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Abstract

Model selection in mixed models based on the conditional distribution is appropriate
for many practical applications and has been a focus of recent statistical research. In
this paper we introduce the R package cAIC4 that allows for the computation of the
conditional Akaike information criterion (cAIC). Computation of the conditional AIC
needs to take into account the uncertainty of the random effects variance and is therefore
not straightforward. We introduce a fast and stable implementation for the calculation
of the cAIC for (generalized) linear mixed models estimated with lme4 and (generalized)
additive mixed models estimated with gamm4. Furthermore, cAIC4 offers a stepwise
function that allows for an automated stepwise selection scheme for mixed models based on
the cAIC. Examples of many possible applications are presented to illustrate the practical
impact and easy handling of the package.

Keywords: conditional AIC, lme4, mixed-effects models, penalized splines.

1. Introduction

The (generalized) linear mixed model is a flexible and broadly applicable statistical model. It
is naturally used for analyzing longitudinal or clustered data. Furthermore, any regularized
regression model incorporating a quadratic penalty can be written in terms of a mixed model.
This incorporates smoothing spline models, spatial models and more general additive models
(Wood 2017). Thus efficient and reliable estimation of such models is of major interest for
applied statisticians. The package lme4 (Bates, Mächler, Bolker, and Walker 2015; Bates,
Maechler, Bolker, and Walker 2021) for the statistical computing software R (R Core Team
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2021) offers such an exceptionally fast and generic implementation for mixed models (see
Bates et al. 2015). The package has a modular framework allowing for the profile restricted
maximum likelihood (REML) criterion as a function of the model parameters to be opti-
mized using any constrained optimization function in R and uses rapid techniques for solving
penalized least squares problems based on sparse matrix methods.

The fact that mixed models are widely used popular statistical tools makes model selection
an indispensable necessity. Consequently research regarding model choice, variable selection
and hypothesis testing in mixed models has flourished in recent years.

Hypothesis testing on random effects is well established, although for likelihood ratio tests
boundary issues arise (Crainiceanu and Ruppert 2004; Greven, Crainiceanu, Küchenhoff, and
Peters 2008; Wood 2013). In model selection for linear mixed models using the Akaike
information criterion (AIC; Akaike 1973), Vaida and Blanchard (2005) suggest to use different
criteria depending on the focus of the underlying research question. They make a distinction
between questions with a focus on the population and on clusters, respectively. For the latter,
they introduce a conditional AIC accounting for the shrinkage in the random effects. Based
on this conditional AIC, Liang, Wu, and Zou (2008) propose a criterion that corrects for
the estimation uncertainty of the random effects variance parameters based on a numerical
approximation. Greven and Kneib (2010) show that ignoring this estimation uncertainty
induces a bias and derive an analytical representation for the conditional AIC.

For certain generalized mixed models, analytical representations of the conditional AIC exist,
for instance for Poisson responses (see Lian 2012). Although there is no general unbiased crite-
rion in analytical form for all exponential family distributions as argued in Säfken, Kneib, van
Waveren, and Greven (2014), bootstrap-based methods can often be applied as we will show
for those presented in Efron (2004). An asymptotic criterion for a wider class of distributions
is described in Wood, Pya, and Säfken (2016). The R package lmerTest (see Kuznetsova,
Brockhoff, and Christensen 2017) offers some tests in linear mixed effects models.

In this paper, we describe an add-on package to lme4 that facilitates model selection based on
the conditional AIC and illustrate it with several examples. For the conditional AIC proposed
by Greven and Kneib (2010) for linear mixed models, the computation of the criterion is not
as simple as it is for other common AIC criteria. This article focuses on techniques for
fast and stable computation of the conditional AIC in mixed models estimated with lme4,
as they are implemented in the R package cAIC4 (Säfken, Rügamer, Baumann, and Kruse
2021), available from the Comprehensive R Archive Network (CRAN) at https://CRAN.
R-project.org/package=cAIC4. The amount of possible models increases substantially with
the R package gamm4 (Wood and Scheipl 2020) allowing for the estimation of a wide class of
models with quadratic penalty such as spline smoothing and additive models. The presented
conditional AIC applies to any of these models.

In addition to translating the findings of Greven and Kneib (2010) to the model formulations
used in Bates et al. (2015), we present the implementation of conditional AICs proposed for
non-Gaussian settings in Säfken et al. (2014) and a new version for binary responses based
on Efron (2004). With these results, a new scheme for stepwise conditional variable selection
in mixed models is introduced. This allows for automatic choice of fixed and random effects
based on the optimal conditional AIC. All methods are accompanied by examples, mainly
taken from lme4, see Bates et al. (2015). The rest of this paper is structured as follows: In
Section 2 the mixed model formulations are introduced based on one example with random
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intercepts and random slopes and a second example on penalized spline smoothing. The
conditional AIC for Gaussian, Poisson and Bernoulli responses is introduced in Section 3.
Section 4 gives a hands-on introduction to cAIC4 with specific examples for the sleepstudy
and the grouseticks data from lme4. The new scheme for stepwise conditional variable
selection in mixed models is presented in Section 5 and applied to the Zambia data set that is
included in the package. After the conclusion in Section 6, Appendix A describes how cAIC4
automatically deals with boundary issues. Furthermore the underlying code for the rapid
computation of the conditional AIC is presented in Appendix B.

2. The mixed model
In a linear mixed model, the conditional distribution of the response y given the random
effects u has the form

y|u ∼ N
(
Xβ +Zu, σ2In

)
, (1)

where y = (y1, . . . , yn)> is the n-dimensional vector of responses, β is the p-dimensional
vector of fixed effects and u is the q-dimensional vector of random effects. The matrices X
and Z are the (n× p) and (n× q) design matrices for fixed and random effects, respectively,
and σ2 refers to the variance of the error terms.
The unconditional distribution of the random effects u is assumed to be a multivariate Gaus-
sian with mean 0 and positive semidefinite (q × q) covariance matrix Dθ, i.e.,

u ∼ N (0,Dθ) .

The symmetric covariance matrix Dθ depends on the covariance parameters θ and may be
decomposed as

Dθ = σ2ΛθΛ>θ , (2)

with the lower triangular covariance factor Λθ and the variance parameter σ2 of the condi-
tional response distribution. In analogy to generalized linear models, the generalized linear
mixed model extends the distributional assumption in (1) to a distribution F from the expo-
nential family,

y|u ∼ F(µ, φ),

where φ is a scale parameter and the mean has the form

µ = E(y|u) = h (Xβ +Zu) , (3)

with h being the response function applied componentwise and natural parameter η =
h−1 (µ). As the hereinafter presented results are limited to the Poisson and binomial dis-
tributions we can assume φ = 1. The symmetric covariance matrix in (2) then is the same as
for Gaussian responses except that σ2 is omitted, i.e., Dθ = ΛθΛ>θ .
The given conditional formulations of (generalized) linear mixed models imply marginal mod-
els, which can (conceptually) be obtained by integrating the random effects out of the joint
distribution of y and u, i.e.,

f(y) =
∫
f(y | u)f(u)du.

However, there is typically no closed form solution for this integral. While the marginal model
formulation is usually used for estimation, an analytic representation of f(y) is only available
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for the linear mixed model (1). The marginal distribution f(y) for Gaussian responses y is
given by

y ∼ N
(
Xβ, σ2

(
In +ZΛθΛ>θ Z>

))
.

Further extensions of linear mixed models can be obtained by, for example, relaxing the
assumption Cov(y|u) = σ2In.

