
JSS Journal of Statistical Software
May 2019, Volume 89, Issue 13. doi: 10.18637/jss.v089.i13

ggenealogy: An R Package for Visualizing
Genealogical Data

Lindsay Rutter
Iowa State University

Susan VanderPlas
Iowa State University

Dianne Cook
Monash University

Michelle A. Graham
USDA Agriculture Research Service

Abstract

This paper introduces ggenealogy (Rutter, Vanderplas, and Cook 2019), a developing
R software package that provides tools for searching through genealogical data, generating
basic statistics on their graphical structures using parent and child connections, parsing
and performing calculations on branches of interest, and displaying the results. It is pos-
sible to draw the genealogy in relation to variables related to the nodes, and to determine
and display the shortest path distances between the nodes. Production of pairwise dis-
tance matrices and genealogical diagrams constrained on generation are also available in
the visualization toolkit. The tools are being tested on a dataset with milestone cultivars
of soybean varieties (Hymowitz, Newell, and Carmer 1977) as well as on a web-based
database of the academic genealogy of mathematicians (North Dakota State University
and American Mathematical Society 2010). The latest stable package version is available
in source and binary form on the Comprehensive R Archive Network (CRAN).

Keywords: genealogy, data visualization, statistical graphics, exploratory data analysis, inter-
active, R.

1. Introduction
Genealogy is the study of parent-child relationships. By tracing through parent-child lineages,
genealogists can study the histories of features that have been modified over time. Compar-
ative geneticists, computational biologists, and bioinformaticians commonly use genealogical
tools to better understand the histories of novel traits arising across biological lineages. For
example, desirable modifications in crops could include an increase in protein yield or an

https://doi.org/10.18637/jss.v089.i13

2 ggenealogy: Visualizing Genealogical Data in R

increase in disease resistance, and genealogical structures could be used to assess how these
desirable traits developed. At the same time, genealogical lineages can also be used to assess
detrimental features, such as to determine the origin of hazardous traits in rapidly-evolving
viruses.
Genealogical structures can also serve as informative tools outside of a strict biological sense.
For instance, we can trace mentoring relationships between students and dissertation super-
visors with the use of academic genealogies. This can allow us to understand the position
of one member in the larger historical picture of academia, and to accurately preserve past
relationships for the knowledge of future generations. Similarly, linguistic genealogies can be
used to decipher the historical changes of vocabulary and grammatical features across related
languages. In short, there is a diverse array of disciplines that can elicit useful information
about features of interest by using genealogical data.
In all these examples, the genealogical relationships can be represented visually. Access to
various types of plotting tools can allow scientists and others to more efficiently and ac-
curately explore features of interest across the genealogy. We introduce here a developing
visualization toolkit that is intended to assist users in their exploration and analysis of ge-
nealogical structures. In this paper, we demonstrate the main tools of the software package
ggenealogy (Rutter et al. 2019) using two example genealogical datasets, one of soybean cul-
tivars (Hymowitz et al. 1977) and the other of academic mathematicians (North Dakota State
University and American Mathematical Society 2010).

2. Available software
Publishing in the open source R statistical programming language (R Core Team 2019) allows
for tools to be distributed and modified at ease, encourages cross-platform collaboration,
and provides a foundation for effective and aesthetic data visualization from the grammar of
graphics. There are several useful R packages that offer tools for analyzing and visualizing
genealogical datasets. Here, we introduce these packages, and emphasize the new features
that ggenealogy brings to this collection of work.
The R package pedigree is named after the standardized chart used to study human family
lines, and sometimes used to select breeding of animals, such as show dogs (Coster 2013). This
package does provide tools that perform methods on parent-child datasets, such as rapidly
determining the generation count for each member in the pedigree. However, it does not
provide any visualization tools.
Another R package called kinship2 does produce basic pedigree charts (Therneau, Daniel,
Sinnwell, and Atkinson 2015). In Figure 1, we provide an example pedigree chart from the
kinship2 package vignette. This pedigree chart adheres to the standard set of symbols used
for visualizing genealogical structures: Males are represented with squares and females with
circles. Parents are connected to each other by horizontal lines, and to their children by
vertical lines. Siblings are connected by horizontal sibship lines. Even though this standard
pedigree chart creates powerful charts that can be applied across many applications, it cannot
provide unequivocal information in many situations where inter-generational breeding occurs,
as is often the case in agronomic genealogical lineages.
We demonstrate how the standardized pedigree charts in the kinship2 package generate am-
biguous results in such scenarios by superimposing a hypothetical inter-generational breeding

Journal of Statistical Software 3

Figure 1: Example pedigree chart from the kinship2 package, where the vertical axis denotes
generation count. We superimposed green-highlighted individual 215 for explanatory pur-
poses. As an offspring of a parent-child relationship, individual 215 is both a second and
third generation individual. Hence, it should be displayed twice on the vertical axis, once
for each of its generation counts. However, most standard pedigree tools only allow for an
individual to be displayed once. In the kinship2 package, individuals can indeed be displayed
more than once. However, each child must have zero or two parents (one male and one fe-
male). These restrictions make it impossible to plot genealogical data by generation count in
cases where there are many inter-generational breedings.

case in Figure 1. In that figure, each generation is defined by its position on the vertical
axis, with the first generation containing individuals 201 and 202. We superimposed green-
highlighted individual 215 onto the pedigree chart for explanatory purposes. Its parents are
individuals 201 and 206, which are from generations one and two, respectively, and have a
parent-child relationship between themselves. As an offspring of a parent-child relationship,
individual 215 is both a second and third generation individual. Hence, individual 215 should
be displayed in both second and third generational positions on the vertical axis. However,
most standard pedigree tools only allow for an individual to be displayed once. As a result,
in special cases where inter-generational breading occurs, such as in agronomic applications,
most standardized tools for visualizing genealogical information ambiguously portray the ge-
nealogical dataset by generation count.
In the kinship2 package, if an individual cannot be represented with only one instance, then
it will be completely copied and connected with dotted lines to the relevant individuals.
However, the package requires that each child has exactly zero or two parents; if a child has
two parents, then one must be female and one must be male. These requirements preclude
certain genealogical datasets from being plotted by generation count, especially when their
complexity increases with inter-generational breeding.
In addition, popular graph drawing software such as GraphViz and Cytoscape can be used

4 ggenealogy: Visualizing Genealogical Data in R

Figure 2: Example genealogical display using popular graph software like GraphViz and
Cytoscape, with generation count denoted by the vertical axis. As was shown in Figure 1,
the green node has parents from two different generations, and hence must be ambiguously
positioned as one of two generation counts.

to visualize genealogical structures (Gansner and North 2000, Shannon et al. 2003). Graphs
are defined as objects with sets of nodes and edges, where sets indicate that their comprised
elements cannot be repeated. In other words, graphical structures do not allow for repeated
nodes, and hence, as is the case with the aforementioned R packages, these popular graph
plotting software packages cannot precisely portray the genealogical dataset in cases of inter-
generational breeding.
We again illustrate this problem in Figure 2 with an example genealogy using popular graph
drawing software like GraphViz and Cytoscape. Here, generation count is denoted by the
vertical axis. As was shown in Figure 1, here too we superimpose a green node that has
parents from two different generations. This green node is both a second and third generation
individual, and should be displayed in both corresponding generation positions on the vertical
axis. However, standard graph visualization tools only allow for a given node to be displayed
once. As a result, this green node must be ambiguously positioned in either the second or
third generation position; in the figure, it is denoted as a third generation individual. In
Section 9, we will demonstrate ggenealogy plots that can remedy these problems.

