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Abstract

NScluster is an R package used for simulation and parameter estimation for Neyman-
Scott cluster point process models and their extensions. For parameter estimation, NSclus-
ter uses the maximum Palm likelihood estimation procedure. As some estimation proce-
dures proposed herein require heavy calculation, NScluster can use parallel computation
via OpenMP and achieve significant speedup in some cases. In this paper, we discuss
results obtained using a laptop PC and a shared memory supercomputer. In addition, we
examine the performance characteristics of parallel computation via OpenMP.
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1. Introduction

In this paper, we explain the R package NScluster (Tanaka, Saga, and Nakano 2021), avail-
able from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/
package=NScluster, which involves the maximum Palm likelihood estimation procedure for
Neyman-Scott cluster point process models and their extensions with parallel computation us-
ing OpenMP technology (Dagum and Menon 1998). The Neyman-Scott cluster point process
was originally applied to cosmology problems (Neyman and Scott 1958). Illian, Penttinen,
Stoyan, and Stoyan (2008, p. 16) briefly discuss its historical background. Currently, the clus-
ter point process is used in various fields, particularly for modeling point patterns observed in
ecological data, such as that used in Cressie (1993, Section 8.2) and Diggle (1983, Appendix:
Data).
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2 NScluster: MPLE for Cluster Point Process Models in R Using OpenMP

Tanaka, Ogata, and Katsura (2008a) used Fortran to program the simulation and maximum
Palm likelihood estimation procedure for cluster point process models. We developed an R
package NScluster based on that Fortran program. In the maximum Palm likelihood estima-
tion, some models require a large amount of calculation to estimate their parameters. Thus,
we utilize OpenMP technology to enable parallel computation (Tanaka et al. 2021). Together
with the likelihood estimation procedure, the package NScluster also provides a simulation
procedure for cluster point process models.

Here, we briefly explain the approach to generate the observations followed by Neyman-Scott
cluster point processes. First, we generate unobservable cluster centres located according to a
homogeneous Poisson point process. Then, each cluster centre generates a random number of
descendent points scattered around itself and distributed according to a given density function
relative to the distance between each cluster centre and the descendent points associated with
the given centre. In NScluster, we focus on planar cluster point processes and assume them
to be simple, uniform (stationary) and isotropic. We consider several Neyman-Scott cluster
point process models, such as the Thomas model, Inverse-power type model and the extended
Thomas model of type A. To model a broad range of clustering point pattern data, we also
consider the extended Thomas model of type B and C as superposed Neyman-Scott cluster
point process models. Note that Shimatani (2010) considered an extended Neyman-Scott
cluster point process and its application to ecology. However, his extension differs from our
superposition.

The likelihood function for cluster point processes cannot be derived analytically. However, as
a pseudo likelihood, the maximum Palm likelihood enables parameter estimation and model
selection quantitatively. Note that Palm intensity (Section 3.1) plays an essential role in
Palm likelihood. We refer readers to Tanaka, Ogata, and Stoyan (2008b) and Tanaka and
Ogata (2014) for parameter estimation and model selection for Neyman-Scott cluster point
processes including their extensions and Tanaka et al. (2008a) for detailed computational
implementation.

In the following, we provide an overview of spatial statistics software. The important reference
is “Special Volume: Software for Spatial Statistics” published by the Journal of Statistical
Software, 63 (2015), which includes several papers primarily focused on R packages. Among
them, spatstat (Baddeley, Turner, and Rubak 2021) is a frequently cited R package for point
pattern analysis. Baddeley and Turner (2005) also referenced several packages, such as those
proposed by Ripley (2001) and Peng (2003). The R package ptproc (Peng 2003) is based on
an earlier version of package PtProcess (Harte 2010). In addition, we refer readers to an R
package palm (Stevenson 2020), which deals with the maximum Palm likelihood estimation
procedure for typical Neyman-Scott cluster point process models, such as the Thomas model.
However, NScluster covers the extended Neyman-Scott cluster point process models, and,
because we employ parallel computation, the computational speed of the maximum Palm
likelihood estimation using NScluster should be faster than that of palm.