2.1. Example I: Random intercepts and random slopes
Some special cases of mixed models are commonly used in applications, including the random
intercept model and the random slope model. In the random intercept model, the responses
differ in an individual- or cluster-specific intercept for m individuals or clusters. In this case
the individual-specific intercept is modeled as random effect u = (u1,1, u1,2, . . . , u1,m), yielding
the (generalized) linear mixed model

E(yij |u1,i) = h(xijβ + u1,i), u1,i
iid∼ N (0, τ2

1 )

for the jth observation from an individual or cluster i.
Whereas for the random intercept model all covariates modeled with fixed effects are assumed
to have the same influence on the response variable across individuals, the random slope model
is suitable when an independent variable xs is assumed to have an individual-specific effect
on the dependent variable. The random intercept model is extended to

E(yij |ui) = h(xijβ + u1,i + xs,iju2,i),

where u2,i is the individual-specific slope, which can be regarded as the deviation from the
population slope βs corresponding to the sth covariate xs,ij in xij . In most cases, there is no
reason to suppose u1,i and u2,i to be uncorrelated and the distributional assumption thus is(

u1,i
u2,i

)
∼ N

((
0
0

)
,

(
τ2

1 τ12
τ21 τ2

2

))
. (4)

2.2. Example II: Penalized spline smoothing
In addition to many possibilities to extend these simple random effect models, (generalized)
linear mixed models can also be utilized to fit semi-parametric regression models (see, e.g.,
Ruppert, Wand, and Carroll 2003). For univariate smoothing, consider the model

E(yi) = f(xi), (5)

for i = 1, . . . , n, where f(·) is a deterministic function of the covariate xi, which shall be
approximated using splines. For illustrative purposes, we consider the truncated polynomial
basis representation

f(x) =
g∑
j=0

βjx
j +

k∑
j=1

uj(x− κj)g+, (6)

in the following, where κ1 < . . . < κk are k ∈ N knots, partitioning the domain of x, g ∈ N
and

(z)g+ = zg · I(z > 0) =
{
zg if z > 0
0 if z ≤ 0

. (7)
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As the truncated part uj(x−κj)g+ is non-zero for x > κj , uj can be seen as a gradient change
of the two consecutive function segments defined on (κj−1, κj ] and (κj , κj+1]. In order to
estimate βj , j = 0, . . . , g and uj , j = 1, . . . , k, the method of ordinary least squares (OLS)
could in principle be applied. In most cases, however, this yields a rather rough estimate
of f for suitably large k as the gradient changes of function segments have a large impact.
Therefore estimation methods for linear mixed models can be utilized in order to obtain a
smooth function. Representing the untruncated polynomial part in (6) as the fixed effects
and

∑k
j=1 uj(x − κj)

g
+ as the random effects part, the well known shrinkage effect of mixed

models is transferred to the estimation of the ujs, shrinking the changes in the gradient of
the fitted polynomials. The random effects assumption corresponds to a quadratic penalty
on the ujs, with the smoothing parameter estimated from the data.
This approach also works analogously for various other basis functions including the frequently
used B-spline basis and generalized linear models (see, e.g., Fahrmeir, Kneib, Lang, and Marx
2021). Moreover, a rich variety of models that can be represented as reduced rank basis
smoothers with quadratic penalties allow for this kind of representation. The estimation via
lme4 can be employed by the use of gamm4. For an overview of possible model components
see Wood (2017). An example is also given in Section 5.

3. The conditional AIC

3.1. The Akaike information criterion

Originally proposed by Hirotogu Akaike (Akaike 1973) the AIC was one of the first model
selection approaches to attract special attention among users of statistics. In some way, the
AIC extends the maximum likelihood paradigm by making available a framework, in which
both parameter estimation and model selection can be accomplished. The principle idea of the
AIC can be traced back to the Kullback-Leibler distance (KLD; Kullback and Leibler 1951),
which can be used to measure the distance between a true (but normally unknown) density
g(y) and a parametric model f(y | ν). The unknown parameters ν are commonly estimated
by their maximum likelihood estimator ν̂(y). As minimizing the expected Kullback-Leibler
distance is equivalent to minimizing the so called Akaike information

AI = −2Eg(y)Eg(ỹ) log f(ỹ | ν̂(y)), (8)

with ỹ a set of independent new observations from g, minus twice the maximized log-likelihood
log f(y | ν̂(y)) as a natural measure of goodness-of-fit is an obvious estimator of the AI.
However, this approach induces a bias as the maximized log-likelihood only depends on y
whereas (8) is defined as a predictive measure of two independent replications ỹ and y from
the same underlying distribution. Therefore the bias correction is defined by

BC = 2
(
Eg(y) log f(y | ν̂(y))− Eg(y)Eg(ỹ) log f(ỹ | ν̂(y))

)
. (9)

Akaike derived the bias correction, which under certain regularity conditions can be estimated
asymptotically by two times the dimension of ν. This yields the well-known AI estimator

AIC(y) = −2 log f(y | ν̂(y)) + 2 dim(ν).
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Hence, as the statistical model f(·|ν) with the smallest AI aims at finding the model which
is closest to the true model, the AIC can be seen as a relative measure of goodness-of-fit for
different models of one model class. Notice that the bias correction is equivalent to twice the
(effective) degrees of freedom and the covariance penalty, see Efron (2004).

3.2. The marginal and the conditional perspective on the AIC
Adopting this principle for the class of mixed models to select amongst different random effects
is not straightforward. First of all, the question arises on the basis of which likelihood to define
this AIC. For the class of mixed models, two common criteria exist, namely the marginal AIC
(mAIC) based on the marginal log-likelihood and the conditional AIC (cAIC) based on the
conditional log-likelihood. The justification of both approaches therefore corresponds to the
purpose of the marginal and the conditional mixed model perspective, respectively. Depending
on the question of interest, the intention of both perspectives differs, as for example described
in Vaida and Blanchard (2005) or Greven and Kneib (2010).
The marginal perspective of mixed models is suitable when the main interest is to model fixed
population effects with a reasonable correlation structure. The conditional perspective, by
contrast, can be used to make statements based on the fit of the predicted random effects.
In longitudinal studies, for example, the latter point of view seems to be more appropriate
if the focus is on subject- or cluster-specific random effects. Another crucial difference in
both approaches lies in the model’s use for prediction. On the one hand, the marginal model
seems to be more plausible if the outcome for new observations comes from new individuals
or clusters, i.e., observations having new random effects. The conditional model on the other
hand is recommended if predictions are based on the same individuals or clusters, thereby
predicting on the basis of already modeled random effects.
The corresponding AI criteria have closely related intentions. The conditional AIC estimates
the optimism of the estimated log-likelihood for a new data set ỹ by leaving the random
effects unchanged. This can be understood as a predictive measure based on a new data set
originating from the same clusters or individuals as y. On the contrary, the marginal ap-
proach evaluates the log-likelihood using a new predictive data set ỹ, which is not necessarily
associated with the cluster(s) or individual(s) of y.
In particular for the use of mixed models in penalized spline smoothing, the cAIC usually
represents a more plausible choice. As demonstrated in Example II of Section 2, the repre-
sentation of penalized spline smoothing via mixed models divides certain parts of the spline
basis into fixed and random effects. Using the marginal perspective in Example II, predic-
tions would therefore be based only on the polynomial coefficients of f . If the fitted nonlinear
function is believed to represent a general relationship of x and y, predictions as well as
the predictive measure in terms of the Akaike information, however, make more sense if the
truncated parts of the basis are also taken into account.
Vaida and Blanchard (2005) propose the cAIC, an estimator of the conditional Akaike infor-
mation

cAI = −2Eg(y,u)Eg(ỹ|u) log f(ỹ | ν̂(y), û(y)) (10)
as an alternative to the mAIC, where ν includes the fixed effects and covariance parameters
θ. The cAIC may be more appropriate when the AIC is used for the selection of random
effects. In addition, Greven and Kneib (2010) investigate the difference of both criteria
from a mathematical point of view. Since the mAIC is intended for the use in settings
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where the observations are independent and the parameter space V can be transformed to
Rdim(ν), the corresponding bias correction 2 dim(ν) is biased for mixed models for which these
conditions do not apply. In particular, Greven and Kneib (2010) show that the mAIC leads
to a preference for the selection of smaller models without random effects.