3. Package overview
We will now provide a brief overview of the functionality of the ggenealogy package before
going into more detail with examples later in this paper. With the ggenealogy package,
users can convert genealogical data into graph structures. This allows for users to efficiently
traverse, analyze, and elicit graph theoretical measurements on genealogical lineages (see
Section 6). These capabilities were developed by building upon the igraph package (Csardi
and Nepusz 2006).
Additionally, the ggenealogy package allows for users to plot genealogical data in multiple
ways. Users can obtain and plot the shortest path between two nodes of interest constrained on
a variable of interest (see Section 7), superimpose a shortest path between two nodes of interest

Journal of Statistical Software 5

with the entire genealogical structure constrained on a variable of interest (see Section 8),
plot the ancestors and descendants of a node of interest constrained on generation count (see
Section 9), and plot distance matrices based on a variable of interest (see Section 10). Most of
these plotting tools were developed by building upon the ggplot2 package (Wickham 2009).
As such, most of these plotting tools can be customized by appending syntax from the ggplot2
package, as will be demonstrated in example code throughout this paper. Moreover, some
of these plotting tools have interactive capabilities that were developed with the use of the
plotly package (Sievert et al. 2019, see Section 12).

4. Example datasets
The ggenealogy package comes with two example datasets, one comprises a soybean genealogy
and the other comprises an academic statistician genealogy. We will introduce both example
datasets in this paper to demonstrate some of the tools available in the software.

4.1. Soybean genealogy

We start with the soybean genealogy, which is available as a data frame structure with 390
rows and five columns. These data were collected from field trials, genetic studies, and United
States Department of Agriculture (USDA) bulletins, and date as early as the first decade of
the 1900s. They contain information on the copy number variants, single nucleotide polymor-
phisms, and protein content for each of the varieties, although we removed that information for
a succinct example dataset. In this context, the software could ideally be used by agronomists
who wish to study how soybean varieties are related. By referencing the visualization of the
genealogical structure, these scientists may better understand genetic testing results – in
this particular dataset, in terms of copy number variants, single nucleotide polymorphisms,
protein content, and yield – and use that knowledge in future breeding decisions.
Each row contains information about a particular child soybean variety, including the name
of the child, its yield, the year it was released, whether or not its release year was imputed,
and the name of its parent. It should be noted that it typically requires many crosses over
the span of one to two decades to develop a new variety that has introduced a desired trait
and/or removed an undesired trait. Hence, the release year variable in this dataset represents
the year in which the variety was released to the public after its development period. While
the name of the child is required, the other four columns can have missing values (which are
represented in R with the symbol NA for “not available”). As a result, while each row does
contain information about a particular child soybean variety, whether or not a given row also
contains information about a parent-child relationship between a pair of soybeans depends
on whether or not the parent column has a missing value.
In total, there are 230 soybean varieties in the dataset, 206 of which are children and 165 of
which are parents. There are soybeans that are both children and parents. Of the children,
156 have two parents, 28 have one parent, and 22 have zero parents. There are 340 parent-
child relationships in the dataset.
We can load the example dataset of soybean genealogy (sbGeneal) and examine its structure.

R> library("ggenealogy")
R> library("dplyr")

6 ggenealogy: Visualizing Genealogical Data in R

R> data("sbGeneal", package = "ggenealogy")
R> str(sbGeneal)

'data.frame': 390 obs. of 5 variables:
$ child : chr "5601T" "Adams" "A.K." "A.K. (Harrow)" ...
$ devYear : num 1981 1948 1910 1912 1968 ...
$ yield : int NA 2734 NA 2665 NA 2981 2887 2817 NA NA ...
$ yearImputed: logi TRUE FALSE TRUE FALSE FALSE FALSE ...
$ parent : chr "Hutcheson" "Dunfield" NA "A.K." ...

4.2. Academic genealogy of statisticians

The ggenealogy package also comes with an academic genealogy of statisticians; this dataset
is in the form of a data frame with 8165 rows and six columns. To develop this later dataset,
we contacted the (North Dakota State University and American Mathematical Society 2010),
a web-based database for the genealogy of academic mathematicians. This database, which
currently contains almost 200,000 entries, is a service of the North Dakota State University
Department of Mathematics and the American Mathematical Society. The Mathematics
Genealogy Project contact provided us a structured query language (SQL) export, and we
used PostgreSQL to query the database (PostgreSQL 2016).
Each entry in the database contained 26 variables pertaining to an individual who received
a graduate-level academic degree in mathematics. One of these variables was called “msc”
(mathematics subject classification), and we selected only those entries that contained a
value of 62 for this variable (coded as “Statistics”). Furthermore, we only retained entries
that had a parent if that parent was also in the field of “Statistics”. Hence, in our parent-child
relationships, both the child and the parent received post-baccalaureate degrees in statistics,
and the parent was the academic advisor to the child. This process resulted in 8995 entries,
which we reduced to 8165 entries by removing duplicate entries. With the final data frame of
8165 entries, we only maintained six of the original 26 variables.
Each row of the final data frame contains information about a particular child who received
a graduate-level academic degree in statistics, including the name of the child, the year the
child obtained the degree, the country and school from which the child obtained the degree,
the thesis title of the degree awarded to the child, and the name of its parent. There are
no missing values for the country and school from which the child received its degree or the
name of the child; however, some of the years contain missing values (NA), and some of the
parent and thesis names contain empty strings (""). As a result, while each row does contain
information about a particular child, whether or not a row also contains information about a
parent-child relationship between a pair of academic statisticians depends on whether or not
the parent column has an empty string.
In total, there are 7122 individuals in the dataset, 7122 of which are children and 872 of which
are parents. Every parent is also a child, but not every child is also a parent. Of the children,
two have four parents, ten have three parents, 226 have two parents, 2801 have one parent,
and 4083 have no parents. There are 3291 parent-child relationships in the dataset.
We can load the example dataset of academic genealogy of statisticians (statGeneal) and
examine its structure.

Journal of Statistical Software 7

R> data("statGeneal", package = "ggenealogy")
R> dim(statGeneal)

[1] 8165 6

R> colnames(statGeneal)

[1] "child" "parent" "gradYear" "country" "school" "thesis"

R> statGenealEP <- statGeneal %>% filter(parent != "")
R> statIG <- dfToIG(statGenealEP)
R> uCP <- na.omit(c(statGeneal$child, statGeneal$parent))
R> length(unique(uCP[uCP != ""]))

[1] 7122

R> uChild <- unique(na.omit(statGeneal$child))
R> uParent <- unique(na.omit(statGeneal$parent))
R> nrow(na.omit(summarise(group_by(statGeneal,child))))

[1] 7122

R> nrow(na.omit(summarise(group_by(statGeneal,parent))))

[1] 872

R> table(summarise(group_by(statGenealEP,child),
+ cPC = sum(!is.na(parent)))$cPC)

1 2 3 4
2801 226 10 2

R> getBasicStatistics(statIG)$numEdges

[1] 3291

5. Genealogical input format
As is the case with both example data files introduced above, ggenealogy requires that the
genealogy input file is a data frame structure with at least two columns. One column must be
labeled “child”, and each case in that column must be of type character. The other column
must be labeled “parent”, and each case in that column must either be of type character,
type NA, or type "". At this point, any ggenealogy plot that only requires information about
parent-child relationships can be used.