The remainder of this paper is organized as follows. In Sections 2 and 3, we briefly explain the
theoretical framework for our work. Section 2 provides preliminaries and model descriptions,
and, in Sections 2.1 and 2.2, we describe the Neyman-Scott cluster point process model
and its extension, respectively. In Sections 3.1 and 3.3, we explain Palm intensity from
the perspective of its theoretical property and non-parametric estimate, respectively. In
Section 3.2, we describe the desired Palm likelihood function. In Section 4, we overview
the NScluster. The package includes four functions regarding simulation of two Neyman-
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Scott cluster point process models in Section 4.1, MPLE in Section 4.2, confidence interval of
parameter estimates in Section 4.3, and display of normalized Palm intensity in Section 4.4. In
Section 5, we describe the implementation of parallel computation of OpenMP in NScluster.
In Section 6, we discuss the performance and precision of functions to estimate parameters
by parallel computation using OpenMP. Furthermore, we also discuss the comparison of
NScluster with palm. In Section 7, we discuss an application of the NScluster to an ecological
data. The conclusions are presented in Section 8.

2. Model descriptions

Essentially, a point process is a stochastic model governing the location of events in a given
set (Cressie 1993, p. 619). In this study, we consider the point process in a subset of Euclidean
space. A point pattern is considered a realisation of the point process. To analyze the point
pattern, we first plot it as observed in the subset, which is considered an observation window
denoted W. For simplicity and following the overall preceding study, we assume that the
observation window W has been standardized onto the unit square (W = [0,1] x [0, 1]).
Thus, throughout NScluster, we employ a unit square as the observation window. If the real
window is a rectangular domain or is irregularly shaped, we select the largest possible square
from the window, and consider it as the unit. We assume that W satisfies a periodic boundary
condition, i.e., W is considered to be a torus. Treating W is simply a method to resolve the
complication of edge effects. See, e.g., Diggle (2003, Section 1.3) for details.

2.1. Neyman-Scott cluster point process model

First, we generate a homogeneous Poisson point process with intensity p. The generated
points are referred to as parent points. The upper left panel of Figure 1 displays a simulation
of the parent points. Each parent point generates a random number M of descendent points,
which are realized independently and identically. Let v be the expectation of M. The descen-
dent points are distributed isotropically around each parent point, and the distances between
each parent point and its descendent points are distributed independently and identically ac-
cording to a probability density function (PDF) relative to the distance from a parent point
to its descendent point. We call the PDF a dispersal kernel and denote it by ¢r, where 7
indicates the parameter set of the dispersal kernel. The Neyman-Scott cluster point process
is a union of all descendent points, with the exception of all parent points. In other words,
the cluster process is unobservable for each cluster centre. The Neyman-Scott cluster point
process is also homogeneous, and its intensity A equals pv. The parameter set to be estimated
is (u,v,7) (Section 3).

In the following, we describe three Neyman-Scott cluster point process models, i.e., the
Thomas and Inverse-power type models and the extended Thomas model of type A. In ad-
dition, we display their simulations; see the upper right, lower left and lower right panels of
Figure 1. The location of their corresponding parent points is common, see the upper left
panel of Figure 1.

Thomas model

The Thomas model (Thomas 1949) is the most utilized Neyman-Scott cluster point process
model. In this model, descendent points are scattered according to bivariate Gaussian distri-
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Figure 1: The upper left panel exhibits a simulation of the parent points with p = 50.0.
The upper right, lower left and lower right panels exhibit simulations of the Thomas
model with (u,v,0) = (50.0,30.0,0.03), the Inverse-power type model with (u,v,p,c) =
(50.0,30.0,1.5,0.005) and the Type A model with (u, v, a, 01, 092) = (50.0, 30.0,0.3,0.005,0.1),
respectively.

bution with zero mean and covariance matrix 0?1, o > 0, where I is a 2 x 2 identity matrix.
The corresponding dispersal kernel with 7 = ¢ is given by

T T'2

4o (r) = 2P| 55, T > 0.
The upper right panel of Figure 1 displays a simulation of the Thomas model.

In previous studies that analyzed clustering point pattern data, the Thomas model was fitted
to such data because one can explicitly derive classical summary statistics, e.g., Ripley’s
K-function of the Thomas model, which is closely related to the Palm intensity (Section 3.1).
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Inverse-power type model

The Inverse-power type model originated from the frequency of aftershocks per unit time in-
terval (one day, one month, etc.), which has been referred to as the “modified Omori formula”
(Ogata 1988). In this model, descendent points are scattered according to Lomax distribution
(Lomax 1954). The corresponding dispersal kernel with 7 = (p, ¢) is given as follows:

¢ Hp—1)

>0
(r+c)? "=

Upe)(r) = ) ) 1)
where p > 1 and ¢ > 0 imply the decay order and scaling with respect to the distance between

each parent point and its descendent points, respectively.

