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Abstract

This paper describes the R package mvLSW. The package contains a suite of tools
for the analysis of multivariate locally stationary wavelet (LSW) time series. Key ele-
ments include: (i) the simulation of multivariate LSW time series for a given multivariate
evolutionary wavelet spectrum (EWS); (ii) estimation of the time-dependent multivariate
EWS for a given time series; (iii) estimation of the time-dependent coherence and partial
coherence between time series channels; and, (iv) estimation of approximate confidence
intervals for multivariate EWS estimates. A demonstration of the package is presented
via both a simulated example and a case study with EuStockMarkets from the datasets
package.
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1. Introduction
Technological advances in sensors and other data recording mechanisms have led to an in-
creased need to efficiently and accurately analyze multivariate time series. Areas of re-
search where such methods are commonly required include economics (Rua and Nunes 2009),
medicine (Cribben 2012), telecommunications (Bardwell, Eckley, Fearnhead, Smith, and Spott
2019) and environmental science (Shama 2007). Historically, one might approach such a mul-
tivariate time series challenge by making the assumption that the underlying process was
second order stationary. However, there are an increasing number of cases where such global
stationarity assumptions are not tenable due to the second order structure of the process
changing over time. Such series are said to be non-stationary.
Over the years, a number of popular approaches for modeling non-stationary time series
have been proposed, though activity has predominantly focused on the univariate time series
setting. Notable contributions in the univariate setting include the seminal work of Priestley
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on evolutionary processes (Priestley 1965), time varying moving average methods (Hallin
1986) and locally stationary processes (Dahlhaus 1997; Nason, von Sachs, and Kroisandt
2000). For a recent review of the literature in this area, we refer readers to the excellent
review article by Dahlhaus (2012). Implementations of these models in R (R Core Team 2019)
include the LSTS (Olea, Palma, and Rubio 2015) and wavethresh (Nason 2008, 2016). These
respectively implement the locally stationary Fourier and wavelet approaches for univariate
time series. A multidimensional implementation of a locally stationary framework is also
available for regular lattice processes (see Eckley, Nason, and Treloar 2010; Eckley and Nason
2011, for details).
We are, of course, by no means the first to consider the challenge of modeling non-stationary
multivariate time series. Early contributions include those by Ombao, von Sachs, and Guo
(2005) who extend the smoothed localized exponential (SLEX) model to the multivariate
setting and Sanderson, Fryzlewicz, and Jones (2010) who apply the wavelet methodology to
bivariate and multivariate time series respectively. The SLEX framework, originally proposed
by Ombao, Raz, von Sachs, and Guo (2002), seeks to segment a non-stationary time series
into dyadic stationary blocks that then permit the employment of standard methods to form
a time-dependent Fourier analysis. The multivariate extension of SLEX, proposed by Om-
bao et al. (2005), enables the estimation of the cross-spectrum and investigations into the
coherence structure. Conversely, the work of Sanderson et al. (2010) and Cho and Fryzlewicz
(2015) decompose the dependence within a locally stationary time series into two multiscale
components; the within-channel spectral structure and the cross-spectrum (between-channel)
structure for the bivariate and p-variate time series cases respectively. However neither of
these recent wavelet-based contributions directly address a key modeling challenge for truly
multivariate non-stationary signals, namely the identification of whether whether the connec-
tion between two channels is either direct or indirect, i.e., driven by other observed channel(s).
This article presents the R implementation of an alternative formulation for multivariate lo-
cally stationary wavelet (LSW) model, proposed by Park, Eckley, and Ombao (2014). The
work extends the locally stationary wavelet framework of Nason et al. (2000) to a multi-
variate setting, also enabling the estimation of the within-channel spectral structure and
cross-spectrum. Park et al. (2014) also introduce the concepts of local coherence and, cru-
cially, local partial coherence within the multivariate locally stationary wavelet setting. The
mvLSW package (Taylor, Park, Eckley, and Killick 2019) implements the work of Park et al.
(2014), building upon the univariate locally stationary wavelet time series implementation
in wavethresh (Nason 2008, 2016). Specifically, mvLSW provides functionality for: the sim-
ulation of multivariate LSW time series for a given evolutionary wavelet spectrum (EWS);
estimation of the multivariate EWS for a given time series with point-wise confidence inter-
vals; and, estimation of the local coherence and local partial coherence between time series
channels. The mvLSW package is available for download from the comprehensive R archive
network (CRAN). Note that throughout this article all mvLSW package references relate to
version 1.2.3 of the package, as available on CRAN.
The paper is structured as follows. The framework of multivariate LSW modeling is briefly
introduced in Section 2 together with the introduction of the mvLSW package for defining
a multivariate EWS and simulating a multivariate LSW time series. Section 3 describes
estimation of the multivariate EWS and its implementation in R. The concept and estimation
of localized coherence and partial coherence is discussed in Section 4. We then introduce the
functions developed to implement this coherence estimation framework, prior to summarizing
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the mechanism by which approximate confidence intervals can be constructed in Section 5.
A complete demonstration of the mvLSW package is presented in Section 6 including a case
study which makes use of the European financial index time series EuStockMarkets that is
accessible from the datasets package.

