.vm.best <- fix_label(fit.vm.best)
R> lattice::densityplot(fit.vm.best, fn = "MODE")
R> lattice::densityplot(fit.vm.best, fn = mean)

The plots are displayed in Figures 16(a) and 16(b), which show noticeable similarity.
Finally, we compute MCMC posterior mean and associated 95% credible interval using S3
function summary:

R> summary(fit.vm.best)

1 2
pmix 0.24 (0.13, 0.46) 0.76 (0.54, 0.87)
kappa 7.36 (1.12, 21.97) 1.03 (0.58, 1.79)
mu 5.29 (5.01, 5.49) 2.75 (2.48, 3.04)

Fitting the wnorm mixture model

Next, we do similar exercises with wnorm model. The following are the R codes used.



46 BAMBI: Bivariate Angular Mixture Models in R

0 1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

Density plot for fitted 2 component wnorm mixtures

φ

ψ

Density plot for fitted 2 component wnorm mixtures

(a) Approximate MAP estimate from MCMC
samples.

0 1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

Density plot for fitted 2 component wnorm mixtures

φ

ψ

Density plot for fitted 2 component wnorm mixtures

(b) Estimated posterior mean after resolving label
switching.

Figure 17: Density curves for fitted 2 component wnorm mixture model with parameters
estimated via MCMC-based MAP estimation (left) and posterior mean estimation (right).

R> set.seed(12321)
R> fit.wnorm <- fit_incremental_angmix(model = "wnorm", data = wind[, "angle"],
+ crit = "LOOIC", start_ncomp = 1, max_ncomp = 10, n.iter = 2e4,
+ n.chains = 3)
R> fit.wnorm.best <- bestmodel(fit.wnorm)
R> lpdtrace(fit.wnorm.best)
R> paramtrace(fit.wnorm.best)
R> fit.wnorm.best <- fix_label(fit.wnorm.best)
R> lattice::densityplot(fit.wnorm.best, fn = "MODE")
R> lattice::densityplot(fit.wnorm.best, fn = mean)

Similar to the vm case, here also the function stops at 3 components and determines the
optimal number of components to be 2. The LPD and parameter traceplots are omitted for
brevity. The density curves fitted using MAP and posterior mean estimates are shown in
Figures 17(a) and 17(b) respectively, which are noticeably similar. They are also broadly
similar to the plots associated with the fitted vm mixture densities shown in Figure 16.
Finally we compute the MCMC posterior mean and 95% credible interval using the S3 function
summary.
R> summary(fit.wnorm.best)

1 2
pmix 0.28 (0.15, 0.46) 0.72 (0.54, 0.85)
kappa 5.38 (0.97, 17.97) 0.81 (0.41, 1.48)
mu 5.34 (5.00, 5.54) 2.71 (2.43, 3.03)
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Comparison between the two models

Similar to the bivariate case, we compare the fitted vm and wnorm mixture models using their
LOOIC values. We first extract the LOOICs using the convenience function bestcriterion:

R> looic.all.uni <- list(
+ vm.2 = bestcriterion(fit.vm),
+ wnorm.2 = bestcriterion(fit.wnorm)
+ )

Then we compare the two models based on their estimated expected log predictive densities,
by using loo::loo_compare():

R> loo::loo_compare(x = looic.all.uni)

elpd_diff se_diff
vm.2 0.0 0.0
wnorm.2 -0.7 1.0

Clearly an approximate 95% credible interval estimate for the ELPD difference, obtained by
elpd_diff ± 2 se, contains zero. This implies that the fitted vm model and the fitted wnorm
model do not have a significant difference in terms of their goodness of fit to these data.

5. Concluding remarks and future work
Angular data, both univariate and bivariate, arise naturally in a variety of modern scientific
problems, and their analyses require appropriate use of rigorous statistical tools and distribu-
tions specifically developed for such data. The lack of comprehensive software implementing
such methods (in R or otherwise) has hindered their applicability in practice – especially for
bivariate angular models and mixtures thereof.
The package BAMBI is our contribution to this area, providing a platform that implements a
set of formal statistical tools and methods for analyzing such data, and is readily accessible to
practitioners. There are various directions in which the software could be extended in future
releases. Some possible features under consideration include the following.