3.3. Conditional AIC for Gaussian responses

Depending on the distribution of y, different bias corrections of the maximized conditional
log-likelihood exist to obtain the cAIC. For the Gaussian case, Liang et al. (2008) derive a
corrected version of the initially proposed cAIC by Vaida and Blanchard (2005) for known
error variance, taking into account the estimation of the covariance parameters θ:

cAIC(y) = −2 log f(y | ν̂(y), û(y)) + 2 tr
(
∂ŷ

∂y

)
. (11)

Evaluating the bias correction BC = 2 tr(∂ŷ∂y ) in expression (11) via numerical approxima-
tion, or a similar formula for unknown error variance, is however computationally expensive.
Greven and Kneib (2010) develop an analytic version of the corrected cAIC making the cal-
culation of the corrected cAIC feasible. We adapt their efficient implementation originally
written for ‘lme’-objects (returned by the nlme package; Pinheiro, Bates, DebRoy, Sarkar,
and R Core Team 2021) and reimplement their algorithm for ‘lmerMod’-objects (returned by
lme4). A more detailed description on the calculation of several terms in the proposed for-
mula of Greven and Kneib (2010) is given in Appendix B. Furthermore, a partition of the
parameter space is needed in order to account for potential parameters on the boundary of
the parameter space, as presented in Theorem 3 in Greven and Kneib (2010). This process
can be very unwieldy. Therefore, a fully automated correction algorithm is implemented in
cAIC4 and presented in Appendix A.

3.4. Conditional AIC for Poisson responses

As for the Gaussian case, note that for the Poisson and the binomial distribution the bias
correction (9) can be rewritten as twice the sum of the covariances between η̂i and yi,

BC = 2
n∑
i=1

E (η̂i (yi − µi)) , (12)

with true but unobserved mean µi = E(yi) and the estimator of the natural parameter
η̂ = (η̂1, . . . , η̂n)> depending on y. For the Poisson distribution an analytic reformulation of
the bias correction term (12) has to be utilized to make it analytically accessible as in Säfken
et al. (2014). Using results from Hudson (1978) and an identity due to Chen (1975), the bias
correction (12) for Poisson distributed responses can be reformulated to

BC = 2
n∑
i=1

E (yi (log µ̂i(y)− log µ̂i(y−i, yi − 1))) , (13)

for observations i = 1, . . . , n and mean estimator µ̂i. The ith component of y in (y−i, yi − 1)
is substituted by yi − 1 along with the convention yi log µ̂i(y−i, yi − 1) = 0 if yi = 0. The
computational implementation of the cAIC in this case requires n − d model fits, where
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d corresponds to the number of Poisson responses being equal to zero (see Section 4.2 for
details). The resulting cAIC was first derived by Lian (2012).

3.5. Conditional AIC for Bernoulli responses
For binary responses there is no analytical representation for the bias correction (12), see
Säfken et al. (2014). Nevertheless a bootstrap estimate for the bias correction can be based
on Efron (2004). The bias correction is equal to the sum over the covariances of the estimators
of the natural parameter η̂i and the data yi. To estimate this quantity, we could in principle
draw a parametric bootstrap sample zi of size B for the ith data point – keeping all other
observations fixed at their observed values – to estimate the ith component E (η̂i (yi − µi)) of
the bias correction (12) for binary responses by

1
B − 1

B∑
j=1

η̂i(zij) (zij − zi·) = B1
B − 1 η̂i(1) (1− zi·) + B0

B − 1 η̂i(0) (−zi·) ,

where B0 is the number of zeros in the bootstrap sample, B1 is the number of ones in the
bootstrap sample, η̂i(1) = log

(
µ̂i(1)

1−µ̂i(1)

)
is the estimated logit (the natural parameter) with

zij = 1, η̂i(0) = log
(

µ̂i(0)
1−µ̂i(0)

)
is the estimated logit with zij = 0 and zi· is the mean of the

bootstrap sample zi. Letting the number of bootstrap samples tend to infinity, i.e., B →∞,
the mean of the bootstrap sample zi· = 1

B

∑B
j=1 zij = B1/B (as well as B1/(B−1) ) converges

to the estimate from the data, which corresponds to the true mean in the bootstrap µ̂i, and
therefore

B1
B − 1 η̂i(1) (1− zi·)−

B0
B − 1 η̂i(0) (zi·)→ µ̂iη̂i(1) (1− µ̂i)− (1− µ̂i) η̂i(0) (µ̂i)

= µ̂i (1− µ̂i) (η̂i(1)− η̂i(0)) for B →∞.

Since the bootstrap estimates are optimal if the number of bootstrap samples B tends to
infinity, this estimator can be seen as the optimal bootstrap estimator. The resulting estimator
of the bias correction

B̂C = 2
n∑
i=1

µ̂i (1− µ̂i) (η̂i(1)− η̂i(0)) , (14)

which we use in the following, avoids a full bootstrap but requires n model refits.
Notice that for generalized mixed models especially for binary data, and Poisson data with
small counts, the Laplace approximation that is used in lme4 for models with more than one
grouping variable is not always optimal, see Ogden (2017). However the estimator µ̂i (·) used
for Poisson and Bernoulli responses does not need to fulfill any specific conditions in order
for the cAIC to be applicable. Thus the conclusions based on the cAIC are trustworthy even
if the parameter estimates are biased in the sense that the model with the proposed minimal
conditional Akaike information is chosen.

4. Introduction to cAIC4

4.1. Example for linear mixed models
An example that is often used in connection with the R package lme4 is the sleepstudy data.
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Thus we use this data set to give a brief introduction on the technical usage of the R package
cAIC4. The data set is from a study on the daytime performance changes of the reaction time
during chronic sleep restriction, see Belenky, Wesensten, Thorne, Thomas, Sing, Redmond,
Russo, and Balkin (2003). Eighteen volunteers were only allowed to spend three hours of
their daily time in bed for one week. The speed (mean and fastest 10% of responses) and
lapses (reaction times greater than 500 ms) on a psychomotor vigilance task where measured
several times. The averages of the reaction times are saved as response variable Reaction in
the data set. Each volunteer has an identifier Subject. Additionally the number of days of
sleep restriction at each measurement is listed in the covariate Days.
The conditional AIC can be used to find the model that best predicts future observations,
assuming that future observations share the same random effects as the ones used for the
model fitting. In case of this data set, using the cAIC for model choice corresponds to finding
the model that best predicts future reaction times of the volunteers that took part in the
study.
A first model that could be applied is a model with a random intercept and a random slope
for Days within each volunteer (Subject):

yij = β0 + β1 · dayij + ui1 + ui2 · dayij + εij (15)

for i = 1, . . . , 18 and j = 1, . . . 10, with(
ui1
ui2

)
∼ N

((
0
0

)
,

(
τ2

1 τ12
τ12 τ2

2

))

and εij ∼ N
(
0, σ2). In the preceding notation τ2

1 /σ
2 = θ1, τ2

2 /σ
2 = θ2 and τ12/σ

2 = θ3.
That τ12 is not necessarily zero indicates, that the random intercept and the random slope
are allowed to be correlated.