2. Framework
This section briefly introduces the multivariate locally stationary wavelet (LSW) time series
and introduces its implementation within R in the mvLSW package. Section 2.1 introduces
the multivariate LSW framework of Park et al. (2014) and a description of the time-frequency
power decomposition by the multivariate evolutionary wavelet spectrum (EWS). Section 2.2
presents a worked example for a trivariate LSW process and demonstrates how to simulate a
time series with the specified spectral form.

2.1. The multivariate LSW process

Adopting the notation of Park et al. (2014), the doubly indexed P -variate stochastic process
{Xt;T } for t = 1, . . . , T with dyadic length, i.e., T = 2J for some J ∈ N, is said to be a
multivariate LSW process if it is represented by:

Xt;T =
∞∑
j=1

∑
k

Vj(k/T )ψj,k(t)zj,k. (1)

As in the earlier univariate LSW work of Nason et al. (2000), the {ψj,k} denote the set of dis-
crete non-decimated wavelets for each level j and location k pair such as the Daubechies com-
pactly supported wavelet (Daubechies 1990). The random vectors {zj,k = (z(1)

j,k , . . . , z
(P )
j,k )>}

are uncorrelated innovations with zero expectation and P×P identity variance-covariance
matrix. Finally, Vj(u) denotes the lower-triangular P×P transfer function matrix for the
given level index at rescaled time u := t/T ∈ (0, 1). Some smoothness conditions are assumed
for the elements of the transfer function matrix, controlling its behavior (see Park et al. 2014,
for details). For notational ease, the explicit dependence on T shall henceforth be suppressed
but its dependence on the process and derived estimates shall naturally be assumed.
Within the above modeling framework, arguably the key element of interest is the transfer
function matrix. Since the innovations are orthogonal with unit variance and the wavelets
are not channel specific, then all forms of dependency between and within channels must be
encapsulated by the transfer function matrix. For instance, the diagonal element Vj(u)(p,p)

for channel p, for p = 1, . . . , P , defines the time-varying amplitudes of the respective wavelet
at level j akin to the univariate scenario of Definition 1 in Nason et al. (2000). Furthermore,
if the off-diagonal element Vj(u)(p,q), for p > q, is non-zero then there is a time-varying
dependence between channels p and q, but if this element is zero for all time and levels then
the two channels are uncorrelated.
The transfer function matrix is also useful in forming the spectral representation of a multi-
variate LSW time series. Specifically, the power contained within a multivariate LSW process
is described by the multivariate evolutionary wavelet spectrum (EWS) taking the form:

Sj(u) = V>j (u)Vj(u), (2)
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where V>j (u) denotes the transpose of Vj(u). The diagonal element S(p,p)
j (u) denotes the

auto-spectrum for channel p, whilst the off-diagonal element S(p,q)
j (u), for p 6= q, denotes

the cross-spectrum between the channel pair p and q, and it describes how the power in the
process is shared between channels.