• Implementation of additional angular distributions, such as wrapped Cauchy.

• Additional methods of density evaluation and random simulation from fitted models on
the basis of MCMC samples.

• Visualizations of bivariate angles with toroidal plots.

• Use of parallel tempering or related methods during MCMC simulations for faster ex-
ploration of the posterior density.

• Proper handling of overfitting heterogeneity that takes place in high dimensional mix-
ture models when some of the component specific parameters in two different compo-
nents are identical. Frühwirth-Schnatter (2011) suggests the use of sparse priors for the
component specific location parameters to deal with this problem.
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A. The normalizing constant for von Mises cosine density

Proposition A.1. The normalizing constant for the density (8) is given by

Cc(κ1, κ2, κ3) =
[
(2π)2

{
I0(κ1)I0(κ2)I0(κ3) + 2

∞∑
n=1

In(κ1)In(κ2)In(κ3)
}]−1

Proof. Without loss of generality, we first assume that the mean parameters in the density
(8) are all zero, i.e., µ1 = µ2 = 0. Therefore, our objective boils down to evaluate the integral

Cc(κ1, κ2, κ3)−1 = I =
∫ 2π

0

∫ 2π

0
exp(κ1 cosx+ κ2 cos y + κ3 cos(x− y)) dx dy. (18)

Now from Equation 9.6.34 of Abramowitz and Stegun (1964), it follows that

exp(κ1 cosx) = I0(κ1) + 2
∞∑
l=1

Il(κ1) cos(lx)

exp(κ2 cos y) = I0(κ2) + 2
∞∑
m=1

Im(κ2) cos(my)

and exp(κ3 cos(x− y)) = I0(κ3) + 2
∞∑
n=1

In(κ3) cos(n(x− y)).

Therefore, the integrand in (18) can be written as

I0(κ1)I0(κ2)I0(κ3) + 2{I0(κ2) + I0(κ3)}
∞∑
l=1

Il(κ1) cos(lx)

+ 2{I0(κ3) + I0(κ1)}
∞∑
m=1

Im(κ2) cos(my)

+ 2{I0(κ1) + I0(κ2)}
∞∑
n=1

In(κ3) cos(n(x− y))

+ 8
∞∑
l=1

∞∑
m=1

∞∑
n=1

Il(κ1)Im(κ2)In(κ3) cos(lx) cos(my) cos(n(x− y)). (19)

Note that for any positive integer q,∫ 2π

0
cos(qz) dz =

∫ 2π

0
sin(qz) dz = 0

which implies, for a positive integer n,∫ 2π

0

∫ 2π

0
cos(n(x− y)) dx dy =

∫ 2π

0
cos(nx) dx

∫ 2π

0
cos(ny) dy

+
∫ 2π

0
sin(nx) dx

∫ 2π

0
sin(ny) dy = 0.

(Equality of the double and the iterative integrals are ensured by the Fubini theorem, which
is applicable as the integrands and the range of integrals are all finite.)
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Thus the (double) integrals of the second, third and fourth terms in (19) are all zero. Hence,

I = (2π)2I0(κ1)I0(κ2)I0(κ3)

+ 8
∫ 2π

0

∫ 2π

0

∞∑
l=1

∞∑
m=1

∞∑
n=1

Il(κ1)Im(κ2)In(κ3) cos(lx) cos(my) cos(n(x− y)) dx dy. (20)