8 ggenealogy: Visualizing Genealogical Data in R

However, some ggenealogy plots also make use of quantitative variable values associated with
individuals in the genealogy. For these plots, the input data frame should also contain a
third quantitative variable column. Each case in this quantitative variable column should be
of type numeric. In the first example dataset, columns that could be used for this purpose
include “devYear”, “yield”, and “yearImputed”; in the second example dataset, the column
that could be used for this purpose is “gradYear”. However, for these quantitative variable
columns to successfully be used in plots, we would first need to assure that each row within
them contains a numeric value (not NA). We could achieve this by filtering out or imputing
certain rows that contain NA values for this column of interest. We demonstrate a filtering
process for this purpose at the end of Section 7. After that, any ggenealogy plot can be used.

6. Generating a graphical object
Most functions in the ggenealogy software package require an input parameter of a graph
structure. Therefore, as a preprocessing step, we must first convert our original data frame
structure into a graph structure. Below, we read in the R data file sbGeneal that is included
in the package as a sample dataset of soybean genealogy.
We now convert it into an igraph object sbIG using the function dfToIG().

R> sbIG <- dfToIG(sbGeneal)
R> sbIG

IGRAPH UNW- 230 340 --
+ attr: name (v/c), weight (e/n)
+ edges (vertex names):
[1] 5601T --Hutcheson Adams --Dunfield
[3] A.K. --A.K. (Harrow) Altona --Flambeau
[5] Amcor --Amsoy 71 Adams --Amsoy
[7] Amsoy 71 --C1253 Anderson --Lincoln
[9] Bay --York Bedford --Forrest

[11] Beeson --Kent Blackhawk--Richland
[13] Bonus --C1266R Bradley --J74-39
[15] Bragg --Jackson Bragg --Bragg x D60-7965
+ ... omitted several edges

There are many statistics about the sbGeneal dataset that we may wish to know that cannot
easily be obtained through images and tables. The package function getBasicStatistics()
can be called, using the sbIG object as input. This will return a list of common graph
theoretical measurements regarding the genealogical structure. For instance, is the whole
structure connected? If not, how many separated components does it contain? In addition
to these statistics, the getBasicStatistics() function will also return the number of nodes,
the number of edges, the average path length, the graph diameter, and other graph theoretical
information.

R> getBasicStatistics(sbIG)

Journal of Statistical Software 9

$isConnected
[1] FALSE

$numComponents
[1] 11
$avePathLength
[1] 5.333746

$graphDiameter
[1] 13
$numNodes
[1] 230

$numEdges
[1] 340
$logN
[1] 5.438079

7. Plotting a shortest path
With soybean lineages, it may be useful for soybean breeders to track how two varieties are
related to each other via parent-child relationships. Then, any dramatic changes in yield and
other measures of interest between the two varieties can be traced across their genetic timeline.
The ggenealogy package allows users to select two varieties of interest, and determine the
shortest pathway of parent-child relationships between them, using the getPath() function.
This will return a list that contains the path, along with the variety name and quantitative
variable value of interest for each variety in the path. For this example, we will use the
development year (from the column “devYear”) as our quantitative variable.

R> pathTN <- getPath("Tokyo", "Narow", sbIG, sbGeneal, "devYear")
R> pathTN

$pathVertices
[1] "Tokyo" "Volstate" "Jackson" "R66-873" "Narow"
$variableVertices
[1] "1907" "1942" "1954.5" "1971.5" "1985"

The returned path object can then be plotted using the plotPath() function.

R> plotPath(pathTN, sbGeneal, "devYear")

This produces a visual that informs users of all the varieties involved in the shortest path
between the two varieties of interest (see left half of Figure 3). In this plot, the release year
of all varieties involved in the path are indicated on the horizontal axis, while the vertical
axis has no meaning other than to simply to display the labels evenly spaced vertically. The
shortest path between varieties Tokyo and Narow is composed of a unidirectional series of

10 ggenealogy: Visualizing Genealogical Data in R

Figure 3: Left: The shortest path between varieties Tokyo and Narow is strictly composed of
a unidirectional sequence of parent-child relationships. Right: The shortest path between va-
rieties Zane and Bedford is not strictly composed of unidirectional parent-child relationships;
they instead have a cousin-like relationship.

parent-child relationships, with Tokyo as the starting ancestor in the early 1900s, Narow as
the most recent descendant in the mid 1980s, and three varieties in between.
Next, we can run the same set of functions on a different pair of varieties. First, we can call
the ggenealogy function getVariable() using the input quantitative variable of development
year. This indicates that variety Bedford was released in 1978 and variety Zane in 1985.

R> getVariable("Bedford", sbGeneal, "devYear")

[1] 1978

R> getVariable("Zane", sbGeneal, "devYear")

[1] 1985

We can then create a plot showing the shortest path between these two varieties of interest. As
this is a longer path, we may also consider setting the fontFace variable of the plotPath()
function to a value of 2, indicating we wish to boldface the two varieties of interest. In
addition, as is the case with plotting tools in ggenealogy, we can append ggplot2 syntax. In
this case, we may wish to hard code the x-axis label from its default value of “devYear” (the
inputted quantitative variable column name) to the more readable “Development Year”.

Journal of Statistical Software 11

Figure 4: Left: Plotting a path of interest using a new quantitative variable of interest,
“Yield”. Right: Plotting a path of interest using two quantitative variables. We see that the
varieties Clark and Lawrence have lower yields than the varieties in the middle of the path.

R> pathBZ <- getPath("Bedford", "Zane", sbIG, sbGeneal, "devYear")
R> plotPath(pathBZ, sbGeneal, "devYear", fontFace = 2) +
+ ggplot2::xlab("Development Year")

The resulting plot (right half of Figure 3) allows us to quickly determine that Bedford is
not a parent, grandparent, or any great grandparent of Zane. Instead, we see that these
two varieties are not related through a unidirectional parent-child lineage, but instead have
a cousin-like relationship. The oldest common ancestor between Zane and Bedford is the
variety D55-4090, which was released in the mid 1940s.
Furthermore, as seen in the figure, for both Zane and Bedford, there are four varieties of
unidirectional parent-child relationships between each of them and their common ancestor
D55-4090. Hence, any feature that differentiates Zane and Bedford (protein content, yield,
disease resistance, etc.) can also be examined across these two separate lineage histories.
We would like to note that the plotPath() function can be used with one or two quantitative
variables that the user hard-codes. We illustrate this with the sbGeneal data frame after we
subset it to remove observations that do not have values for the quantitative variable “yield”.
Then, we can examine the path between the varieties Clark and Lawrence and plot how
the quantitative variable “yield” changes along the parent-child relationships of that path.
Likewise, we plot how the quantitative variables “devYear” and “yield” both change along
the parent-child relationships of that path. The output of these two calls to the plotPath()
function can be viewed in Figure 4.

12 ggenealogy: Visualizing Genealogical Data in R

R> sbFilt <- sbGeneal[complete.cases(sbGeneal[1:3]),]
R> sbFiltIG <- dfToIG(sbFilt)
R> pathCL <- getPath("Clark", "Lawrence", sbFiltIG, sbFilt, "yield")
R> plotPath(pathCL, sbFilt, "yield") + ggplot2::xlab("Yield")
R> pathCL2 <- getPath("Clark", "Lawrence", sbFiltIG, sbFilt, "devYear")
R> plotPath(pathCL2, sbFilt, "devYear", "yield") +
+ ggplot2::xlab("Development Year") + ggplot2::ylab("Yield")

8. Superimposing a shortest path on a tree
Now that we can create path objects, we may wish to know how those paths are positioned
compared to the entire genealogical lineage. For instance, of the documented soybean cultivar
lineage varieties, where does the shortest path between two varieties of interest exist? Are
these two varieties older compared to the overall data structure? Are they newer? Or, do
they span the entire structure, and represent two extreme ends of documented time points?
There is a function available in the ggenealogy package plotPathOnAll() that can allow users
to quickly visualize their path of interest superimposed over all varieties and edges present in
the whole data structure. Here we will produce a plot of the shortest path between varieties
Tokyo and Narow across the entire dataset, as is displayed in Figure 5.