2.2. Trivariate worked example

The multivariate EWS defined in Equation 2 is a concise description of the time-varying
distribution of power for a multivariate LSW time series. To demonstrate this, we introduce
a trivariate LSW process which will be used as a worked example throughout the paper. We
assume that the process is built using discrete Haar wavelets, and that the EWS for this
process has non-zero power at only the second finest level, j = 2, given by:

S2(u) =

 4 + 16u 2 + 8u 2 + 8u
2 + 8u 6 1 + 4u
2 + 8u 1 + 4u 20− 14u

 , for u ∈ (0, 1). (3)

Note that the auto-spectrum for the second channel is constant and so this channel is
marginally stationary. The auto-spectrum for the first channel increases over the unit time
interval and so, with the spectrum at all other levels equal to zero, the variability of this
channel steadily increases. Conversely, the auto-spectrum for the third channel decreases
over time. Dependence between the channels is also time-varying within this example.
The following extract defines the trivariate EWS in R using the mvLSW package for a time
series of length T = 1024 (i.e., J = 10):

R> library("mvLSW")
R> P <- 3 ## Number of channels
R> T <- 1024 ## Time series length
R> J <- log2(T) ## Number of levels
R> Spec <- array(0, dim = c(P, P, J, T))
R> Spec[1, 1, 2, ] <- seq(from = 4, to = 20, length = T)
R> Spec[2, 2, 2, ] <- 6
R> Spec[3, 3, 2, ] <- seq(from = 20, to = 6, length = T)
R> Spec[1, 2, 2, ] <- Spec[2, 1, 2, ] <- seq(from = 2, to = 10, len = T)
R> Spec[1, 3, 2, ] <- Spec[3, 1, 2, ] <- seq(from = 2, to = 10, len = T)
R> Spec[2, 3, 2, ] <- Spec[3, 2, 2, ] <- seq(from = 1, to = 5, len = T)
R> True_mvEWS <- as.mvLSW(x = Spec, filter.number = 1,
+ family = "DaubExPhase", names = c("X1", "X2", "X3"))

The command as.mvLSW converts a 4D array into an object having S3 class mvLSW. This class
is central to the mvLSW package and consists of two components: the multivariate EWS
as a 4D numerical array and a list of sundry information about the spectrum such as its
dimensions, analyzing wavelet and channel names. The input arguments for as.mvLSW are:

• x: multivariate EWS as a 4D array (P × P × J × T ).

• filter.number, family: analyzing wavelet (see Nason 2016).

• names: channel names (optional).
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Figure 1: True trivariate EWS at level 2 defined by Equation 3.

Due to the dimensions of a multivariate EWS, visualizations that illustrate the distribution
of power over levels and locations can only be obtained via slices through this 4D object.
For instance, the plot in Figure 1 displays the trivariate EWS at the second level defined in
Equation 3 that is invoked by the following command:

R> plot(True_mvEWS, style = 2, info = 2, ylim = c(0, 20), lwd = 2)

The essential input arguments used here are:

• x: an object of mvLSW class.

• style: numerical index defining the plotting style:

1. Single spectra plot between channel pair (p, q) and at level j is specified via info
= c(p, q, j).

2. Panel plot across channels at level j is specified via info = j.
3. Panel plot across levels for channel pair (p, q) is specified via info = c(p, q),
4. As style = 3, but presented as an image plot.

Additional arguments such as ylim and lwd can be supplied to customize the generated
plot. Point-wise approximate confidence intervals introduced in Section 5 can be drawn by
supplying a list containing the upper and lower bounds via the optional Interval argument.