Now, for the second term in (20), first note that
∫ 2π

0

∫ 2π

0

∞∑
l=1

∞∑
m=1

∞∑
n=1
|Il(κ1)Im(κ2)In(κ3) cos(lx) cos(my) cos(n(x− y))| dx dy

≤
∫ 2π

0

∫ 2π

0

∞∑
l=1

∞∑
m=1

∞∑
n=1

Il(κ1)Im(κ2)In(|κ3|) dx dy

=
∞∑
l=1

∞∑
m=1

∞∑
n=1

∫ 2π

0

∫ 2π

0
Il(κ1)Im(κ2)In(|κ3|) dx dy (by Fubini-Tonelli)

= (2π)2
( ∞∑
l=1

Il(κ1)
)( ∞∑

m=1
Im(κ2)

)( ∞∑
n=1

In(|κ3|)
)

<∞

where the equality in the third line follows from the Fubini-Tonelli theorem for non-negative
integrands. Therefore, the Fubini theorem for general integrands can be applied to ensure
interchangeability of the sums and the integrals in the second term in (20). In particular, one
can write∫ 2π

0

∫ 2π

0

∞∑
l=1

∞∑
m=1

∞∑
n=1

Il(κ1)Im(κ2)In(κ3) cos(lx) cos(my) cos(n(x− y)) dx dy

=
∞∑
l=1

∞∑
m=1

∞∑
n=1

Il(κ1)Im(κ2)In(κ3)
∫ 2π

0

∫ 2π

0
cos(lx) cos(my) cos(n(x− y)) dx dy. (21)

Now, for any positive integers l,m, n,

cos(lx) cos(my) cos(n(x− y)) = cos(lx) cos(nx) cos(my) cos(ny)
+ cos(lx) sin(nx) cos(my) sin(ny).

Observe that for any two positive integers p and q,∫ 2π

0
cos(pz) cos(qz) dz = π1{p=q} and

∫ 2π

0
cos(pz) sin(qz) dz = 0.

Therefore, for any positive integers l,m, n,∫ 2π

0

∫ 2π

0
cos(lx) cos(nx) cos(my) cos(ny) dx dy = π1{l=n}π1{m=n} = π2

1{l=m=n}

and ∫ 2π

0

∫ 2π

0
cos(lx) sin(nx) cos(my) sin(ny) dx dy = 0.
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which implies,

∫ 2π

0

∫ 2π

0
cos(lx) cos(my) cos(n(x− y)) dx dy = π2

1{l=m=n}. (22)

Therefore, combining (20), (21) and (22), we get

I = (2π)2I0(κ1)I0(κ2)I0(κ3) + 8π2
∞∑
l=1

∞∑
m=1

∞∑
n=1

Il(κ1)In(κ3)Im(κ2)1{l=m=n}

= (2π)2
{
I0(κ1)I0(κ2)I0(κ3) + 2

∞∑
n=1

In(κ1)In(κ2)In(κ3)
}

This completes the proof.

B. Circular variance and correlation coefficients

B.1. Von Mises sine model

Let (ψ1, ψ2) ∼ vMs
2(µ1, µ2, κ1, κ2, κ3). Then

1. the Fisher-Lee circular correlation coefficient (11) between ψ1 and ψ2 is given by

ρFL(ψ1, ψ2) =

(
1
C̄s

∂C̄s
∂κ3

) (
1
C̄s

∂2C̄s
∂κ1∂κ2

)
√(

1
C̄s

∂2C̄s

∂κ2
1

) (
1− 1

C̄s

∂2C̄s

∂κ2
1

) (
1
C̄s

∂2C̄s

∂κ2
2

) (
1− 1

C̄s

∂2C̄s

∂κ2
2

) .

2. the Jammalamadaka-Sarma circular correlation coefficient (10) between Θ and Φ is
given by

ρJS(ψ1, ψ2) =
1
C̄s

∂C̄s
∂κ3√(

1− 1
C̄s

∂2C̄s

∂κ2
1

) (
1− 1

C̄s

∂2C̄s

∂κ2
2

) .

3. the circular variance for ψi, i = 1, 2 is given by

Var(ψi) = 1− 1
C̄s

∂C̄s
∂κi

.

Here C̄s = 1/Cs, where Cs is the normalizing constant of the von Mises sine distribution as
defined in (7). Infinite series expressions for partial derivatives of C̄s constant are provided
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as follows.