R> plotPathOnAll(pathTN, sbGeneal, sbIG, "devYear", bin = 3, pathEdgeCol =
+ "red", nodeSize = 2.5, pathNodeSize = 4) +
+ ggplot2::theme(axis.text = ggplot2::element_text(size = 12),
+ axis.title = ggplot2::element_text(size = 12))

In the code above, syntax from the ggplot2 package was appended to the plotPathOnAll()
function; this can be done for most ggenealogy functions. While the first four explicit pa-
rameters have been introduced earlier in this paper, the fifth parameter (bin) requires some
explanation. The motivation of the plotPathOnAll() function is to write node labels on a
plot, with the center of each node label constricted on the horizontal axis to its quantitative
variable of interest (in this case, development year). As is the case for the plots before, the
vertical axis has no meaning other than providing a plotting area in which to draw the node
labels (unless a user specifies a second quantitative variable of interest, as we will demonstrate
later). Unfortunately, for large datasets, this motivation can be a difficult task because the
text labels of the varieties can overlap if they are assigned a similar y coordinate, have a
similar year (x coordinate), and have long text labels (width of x coordinate).
For each variety, the x coordinate (year) and width of the x coordinate (text label width)
cannot be altered, as they provide useful information. However, for each variety, the y coor-
dinate is arbitrary. Hence, in an attempt to mitigate text overlapping, the plotPathOnAll()
function does not randomly assign the y coordinate. Instead, it allows users to partially
control the y coordinates with a user-determined number of bins (bin).
If the user decides to produce a plot using three bins, as in the example code above, then the
varieties are all grouped into three bins based on their year values. In other words, there will
be bin 1 (the “oldest bin”) which includes the one-third of varieties with the oldest years of
release, bin 2 (the “middle bin”), and bin 3 (the “youngest bin”). Then, in order to decrease
text overlap, the consecutively increasing y-axis coordinates are alternatively assigned to the

Journal of Statistical Software 13

Figure 5: The shortest path between Tokyo and Narow, superimposed over the data structure,
using a bin size of 3.

three bins (for example: bin 1, bin 2, bin 3, bin 1, bin 2, bin 3, . . .) repeatedly until all
varieties are addressed. This algorithm means that for any pair of varieties within a given
bin, there are exactly two other varieties vertically separating them.
In the code above, bin was assigned a value of 3, and pathEdgeCol was assigned a value of
“red”. Additionally, we specified a size of 2.5 for the non-path node test using the nodeSize
parameter, and a size of 4 for the path node text using the pathNodeSize parameter. There
are several other parameters in the plotPathOnAll() function, which can be read in more
detail using the help command.
This code resulted in Figure 5, where we see that edges not on the path of interest are thin
and gray by default, whereas edges on the path of interest are bolded by default. We also see
that variety labels in the path of interest are boldfaced by default. Figure 5 presents useful
information: We immediately gather that the path of interest does span most of the years
of the data structure. In fact, Tokyo appears to be the oldest variety in the dataset, and
Narow appears to be one of the youngest varieties. We can also determine that the majority
of varieties were released between 1950 and 1970.
However, Figure 5 has significant empty spaces between the noticeably distinct bins, whereas
almost all text labels are overlapping, thereby decreasing their readability. To force text
labels into these spaces, the user may consider using a larger number of bins. Hence, we next
examine a bin size of 6 to create Figure 6.

R> plotPathOnAll(pathTN, sbGeneal, sbIG, "devYear", bin = 6, pathEdgeCol =
+ "seagreen2", nodeSize = 1, pathNodeSize = 3) +
+ ggplot2::xlab("Development Year")

14 ggenealogy: Visualizing Genealogical Data in R

Figure 6: The shortest path between Tokyo and Narow, superimposed over the data structure,
using a bin size of 6.

We can immediately see that Figure 6 more successfully mitigates text overlap compared to
Figure 5. We also confirm what we saw in the previous plot that most varieties were released
between 1950 and 1970, and any textual overlap is confined to this range of years.
Notice again from Figure 5 that the default horizontal axis label for the plotPath() method
has a value of “devYear”. We wanted to change the default value of the horizontal axis
label to “Development Year”. We did this in the code above for Figure 6 by appending the
ggplot2::xlab() function.
We would like to emphasize that the plotPathOnAll() function can be used with one or
two quantitative variables that the user hard-codes. We demonstrate this using the filtered
data frame and igraph objects (sbFilt and sbFiltIG) to assure that there were no NA values
in the quantitative variable “yield”. Then, we can examine the path across the remaining
genealogical structure and how the quantitative variable “yield” changes along the parent-child
relationships of that path. Likewise, we can plot how the quantitative variables “devYear”
and “yield” both change along the parent-child relationships of that path. The output of
these two calls to the plotPathOnAll() function can be viewed in Figure 7.

R> plotPathOnAll(pathCL, sbFilt, sbFiltIG, "yield", bin = 3, pathEdgeCol =
+ "purple") + ggplot2::xlab("Yield")
R> plotPathOnAll(pathCL, sbFilt, sbFiltIG, "yield", "devYear",
+ pathEdgeCol = "orange") + ggplot2::xlab("Yield") +
+ ggplot2::ylab("Development Year")

Journal of Statistical Software 15

Figure 7: Left: Plotting a path of interest across the genealogical structure using a new quan-
titative variable of interest, “Yield”. Right: Plotting a path of interest across the genealogical
structure using two quantitative variables. We see that an increase in development year might
correlate with an increase in yield for the varieties in this dataset, and that our path of interest
is composed of generally younger varieties compared to the dataset as a whole.

9. Plotting ancestors and descendants by generation
The most novel visual function in ggenealogy, plotAncDes() allows users to view the ancestors
and descendants of a given variety. The inputted variety is highlighted in the center of the
plot, ancestors are displayed to the left of the center, and descendants are displayed to the
right of the center. The further from the center that a variety is located, the more generations
that variety is distanced from the centered variety of interest. This particular ggenealogy tool
is uniquely beneficial because most genealogy and graph visualization software packages do
not allow for repeated node labels even though some genealogical datasets require repeated
node labels in order to be visualized by generation counts (as was shown in Figures 1 and 2).
To demonstrate this tool, we will create a plot of the ancestors and descendants of the variety
Lee. We specify that the maximum number of ancestor and descendant generations are both
6, and that the text of the variety of interest is highlighted in blue:

R> plotAncDes("Lee", sbGeneal, mAnc = 6, mDes = 6, vCol = "blue")

This generates the top plot of Figure 8. We notice that Lee has 3 generations of ancestors
and 5 generations of descendants. We also notice that some varieties are repeated, which is
a unique feature provided by ggenealogy. For example, the variety 5601T is represented four

16 ggenealogy: Visualizing Genealogical Data in R

Figure 8: Top: All ancestors and descendants of the variety Lee are shown in this ggenealogy
plot. Bottom: For didactic purposes, this plot was constructed manually outside of the
ggenealogy package. It mimics the blue paths in the ggenealogy plot on the top, only now
nodes cannot be repeated. The parenthetical numbers above each node represent the set of
generation counts that node is away from the center node Lee. The presence of red parentheses
indicates that the plot on the bottom ambiguously displays the example soybean genealogy
in contrast to the way that the ggenealogy plot on the top can accomplish.

times – once as a third generation descendant of Lee, once as a fourth generation descendant
of Lee, and twice as a fifth generation descendant of Lee. The variety 5601T was repeated
multiple times because there are multiple paths between Lee and 5601T. For explanation
purposes, all paths between Lee and 5601T were manually highlighted in blue.
The bottom plot of Figure 8 is not an output plot of ggenealogy. Instead, it was simply
created for didactic purposes. Here, the paths that were manually highlighted in blue in
the top plot produced by ggenealogy are shown again, only now nodes cannot be repeated.
The parenthetical number above each node represents the set of generation counts distancing
that node from the center node Lee; green parentheses indicate that the node could be
successfully placed in one horizontal position, but red parentheses indicate that the node
could not be successfully placed in one horizontal position. We see that node TN89-39 cannot
simultaneously be represented as both a third and fourth descendant of node Lee, and node
5601T cannot simultaneously be represented as a third, fourth, and fifth descendant of node

Journal of Statistical Software 17

Lee. Hence, without allowing nodes to repeat, this dataset cannot be presented in the graph
on the bottom as it can be in the ggenealogy graph on the top. This is a current limitation
in other genealogy and graphical software that ggenealogy can now provide.