6 mvLSW: Multivariate Locally Stationary Wavelet Processes in R

Furthermore, the inclusion of the logical argument diag, when style = 2, suppresses the
drawing of the diagonal plots on the panel. This is particularly useful for plotting the local
coherence and partial coherence estimates discussed in Section 4.
The transfer function matrix is obtained by factorizing the multivariate EWS matrix using
Cholesky decomposition. A realization of a multivariate LSW process with a pre-specified
EWS is therefore simulated using Equation 1 with innovations sampled independently from
some defined distribution that has zero mean and unit variance. This procedure is imple-
mented by the rmvLSW command. For example, the following extract generates a realization
of a trivariate LSW time series, with EWS structure as defined by Equation 3 with Gaussian
innovations:

R> set.seed(1)
R> X <- rmvLSW(Spectrum = True_mvEWS, noiseFN = rnorm)
R> plot(x = X, main = "Gaussian mvLSW time series")

The input arguments for rmvLSW are:

• Spectrum: multivariate EWS as an mvLSW object.

• noiseFN: function for generating the orthogonal innovation process with zero expec-
tation and unit variance. Additional arguments provided to rmvLSW are passes to the
supplied function.

The S3 simulate method can alternatively be called to simulate a realization of a multivariate
LSW time series for a provided multivariate EWS. An example of simulated trivariate LSW
time series is presented in Figure 2.

3. Multivariate EWS estimation
The multivariate LSW framework presented in the previous section enables the generation
of a time series that possess spectral properties defined by a specified multivariate EWS.
Conversely, interest often lies in understanding the spectral structure for a given multivariate
LSW time series. Such a scheme was proposed by Park et al. (2014), estimating the multi-
variate EWS, {Ŝj,k} for levels j = 1, . . . , J and locations k = 0, . . . , T − 1. To begin, each
channel of the time series is independently transformed based on a given wavelet to determine
the empirical wavelet coefficient vector, dj,k = [d(1)

j,k , . . . , d
(P )
j,k ]>, with elements:

d
(p)
j,k =

T∑
t=1

X
(p)
t ψj,k(t). (4)

The wavelet periodogram is then defined by the matrix set for each level and location pair as:

Ij,k = dj,kd>j,k. (5)

Mirroring a result of Nason et al. (2000) for univariate time series, Park et al. (2014) es-
tablished that Equation 5 is both biased and has non-vanishing estimator variance. These
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Figure 2: A realization of a (Gaussian) trivariate locally stationary wavelet process having
EWS structure as defined in Equation 3.

issues are overcome by smoothing and correcting the raw periodogram estimate in defining
the multivariate EWS estimator:

Ŝj,k =
J∑
l=1

M∑
m=−M

(A−1)j,l wM (m)Il,k+m. (6)

Here, wM (m) denotes the symmetric kernel function on the compact support m ∈ [−M,M ]
(Ombao, Raz, Strawderman, and von Sachs 2001) and (A−1)j,l is the (j, l)-element from the
inverted autocorrelation wavelet inner product matrix (Eckley and Nason 2005).
Perhaps unsurprisingly, the bias correction in Equation 6 means that the spectral matrix
estimates {Ŝj,k} are no longer guaranteed to be positive definite. This leads to difficulties in
evaluating quantities that are derived from the multivariate EWS, such as the localized coher-
ence and partial coherence which we introduce in Section 4. The matrices of the multivariate
EWS estimate must therefore be regularized using, for example, the approach of Schnabel
and Eskow (1999) to ensure that subsequently derived estimates are themselves valid.

3.1. Trivariate worked example continued

Estimation of the multivariate EWS is implemented using the mvEWS function. The following
code extract estimates the trivariate EWS for the time series simulated in Section 2.2. The
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wavelet transform is performed using the Haar wavelet and smoothing of the periodogram
is performed using the rectangular kernel wM (m) = (2M + 1)−1 for m ∈ [−M,M ] with
parameter M =

√
T = 32.

R> EWS <- mvEWS(X = X, filter.number = 1, family = "DaubExPhase",
+ kernel.name = "daniell", kernel.param = sqrt(T), bias.correct = TRUE,
+ tol = 1e-10)

The arguments of mvEWS are:

• X: regular P -variate time series with dyadic length of class matrix or ts, xts (Ryan
and Ulrich 2018) or zoo (Zeileis and Grothendieck 2005).

• filter.number, family: wavelet, passed to wd from wavethresh.

• kernel.name, kernel.param: defines the smoothing kernel that is evaluated by the
base command kernel. The argument kernel.name is a character string that names
any kernel type evaluated by kernel.

• bias.correct: logical variable, indicating whether the biased or corrected estimator
should be estimated.

• tol: threshold applied in matrix regularization.

Estimation of the trivariate EWS involves a number of steps including wavelet transformation,
smoothing, bias correction and regularization. The function returns an object of class mvLSW.
Details about each step are stored within this object, under the information list. A summary
of these details can be examined by invoking the print or summary command.

R> summary(EWS)

== Dimensions ==
P : 3
J : 10
T : 1024

== Wavelet Transform ==
Family : DaubExPhase
Filter Number : 1

== Smoothing ==
Type : all
Method : Daniell(32) - GCV criterion = 38.68027

== Sundries ==
Applied Bias Correction : TRUE
Minimum Eigenvalue : 1e-10
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The printed summary states the dimension of the object, the wavelet and smoothing method
used in deriving the estimate. The item Type under the smoothing heading identifies that
the same kernel function is applied to all levels. Smoothing can be performed on a by-level
basis. For further details, the reader is referred to the package’s manual. A measure of
the smoothing performance is calculated using a generalized cross validation (GCV) criterion
(Ombao et al. 2001). The sundries information states whether or not the bias correction has
been applied and the minimum eigenvalue across all time and level pairs to confirm whether
all estimated spectral matrices are positive definite.
We should note that the package requires a time series of dyadic length. In practice, not
all series will be of length 2J for some J ∈ N. As Nason and Silverman (1994) describe,
various techniques can be used to overcome this challenge. These include the use of reflective
or periodic boundary conditions; zero padding and truncating either the head or tail of the
data. Naturally, there can be various advantages and disadvantages associated with each of
these approaches, depending on the underlying data generation process (Percival and Walden
2000, Chapter 4.11).

4. Localized coherence and partial coherence
Dependence within a multivariate time series can occur both within and between channels.
Coherence provides a measure of the linear dependence between any channel pair. However, if
the multivariate time series is non-stationary then the coherence measure may vary over time.
Park et al. (2014) introduced the concept of local coherence based on the locally stationary
wavelet framework defined in Section 2.1. At a particular level, the local coherence matrix
function is defined by:

ρj(u) = Dj(u)Sj(u)Dj(u), (7)

where Dj(u) = diag{[S(p,p)
j (u)]−1/2 : p = 1, . . . , P}. The off-diagonal elements of the local-

ized coherence matrices may take any value within [−1, 1] where strong linear dependence is
identified by values near ±1. Whilst this coherence measure provides an indication of strong
dependence between a channel pair, it cannot distinguish whether this relationship is direct
or indirect. In other words, it cannot identify whether the relationships occur because of
direct dependencies with other (observed) channels. To quantify direct linear dependence,
Park et al. (2014) introduced the local partial coherence matrix function. For any given level,
this is defined as follows:

Γj(u) = −Hj(u)Gj(u)Hj(u), (8)

where Gj = Sj(u)−1 and Hj(u) = diag{[G(p,p)
j (u)]−1/2 : p = 1, . . . , P}.

4.1. Trivariate worked example continued

Within the mvLSW package both forms of coherence can be estimated using the coherence
command. This implements a “plug-in” estimator proposed by Park et al. (2014). The input
arguments for coherence are:
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Figure 3: Localized coherence (left) and partial coherence (right) estimates at level 2 for the
simulated trivariate time series.

• object: multivariate EWS as an mvLSW object.

• partial: logical variable, indicating whether to evaluate the partial coherence.