The lower left panel of Figure 1 displays a simulation of the Inverse-power type model. From
the simulation, it can be inferred that the Inverse-power type model disperses more dense
descendent points around parent points than the Thomas model.

Type A model

The extended Thomas model of type A (Type A model for short) is a Neyman-Scott cluster
point process model where the dispersal kernel with 7 = (a, 01, 02) is mixed by that of two
Thomas models as follows:

Y(a,o1,00)(T) 7= 0oy (1) + (1 = a)go, (r), T 2>0, (2)

where a implies a mixture ratio parameter with 0 < a < 1.

Conceptually, the location of each descendent point comes from a bivariate normal distribution
centred on its parent point. The bivariate normal distribution has the covariance matrix o121
with probability a, and 022 with probability 1 — a, respectively, where I is in the Thomas
model. Arbitrary two descendent points from the same parent point do not necessarily come
from the distributions with the same covariance matrix.

From Equation 2, it can be inferred that the Type A model is suitable for densely and vaguely
clustering point pattern data to be fitted by mixing the Thomas model with the mixture ratio
a. The lower right panel of Figure 1 displays a simulation of the Type A model.

2.2. Superposed Neyman-Scott cluster point process model

The Neyman-Scott cluster point process models can be extended through numerous ap-
proaches. Herein, we consider a special case of the superposed Neyman-Scott cluster point
process models. In particular, we focus on superposed Thomas models. The parameter sets
to be estimated are given by those of two Thomas models: (u;,v;,0;), where i = 1,2. Note
that the intensity A of superposed uniform point processes with intensity \; (= u;v;), ¢ = 1,2,
is given by A = A1 + \o.

Type B and C models

We handle two types of the superposed Thomas model, which are referred to as the extended
Thomas model of type B (Type B model for short) if 11 = 15 and the extended Thomas
model of type C (Type C model for short) if v # vs.

Two simulations of the Type B and C models are displayed in the right panels of Figure 2.
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Figure 2: The upper left and right panels present simulation results of the parent
points with (uq,p2) = (10.0,40.0) and the Type B model with (u1,pu2,v,01,02) =
(10.0,40.0,30.0,0.01,0.03), respectively. The lower left and right panels show simula-
tion results of the parent points with (uq,pu2) = (5.0,9.0) and the Type C model with
(1, p2, v1,v2,01,02) = (5.0,9.0,30.0,150.0,0.01, 0.05), respectively.

3. Maximum Palm likelihood estimation

The maximum Palm likelihood estimation has been recognized as an innovative procedure for
parameter estimation for the Neyman-Scott cluster point process models and their superpo-
sition. Prior to reviewing this procedure, we introduce the notion of Palm intensity.

3.1. Palm intensity

Henceforth, we assume point processes on W satisfy conditions of local finiteness, simplicity,
uniformity and isotropy. Here local finiteness and simplicity for point processes are briefly
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reviewed. A locally finite point processes is a model for point patterns with a locally finite
number of points. A point process is deemed simple if two points of the corresponding point
pattern never coincide. For details, refer to Mgller and Waagepetersen (2003). Note that by
virtue of uniformity, point processes are homogeneous, i.e., they are of constant intensity.

We begin with a brief overview of the Palm intensity of such point processes, which leads to
the log-Palm likelihood function discussed in Section 3.2. The Palm intensity was based on
the work of Conrad Palm for the study of telephone traffic (Palm 1943). Translating each
point of the given point process into the origin o € R?, we obtain a superposed point process
at 0. We call it the difference process. The difference process is symmetric with respect to
o. The Palm intensity focuses on the difference process induced from pairwise coordinates of
the original process.