10. Plotting a distance matrix
It may also be of interest to generate matrices where the colors indicate a variable between all
pairwise combinations of inputted varieties. The package ggenealogy also provides a function
plotDegMatrix() for that purpose. We can demonstrate this function with the variable
being the shortest path degree between a given pair of varieties. The shortest path degree
is calculated as the smallest number of parent-child edges needed to traverse between two
varieties of interest. For instance, in Figure 3, the shortest path degree between Tokyo and
Narow is four and the shortest path degree between Bedford and Zane is ten.
Here we generate a distance matrix for a set of 10 varieties, setting the x-label and y-label as
“Variety” and the legend label as “Degree”. In this example, we add ggplot2 functionality to
specify that pairs with small degrees are white, while those with large degrees are dark green,
as well as to specify the text size of the legend title and label.

R> varieties <- c("Brim", "Bedford", "Calland", "Dillon", "Hood", "Narow",
+ "Pella", "Tokyo", "Young", "Zane")
R> plotDegMatrix(varieties, sbIG, sbGeneal) +
+ ggplot2::scale_fill_continuous(low = "white", high = "darkgreen") +
+ ggplot2::theme(legend.title = ggplot2::element_text(size = 15),
+ legend.text = ggplot2::element_text(size = 15)) +
+ ggplot2::labs(x = "Variety", y = "Variety")

This creates the plot in Figure 9. We see that the degree of the shortest path between varieties
Bedford and Zane is 10, which is consistent with what we saw earlier in Figure 3. However,
we now also see that a shortest path degree of 10 may be considered relative to the rest of
this dataset.

Figure 9: The shortest path degree matrix between ten varieties of interest.

18 ggenealogy: Visualizing Genealogical Data in R

11. Academic genealogy of statisticians
An academic genealogy is the second dataset provided in the package, where every parent
is also a child and some children have more than two parents, as was briefly described in
Section 4. Neither of these features were present in the plant breeding genealogy. Additionally,
the academic genealogy is much larger than the plant breeding genealogy. Some of these
differences may affect how one would approach ggenealogy plotting tools. For this reason, we
will now demonstrate some of the ggenealogy plotting tools we already introduced, only now
applied to the academic genealogy.
The ability to plot ancestors and descendants by generation was demonstrated using the
plant breeding genealogy in Figure 8. As we believe this is the most novel plotting tool in
the ggenealogy package, we will test it again here using the academic genealogy.
We need to choose a central individual of interest in order to create this plot. Perhaps we can
use the academic statistician in the dataset that has the largest number of “descendants”. To
determine the name of this individual, below we use the ggenealogy function getNode() to
create a vector indVec that contains the names of all individuals in the dataset. We then use
the dplyr package to apply the ggenealogy function getDescendants() on each individual in
the indVec vector (Wickham, François, Henry, and Müller 2019). We set the parameter gen
to a conservatively large value of 100 as this dataset is unlikely to have any individuals with
more than 100 generations of “descendants”.
After that, we can generate a table to examine all values of “descendant” counts in the
dataset, along with the number of individuals who have each of those values of “descendant”
counts. Of the 8165 individuals in this dataset, 6251 of them have zero “descendants”, 322
of them have one “descendant”, and 145 of them have two “descendants”. There are only 17
individuals who have more than 30 “descendants”, and there is one individual who has the
largest value of 159 “descendants”. We determine that this individual is the prominent British
statistician Sir David Cox, who is known for the Box-Cox transformation and Cox processes,
as well as for mentoring many younger researchers who later became notable statisticians
themselves.

R> library("dplyr")
R> indVec <- getNodes(statGeneal)
R> indVec <- indVec[which(indVec != "",)]
R> dFunc <- function(var) nrow(getDescendants(var, statGeneal, gen = 100))
R> numDesc <- sapply(indVec, dFunc)
R> table(numDesc)

numDesc
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

6251 322 145 88 58 36 31 22 23 14 17 13 14 10 9
15 16 17 18 19 20 21 22 23 24 25 26 27 29 30
6 4 3 2 5 7 4 3 3 2 2 6 1 1 3

34 37 38 40 41 44 45 48 49 60 61 75 77 84 159
2 1 1 1 1 1 1 1 2 1 1 1 1 1 1

R> which(numDesc == 159)

Journal of Statistical Software 19

David Cox
1980

We can now visualize how these 159 “descendants” are related to Sir David Cox by calling
the plotAncDes() function of ggenealogy, similar to what we did to generate Figure 8. As
such, we create Figure 10 using the code below.

R> plotAncDes("David Cox", statGeneal, mAnc = 6, mDes = 6, vCol = "blue")

We see from Figure 10 that Sir David Cox had 42 “children”, many of them becoming notable
statisticians themselves, such as Basilio Pereira, Valerie Isham, Gauss Cordeiro, Peter
McCullagh, and Henry Wynn. Of his “children”, the one who produced the most “children”
of their own was Peter Bloomfield, who has 26 “children” and 49 “descendants”. In total,
Sir David Cox had five generations of academic statistics mentees in this dataset.

R> length(getChild("Peter Bloomfield", statGeneal))

[1] 26

R> nrow(getDescendants("Peter Bloomfield", statGeneal, gen = 100))

[1] 49

At this point, it would be insightful to examine a more detailed view of one of the longest
strings of “parent-child” relationships between Sir David Cox and one of the two individuals
who are his fifth generation “descendants”. We do so with the code below, choosing his
fifth generation “descendant” to be Petra Buzkova. We set the fontFace variable of the
plotPath() to a value of 4, indicating we wish to boldface and italicize the two statisticians
of interest.

R> statIG <- dfToIG(statGeneal)
R> pathCB <- getPath("David Cox", "Petra Buzkova", statIG, statGeneal,
+ "gradYear", isDirected = FALSE)
R> plotPath(pathCB, statGeneal, "gradYear", fontFace = 4) +
+ ggplot2::xlab("Graduation Year") + ggplot2::theme(axis.text =
+ ggplot2::element_text(size = 10), axis.title =
+ ggplot2::element_text(size = 10)) +
+ ggplot2::scale_x_continuous(expand = c(0.1, 0.2))

This code results in Figure 11. We see that the shortest path between Sir David Cox and
Petra Buzkova is strictly composed of five unidirectional “parent-child” relationships that
span about 55 years. We see that the time difference between when an advisor and student
earned their degrees is not consistent across this path: The three statisticians who earned
their degrees earliest in this path span more than 30 years in degree acquisition, whereas the
three statisticians who earned their degrees later in this path only span less than ten years in
degree acquisition.
We also notice in Figure 11 that Sir David Cox received his statistics degree in about 1950,
and Petra Buzkova received her statistics degree in about 2005. This genealogy only contains

20 ggenealogy: Visualizing Genealogical Data in R

Figure 10: The 159 academic statistician “descendants” of Sir David Cox.