Here, the distinction between evaluating the localized coherence and localized partial coher-
ence is simply achieved by toggling the logical argument as demonstrated below with the
trivariate EWS estimate derived in Section 3.1:

R> RHO <- coherence(object = EWS, partial = FALSE)
R> GAMMA <- coherence(object = EWS, partial = TRUE)

As with the multivariate EWS, the returned coherence measure is stored within a 4D array
of class mvLSW. A visualization of a slice through this object can be generated by invoking the
plot command as described in Section 2.2 for appropriate style and info arguments. Note
that the diagonal elements of both coherence matrices do not contain any useful information
and so can be suppressed when generating the image by toggling the diag logical argument
as demonstrated in the following extract for the trivariate example:

R> plot(x = RHO, style = 2, info = 2, diag = FALSE, ylim = c(-1, 1),
+ lwd = 2, ylab = "Coherence")
R> plot(x = GAMMA, style = 2, info = 2, diag = FALSE, ylim = c(-1, 1),
+ lwd = 2, ylab = "P. Coh.")

The localized coherence and partial coherence estimates at the second level are presented in
Figure 3. Recalling the form of the EWS in Equation 3, it is perhaps unsurprising that the
estimates of the localized coherence at the second level are mostly positive and gradually
increase over time. However, the localized partial coherence estimate between the second and
third channels is closer to zero compared to its localized coherence estimate, suggesting that
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the measured linear dependence can mostly be explained by their dependence with the first
channel.

5. Confidence intervals for the multivariate EWS estimate
Under reasonably mild assumptions, Park (2014) established that the approximate, point-
wise 100(1 − α)% confidence interval for a given element of the multivariate EWS, S(p,q)

j,k , is
given by:{

Ŝ
(p,q)
j,k − Φ

(
1− α

2

)√
Var

[
Ŝ

(p,q)
j,k

]
, Ŝ

(p,q)
j,k + Φ

(
1− α

2

)√
Var

[
Ŝ

(p,q)
j,k

]}
, (9)

where Φ(x) denotes the standard Gaussian cumulative distribution function. The asymptotic
variance of an element of the multivariate EWS estimator is easily shown to be:

Var
[
Ŝ

(p,q)
j,k

]
=

J∑
l1,l2=1

k+M∑
m1,m2=k−M

(A−1)j,l1(A−1)j,l2 wM (m1)wM (m2) Cov
[
I

(p,q)
l1,m1

, I
(p,q)
l2,m2

]
, (10)

where the covariance between any pair of wavelet periodogram elements is:

Cov
[
I

(p,q)
j,k , I

(p,q)
l,m

]
=

[
J∑
h=1

Bj,l,h(m− k)S(p,q)
h

(
k +m

2T

)]2

+
∏
r=p,q

J∑
h=1

Bj,l,h(m− k)S(r,r)
h

(
k +m

2T

)
+O

(
T−1

)
. (11)

Here, Bj,l,h(λ) = ∑
τ Ψj,h(τ)Ψl,h(τ − λ) is the inner product of cross-level autocorrelation

wavelet inner product function where Ψj,l(τ) = ∑
k ψj,k(0)ψl,k+τ (0) (Fryzlewicz and Nason

2006). Note that the special case {Aj,l = Bj,j,l(0)} for levels j, l = 1, . . . , J denotes the inner
product matrix that quantifies the leakage bias of the raw periodogram, see Section 3. The
variance is dependent on knowing the true EWS but this is typically unavailable. Conse-
quently, the variance is estimated by substituting the multivariate EWS estimate Ŝj,k.

5.1. Trivariate worked example continued

Before calculating the asymptotic variance, the autocorrelation wavelet inner product function
Bj,l,h(λ) must first be calculated. The command AutoCorrIP evaluates the inner product
functions for a given wavelet such as the Haar wavelet demonstrated below:

R> HaarACWIP <- AutoCorrIP(J = J, filter.number = 1, family = "DaubExPhase")

The AutoCorrIP command returns a (2T + 1)× J × J × J array that corresponds to the lag
λ and level indices j, l and h respectively.
As with the localized coherence and partial coherence estimates, the variance is evaluated as
a “plug-in” estimator based on a given multivariate EWS estimate. This is implemented by
varEWS as demonstrated below for the trivariate EWS estimate evaluated in Section 3.1:

R> VAR <- varEWS(object = EWS, ACWIP = HaarACWIP)



12 mvLSW: Multivariate Locally Stationary Wavelet Processes in R
−

10
10

20
30

40
50

60
S

pe
ct

ru
m

X1

−
10

10
20

30
40

50
60

S
pe

ct
ru

m

X2

0 200 400 600 800 1000

−
10

10
20

30
40

50
60

S
pe

ct
ru

m

Time
0 200 400 600 800 1000

Time
0 200 400 600 800 1000

Time

X3

Level
2

Figure 4: Panel plot of the trivariate EWS es-
timate with approximate, point-wise 95% con-
fidence intervals at the second level for the
simulated time series with Gaussian innova-
tions.
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Figure 5: Panel plot of the bootstrapped me-
dian and central, point-wise 95% intervals for
the trivariate EWS estimate at the second
level for the simulated time series with Gaus-
sian innovations.

The arguments of varEWS are:

• object: multivariate EWS as an mvLSW object.

• ACWIP: 4D array containing the autocorrelation wavelet inner product function.

Given the variance estimate, the approximate, point-wise 95% confidence interval for the
trivariate EWS elements is derived using ApxCI.

R> CI <- ApxCI(object = EWS, var = VAR, alpha = 0.05)

The arguments required for the ApxCI function are:

• object: multivariate EWS as an mvLSW object.

• var: variance estimate of the multivariate EWS as an mvLSW object.

• alpha: type I error.

The returned object is a list with two items named "L" and "U". These are objects having
class mvLSW, that contain the point-wise lower and upper interval bounds respectively. The
point-wise confidence intervals can be included on a plot of the multivariate EWS estimate
using the plot command demonstrated in Section 2.2 with the additional Interval argument.
The 95% confidence intervals for the trivariate EWS estimate in Figure 4 is generated by the
following command:

R> plot(x = EWS, style = 2, info = 2, Interval = CI)
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To demonstrate the accuracy of the 95% confidence intervals, the estimates are compared
against the 95% bootstrap intervals. The following extract evaluates the bootstrap intervals
from 100 simulated time series with power spectrum defined by the estimate trivariate EWS
in Section 3.1. The interval estimates for the second level are presented in Figure 5. It is
clear from comparing these estimates that the analytically derived intervals are close to those
obtained via bootstrapping.

R> Bsamp <- array(NA, dim = c(P, P, J, T, 100))
R> for (b in seq_len(100)) {
R> X_boot <- rmvLSW(Spectrum = EWS, noiseFN = rnorm)
R> EWS_boot <- mvEWS(X = X_boot, filter.number = 1, family = "DaubExPhase",
+ kernel.name = "daniell", kernel.param = sqrt(T), bias.correct = TRUE)
R> Bsamp[, , , , b] <- EWS_boot$spectrum
R> }
R> Bl <- as.mvLSW(x = apply(Bsamp, 1:4, quantile, prob = 0.025))
R> Bm <- as.mvLSW(x = apply(Bsamp, 1:4, quantile, prob = 0.5))
R> Bu <- as.mvLSW(x = apply(Bsamp, 1:4, quantile, prob = 0.975))
R> BInt <- list(L = Bl, U = Bu)
R> plot(Bm, style = 2, info = 2, Interval = BInt, lwd = 2)

6. European financial indices
We now illustrate the application of the package using EuStockMarkets, the European finan-
cial indices from the datasets package. The data set contains the daily index of the German
(DAX), Swiss (SMI), French (CAC) and British (FTSE) markets. The log-returns are eval-
uated to remove any trend features and the series is truncated to produce a time series of
length T = 1024. Figure 6 presents a trace plot of the time series. Each channel of the
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Figure 6: Log-returns time series of four European financial markets. Top-left: German DAX.
Top-right: French CAC. Bottom-left: Swiss SMI. Bottom-right: British FTSE.
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Figure 7: Panel plots at the finest (left) and second (right) levels of the multivariate EWS
estimate and approximate, point-wise 95% confidence intervals for the European market log-
returns.

time series is independently deemed to be non-stationary according to the test implements
by BootTOS from the costat package (Cardinali and Nason 2013).