R> (m1 <- lmer(Reaction ~ 1 + Days + (1 + Days|Subject), sleepstudy))

Linear mixed model fit by REML ['lmerMod']
Formula: Reaction ~ 1 + Days + (1 + Days | Subject)

Data: sleepstudy
REML criterion at convergence: 1743.628
Random effects:
Groups Name Std.Dev. Corr
Subject (Intercept) 24.740

Days 5.922 0.07
Residual 25.592

Number of obs: 180, groups: Subject, 18
Fixed Effects:
(Intercept) Days

251.41 10.47

Calling the cAIC function from the cAIC4 package returns a ‘cAIC’ object:

R> cAIC(m1)
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Conditional log-likelihood: -824.51
Degrees of freedom: 31.30

Conditional Akaike information criterion: 1711.62

The conditional log-likelihood and the corrected degrees of freedom, i.e., one half the bias
correction, are printed together with the conditional AIC as proposed in Greven and Kneib
(2010). The ‘cAIC’ object is a list additionally containing an element called reducedModel
that is the model without the random effects covariance parameters that were estimated to
lie on the boundary of the parameter space, see Appendix A and Greven and Kneib (2010),
and NULL if there were none on the boundary.
There are several further possible models for these data. One possibility might be to reduce
the complexity in the model by omitting the correlation between the random intercept ui1
and the random slope ui2 for each Subject. Since this correlation is needed in order to
preserve translational invariance (see Bates et al. 2015) such a comparison can be ill-advised.
Otherwise the complexity of the model could be reduced by excluding the random slope from
the model. This results in a simple random intercept model:

yij = β0 + β1 · dayij + ui + εij (16)

for i = 1, . . . , 18 and j = 1, . . . 10, with

ui ∼ N
(
0, τ2

)
.

In this model the pace of increasing reaction time does not systematically vary between the
volunteers. This model is estimated by

R> (m2 <- lmer(Reaction ~ 1 + Days + (1 | Subject), sleepstudy))

Linear mixed model fit by REML ['lmerMod']
Formula: Reaction ~ 1 + Days + (1 | Subject)

Data: sleepstudy
REML criterion at convergence: 1786.465
Random effects:
Groups Name Std.Dev.
Subject (Intercept) 37.12
Residual 30.99

Number of obs: 180, groups: Subject, 18
Fixed Effects:
(Intercept) Days

251.41 10.47

The cAIC4 package offers an anocAIC() function along the lines of the anova() generic which
allows to compare several ‘lmer’ or ‘glmer’ objects via the cAIC:

R> anocAIC(m1, m2)

cll df cAIC Refit
Reaction ~ 1 + Days + (1 + Days | Subject) -824.51 31.30 1711.62 FALSE
Reaction ~ 1 + Days + (1 | Subject) -864.53 19.03 1767.12 FALSE
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Variable Description
INDEX Identifier of the chick
TICKS Number of ticks sampled
BROOD Brood number
HEIGHT Height above sea level in meters
YEAR Year as 95, 96 or 97
LOCATION Geographic location code

Table 1: The variables and response of the grouseticks data set.

Thus the decrease in the conditional likelihood is much larger than the reduction of the degrees
of freedom by omitting the random slopes. The strong evidence of subject-specific (random)
slopes found in Bates et al. (2015) is also reflected by the cAIC.
The conditional AIC is also appropriate for choosing between a simple null model without
any random effects and a complex model incorporating random effects, as has been noticed by
Greven and Kneib (2010). Thus it is possible to compare the cAIC of the two previous mixed
models with the standard AIC for a linear model, here including three parameters (intercept,
linear effect for Days and error variance). This can be called via a cAIC() wrapper function

R> cAIC(lm(Reaction ~ 1 + Days, sleepstudy))

Conditional log-likelihood: -950.15
Degrees of freedom: 3.00

Conditional Akaike information criterion: 1906.29

In this case, however, the mixed model structure is evident, reflected by the large AIC for the
linear model.

4.2. Example for generalized linear mixed models
The cAIC4 package additionally offers a conditional AIC for conditionally Poisson distributed
responses and an approximate conditional AIC for binary data. The Poisson cAIC uses the
bias correction (13) and the bias correction term for the binary data is (14).
Making use of the fast refit() function of the lme4 package, both cAICs can be computed
moderately fast, since n − d and n model refits are required, respectively, with n being the
number of observations and d the number of responses that are zero for the Poisson responses.
In the following, the cAIC for Poisson response is computed for the grouseticks data set
from the lme4 package as an illustration.
The grouseticks data set was originally published in Elston, Moss, Boulinier, Arrowsmith,
and Lambin (2001). It contains information about the aggregation of parasites, so-called
sheep ticks, on red grouse chicks. The variables in the data set are given in Table 1. Every
chick, identified by INDEX, is of a certain BROOD and every BROOD, in turn, corresponds to a
specific YEAR.
The number of ticks is the response variable. Following the authors in a first model the
expected number of ticks λj with INDEX (j) is modeled depending on the year and the height
as fixed effects and for each of the grouping variables BROOD (i), INDEX (j) and LOCATION (k)
a random intercept is incorporated.
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The full model is

log (E (TICKSj)) = log (λj) = β0 + β1 · YEARj + β2 · HEIGHTj + u1,i + u2,j + u3,k (17)

with three independent univariate random variables

u1,i ∼ N
(
0, τ2

1

)
, u2,j ∼ N

(
0, τ2

2

)
, u3,k ∼ N

(
0, τ2

3

)
.

Notice that in this model the INDEX is an observation-level random effect that addresses over-
dispersion in the conditional Poisson distribution given the random effects. Before fitting the
model the covariates HEIGHT and YEAR are centered for numerical reasons and stored in the
data set grouseticks_cen.

R> f1 <- TICKS ~ YEAR + HEIGHT + (1 | BROOD) + (1 | INDEX) + (1 | LOCATION)
R> p1 <- glmer(f1, family = "poisson", data = grouseticks_cen)

A summary of the estimated model is given below. Notice that the reported AIC in the
automated summary of lme4 is not appropriate for conditional model selection.

Generalized linear mixed model fit by maximum likelihood
(Laplace Approximation) ['glmerMod']
Family: poisson ( log )

Formula: TICKS ~ YEAR + HEIGHT + (1 | BROOD) + (1 | INDEX) + (1 | LOCATION)
Data: grouseticks_cen

AIC BIC logLik deviance df.resid
1845.5 1869.5 -916.7 1833.5 397

Scaled residuals:
Min 1Q Median 3Q Max

-1.6507 -0.5609 -0.1348 0.2895 1.8518

Random effects:
Groups Name Variance Std.Dev.
INDEX (Intercept) 2.979e-01 5.458e-01
BROOD (Intercept) 1.466e+00 1.211e+00
LOCATION (Intercept) 5.411e-10 2.326e-05

Number of obs: 403, groups: INDEX, 403; BROOD, 118; LOCATION, 63

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.472353 0.134712 3.506 0.000454 ***
YEAR -0.480261 0.166128 -2.891 0.003841 **
HEIGHT -0.025715 0.003772 -6.817 9.32e-12 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 .

Correlation of Fixed Effects:
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(Intr) YEAR
YEAR 0.089
HEIGHT 0.096 0.061

The conditional log-likelihood and the degrees of freedom for the conditional AIC with con-
ditionally Poisson distributed responses as in (13) for model (17) are obtained by the call of
the cAIC function:

R> cAIC(p1)

The original model was refitted due to zero variance components.
Refitted model: TICKS ~ YEAR + HEIGHT + (1 | INDEX) + (1 | BROOD)

Conditional log-likelihood: -572.01
Degrees of freedom: 205.59

Conditional Akaike information criterion: 1555.22

The output is the same as for Gaussian linear mixed models. It becomes apparent that there
is a substantial difference between the conditional and the marginal AIC: In the output of
the model the marginal AIC is reported to be 1845.5. Note that the marginal AIC is biased,
see Greven and Kneib (2010), and based on a different likelihood.
The cAIC function calls the deleteZeroComponents function that reduces the model by
random effects components that are estimated to have variances on the boundary of the
parameter space, see Appendix A for the technical details and Greven and Kneib (2010) for
the methodological background. In this example this is the case for the random intercepts of
the LOCATION grouping variable. Thus the resulting cAIC is the same (modulo rounding) as
if the random intercept associated with LOCATION is excluded from the model:

R> f2 <- TICKS ~ YEAR + HEIGHT + (1 | BROOD) + (1 | INDEX)
R> p2 <- glmer(f2, family = "poisson", data = grouseticks_cen)
R> cAIC(p2)

Conditional log-likelihood: -572.01
Degrees of freedom: 205.59

Conditional Akaike information: 1555.21

Another possible model for the comparison omits random intercepts associated with the BROOD
grouping. This is equivalent to setting the associated random intercepts variance to zero, i.e.,
τ2

2 = 0.

R> f3 <- TICKS ~ YEAR + HEIGHT + (1 | INDEX) + (1 | LOCATION)
R> p3 <- glmer(f3, family = "poisson", data = grouseticks_cen)
R> cAIC(p3)$caic

[1] 1594.424
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Following the models in Elston et al. (2001) also the selection of the fixed effects parameters
is of interest. Starting with model p2 four different combinations of the fixed effects variables
YEAR and HEIGHT are possible. The models can be conveniently compared by the call of the
anocAIC() function:

R> f4 <- TICKS ~ YEAR + (1 | BROOD) + (1 | INDEX)
R> p4 <- glmer(f4, family = "poisson", data = grouseticks_cen)
R> f5 <- TICKS ~ HEIGHT + (1 | BROOD) + (1 | INDEX)
R> p5 <- glmer(f5, family = "poisson", data = grouseticks_cen)
R> f6 <- TICKS ~ (1 | BROOD) + (1 | INDEX)
R> p6 <- glmer(f6, family = "poisson", data = grouseticks_cen)
R> anocAIC(p2, p4, p5, p6)

cll df cAIC Refit
TICKS ~ YEAR + HEIGHT + (1 | BROOD) + (1 | INDEX) -572.01 205.59 1555.22 FALSE
TICKS ~ YEAR + (1 | BROOD) + (1 | INDEX) -570.13 208.06 1556.39 FALSE
TICKS ~ HEIGHT + (1 | BROOD) + (1 | INDEX) -571.63 206.46 1556.17 FALSE
TICKS ~ (1 | BROOD) + (1 | INDEX) -569.97 208.37 1556.68 FALSE

In this case the cAIC chooses the full model p2.

5. A scheme for stepwise conditional variable selection
Now having the possibility to compare different (generalized) linear mixed models via the
conditional AIC, we introduce a model selection procedure in this section, searching the
space of possible model candidates in a stepwise manner. Inspired by commonly used step
functions as for example given by the stepAIC function in the MASS package (Venables and
Ripley 2002), our stepcAIC function provides an automatic model selection applicable to
some models of the class ‘merMod’ (produced by [g]lmer) or objects resulting from a gamm4
call. A general strategy could be to automatically select the random effect structure in a
forward fashion first and afterwards select the fixed effects structure for given random effects
using the stepwise cAIC (or other common selection criteria for fixed effects). Alternative
methods to also select both the fixed and random effect structure are available, e.g., by the
function step in the package lmerTest. Our method has the advantage to be solely based
on a predictive measure, the cAIC, and models are compared based on a simple comparison
of this value. This circumvents problems associated with post-selection inference, where
tests are conducted under the assumption of a null distribution that does not hold when the
corresponding null hypothesis is the result of a preceding model selection. Although based on
a predictive measure, we want to emphasize that our intention behind the stepcAIC function
is not to provide a black-box algorithm for model selection, but rather to provide a convenience
function for users who would otherwise manually select the best random effect structure in
the same fashion. In addition, the function facilitates the comparison of different additive
models when applied to a gamm4 call, allowing the user to assess which nonlinearities are
necessary for a given data set and which would instead overfit the data. The step procedure
can therefore be used to successively extend or reduce the model in order to check whether a
fixed covariate has a constant, linear or nonlinear effect.
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Whereas the backward procedure has a straightforward mechanism and does not need any
further mandatory arguments, the stepcAIC function provides several optional and obligatory
arguments for the forward and both procedure in order to limit the possibly large number
of model extensions. Regarding the required parameters, the user must specify the variables,
which may be added with fixed or random effects as they are referred to in the ‘data.frame’
given by the argument data. For the fixed effects, this is done by specifying the fixEf
argument, which expects a character vector with the names of the covariates, e.g., fixEf =
c("x1", "x2"). Variables listed in the fixEf argument are firstly included in the model
as linear terms and, if the linear effect leads to an improvement of the cAIC, checked for
their nonlinearity by evaluating the cAIC of the corresponding model(s). Model extensions
resulting from additional random effects are created in two different ways. A new model
may, on the one hand, include a random intercept for a variable forming a grouping structure
or, on the other hand, a random slope for a variable. These two types are specified using
the arguments groupCandidates for grouping variable candidates or slopeCandidates for
candidates for variables with random slope, again by referring to the variable names in data
using strings.
Further optional arguments determine the way random effects are treated in the step proce-
dure:

– allowUseAcross: logical value whether slope variables, which are already in use with
a grouping variable can also be used with other grouping variables;

– maxSlopes: maximum number of slopes for one grouping variable.

Following the stepAIC function, the stepcAIC function also provides an argument for print-
ing interim results (trace) and allows for the remaining terms of the initial model to be
unaffected by the procedure (keep: list with entries fixed and random, each either NULL or
a formula). In addition, the user may choose whether the cAIC is calculated for models,
for which the fitting procedure in (g)lmer could not find an optimum (calcNonOptimMod
with default FALSE) and might choose the type of smoothing terms added in forward steps
(bsType).
If the step function is used for large data sets or in the presence of highly complex models the
fitting procedures as well as the calculations of the cAIC can be parallelized by defining the
number of cores (numCores) being used if more than one model has to be fitted and evaluated
in any step (by passing the numCores argument to a mclapply function implemented in the
base package parallel).
Due to the variety of additive model definitions in gamm4, the stepcAIC function is however
limited in its generic step functionality for GAMMs. On the one hand, extensions with
nonlinear effects are restricted to one smooth class given by bsType, on the other hand, the
step-procedure is not able to deal with further arguments passed in smooth terms. The latter
point is a current limitation, since the default basis dimension of the smooth term (i.e., the
number of knots and the order of the penalty) is essentially arbitrary.
An additional current limitation of the stepcAIC function in its applications with GAMMs is
the handling of zero variance components occurring during the function call. As a meaningful
handling of zero variance smoothing terms would depend on the exact specification of the
nonlinear term, the stepwise procedure is stopped and returns the result of the previous step.
After removing the term associated with the zero variance manually, e.g., by specifying a
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linear instead of a nonlinear effect for the corresponding covariate, the user may call the step
function again.