Journal of Statistical Software 21

Figure 11: The shortest path between Sir David Cox and one of his fifth generation “descen-
dants”, Petra Buzkova.

historical information about obtained degrees, and does not project into the future. Hence,
we can be assured that Petra Buzkova is one of the younger individuals in the dataset, at
least in the sense that the youngest individual could only have received his or her degree ten
years after Petra Buzkova. However, we cannot be assured that Sir David Cox is one of the
oldest individuals in the dataset. As such, it would be informative to superimpose this path
of interest onto the entire dataset, using the plotPathOnAll() function of the ggenealogy
package, as we did for the soybean genealogy in Figures 5 and 6.
We can achieve this using the below code. After trial and error, we use a bin of size 200,
and append ggplot2 syntax to define suitable x-axis limits. The output of this process is
illustrated in Figure 12.

R> plotPathOnAll(pathCB, statGeneal, statIG, "gradYear", bin = 200) +
+ ggplot2::theme(axis.text = ggplot2::element_text(size = 8),
+ axis.title = ggplot2::element_text(size = 8)) +
+ ggplot2::scale_x_continuous(expand = c(0.1, 0.2)) +
+ ggplot2::xlab("Graduation Year")

We see from the resulting Figure 12 that almost all text labels for individuals who received
their graduate-level statistics degrees between 1950 and 2015 are undecipherable. We also
see that the year Sir David Cox acquired his statistics degree is somewhere in the later half
of the variable year for this dataset, as the oldest dates for acquisition of statistics degrees
in this dataset occur around 1860. However, the number of individuals who are documented
as receiving their statistics degrees between 1860 and 1950 are few enough so that their text
labels are somewhat readable.

22 ggenealogy: Visualizing Genealogical Data in R

Figure 12: The shortest path between Sir David Cox and Petra Buzkova, superimposed over
the data structure, using a bin size of 200.

The text labels are so numerous in Figure 12 that simply trying different values for the input
parameter bin will not solve the text overlapping problem. Instead, one approach we can try
is to reconstruct the plot using the same ggenealogy function plotPathOnAll(), only now
specifying variables to render the size (2.5) and color (default of black) of the text for nodes
that are on the path of interest to be more noticeable than the size (0.5) and color (dark gray)
of the text for nodes that are not on the path of interest. Moreover, we can make the edges
that are not on the path of interest to be represented in a less noticeable color (light gray)
than the edges that are on the path of interest (default of dark green). The variable names
and options for these aesthetics are further detailed in the help manual of the function. We
provide one example code that alters the defaults of the text color and sizes of nodes and
edges below, which results in Figure 13.

R> plotPathOnAll(pathCB, statGeneal, statIG, "gradYear", bin = 200,
+ nodeSize = 0.5, pathNodeSize = 2.5, nodeCol = "darkgray", edgeCol =
+ "lightgray") + ggplot2::theme(axis.text = ggplot2::element_text(size =
+ 8), axis.title = ggplot2::element_text(size = 8)) +
+ ggplot2::scale_x_continuous(expand = c(0.1, 0.2)) +
+ ggplot2::xlab("Graduation Year")

In Figure 13, we can now see each individual on the path of interest, and how their values for
the variable year are overlaid on the entire genealogy structure. We can also more clearly see
that, even though only ten years span between the youngest individual in the genealogy and
Petra Buzkova, there are many individuals in that last decade. Indeed, the decade from 2005
to 2015 appears to be the densest in this dataset in terms of acquisition of statistics degrees.

Journal of Statistical Software 23

Figure 13: The shortest path between Sir David Cox and Petra Buzkova, superimposed over
the data structure, using a bin size of 200. Individuals on the shortest path are labeled in
large and black text and connected by dark green edges; all other individuals are labeled in
small and gray text and connected by light gray edges.

12. Interactive plotting functions
We could still improve upon Figure 13. Even though we may be primarily interested in
understanding how the path of interest is overlaid across the entire genealogical structure,
we could, upon viewing the entire structure, also develop an interest in nodes that are not
on the path of interest but are revealed to stand out among the rest of the genealogical
structure. For instance, in Figure 13, it may be of interest for us to determine the names of
the few individuals who obtained their statistics degrees before 1900. Fortunately, within the
plotPathOnAll() function, there is a variable animate that we can set to a value of TRUE
to create an interactive version of the figure that allows us to hover over individual illegible
labels and immediately receive their labels in a readable format. This interactive functionality
comes from methods in the plotly package (Sievert et al. 2019). A short video demonstration
of these interactive features can be viewed in Figure 14.

R> plotPathOnAll(pathCB, statGeneal, statIG, "gradYear", bin = 200,
+ nodeSize = 0.5, pathNodeSize = 2.5, nodeCol = "darkgray",
+ edgeCol = "lightgray", animate = TRUE)

We would like to state that users can still hard code one or two variables in function
plotPathOnAll(), even with the animate option set to a value of TRUE. The first call to
the plotPathOnAll() function below would produce an interactive plot with the yield on the

24 ggenealogy: Visualizing Genealogical Data in R

Figure 14: A short video demonstrating the animation features for this function. Please note
that to properly view this video, the PDF version of this document must be opened in Adobe
Acrobat Reader DC (version ≥ 9), which can be downloaded free of charge. This video can
only be viewed on Windows or Mac OS X platforms; it cannot be viewed on mobile devices.

horizontal axis. When hovering over labels, the label name and yield value would be revealed.
The second call to the plotPathOnAll() function below would produce an interactive plot
with the yield on the horizontal axis and development year on the vertical axis. When hover-
ing over labels, the label name, yield value, and development year would be revealed. We do
not include in this document the animated videos that the below code creates, but readers
can use the below code to create them on their own.
R> plotPathOnAll(pathCL, sbFilt, sbFiltIG, "yield", pathEdgeCol = "orange",
+ animate = TRUE)
R> plotPathOnAll(pathCL, sbFilt, sbFiltIG, "yield", "devYear",
+ pathEdgeCol = "orange", animate = TRUE)

13. Branch parsing and calculations
It may be helpful for users to search through descendant branches of a certain individual to
compare and contrast how a variable of interest changes along those branches. For instance,
which descending branches of a particular soybean variety are producing the highest yields?
Which branches are developing new varieties in recent years? Which descending branches of
a particular academic statistician have large proportions of students graduating from certain
universities or countries? Which branches are graduating new students in recent years? Which
branches have the highest proportion of thesis titles containing a word of interest?

Journal of Statistical Software 25

Answering these questions in a straightforward manner requires more than basic data frame
manipulation: It also requires methods that can easily traverse parent-child relationships. The
ggenealogy package has two methods that can answer these questions using branch traversal.
The getBranchQuant() function can be used to track a quantitative variable across branches
and the getBranchQual() method can be used to track a qualitative variable across branches.

13.1. Quantitative variable parsing and calculations

We can demonstrate the getBranchQuant() function by examining the quantitative variable
“yield” across the descendant branches of the soybean variety A.K. To understand more about
the output of this function, please consult the ggenealogy package documentation. In the code
below, we remove the output column “DesNames” because it verbosely lists all descendant
names, which is not necessary for this demonstration.