R> data("EuStockMarkets", package = "datasets")
R> T <- 1024
R> J <- log2(T)
R> N <- nrow(EuStockMarkets)
R> EU.lret <- diff(log(EuStockMarkets))
R> EU.lret <- window(EU.lret, start = c(1994, 186))
R> plot(x = EU.lret, main = "EU Log Returns", nc = 2)

Estimation of the multivariate EWS is determined using Daubechies extremal phase wavelet
with seven vanishing moments, and smoothing is performed with the rectangular kernel func-
tion with span parameter M =

√
T = 32. The approximate (point-wise) 95% confidence

intervals for the multivariate EWS estimate are evaluated along with the localized coherence
and partial coherence estimates. These estimates are obtained using the following R extract
which produces plots of the multivariate EWS, Figure 7, localized coherence and localized
partial coherence, Figure 8; all for the finest and second levels.

R> EU.EWS <- mvEWS(X = EU.lret, family = "DaubExPhase", filter.number = 7,
+ kernel.name = "daniell", kernel.param = sqrt(T), bias.correct = TRUE)
R> ACWIP_FN7 <- AutoCorrIP(J = J, family = "DaubExPhase", filter.number = 7)
R> EU.VAR <- varEWS(object = EU.EWS, ACWIP = ACWIP_FN7)
R> EU.CI <- ApxCI(object = EU.EWS, var = EU.VAR, alpha = 0.05)
R> EU.R <- coherence(object = EU.EWS)
R> EU.G <- coherence(object = EU.EWS, partial = TRUE)
R> plot(x = EU.EWS, style = 2, info = 1, Interval = EU.CI)
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Figure 8: Panel plots at the finest (left) and second (right) levels of the localized coherence
(top) and localized partial coherence (bottom) estimates for the European market log-returns.

R> plot(x = EU.EWS, style = 2, info = 2, Interval = EU.CI)
R> lim <- c(-1, 1)
R> lab1 <- "Coherence"
R> lab2 <- "P. Coh."
R> plot(x = EU.R, style = 2, info = 1, diag = F, ylim = lim, ylab = lab1)
R> plot(x = EU.R, style = 2, info = 2, diag = F, ylim = lim, ylab = lab1)
R> plot(x = EU.G, style = 2, info = 1, diag = F, ylim = lim, ylab = lab2)
R> plot(x = EU.G, style = 2, info = 2, diag = F, ylim = lim, ylab = lab2)

The non-stationary aspect of the time series is evident in Figure 7 as the spectral power
peaks around mid-1997, at both the finest and second levels. The local coherence estimates,
Figure 8 (top panels), identify that the four channels have strong linear dependence. However,
the local partial coherence estimates in Figure 8 (bottom panels) are lower. This indicates that
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some of the linear dependence between a given market pair occurs indirectly because of their
relationship with the other (observed) markets. For example, at the finest level, the average
coherence between SMI and CAC is 0.63 but its average partial coherence drops to 0.16.
The partial coherence estimate at the second and coarser levels becomes more challenging to
interpret as some matrices of the multivariate EWS are near singular.

7. Discussion
The mvLSW package contains a number of tools to assess a multivariate non-stationary time
series under the locally stationary wavelet framework defined by Park et al. (2014). The
main command mvEWS estimates the multivariate EWS for a LSW time series, Section 3.1,
and is flexible for the user to specify the best wavelet transform and smoothing kernel that is
most appropriate to explore the spectral structure of the time series. However, perhaps more
usefully, the package also includes tools for analyzing the dependence structure that occurs
between pairs of channels, as described by the localized coherence and partial coherence
measures presented in Section 4.1. Uncertainty in the multivariate EWS estimate can be
quantified analytically by the routines demonstrated in Section 5.1 in evaluating approximate,
point-wise, 95% confidence intervals for the spectral elements.
A complete case study for examining the spectral structure of the European financial indices
EuStockMarkets was demonstrated in Section 6. This showed that a major non-stationary
feature occurs due to a peak in power at the finest level in 1997. Furthermore, analysis of the
coherence structure identifies that the indices are strongly and positively linearly dependent
with a notable fraction arising from the indirect relationship between all four markets.
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