∂C̄s
∂κ1

= 4π2
∞∑
m=0

(
2m
m

)(
κ2

3
4κ1κ2

)m
Im+1(κ1)Im(κ2)

∂C̄s
∂κ2

= 4π2
∞∑
m=0

(
2m
m

)(
κ2

3
4κ1κ2

)m
Im(κ1)Im+1(κ2)

∂C̄s
∂κ3

= 8π2
∞∑
m=1

m

(
2m
m

)
κ2m−1

3
(4κ1κ2)m Im(κ1)Im(κ2)

∂2C̄s
∂κ2

1
= 4π2

∞∑
m=0

(
2m
m

)(
κ2

3
4κ1κ2

)m
(
Im+1(κ1)

κ1
+ Im+2(κ1)

)
Im(κ2)

∂2C̄s
∂κ2

2
= 4π2

∞∑
m=0

(
2m
m

)(
κ2

3
4κ1κ2

)m

Im(κ1)
(
Im+1(κ2)

κ2
+ Im+2(κ2)

)
∂2C̄s
∂κ1 ∂κ2

= 4π2
∞∑
m=0

(
2m
m

)(
κ2

3
4κ1κ2

)m
Im+1(κ1)Im+1(κ2)

B.2. Von Mises cosine model

Let (ψ1, ψ2) ∼ vMc
2(µ1, µ2, κ1, κ2, κ3). Then

1. The Fisher-Lee circular correlation coefficient (11) between ψ1 and ψ2 is given by

ρFL(ψ1, ψ2) =

(
1
C̄c

{
∂C̄c
∂κ3
− ∂2C̄c

∂κ1∂κ2

})(
1
C̄c

∂2C̄c
∂κ1∂κ2

)
√(

1
C̄c

∂2C̄c

∂κ2
1

) (
1− 1

C̄c

∂2C̄c

∂κ2
1

) (
1
C̄c

∂2C̄c

∂κ2
2

) (
1− 1

C̄c

∂2C̄c

∂κ2
2

) .

2. The Jammalamadaka-Sarma circular correlation coefficient (10) between Θ and Φ is
given by

ρJS(ψ1, ψ2) =
1
C̄c

{
∂C̄c
∂κ3
− ∂2C̄c

∂κ1∂κ2

}
√(

1− 1
C̄c

∂2C̄c

∂κ2
1

) (
1− 1

C̄c

∂2C̄c

∂κ2
2

) .

3. The circular variance for ψi, i = 1, 2 is given by

Var(ψi) = 1− 1
C̄c

∂C̄c
∂κi

.

Here C̄c = 1/Cc is the reciprocal of the von Mises cosine normalizing constant, as given in
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(9). Infinite series expressions for partial derivatives of C̄c are given as follows.

∂C̄c
∂κ1

= 4π2 {I1(κ1)I0(κ2)I0(κ3)+
∞∑
m=1

Im(κ2)Im(κ3) [Im+1(κ1) + Im−1(κ1)]}

∂C̄c
∂κ2

= 4π2 {I0(κ1)I1(κ2)I0(κ3)+
∞∑
m=1

Im(κ1)Im(κ3) [Im+1(κ2) + Im−1(κ2)]}

∂C̄c
∂κ3

= 4π2 {I0(κ1)I0(κ2)I1(κ3)+
∞∑
m=1

Im(κ1)Im(κ2) [Im+1(κ3) + Im−1(κ3)]} .

∂2C̄c
∂κ2

1
= 2π2 {I0(κ2)I0(κ3)[I0(κ1) + I2(κ1)]+

∞∑
m=1

Im(κ2)Im(κ3)[Im−2(κ1) + 2Im(κ1) + Im+2(κ1)]}

∂2C̄c
∂κ2

2
= 2π2 {I0(κ1)I0(κ3)[I0(κ2) + I2(κ2)]+

∞∑
m=1

Im(κ1)Im(κ3)[Im−2(κ2) + 2Im(κ2) + Im+2(κ2)]}

∂2C̄c
∂κ1∂κ2

= 2π2 {2I1(κ1)I1(κ2)I0(κ3)+
∞∑
m=1

Im(κ3) [Im+1(κ1) + Im−1(κ1)] [Im+1(κ2) + Im−1(κ2)]}

C. Gradients
For notational simplicity we shall omit the subscripts i and j. Note that, in the sequel,
θ stands for the parameter vector for one generic component and not the entire parameter
vector of all components.

C.1. Wrapped normal models

1. Univariate case. Here θ> = (κ, µ), and

∂fWN(ψ|θ)
∂κ

= 1
2κ1/2

√
2π

∑
ω∈Z

exp
[
−κ2 (ψ − µ− 2πω)2

] [
1− κ(ψ − µ− 2πω)2

]
∂fWN(ψ|θ)

∂µ
= κ3/2
√

2π
∑
ω∈Z

exp
[
−κ2 (ψ − µ− 2πω)2

]
(ψ − µ− 2πω).
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2. Bivariate case. Here θ> = (κ1, κ2, κ3, µ1, µ2), ψ> = (ψ1, ψ2) and

∂fWN2(ψ|θ)
∂κ1

= 1
4π√κ12.3

∑
(ω1,ω2)∈Z2

Eω1,ω2

[
κ2 − κ12.3(ψ1 − µ1 − 2πω1)2

]
∂fWN2(ψ|θ)

∂κ2
= 1

4π√κ12.3

∑
(ω1,ω2)∈Z2

Eω1,ω2

[
κ1 − κ12.3(ψ2 − µ2 − 2πω2)2

]
∂fWN2(ψ|θ)

∂κ3
= 1

2π√κ12.3

∑
(ω1,ω2)∈Z2

Eω1,ω2 [κ3 − κ12.3(ψ1 − µ1 − 2πω1)(ψ2 − µ2 − 2πω2)]

∂fWN2(ψ|θ)
∂µ1

=
√
κ12.3
2π

∑
(ω1,ω2)∈Z2

Eω1,ω2 [κ1(ψ1 − µ1 − 2πω1) + κ3(ψ2 − µ2 − 2πω2)]

∂fWN2(ψ|θ)
∂µ2

=
√
κ12.3
2π

∑
(ω1,ω2)∈Z2

Eω1,ω2 [κ3(ψ1 − µ1 − 2πω1) + κ2(ψ2 − µ2 − 2πω2)]

where

Eω1,ω2 = exp
[
−1

2
{
κ1(ψ1 − µ1 − 2πω1)2 + κ2(ψ2 − µ2 − 2πω2)2

+2κ3(ψ1 − µ1 − 2πω1)(ψ2 − µ2 − 2πω2)}]

and κ12.3 = κ1κ2 − κ2
3.

C.2. Von Mises models

1. Univariate case. Here θ> = (κ, µ) and

∂ log fvM(ψ|θ)
∂κ

= cos(ψ − µ)− I1(κ)
I0(κ)

∂ log fvM(ψ|θ)
∂µ

= κ sin(ψ − µ).

2. Bivariate sine model. Here θ> = (κ1, κ2, κ3, µ1, µ2), ψ> = (ψ1, ψ2) and

∂ log fvMs
2
(ψ|θ)

∂κ1
= cos(ψ1 − µ1)− ∂C̄s(κ1, κ1, κ3)/∂κ1

C̄s(κ1, κ1, κ3)
∂ log fvMs

2
(ψ|θ)

∂κ2
= cos(ψ2 − µ2)− ∂C̄s(κ1, κ1, κ3)/∂κ2

C̄s(κ1, κ1, κ3)
∂ log fvMs

2
(ψ|θ)

∂κ3
= sin(ψ1 − µ1) sin(ψ2 − µ2)− ∂C̄s(κ1, κ1, κ3)/∂κ3

C̄s(κ1, κ1, κ3)
∂ log fvMs

2
(ψ|θ)

∂µ1
= κ1 sin(ψ1 − µ1)− κ3 cos(ψ1 − µ1) sin(ψ2 − µ2)

∂ log fvMs
2
(ψ|θ)

∂µ2
= κ2 sin(ψ2 − µ2)− κ3 sin(ψ1 − µ1) cos(ψ2 − µ2)

where C̄s(κ1, κ1, κ3) = 1/Cs(κ1, κ1, κ3) and expressions for the partial derivatives are
provided in Appendix B.1.
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3. Bivariate cosine model. Here θ> = (κ1, κ2, κ3, µ1, µ2), ψ> = (ψ1, ψ2) and

∂ log fvMc
2
(ψ|θ)

∂κ1
= cos(ψ1 − µ1)− ∂C̄c(κ1, κ1, κ3)/∂κ1

C̄c(κ1, κ1, κ3)
∂ log fvMc

2
(ψ|θ)

∂κ2
= cos(ψ2 − µ2)− ∂C̄c(κ1, κ1, κ3)/∂κ2

C̄c(κ1, κ1, κ3)
∂ log fvMc

2
(ψ|θ)

∂κ3
= cos(ψ1 − µ1 − ψ2 + µ2)− ∂C̄c(κ1, κ1, κ3)/∂κ3

C̄c(κ1, κ1, κ3)
∂ log fvMc

2
(ψ|θ)

∂µ1
= κ1 sin(ψ1 − µ1) + κ3 sin(ψ1 − µ1 − ψ2 + µ2)

∂ log fvMc
2
(ψ|θ)

∂µ2
= κ2 sin(ψ2 − µ2)− κ3 sin(ψ1 − µ1 − ψ2 + µ2)

where C̄c(κ1, κ1, κ3) = 1/Cc(κ1, κ1, κ3) and infinite series expressions for the partial
derivatives are provided in Appendix B.2.

D. Traceplots for 4 component vmsin models
This appendix displays traceplots of the MCMC samples for the vmsin model parameters in
the fitted best (4-component) model (Section 4.1) both before and after calling fix_label
to resolve label switching. Traces for the model parameters before and after the fix_label
call are displayed in Figures 18–21 and 22–25, respectively. These traces demonstrate that
the independent parallel chains often explore different permutation modes; see, e.g., κ1 for
component 2 in Figure 19 (b). These permutation modes are largely resolved by fix_label;
consider, e.g., Figure 24 (b), the counterpart of Figure 19 (b) after fixing label switching.
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(a) (b)

(c) (d)

(e) (f)

Figure 18: Traceplots for parameters in the first component for the Markov chain associated
with the best fitted vmsin mixture model.
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(a) (b)

(c) (d)

(e) (f)

Figure 19: Traceplots for parameters in the second component for the Markov chain associated
with the best fitted vmsin mixture model.
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(a) (b)

(c) (d)

(e) (f)

Figure 20: Traceplots for parameters in the third component for the Markov chain associated
with the best fitted vmsin mixture model.
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(a) (b)

(c) (d)

(e) (f)

Figure 21: Traceplots for parameters in the fourth component for the Markov chain associated
with the best fitted vmsin mixture model.
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(a) (b)

(c) (d)

(e) (f)

Figure 22: Traceplots for parameters in the first component for the Markov chain associated
with the best fitted vmsin mixture model, after undoing label switching.
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(a) (b)

(c) (d)

(e) (f)

Figure 23: Traceplots for parameters in the second component for the Markov chain associated
with the best fitted vmsin mixture model, after undoing label switching.
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(a) (b)

(c) (d)

(e) (f)

Figure 24: Traceplots for parameters in the third component for the Markov chain associated
with the best fitted vmsin mixture model, after undoing label switching.
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(a) (b)

(c) (d)

(e) (f)

Figure 25: Traceplots parameters in the fourth component for the Markov chain associated
with the best fitted vmsin mixture model, after undoing label switching.
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