R> AKBranchYield <- getBranchQuant("A.K.", sbGeneal, "yield", 15)
R> select(AKBranchYield, -DesNames)

Name Mean SD Count NACount
1 A.K. (Harrow) 2932.154 197.0092 54 41
2 Illini 2856.667 210.7801 131 125

We see from the output that A.K. has two children named A.K. (Harrow) and Illini.
Descendants from the A.K. (Harrow) branch have a higher mean yield than the Illini
branch (2932.154 versus 2856.667). However, we should recognize that even though the
branches contain a large number of descendants (54 and 131), most of these descendants did
not come with a yield value (41 and 125). As a result, the mean values were calculated from
a small proportion of the descendants.
As another example, we can examine the mean graduation year for the “descendant” branches
of the academic statistician David Cox. We know from earlier that David Cox had 42 “chil-
dren”, so as expected, the CoxBranchYear object below contains 42 rows. However, only 8
of these rows have any “descendants” of their own. As a result, only the first 8 rows of the
CoxBranchYear object contain branch information.

R> CoxBranchYear <- getBranchQuant("David Cox", statGeneal, "gradYear", 15)
R> head(select(CoxBranchYear, -DesNames), 10)

Name Mean SD Count NACount
1 Mark Berman 2007.200 6.340347 5 0
2 Henry Wynn 2005.333 7.637626 3 0
3 Rodney Wolff 2003.500 2.121320 2 0
4 Jane Hutton 2003.000 NA 1 0
5 Gauss Cordeiro 2002.643 7.722167 14 0
6 Peter McCullagh 2001.231 8.778645 26 0
7 Basilio Pereira 2000.647 10.074356 17 0
8 Peter Bloomfield 1999.918 11.707969 49 0
9 Adelchi Azzalini NaN NA 0 0
10 Amy Berrington de Gonzales NaN NA 0 0

26 ggenealogy: Visualizing Genealogical Data in R

In this case, we see that of the 8 “children” of David Cox who had “children” of their own,
Mark Berman had the “descendants” (n = 5) who have on average graduated the most recently
(2007.200), whereas Peter Bloomfield has the “descendants” (n = 49) who on average
have graduated the least recently (1999.918). We see that, for all branches, there are no
“descendants” who contain an NA value for graduation year.

13.2. Qualitative variable parsing and calculations

The getBranchQual() function requires similar inputs as the getBranchQuant() function
above, except that it also requires an input parameter called rExpr. The user must initialize
this input parameter to a regular expression that can be applied to the column containing
the qualitative variable of interest. The regular expression syntax must work on a data frame
column of type character. It must be saved as a double quotation string, and any quotation
marks within it must be single quotations. The term geneal$colName must be used in the
regular expression.
We can demonstrate the getBranchQual() function by examining the qualitative variable
“thesis” across the “descendant” branches of the academic statistician David Cox. Since
one of the primary research areas for David Cox was stochastic processes, we can determine
if any descendant branches of his “children” contained thesis titles that included the word
“stochastic”.

R> v1 <- "David Cox"; geneal <- statGeneal; colName <- "thesis"; gen <- 15
R> rExpr <- "grepl('(?i)Stochastic', geneal$colName)"
R> CoxBranchStochastic <- getBranchQual(v1, geneal, colName, rExpr, gen)
R> head(select(CoxBranchStochastic, -DesNames))

Name CountTrue Count NACount
1 Peter Bloomfield 4 49 0
2 Basilio Pereira 1 17 0
3 Adelchi Azzalini 0 0 0
4 Amy Berrington de Gonzales 0 0 0
5 Andrew Roddam 0 0 0
6 Angela Mariotto 0 0 0

We see that only two “children” of David Cox had any “descendants” with thesis titles con-
taining the word “Stochastic” (4 out of 49 “descendants” of Peter Bloomfield and 1 out of
17 “descendants” of Basilio Pereira). We see again that none of the “descendants” from
either branches contained values that were NA for the variable “thesis”.
In many string parsing applications, the choice of the regular expression can be tricky. This
is true when the string variable we are parsing contains thesis titles. For instance, notice
that in our regular expression, we accounted for all instances of the substring “Stochastic”.
Hence, words that contain “Stochastic” (such as “Stochastics” and “Stochastically”) will also
be returned. In addition, we defined our regular expression to return matches whether the
first letter was upper or lower case. When initializing the rExpr parameter, users would need
to consider what nuances of their search criteria they would like to define as matches.
We will demonstrate one more example of the getBranchQual() function by searching the
qualitative variable “school” across the “descendant” branches of the academic statistician

Journal of Statistical Software 27

David Cox. The Mathematics Genealogy Project coding system for the “school” variable was
non-ambiguous, and so we do not have to worry about all the various ways the same school
could be coded in the dataset. As a result, we no longer have to search for various substrings;
we can simply use a regular expression that equates to one value.
It may be interesting to examine the school that is represented the most among all descendants
of David Cox. To determine what school this is, we use the getDescendants() function to
create a data frame called desDC that contains the names of all 159 “descendants” of David
Cox. Then, we use the base R function match() to match the school names from the original
genealogy dataset to each of the 159 “descendants” in the desDC data frame. After that, we
use the base R functions sort() and table() to examine the five schools that were represented
the most throughout the 159 “descendants”.

R> desDC <- getDescendants("David Cox", statGeneal, 15)
R> tableDC <- table(statGeneal[match(desDC$label,
+ statGeneal$child),]$school)
R> tail(sort(tableDC), 5)

The Johns Hopkins University Universidade Federal do Rio de Janeiro
9 17

North Carolina State University Universidade de São Paulo
18 28

University of London
35

We see from this table that the most common school of the 159 “descendants” of David Cox
was the University of London with a count of 35. We can now determine which of the branches
from the 42 “children” of David Cox have the largest proportion of “descendants” graduating
from the University of London.

R> colName <- "school"
R> rExpr <- "geneal$colName == 'University of London'"
R> DCBranchUL <- getBranchQual(v1, geneal, colName, rExpr, gen)
R> head(select(DCBranchUL, -DesNames))

Name CountTrue Count NACount
1 Peter McCullagh 1 26 0
2 Adelchi Azzalini 0 0 0
3 Amy Berrington de Gonzales 0 0 0
4 Andrew Roddam 0 0 0
5 Angela Mariotto 0 0 0
6 Basil Springer 0 0 0

We see that Peter McCullagh is the only “child” of David Cox that has a “descendant”
branch with one student graduating from the University of London; the rest of the 41 children
of David Cox have “descendant” branches with zero students graduating from the University
of London. This must mean the other 34 “descendants” of David Cox that graduated from
the University of London were direct “children” of David Cox. We can verify this below:

28 ggenealogy: Visualizing Genealogical Data in R

R> DCChild <- statGeneal[match(getChild("David Cox", statGeneal),
+ statGeneal$child),]
R> sum(DCChild$school == "University of London")

[1] 34

These examples demonstrate that users can quickly and flexibly parse descendant branches.
The swiftness comes from ggenealogy functions that allow for fast parent-child traversals,
such as getChild(), getDescendants(), getBranchQuant(), and getBranchQual(). The
flexibility comes from data frame manipulation functions in base R that can be used in
conjunction with the parent-child traversal methods.