Let us define the Palm intensity. Our definition of Palm intensity agrees with that of Ogata
and Katsura (1991). We denote by N a counting measure, i.e., the total mass of random
geometrical objects such as the number of points, lengths of fibres, areas of surfaces and
volume of grains within Borel sets. The Palm intensity A, is defined as follows:

\(w) o PUN() > 1 [ N({0}) =1}) 5
Vol(dx)

where dx signifies an infinitesimal set containing an arbitrary given point € W. Refer to
Tanaka (2013) for a mathematical argument for the Palm intensity of planar Neyman-Scott
cluster point processes. Here, we examine Equation 3. A, implies the occurrence rate at an
arbitrary given point x provided that a point is at o. Let r be the distance from o to «.
We see that A\, depends only on r. Thus, we obtain its polar coordinate representation with
respect to distance r as follows:

Ao(T) = No(1,0) = Ao(r), >0, 0<6<2m.

Here, we further assume the point processes to be orderly, i.e., P({ N(dx) > 2 }) is of a smaller
order of magnitude than Vol(dz). The orderliness allows us to represent the Palm intensity
in terms of Ripley’s K-function, which is defined as the average number of other points that
have appeared within the distance from the typical point (Illian et al. 2008, pp. 214-215). In
fact, we see that

Ao(r) = LdK(r) r>0

C 2rr dr

: (4)

where X is the intensity of the given point process.

For Neyman-Scott cluster point processes, one can compute the right-hand side of Equation 4
to get

vf:(r)

2rr

Ao(1) = X+ , >0, (5)

where f; is the PDF relative to the random distance between two descendent points within
the same cluster. Let F; be the probability cumulative distribution function relative to the



8 NScluster: MPLE for Cluster Point Process Models in R Using OpenMP

random distance, i.e., f-(r) = dF(r)/dr for all r > 0. F; takes the following form:

5 il 11?4 ry® =1
FT(T) =92 {/0 {/r—n ; arccos <121n12712 QT(TQ) dra qT(Tl) dry
oo r4r1 2 4 o2 — 12
st M d d 6
+/T {/r1 7Taurccos( i qr(r2) dra ¢ qr(r1) dry (6)

5
z r—r1
+/2 {/ qT(TQ)dTQ}qT(Tl)drl}a r >0,
0 r1

where 1;, 1 = 1, 2, is the distance from a parent point to its descendent points. For the detailed
verification of Equation 6, refer to Stoyan and Stoyan (1994, Section 16.2.2).

To derive the Palm intensity using Equation 5, we need to consider f;.

For example, for the Thomas model (i.e., 7 = ), one can explicitly derive f, as follows:

2
folr) = %ﬂexp (—47;2> , T>0, (7)

from which

2
Fy(r)=1—exp 107 | r > 0.

Combining Equation 7 with Equation 5, we get the Palm intensity A\, of the Thomas model:
v r2
AO<T) = )\ =+ Wexp —F y T 2 0 (8)

Using the argument of Illian et al. (2008, p. 220 and Section 6.2.3), one can obtain from
Equation 8 each individual Palm intensity of the Type B and C models as follows: For the
Type C model,

1 [fain r2 asls 2
o(T) + i ((712 exp( 4012) + o exp( el DR r >0, (9)

where a; := \; /A, i = 1,2, see Section 2.2 for notation.

For the Type B model, especially if 1 = vo =: v, Equation 9 meets A\, of the Type B model,

i.e.,
2 2
v al r a9 T
A =\+— | — _ — _ > 0.
o(T) + o (UIQ exp ( 4012> + a2 P ( 4022>> , >

For the Inverse-power type and Type A models, we need to compute Equation 6 because
it is unable to derive their f.’s analytically. In Section 5, we will discuss the numerical
computation of Equation 6.

3.2. Palm likelihood function

It is impossible to specify an exact likelihood function in an analytically closed form for
Neyman-Scott cluster point processes and their extensions owing to the following difficulties:
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the dataset does not contain any parent points, the relationship between descendent points
and the attribution of their parent points are not specified in the given dataset and the ranges
of each cluster overlap such that their ranges are non-specific.

Therefore, we must propose a pseudo maximum likelihood estimation procedure for the cluster
point processes, i.e., maximum Palm likelihood estimation. The maximum Palm likelihood
estimation procedure is based on the assumption that the difference process is well approx-
imated by an isotropic and inhomogeneous Poisson point process with intensity function
N(W)Ao(r), which is centred at o.

Now, we are positioned to state the log-Palm likelihood function. Let 8 denote the parameter
set of the cluster point process models. The log-Palm likelihood function, denoted In L based
on the Palm intensity )\, (including 0) is given as follows:

R
WLO) = 3 n(NW)Ae(ry)) — 20N (W) / Ao () dr (10)
1,5;1<4,0<r;; <R 0

Here, the summation is taken over each pair (i,7) with ¢ < j such that the distance 7
between distinct points x; and x; of the cluster point processes satisfies 0 < r;; < R, where
R is greater than or equal to the range of correlation. The distance is measured with respect
to periodic boundary condition. The range of correlation is defined as follows: if there is a
finite distance r, > 0 such that Ao(r) = A for all r > r,, 7, is referred to as the range of
correlation. The range of correlation implies that there are no correlations between distinct
points of point processes whose distances are greater than r,. For details, refer to Illian et al.
(2008, p. 220). Note that ¢ < j in Equation 10 is due to the symmetry of difference processes.
Strictly speaking, from the periodic boundary condition for W, it follows that r, < 1/2 when
W is a unit square. Herein, we consider R = 1/2. Refer to Tanaka (2013) for a mathematical
argument regarding the range of correlation.

The maximum Palm likelihood estimates (MPLEs for short) are those that maximize Equa-
tion 10. Prokesovéa and Vedel Jensen (2012) verified the asymptotic properties of MPLEs.

To facilitate wide application of the maximum Palm likelihood estimation procedure to sev-
eral cluster point process models, we must rewrite Equation 10 because, as mentioned in
Section 3.1, generally, the Palm intensity of cluster point processes cannot be derived analyt-
ically. Combining Equations 10 and 5, we obtain the following expression:

In L(6) = > In <A+ 'M) — N(W)(mA\/4 + vFy(1/2)). (11)

2775
i,j;i<g,0<r;; <1/2 v

Note that maximising In L(0) in Equation 10 to obtain MPLEs, N (W) assigning the non-
parametric part of Equation 10 is removable. Therefore, Equation 11 is handled as shown
above. Equation 11 can be evaluated by computing F and its derivative f; in Equation 11
using NScluster. See the R code described in Section 5.

3.3. Non-parametric estimation

To determine the adequacy of MPLEs, NScluster provides users with a non-parametric es-
timation of the Palm intensity. Reviewing Ogata and Katsura (1991), we outline the non-
parametric Palm intensity. First, let us count the number of points of a point pattern given
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in each annular set with uniform width. One can see that the following quantity meets the
non-parametric estimate for the Palm intensity. Let A(r) be a disk of radius » > 0. We
obtain the following: for a sufficiently small § > 0,

1 N(A(r +9) \ A(r))
N(W) (VOI(A(r +9)) - Vol(A(r))) ' (12)

Note that A(r + ) \ A(r) is an annular set with uniform width ¢. The leftmost 1/N (W) in
Equation 12 is due to N({o}) =1 in Equation 3.

4. Overview of NScluster

The package NScluster comprises of four tasks, i.e., simulation, MPLE, confidence interval
estimation and non-parametric and parametric normalized Palm intensity comparison.

4.1. Simulation

The first and most intuitive step to understand the model characteristics is to observe the
data generated by the model. This can be realized using sim.cppm.

For example, data based on the Thomas model can be generalized as follows:

R> pars <- c(mu = 50.0, nu = 30.0, sigma = 0.03)
R> cppThomas <- sim.cppm("Thomas", pars, seed = 353)
R> cppThomas

Number of parent points = 51.0
Total number of offspring points = 1494.0

R> plot(cppThomas)

This code generates the upper right panel of Figure 1. Here, mu, nu and sigma indicate
the intensity of parent points, the mean number of descendent points per parent point and a
parameter of the dispersal kernel of the Thomas model, respectively (Section 2.1). In addition,
seed is specified to set the random number seed for the Mersenne-Twister random number
generator.

In the same manner, for the Inverse-power type model, we must specify the parameter set (p,
c) of the dispersal kernel given in Equation 1. For example, consider the following code to
generate the lower left panel of Figure 1.

R> parsIP <- c(mu = 50.0, nu = 30.0, p = 1.5, ¢ = 0.005)
R> cppIP <- sim.cppm("IP", parsIP, seed = 353)
R> cppIP

Number of parent points = 51.0
Total number of offspring points = 1494.0

R> plot(cppIP)
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4.2. MPLE

We can fit models when we have data, e.g., we can use the mple.cppm function to estimate
cluster point process models. This function can estimate parameter values from the given
initial parameter sets using the simplex method (Kowalik and Osborne 1968) to maximize
the log-Palm likelihood function of Equation 11. If initial values are not specified, they are
automatically given as the default values calculated from non-parametric Palm intensity. As
the default initial values do not always give good values, we strongly suggest using several
initial parameter sets manually. Example R code to estimate model parameters from the data
generated by the above code is given below.

R> xy.IP <- cppIP$offspring$xy

R> initp.IP <- c(mu = 55.0, nu = 35.0, p = 1.0, ¢ = 0.01)
R> mpleIP <- mple.cppm("IP", xy.IP, initp.IP, skip = 100)
R> summary(mpleIP)

Inverse-power type model
The number of point pattern: 1494

MPLE
mu 48.31433
nu 30.50470
P 1.64667
c 0.00795

Log(MPL) : 11189076.362
AIC: -22378144.724

R> plot (mpleIP)

In the above computer output, Log(MPL) stands for the maximum of the log-Palm likelihood
function (Equations 10 and 11).

We must compute Equation 11 to obtain MPLESs; however, the summation computation rela-
tive to (7,7) in Equation 11 is time consuming. Thus, we skip some pairs of (7, j) and specify
the skip rate using the skip argument to reduce the computational burden. Specifically, all
pairs of (i, 7) are appropriately ordered and every skip pair is used for calculation.

An example of improving processes for the parameter set (mu, nu, p, c¢) is shown in Figure 3.
Note that we show values that estimated parameters are divided by their initial parameters
to illustrate their convergence in each iteration. As can be seen, all parameters converge at
around 100 iterations.

We observed that it took more than 10 minutes for the parameter values to converge, which
is much longer than the Thomas model estimation. We can reduce the calculation time by
parallelising the computation.

11
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Figure 3: Computational behavior of the convergence of parameter set (u,v,p,c) of the
Inverse-power type model.

4.3. Confidence interval of parameter estimates

We developed a confidence interval of parameters using bootstrap method. When we esti-
mate one model, we generate simulated data several times for the estimated model, then, we
estimate the parameters repeatedly. The empirical distribution of given parameters can be
used to decide the interval estimation of the parameter.

For example, the data generated from the Thomas model given in Section 4.1 is used to
demonstrate the interval estimation of the parameters using the function boot.mple.

R> xy.Thomas <- cppThomas$offspring$xy

R> initp.Thomas <- c(mu = 40, nu = 40, sigma = 0.05)

R> mpleThomas <- mple.cppm("Thomas", xy.Thomas, initp.Thomas)
R> set.seed(12345)

R> bootThomas <- boot.mple(mpleThomas)

R> summary (bootThomas)

MPLE 2.5 % 97.5 % std.err
mu 44 ,04948235 21.93542495 67.00781201 1.2551551272
nu 33.40395790 22.59024031 55.37621730 1.3403600766

sigma 0.02843395 0.02371928 0.04179367 0.0006343702

Note that, for some models, the execution of boot.mple requires considerable time owing to
extensive calculations.
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Figure 4: Palm intensity of the Inverse-power type model corresponding to the respective
parameters.

4.4. Display of normalized Palm intensity

The package NScluster can depict the estimates of the normalized Palm intensity, i.e., Ao(7)/A,
which is just the pair correlation function. Here, we consider the Inverse-power type model,
whose Palm intensity cannot be derived analytically. Therefore, to obtain the MPLEs, Equa-
tion 11 must be computed rather than Equation 10. For this purpose, the R code is as
follows:

R> palmIP <- palm.cppm(mpleIP, parsIP)
R> plot(palmIP)

Arguments mpleIP and parsIP specify the output object from the mple.cppm and the pa-
rameters given in Section 4.1, respectively.

Henceforth, we use the word “Palm intensity” to denote “normalized Palm intensity” for
simplicity. In Figure 4, the green curve represents Palm intensity with true parameters
given by parsIP. The red curve represents Palm intensity with the parameters given by
mpleIP$mple. Dots represent a non-parametric Palm intensity. These values are plotted
in logarithmic scales. As can be seen in Figure 4, the true and estimated Palm intensities
coincide well.

5. Parallel computation implementation

The computationally intensive part of the estimation of model parameters can be parallelized
to reduce calculation time. The package NScluster was implemented to employ OpenMP,

13
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which is a simple framework for shared memory parallel computation. We refer readers to
Feng and Tierney (2011) for a concise introduction to OpenMP.

Here, we demonstrate the implementation of OpenMP in NScluster to speed up the mple.cppm
procedure. We know that the most time-consuming part of the original Fortran code (given
below) is calculating the log-Palm likelihood function of the Inverse-power type model (Equa-
tion 11),

sum = 0.0

Jambda = mu*nu

nu2pi = nu/2/pi

do 30 i = 1, nn
call ippower(r(i), Frmax, dFr)
f = lambda + nu2pi*dFr/r (i)
if(f .le. 0.0) go to 190
sum = sum + log(f)

30 continue

The variable dFr in the above code signifies f; in Equation 5. We numerically compute F:-
using the method presented by Press, Teukolsky, Flannery, and Vetterling (1992). The if
sentence in the above code is for error handling. This part can be parallelized rather easily
using OpenMP directives. We add two directive lines to the original code as follows:

ier = 0
!$omp parallel do private(dFr, f) reduction (+:sum)
do 30 i = 1, nn

call ippowerMP(r(i), Frmax, dFr)

f = lambda + nu2pi*dFr/r(i)

if(f .le. 0.0) then

ier = -1
else

sum = sum + log(f)
end if

30 continue
!$omp end parallel do
if(ier .eq. -1) go to 190

Error handling becomes a little complicated. The part inside the directive is performed in
many threads simultaneously. If an error occurs in one thread, i.e., ier is set to —1, it causes
error handling. For OpenMP to function properly, we must also rewrite the original Fortran
code for the ippower subroutine:

subroutine ippower(ri, Fr, dFr)
real(8) :: ri, Fr, dFr

integer :: kk
real(8) :: r0
common/distance/r0
common/case/kk
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as follows:

subroutine ippowerMP(ri, Fr, dFr)
real(8) :: ri, Fr, dFr

integer :: kk

real(8) :: r0
common/distancep/r0
common/casep/kk

!$omp threadprivate(/distancep/)
!'$omp threadprivate(/casep/)

These threadprivate directives declare that common blocks are private for each thread.

6. Performance and precision of parallel computation

The program discussed in Section 4.2 was executed on a laptop PC (Intel Core i7 6700HQ) and
the SGI UV2000 (Intel Xeon E5-2650v2) shared memory supercomputer (named ISM-A) at
the Institute of Statistical Mathematics. The number of threads of parallel computation was
controlled by the environment variable OMP_NUM_THREADS, refer to Feng and Tierney (2011).
If OMP_NUM_THREADS is not specified explicitly, all available cores are used for calculation. For
example, to change the number of OpenMP threads using a bash shell on Linux, type export
OMP_NUM_THREADS=n prior to starting R, where n is the number of threads to use. For macOS,
the same command works in a terminal window. For Windows, the set command can be
used instead of the export command if a command prompt window is used. The speedup
obtained by OpenMP as measured by the system.time function is shown in Figure 5.

An increased number of threads in OpenMP does not always yield better results. In fact, as
can be seen, the method obtained the best results with around 16 threads.

Different parallelisation can affect the calculation results slightly. For example, the following
R code was executed for different number of threads.

R> pars <- c(mul = 10.0, mu2 = 40.0, nu = 30.0, sigmal = 0.01, sigma2 = 0.03)
R> cppTypeB <- sim.cppm("TypeB", pars, seed = 257)

R> xy.TypeB <- cppTypeB$offspring$xy

R> initp.TypeB <- c(mul = 20.0, mu2 = 30.0, nu = 30.0, sigmal = 0.02,

+ sigma2 = 0.02)

R> mpleTypeB <- mple.cppm("TypeB", xy.TypeB, initp.TypeB)

R> coef (mpleTypeB)

The results are summarized in Table 1.

The difference is primarily based on the floating-point calculation mechanism; however, the
influence on the results is potentially negligible as can be seen in the table.

Finally, we compare two packages NScluster with palm to see their similarity and dissimilarity.
The Neyman-Scott cluster point pattern data generated by the above code in Section 4.1
is used. We perform parameter estimation with 8 threads using the following R code of
NScluster.

15
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Figure 5: Effectiveness of parallel computation.

Parameters
# threads mul mu?2 nu sigmal sigma?2
1 16.17442591 44.36274392 28.40971041 0.01008415 0.03122518
2 16.17777568 44.39743498 28.39416344 0.01007905 0.03119565
4 16.17538671 44.40146193 28.39339402 0.01007858 0.03119297
8 16.17777568 44.39743498 28.39416344 0.01007905 0.03119565

Table 1: Different outputs of MPLEs of Type B model, which is dependent on the number of
threads.

R> startv <- c(40, 40, 0.05)
R> system.time(mpleThomas <- mple.cppm("Thomas", xy.Thomas, startv))
R> coef (mpleThomas)

fit.ns function of palm can conduct similar analysis via the following R code using a single
thread.

R> system.time(fit <- fit.ns(xy.Thomas, lims = rbind(c(0, 1), c(0, 1)),
+ R = 0.5, start = startv))
R> coef(fit)

Table 2 summarizes the results, where some parameter names for the Thomas model are
different for each package. We note that estimated parameters are nearly identical for all
parameters. However, elapsed times are different because of the difference in thread numbers.



Journal of Statistical Software

mu nu sigma elapsed time

NScluster 44.04948235 33.40395790 0.02843395 0.64
D lambda sigma elapsed time

palm 44.05379224  33.39956626 0.02843696 4.09

Table 2: Results on NScluster and palm.

7. Application of NScluster to ecological data

In this section, we apply NScluster to ecological data, which are the locations of 359 newly
emergent bramble canes shown in Figure 6. The points are presented here in the unit square
(Diggle 1983, Appendix: Data), whereas the original data were collected in a 9 m x 9 m
square (Hutchings 1978).

Tanaka et al. (2008b) fitted the five cluster point process models to the bramble canes data,
and estimated their respective parameters via the maximum Palm likelihood estimation pro-
cedure. We re-analyze the data by NScluster using 8 threads.

R> canes <- read.table("BrambleCanes.txt")
R> model <- c("Thomas", "IP", "TypeA", "TypeB", "TypeC")
R> for (mtype in model) {

+ cat (mtype, "\n")

+ cmdl <- paste("print(system.time(mple", mtype, " <-

+ mple.cppm(", "'", mtype, "'", ", canes)))", sep = "")

+ eval (parse(text = cmd1))

+ }

R> cmd2 <- paste("summary(mple", model,")", sep = "")

R> eval (parse(text = cmd2))

R> cmd3 <- paste("palm",model, " <- palm.cppm(mple", model,")", sep = "")

R> eval (parse(text = cmd3))
R> plot(palmThomas, palmIP, palmTypeA, palmTypeB, palmTypeC)

We can obtain the MPLESs together with calculation time, AIC and the figure of Palm inten-
sities by executing above R code.

Herein, as described in Section 3.2, we note that for the cluster point process models, spec-
ifying an exact likelihood function in an analytically closed form is impossible. Therefore,
for model selection, following Tanaka et al. (2008b), we employ AIC replacing the ordinary
log-likelihood with the log-Palm likelihood.

The Type A model takes the longest elapsed time (927.256 s.) and the Thomas model has
the shortest elapsed time (0.240 s.).

We note that these five cluster models provide a result nearly identical to that of Tanaka
et al. (2008b). In fact, the minimum AIC is given by the Type B and C models, i.e., the
best fit is attained using these two models (Figure 7). This demonstrates the identification
problem. For details, refer to Tanaka and Ogata (2014).
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8. Concluding remarks

The package NScluster provides users with functions to simulate Neyman-Scott cluster point
process models, such as the Thomas model, the Inverse-power type model and several ex-
tended Thomas models, to estimate their parameter set using the Palm likelihood procedure
and illustrate their Palm intensities. The computation of MPLEs is implemented by simplex
maximisation with parallel computation via OpenMP.

It is straightforward to parallelize the original Fortran code using OpenMP directives, and we
have shown that the parallelisation can increase calculation speed, especially when the num-
ber of threads is not so large. The results indicate that it is not useful to overly increase the
number of threads, e.g., beyond 16 threads. This is a typical situation for shared memory par-
allel computation. When the number of threads is increased excessively, the communication
among threads incurs significant cost and the total computation time increases.

In future work, we will attempt to parallelize boot .mple using a package such as snow (Tier-
ney, Rossini, Li, and Sevcikova 2018). Such parallelisation is particularly useful for cluster
computer systems, if it is used together with the OpenMP parallelized mple. cppm.
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