5.1. Examples for stepwise conditional variable selection

In order to demonstrate some functionalities of the stepcAIC function, we use a data set on
childhood malnutrition in Zambia, which has also been analyzed by Kandala, Lang, Klasen,
and Fahrmeir (2000) and also by Greven and Kneib (2010) to demonstrate the applicability
of the cAIC for model selection in additive models. The subset of the original data set, which
is used here for illustrative purposes, is available in our R package and can be loaded into
the environment via data("Zambia", package = "cAIC4). The dependent variable is the
Z-score, a standardized measure for the height of a child, which is an indicator for chronic
undernutrition or stunting in children. We estimate a linear mixed model using four covariates,
the duration of breastfeeding (c.bf) in months, the age (c.age) of the child in months, the
height (m.ht) as well as the body mass index (m.bmi) of the mother, included in the model
as fixed effects, and account for spatial heterogeneity by including a random intercept for the
region (reg) and the district in the region (dr) the child lives in.
Starting with the following random effects model, we additionally check whether the two
continuous covariates m.ht and m.bmi also should be used as a random slope for either of the
random intercepts.

R> data("Zambia", package = "cAIC4")
R> initmixmod <- lmer(z ~ c.age + c.bf + m.ht + m.bmi + (1 | reg) + (1 | dr),
+ data = Zambia)

We therefore employ the stepcAIC function using direction = "both" and supplying the
two possible candidates in slopeCandidates.

R> mod <- stepcAIC(initmixmod, direction = "both",
+ slopeCandidates = c("m.ht", "m.bmi"), data = Zambia, trace = TRUE)

Starting stepwise procedure...
_____________________________________________
_____________________________________________

Step 1 (forward): cAIC=1827.891
Best model so far:
~ c.age + c.bf + m.ht + m.bmi + (1 | dr) + (1 | reg)
New Candidates:

Calculating cAIC for 4 model(s) ...

models caic
~c.age + c.bf + m.ht + m.bmi + (1 + m.ht | dr) + (1 | reg) 1836
~c.age + c.bf + m.ht + m.bmi + (1 | dr) + (1 + m.ht | reg) 1832

~c.age + c.bf + m.ht + m.bmi + (1 | dr) + (1 + m.bmi | reg) 1832
~c.age + c.bf + m.ht + m.bmi + (1 + m.bmi | dr) + (1 | reg) 1832



Journal of Statistical Software 17

_____________________________________________
_____________________________________________

Step 2 (backward): cAIC=1827.891
Best model so far:
~ c.age + c.bf + m.ht + m.bmi + (1 | dr) + (1 | reg)
New Candidates:

Calculating cAIC for 2 model(s) ...

models caic
~c.age + c.bf + m.ht + m.bmi + (1 | reg) 1831
~c.age + c.bf + m.ht + m.bmi + (1 | dr) 1827

_____________________________________________
_____________________________________________

Step 3 (forward): cAIC=1827.239
Best model so far:
~ c.age + c.bf + m.ht + m.bmi + (1 | dr)
New Candidates:

Calculating cAIC for 2 model(s) ...

models caic
~c.age + c.bf + m.ht + m.bmi + (1 + m.ht | dr) 1836

~c.age + c.bf + m.ht + m.bmi + (1 + m.bmi | dr) 1830

_____________________________________________
_____________________________________________

Step 4 (backward): cAIC=1827.239
Best model so far:
~ c.age + c.bf + m.ht + m.bmi + (1 | dr)
New Candidates:

Calculating cAIC for 1 model(s) ...

models caic
~c.age + c.bf + m.ht + m.bmi 1837

_____________________________________________
_____________________________________________

Best model:
~ c.age + c.bf + m.ht + m.bmi + (1 | dr) ,
cAIC: 1827.239

_____________________________________________
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The step function starts with automatically calculating the four possible models, which result
from extending either one of the intercepts by one of the two slope variables. Per default
the scope of possible models is also restricted to random effect structures, which assume a
non-zero correlation between each random effect.
In a first step, the model cannot be improved by extending the model. The next step is a
backward step in which the random intercept for region is dropped. The resulting model is
not altered until the final step 4 and chosen as final model.
To illustrate the use of the stepcAIC function in the context of GAMM selection, we now
investigate if all fixed effects should be kept in the model given by the previous stepcAIC
call and/or whether any of the covariates may yield an improvement in cAIC if included as
nonlinear effect. We therefore fit an initial gamm4 model as follows.

R> bestmixmod <- gamm4(z ~ c.age + c.bf + m.ht + m.bmi, random = ~ (1 | dr),
+ data = Zambia)

In order to allow linear effects to be dropped and/or nonlinear effects to be added to the model,
we again employ the stepcAIC function using direction = "both" and supply the names of
the four covariates, which should be considered as nonlinear effects in fixEfCandidates.

R> admod <- stepcAIC(bestmixmod, direction = "both",
+ fixEfCandidates = c("c.bf", "c.age", "m.ht", "m.bmi"), data = Zambia,
+ trace = TRUE)

Starting stepwise procedure...
_____________________________________________
_____________________________________________

Step 1 (forward): cAIC=1827.239
Best model so far:
~ c.age + c.bf + m.ht + m.bmi + (1 | dr)
New Candidates:

Calculating cAIC for 4 model(s) ...
models caic

~c.age + c.bf + m.bmi + s(m.ht, bs = "tp") + (1 | dr) 1829
~c.age + c.bf + m.ht + s(m.bmi, bs = "tp") + (1 | dr) 1828
~c.age + m.ht + m.bmi + s(c.bf, bs = "tp") + (1 | dr) 1793
~c.bf + m.ht + m.bmi + s(c.age, bs = "tp") + (1 | dr) 1774

_____________________________________________
_____________________________________________

Step 2 (backward): cAIC=1774.126
Best model so far:
~ s(c.age,bs="tp") + c.bf + m.ht + m.bmi + (1 | dr)
New Candidates:

Calculating cAIC for 5 model(s) ...
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models caic
~c.age + c.bf + m.ht + m.bmi + (1 | dr) 1827

~c.bf + m.bmi + s(c.age, bs = "tp") + (1 | dr) 1799
~s(c.age, bs = "tp") + c.bf + m.ht + m.bmi 1789

~c.bf + m.ht + s(c.age, bs = "tp") + (1 | dr) 1781
~m.ht + m.bmi + s(c.age, bs = "tp") + (1 | dr) 1780

_____________________________________________
_____________________________________________

Step 3 (forward): cAIC=1774.126
Best model so far:
~ s(c.age,bs="tp") + c.bf + m.ht + m.bmi + (1 | dr)
New Candidates:

Calculating cAIC for 3 model(s) ...
models caic

~s(c.age, bs = "tp") + c.bf + m.ht + s(m.bmi, bs = "tp") + (1 | dr) 1776
~s(c.age, bs = "tp") + c.bf + m.bmi + s(m.ht, bs = "tp") + (1 | dr) 1775
~s(c.age, bs = "tp") + m.ht + m.bmi + s(c.bf, bs = "tp") + (1 | dr) 1775

_____________________________________________
_____________________________________________

Best model:
~ s(c.age,bs="tp") + c.bf + m.ht + m.bmi + (1 | dr) ,
cAIC: 1774.126

_____________________________________________

In the first step, c.age is changed to have a nonlinear effect using a thin-plate regression spline.
The type of spline in forward steps can be specified using the bsType argument. In a second
(backward) step, the function checks whether any of the model components should be dropped
from the model. As all possibilities would result in models with larger cAIC values, the current
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Figure 1: Plot of added smoothing spline effect.
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model is checked for other nonlinearities in a third (forward) step. As all options result in a
larger cAIC value the final model, within the specified scope of the step function, is given by
the formula ~ s(age, bs = "tp") + c.bf + m.ht + m.bmi + (1 | dr). The estimated
nonlinear effect of the final model can be visualized by plot(admod$finalModel$gam), i.e.,
by calling the plot function on the gam part of the final model. The result is given in Figure 1,
indicating that the age of very young children under 17 months is associated with a positive
Z-score, hence a “positive” value in terms of health, which however decreases continuously for
increasing age. After 2 to 2.5 years the effect of age on the Z-score is estimated to be almost
constant and having a negative association with the Z-score. A similar effect of the children’s
age was also found by Greven and Kneib (2010).

6. Conclusion

This paper gives a hands-on introduction to the R package cAIC4 allowing for model selection
in mixed models based on the conditional AIC. The package and the paper offer a possibility
for users from the empirical sciences to use the conditional AIC without having to worry
about lengthy and complex calculations or mathematically sophisticated boundary issues of
the parameter space. The applications presented in this paper go far beyond model selection
for mixed models and extend to penalized spline smoothing and other structured additive
regression models. Furthermore a stepwise algorithm for these models is introduced that
allows for fast model selection.

Often statistical modeling is not about finding one “true model”. In such cases it is of interest
to define weighted sums of plausible models. This approach called model averaging is pre-
sented in Zhang, Zou, and Liang (2014) for weights chosen by the cAIC. We plan to implement
this approach in cAIC4. Another future research path is to implement an appropriate version
of the Bayesian information criterion (BIC) for conditional model selection. Since the Laplace
approximation is not always optimal, see Ogden (2017), methods for preferable likelihood ap-
proximations are implemented in the glmmsr package (see Ogden 2019). Furthermore the
newly developed GLMMadaptive package (see Rizopoulos 2021) fits mixed models with one
grouping variable using the adaptive Gaussian quadrature. We plan to make cAIC4 usable
for these packages in the future.
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A. Dealing with the boundary issues
A major issue in obtaining the conditional AIC in linear mixed models is to account for
potential parameters of θ on the boundary of the parameter space (see Greven and Kneib
2010). This needs to be done in order to ensure positive definiteness of the covariance matrix
Dθ.
The restructuring of the model in order to obtain the cAIC is done automatically by cAIC4.
To gain insight into the restructuring, an understanding of the mixed model formulas used
in lme4 is essential. For an in-depth explanation on how the formula module of lme4 works,
see Bates et al. (2015), Section 2.1.
Suppose we want to fit a mixed model with two grouping factors g1 and g2. Within the first
grouping factor g1, there are three continuous variables v1, v2 and v3 and within the second
grouping factor there is only one variable x. Thus there are not only random intercepts but
also random slopes that are possibly correlated. Such a model with response y would be fitted
in lme4 using

R> m <- lmer(y ~ (v1 + v2 + v3 | g1) + (x | g2), exampledata)

singular fit

The singular fit statement here already indicates that potentially some parameters are on
the boundary of the parameter space. In mixed models fitted with lme4, the random effects
covariance matrix Dθ always has block-diagonal structure. For instance in the example from
above the Cholesky factorized blocks of the estimatedDθ associated with each random effects
term are

R> getME(m, "ST")

$g2
[,1] [,2]

[1,] 1.18830318 NaN
[2,] -0.01488366 0

$g1
[,1] [,2] [,3] [,4]

[1,] 1.0184629027 0.00000000 NaN NaN
[2,] -0.1438760400 0.05495793 NaN NaN
[3,] -0.0007341786 0.19904380 0 NaN
[4,] -0.0883652162 -1.36463316 -Inf 0

Notice that as some of the parameters are on the boundary of the parameter space the
results can be numerically instable. If any of the diagonal elements of the blocks are zero
the corresponding random effects terms are deleted from the formula.In lme4 this is done
conveniently by rebuilding the formula from the component names list.

R> m@cnms
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$g2
[1] "(Intercept)" "x"

$g1
[1] "(Intercept)" "v1" "v2" "v3"

Thus a new model formula can be obtained by designing a new components names list without
the components associated with the boundary issues:

R> varBlockMatrices <- getME(m, "ST")
R> cnms <- m@cnms
R> for (i in 1:length(varBlockMatrices)) {
+ cnms[[i]] <- cnms[[i]][which(diag(varBlockMatrices[[i]]) != 0)]
+ }
R> cnms

$g2
[1] "(Intercept)"

$g1
[1] "(Intercept)" "v1"

The cnms2formula function from the cAIC4 package forms a new formula from the cnms
object above. Hence the new formula can be computed by

R> rhs <- cAIC4:::cnms2formula(cnms)
R> lhs <- formula(m)[[2]]
R> reformulate(rhs, lhs)

y ~ (1 | g2) + (1 + v1 | g1)

This code is called by function deleteZeroComponents in the cAIC4 package. This function
automatically deletes all zero components from the model. Function deleteZeroComponents
is called recursively, i.e., the new model is checked again for zero components. In the example
above only the random intercepts are non-zero. Hence the formula of the reduced model from
which the conditional AIC is calculated is

R> formula(cAIC4:::deleteZeroComponents(m))

singular fit

y ~ (1 | g2) + (1 | g1)

With the new model the conditional AIC is computed. If there are no random effect terms
left in the formula, a linear model and the conventional AIC is returned. In addition function
deleteZeroComponents also accounts for several special cases that may occur.
Notice however that in case of using smoothing terms from gamm4 no automated check for
boundary issues can be applied and zero components have to be manually deleted. Further-
more the boundary issues are only relevant for the analytic Gaussian case. For generalized
models some kind of refitting is used to calculate the cAIC and thus the boundary issues are
not relevant.
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B. Computational matters

B.1. Gaussian responses

The corrected conditional AIC proposed in Greven and Kneib (2010) accounts for the uncer-
tainty induced by the estimation of the random effects covariance parameters θ. In order to
adapt the findings of Greven and Kneib (2010), a number of quantities from the lmer model
fit need to be extracted and transformed. In the following these computations are presented.
They are designed to minimize the computational burden and maximize the numerical stabil-
ity. Parts of the calculations needed, for instance the Hessian of the ML/REML criterion, can
also be found in Bates et al. (2015). Notice however, that lme4 does not explicitly calculate
these quantities but uses derivative free optimizers for the profile likelihoods. Parts of the
computations are similar to those performed in the merDeriv package, see Wang and Merkle
(2018).
A core ingredient of mixed models is the covariance matrix of the marginal responses y. The
inverse of the scaled covariance matrix V0 will be used in the following calculations:

V = cov(y) = σ2
(
In +ZΛθΛ>θ Z>

)
= σ2V0.

Large parts of the computational methods in lme4 rely on a sparse Cholesky factor that
satisfies

LθL
>
θ = Λ>θ Z>ZΛθ + Iq. (18)

From this equation and keeping in mind that I − V −1
0 = Z

(
Z>Z +

(
Λ>θ

)−1
Λ−1
θ

)−1
Z>,

see Greven and Kneib (2010), it follows that

Λθ

(
L>θ

)−1
L−1
θ Λ>θ =

(
Z>Z +

(
Λ>θ

)−1
Λ−1
θ

)−1

⇒ I − V −1
0 =

(
L−1
θ Λ>θ Z>

)> (
L−1
θ Λ>θ Z>

)
.

Hence the inverse of the scaled variance matrix V −1
0 can be efficiently computed with the help

of the R package Matrix (see Bates and Maechler 2021) that provides methods specifically
for sparse matrices:

R> Lambdat <- getME(m, "Lambdat")
R> V0inv <- diag(rep(1, n)) -
+ crossprod(solve(getME(m, "L"), system = "L") %*%
+ solve(getME(m, "L"), Lambdat, system = "P") %*% t(Z))

Notice that solve(getME(m, "L"), Lambdat, system = "P") accounts for a fill-reducing
permutation matrix P associated (and stored) with Lθ, see Bates et al. (2015). Another
quantity needed for the calculation of the corrected degrees of freedom in the conditional AIC
are the derivatives of the scaled covariance matrix of the responses V0 with respect to the jth
element of the parameter vector θ:

Wj = ∂

∂θj
V0 = ZD

(j)
θ Z

>,
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where the derivative of the scaled covariance matrix of the random effects with respect to the
jth variance parameter is defined by

D
(j)
θ = 1

σ2
∂

∂θj
Dθ.

Notice that Dθ = [dst]s,t=1,...,q is symmetric and block-diagonal and its scaled elements
are stored in θ, hence dst = dts = θjσ

2, for certain t, s and j. Thus the matrix D(j)
θ =[

d
(j)
st

]
s,t=1,...,q

is sparse with

d
(j)
st =

{
1, if dst = dts = θjσ

2

0, else.

The derivative matrices Wj can be derived as follows:

R> Lambda <- getME(m, "Lambda")
R> ind <- getME(m, "Lind")
R> len <- rep(0, length(Lambda@x))
R> for (j in 1:length(theta)) {
+ LambdaS <- Lambda
+ LambdaSt <- Lambdat
+ LambdaS@x <- LambdaSt@x <- len
+ LambdaS@x[which(ind == j)] <- LambdaSt@x[which(ind == j)] <- 1
+ diagonal <- diag(LambdaS)
+ diag(LambdaS) <- diag(LambdaSt) <- 0
+ Dj <- LambdaS + LambdaSt
+ diag(Dj) <- diagonal
+ Wlist[[j]] <- Z %*% Dj %*% t(Z)
+ }

The following matrix is essential to derive the corrected AIC of Theorem 3 in Greven and
Kneib (2010). Adapting their notation, the matrix is

A = V −1
0 − V −1

0 X
(
X>V −1

0 X
)−1

X>V −1
0 .

Considering that the cross-product of the fixed effects Cholesky factor is

X>V −1
0 X = R>XRX ,

the matrix A can be rewritten as

A = V −1
0 −

(
XR−1

X V
−1

0

) (
XR−1

X V
−1

0

)>
.

Accordingly the computation in R can be done as follows:

R> A <- V0inv - crossprod(crossprod(X %*% solve(getME(m, "RX")), V0inv))
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With these components, the Hessian matrix

B = ∂2REML(θ)
∂θ∂θ>

or B = ∂2ML(θ)
∂θ∂θ>

and the matrix
G = ∂2REML(θ)

∂θ∂y>
or G = ∂2ML(θ)

∂θ∂y>
,

depending on whether the restricted or the marginal profile log-likelihood REML(θ) or ML(θ)
is used, can be computed straightforward as in Greven and Kneib (2010). Depending on the
optimization, it may not even be necessary to compute the matrix B. Considering that B
is the Hessian of the profile (restricted) log-likelihood, the matrix can also be taken from the
model fit, although this is only a numerical approximation. If the Hessian is computed it is
stored in:

R> B <- m@optinfo$derivs$Hessian

The inverse of B does not need to be calculated – instead, if B is positive definite, a Cholesky
decomposition and two backward solves are sufficient:

R> Rchol <- chol(B)
R> L1 <- backsolve(Rchol, G, transpose = TRUE)
R> Gammay <- backsolve(Rchol, L1)

The trace of the hat matrix, the first part of the effective degrees of freedom needed for the
cAIC, can also easily be computed with the help of the residual matrix A:

R> df <- n - sum(diag(A))

The correction needed to account for the uncertainty induced by the estimation of the variance
parameters can be added for each random effects variance parameter separately by calculating

R> for (j in 1:length(theta)) {
+ df <- df + sum(Gammay[j,] %*% A %*% Wlist[[j]] %*% A %*% y)
+ }

B.2. Poisson responses

The computation of the bias correction for Poisson distributed responses is obtained differ-
ently. In a first step the non-zero responses need to be identified and a matrix with the
responses in each column is created. Consider the grouseticks example in Section 4.2 with
the model p1 fitted by glmer.

R> y <- p1@resp$y
R> ind <- which(y != 0)
R> workingMatrix <- matrix(rep(y, length(y)), ncol = length(y))

The diagonal values of the matrix are reduced by one and only those columns of the matrix
with non-zero responses are kept.
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R> diag(workingMatrix) <- diag(workingMatrix) - 1
R> workingMatrix <- workingMatrix[, ind]

Now the refit() function can be applied to the columns of the matrix in order to obtain the
estimates log µ̂i(y−i, yi − 1) in (13) from the reduced data.

R> workingEta <- diag(apply(workingMatrix, 2, function(x)
+ refit(p1, newresp = x)@resp$eta)[ind, ])

The computation of the bias correction is then straightforward:

R> sum(y[ind] * (p1@resp$eta[ind] - workingEta))

[1] 205.5785

and corresponds to the bias correction obtained in Section 4.2.

B.3. Bernoulli

The computation of an estimator of the bias correction for Bernoulli distributed responses
as in Equation 14 is similar to the implementation for Poisson distributed responses above.
Therefore consider any Bernoulli model b1 fitted by the glmer function in lme4. For the
calculation of the bias correction for each observed response variable the model needs to be
refitted with corresponding other value, i.e., 0 for 1 and vice versa. This is done best by use
of the refit() function from lme4.

R> muHat <- b1@resp$mu
R> workingEta <- numeric(length(muHat))
R> for (i in 1:length(muHat)) {
+ workingData <- b1@resp$y
+ workingData[i] <- 1 - workingData[i]
+ workingModel <- refit(b1, nresp = workingData)
+ workingEta[i] <- log(workingModel@resp$mu[i] /
+ (1 - workingModel@resp$mu[i])) - log(muHat[i] / (1 - muHat[i]))
+ }

The sign of the re-estimated logit (the natural parameter) in (14) which is stored in the vector
workingEta needs to be taken into account, i.e., η̂i(1) is positive and η̂i(0) negative. With a
simple sign correction

R> signCor <- - 2 * b1@resp$y + 1

the following returns the bias correction:

R> sum(muHat * (1 - muHat) * signCor * workingEta)

It should be pointed out that for the conditional AIC it is essential to use the conditional
log-likelihood with the appropriate bias correction. Notice that the log-likelihood that by
default is calculated by the S3 method logLik for class ‘merMod’ (the class of a mixed model
fitted by a lmer call) is the marginal log-likelihood.
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