14. Future avenues
Incorporation of the shiny application allows users to examine ggenealogy tools in a more
interactive way (Chang, Cheng, Allaire, Xie, and McPherson 2019). The reactive program-
ming saves them the time of using the command line for each change of input as well as the
inefficiency of rerunning code. A shiny application that uses certain ggenealogy functionality
is available for users who wish to explore the soybean genealogy; the data can be viewed at
http://shiny.soybase.org/CNV/.
We also aim to incorporate plotting tools that can examine not only quantitative variables
(such as our example variable of “year”), but also categorical variables associated with individ-
uals in datasets. Moreover, we look forward to testing the ggenealogy package on additional
genealogical datasets. Exploring several datasets with the software will allow us to fix re-
maining bugs, and provide us further insight into how to make our tools available for a wide
range of data input formats.
The ggenealogy visualization tool plotPathOnAll() is suitable as a data exploration tool, but
not always as a publication tool. This is because we still see textual overlap in small-enough
datasets (see Figure 6). As such, we plan to add a feature to the package that allows users
to manually fine-tune automated plots. For example, after comparing several bin sizes on
the soybean genealogy, we determined that the bin size of 6 produced the minimal textual
overlap, as is seen in Figure 6. If we could subsequently fine-tune the vertical positions of
the small fraction of text labels that remained overlapped after application of the automated
ggenealogy function, then we could potentially remove all overlaps, and the plot could be used
in presentations and publications. Of course, it is impossible to eliminate textual overlap in
larger datasets (see Figure 12). In such cases, we can remedy this problem by representing
individuals who are not on the path of interest with dots instead of text (see Figure 13).

15. Conclusions
The ggenealogy package offers various plotting tools that can assist those studying genealogi-
cal lineages in the data exploration phases, as well as in preparing publication-suitable images.
As each plot comes with its pros and cons, we recommended for users to explore several visual-
ization tools. If users are simultaneously using similar packages, we in particular recommend
using the plotAncDes() function. This plot allows users to view generation counts of a variety
of interest in a manner that is not as readily available in similar software packages.

http://shiny.soybase.org/CNV/

Journal of Statistical Software 29

Acknowledgments
The authors thank Drs. James E. Specht and Randy C. Shoemaker for helpful discussions
of soybean genealogy. In addition, the authors are grateful for the financial support from
the United Soybean Board (Project 1204), The North Central Soybean Research Program,
the NSF Plant Genome Research Program (award number 0820642), and the USDA-ARS
CRIS Project 3625-21220-005-00D. The USDA is an equal opportunity provider and employer.
Mention of trade names or commercial products in this article is solely for the purpose of
providing specific information and does not imply recommendation or endorsement by the
U.S. Department of Agriculture. Author Cook was a faculty member at Iowa State University
at the time that most of this work was conducted.

References

Chang W, Cheng J, Allaire JJ, Xie Y, McPherson J (2019). shiny: Web Application Frame-
work for R. R package version 1.3.2, URL https://CRAN.R-project.org/package=shiny.

Coster A (2013). pedigree: Pedigree Functions. R package version 1.4, URL https://CRAN.
R-project.org/package=pedigree.

Csardi G, Nepusz T (2006). “The igraph Software Package for Complex Network Research.”
InterJournal, Complex Systems, 1695.

Gansner ER, North SC (2000). “An Open Graph Visualization System and Its Applications
to Software Engineering.” Software: Practice and Experience, 30(11), 1203–1233. doi:
10.1002/1097-024x(200009)30:11<1203::aid-spe338>3.3.co;2-e.

Hymowitz T, Newell CA, Carmer SG (1977). Pedigrees of Soybean Cultivars Released in the
United States and Canada. International Soybean Series, College of Agriculture, University
of Illinois at Urbana-Champaign, Urbana, IL.

North Dakota State University, American Mathematical Society (2010). The Mathematics
Genealogy Project. Archived Web Site. Retrieved from the Library of Congress, Accessed
on 2015-03-06, URL http://www.genealogy.math.ndsu.nodak.edu.

PostgreSQL (2016). “PostgreSQL: The World’s Most Advanced Open Source Relational
Database.” URL http://www.postgresql.org/.

R Core Team (2019). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rutter L, Vanderplas S, Cook D (2019). ggenealogy: Visualization Tools for Genealogical
Data. R package version 1.0.0, URL https://CRAN.R-project.org/package=ggenealogy.

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B,
Ideker T (2003). “Cytoscape: A Software Environment for Integrated Models of Biomolec-
ular Interaction Networks.” Genome Research, 13(11), 2498–2504. doi:10.1101/gr.
1239303.

https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=pedigree
https://CRAN.R-project.org/package=pedigree
https://doi.org/10.1002/1097-024x(200009)30:11<1203::aid-spe338>3.3.co;2-e
https://doi.org/10.1002/1097-024x(200009)30:11<1203::aid-spe338>3.3.co;2-e
http://www.genealogy.math.ndsu.nodak.edu
http://www.postgresql.org/
https://www.R-project.org/
https://CRAN.R-project.org/package=ggenealogy
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1101/gr.1239303

30 ggenealogy: Visualizing Genealogical Data in R

Sievert C, Parmer C, Hocking T, Chamberlain S, Ram K, Corvellec M, Despouy P (2019).
plotly: Create Interactive Web Graphics via plotly.js. R package version 4.9.0, URL
https://CRAN.R-project.org/package=plotly.

Therneau T, Daniel S, Sinnwell J, Atkinson E (2015). kinship2: Pedigree Functions. R
package version 1.6.4, URL https://CRAN.R-project.org/package=kinship2.

Wickham H (2009). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York.
doi:10.1007/978-0-387-98141-3.

Wickham H, François R, Henry L, Müller K (2019). dplyr: A Grammar of Data Manipulation.
R package version 0.8.1, URL https://CRAN.R-project.org/package=dplyr.

Affiliation:
Lindsay Rutter
Bioinformatics and Computational Biology Program
Iowa State University
2014 Molecular Biology Building
Ames, IA, 50011, United States of America
E-mail: lrutter@iastate.edu
URL: https://github.com/lindsayrutter/

Susan VanderPlas
Department of Statistics
Iowa State University
2413 Snedecor Hall
Ames, IA, 50011, United States of America
E-mail: srvanderplas@gmail.com
URL: https://github.com/srvanderplas/

Dianne Cook
Department of Econometrics and Business Statistics
Monash University
E869 Menzies Building
20 Chancellors Walk
Clayton, VIC 3800, Australia
E-mail: dicook@monash.edu
URL: https://github.com/dicook/

https://CRAN.R-project.org/package=plotly
https://CRAN.R-project.org/package=kinship2
https://doi.org/10.1007/978-0-387-98141-3
https://CRAN.R-project.org/package=dplyr
mailto:lrutter@iastate.edu
https://github.com/lindsayrutter/
mailto:srvanderplas@gmail.com
https://github.com/srvanderplas/
mailto:dicook@monash.edu
https://github.com/dicook/

Journal of Statistical Software 31

Michelle Graham
USDA Agriculture Research Service, Corn Insects and Crop Genetics Research Unit
Department of Agronomy, Iowa State University
1565 Agronomy Building
Ames, IA, 50011, United States of America
E-mail: michelle.graham@ars.usda.gov

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/
May 2019, Volume 89, Issue 13 Submitted: 2016-05-27
doi:10.18637/jss.v089.i13 Accepted: 2017-10-17

mailto:michelle.graham@ars.usda.gov
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v089.i13

	Introduction
	Available software
	Package overview
	Example datasets
	Soybean genealogy
	Academic genealogy of statisticians

	Genealogical input format
	Generating a graphical object
	Plotting a shortest path
	Superimposing a shortest path on a tree
	Plotting ancestors and descendants by generation
	Plotting a distance matrix
	Academic genealogy of statisticians
	Interactive plotting functions
	Branch parsing and calculations
	Quantitative variable parsing and calculations
	Qualitative variable parsing and calculations

	Future avenues
	Conclusions

	mbtn@0:
	fd@v1:

