Journal of Statistical Software

June 2018, Volume 85, Issue 5. doi: 10.18687/jss.v085.i05

R Package DoE.base for Factorial Experiments

Ulrike Gromping
Beuth University of Applied Sciences Berlin

Abstract

The R package DoE.base can be used for creating full factorial designs and general
factorial experiments based on orthogonal arrays. Besides design creation, some analysis
functionality is also available, particularly (augmented) half-normal effects plots. In addi-
tion to this specific functionality, the package provides convenience features for analyzing
experimental designs and the infrastructure for a suite of further packages on designing
and analyzing experiments. This infrastructure is available for use also by further design
of experiments packages.

Keywords: design of experiments, DoE, factorial designs, DoE.base.

1. Introduction

Factorial experiments are very common in industrial experimentation. The most widely
spread such experiments use 2-level factors only, but experiments with mixed level factors
are also quite common, for example with the 18 run experimental plan proposed by Taguchi
(NIST/SEMATECH 2012). The design and execution of such experiments is often done dur-
ing everyday work without support from a statistical expert — thus it is important to have a
software available that can be safely used by non-experts. At the same time, statisticians are
often involved in the more important industrial experiments, and there are many facets to
construction of such experiments for which a statistician very much appreciates support from
a powerful software. The R package DoE.base (Gromping 2018b) targets both non-experts
and statisticians. It is part of a larger package suite containing also the packages FrF2,
DoE.wrapper and RemdrPlugin.DoE, and a fifth supporting package FrF2.catlg128 (Gromp-
ing 2011b, 2013, 2017b, 2014b,c). All these packages and all packages on which DoE.base
depends (Chasalow 2012; Venables 2013; Venables and Ripley 2002; Meyer, Zeileis, and Hornik
2006; Sarkar 2008) are available from the Comprehensive R Archive Network (CRAN), which
also holds the software R itself (R Development Core Team 2018). The graphical user inter-
face (GUI) package RemdrPlugin.DoE, which will not be described in this article, provides
access to some functionality from the package suite. Gromping (2011b) gives a detailed

https://doi.org/10.18637/jss.v085.i05

2 DoE.base for Factorial Experiments in R

example-based tutorial for using it. Package DoE.base provides the infrastructure for the
entire package suite, in particular the class ‘design’, functions for importing and exporting
experimental designs, and simple analysis functions for printing, summarizing, plotting, and
modeling design data.

Besides providing infrastructure, the main contribution of package DoE.base is to offer fea-
tures for creating factorial designs: Potentially blocked full factorials (function fac.design)
and catalog-based general factorials (function oa.design) are available. The two functions
fac.design and oa.design have taken inspiration from the “white book” (Chambers and
Hastie 1984), where these S functions are described that never made it into base R. The
most advanced contributions of the package are the features around orthogonal arrays (func-
tion oa.design), which are subject to ongoing research. These rely heavily on a catalog
of orthogonal arrays, most of which have been taken from Kuhfeld (2010). To the author’s
knowledge, the package is the only place in R where non-regular orthogonal arrays other than
Plackett-Burman designs are provided for experimentation. Non-regularity of an array has
been discussed to be beneficial for screening experiments because it implies good projectivity
properties (see, e.g., Box and Tyssedal 1996; Deng and Tang 1999; Tang and Deng 1999).
This discussion has so far focused on 2-level designs, but should analogously apply to more
general factorial designs.

There is another R package closely related to the design creation functionality of package
DoE.base: The R package planor (Kobilinsky, Bouvier, and Monod 2018) can create regular
fractional factorial designs in a general sense (see also Kobilinsky, Monod, and Bailey 2017).
Package DoE.base is more general than package planor in that it also creates non-regular
designs, can calculate various types of quality criteria, and does not require specification of a
model but can optimize a design with respect to model robustness criteria. It is less general
than planor in that it does not allow to specify a model and estimable effects, i.e., it treats
all effects of the same order on an equal footing. Sections 4 and 5.3 will illustrate function
regular.design from package planor as an alternative to functions from packages DoE.base
and FrF2.

The remainder of this article is organized as follows: Section 2 briefly explains and exemplifies
full factorial designs and orthogonal arrays and explains the basic principles of experimental
design. Section 3 presents the mathematical background and terminology for general orthog-
onal arrays and quality criteria for them. Section 4 discusses creation of full factorial designs,
in particular also with the possibility of blocking them. Section 5 provides insights into usage
and inspection of the orthogonal arrays implemented in package DoE.base. Section 6 discusses
design creation and analysis tools, using the example of an experimental design in biotechnol-
ogy (Vasilev, Schmitz, Gromping, Fischer, and Schillberg 2014). Section 7 describes in more
detail the half-normal plotting functionality provided by package DoE.base. Finally, a brief
overview of further developments is provided.

2. Basics

2.1. Full factorial designs and designs based on orthogonal arrays

A factorial design is an experimental plan in which k£ “factors” are systematically varied.
The j-th factor has [; “levels”, j = 1...k. If all factors have the same number of levels,

Journal of Statistical Software 3

ie., Iy = ... =g, the design is called a “fixed level” or “symmetric” design, otherwise it is
called “mixed level” or “asymmetric”. A “full factorial” design contains (a multiple of) all
factor level combinations, i.e., a multiple of [y - ... -l experimental runs. In a full factorial
design, all coefficients for an adequately coded linear model with all main effects, two-factor
interactions, ..., up to k-factor interactions are estimable. The number of estimable effects
remains the same, regardless of the choice of adequate coding. Section 7 will discuss how the
coding affects correlation between coefficient estimates.

Full factorial designs are often not feasible in the real world, if the number of factors or the
numbers of factor levels are not very small. For example, a full factorial experiment with
one 2-level factor and six 3-level factors requires 1458 runs. There are several possibilities
for designs with fewer runs: D-optimal designs require the specification of a model to be
estimated; they can be created with R packages AlgDesign or DoE.wrapper (Wheeler 2014;
Gromping 2017b), but are not the topic of this article. Here, we consider experimental designs
based on orthogonal arrays: These do not require specification of a model but assume that
(i) all effects of the same degree (main effect = degree 1, two-factor interaction = degree 2,
etc.) are equally important and (ii) that effects of lower degree are more important than those
of higher degree. Orthogonal array designs are often used with the intention of estimating
main effects only; they are particularly common for qualitative factors, although they can also
be used for quantitative factors. For a design based on an orthogonal array, each factor is
contained with the same number of times for each level, and each pair of factors is contained
with the same number of times for each pair of levels. Genizi Taguchi provided various
orthogonal arrays for engineering experimentation; one of the most-well-known ones is an
18-run array for up to one 2-level factor and up to seven 3-level factors. This array can for
example be found in NIST/SEMATECH (2012), and is also contained in package DoE.base:

R> L18
ABCDEFGH
1 11111111
2 11222222
3 11333333
4 12112233
5 12223311
6 12331122
7 13121323
8 13232131
9 13313212
1021133221
1121211332
1221322113
1322123132
1422231213
15622312321
16 23132312
1723213123
1823321231

attr(,"origin")

4 DoE.base for Factorial Experiments in R

[1] "Taguchi"
attr(,"class")
[1] "oa" "matrix"

further attribute(s) (accessible with attr(res$value , attrname)):
[1] "comment"

This small array can already accommodate the above-mentioned experiment with one 2-level
factor and six 3-level factors. Of course, as it is very much smaller than the 1458 runs for
a full factorial, there is a substantial amount of confounding built into the array. If a small
array like the L18 is to be used, two things are very important: picking the best possible
columns for the design, and understanding the limitations of the resulting design. Package
DoE.base can help with both. However, except perhaps for very preliminary investigations,
it will usually be preferable to use less severely confounded designs. Package DoE.base can
also help with optimizing the selection of an array and the column selection within the array.
This will be demonstrated in Sections 5 and 6.

Orthogonal arrays may be regular or non-regular. In the regular case, it is possible to describe
the array by a few defining relations, similar to the well-known way of doing so for regular
fractional factorial 2-level designs: Starting from a full factorial design in some “generating”
or “base” factors, additional factors are accommodated by assigning them to interactions
between the base factors, which are consequently completely confounded with the new factors’
main effects. This is a little more complicated for factors with more than two levels, but the
general principle remains the same. One complication arises from base level factors with non-
prime numbers of levels; these can be decomposed into full factorials of factors with prime
numbers of levels, so-called “pseudo factors”. The aforementioned catalog of arrays contains
quite a few regular arrays. Regular orthogonal designs can also be created using function
regular.design from package planor.

Non-regular orthogonal arrays cannot be described by defining relations. Some of the cata-
loged arrays in package DoE.base are non-regular. Section 5.1 provides details on the catalog
and its usage. Note that the catalog is by no means complete; in particular, it is much more
difficult to completely enumerate all orthogonal arrays than it is to enumerate all reqular
orthogonal arrays. Partially complete catalogs of orthogonal arrays are available, e.g., from
the website by Eendebak and Schoen (2010) based on the algorithm described in Schoen,
Eendebak, and Nguyen (2010). In many cases, the web site provides the best arrays only, or
does not provide an array at all (in case of very large numbers of arrays). Where a number
of arrays is shown, the complete set of arrays can in principle be obtained from Eric Schoen;
however, with large numbers of arrays the complete catalogs are so large that it is not easily
feasible to work with them.

2.2. Principles of experimental design

A very important principle of experimentation is replication: When comparing two different
setups, one will usually not rely on a single instance of each setup, but will replicate each
setup a specified number of times. This serves the purpose of making sure that differences
are only interpreted if they are sufficiently larger than can be expected from experimental
variation. Replication is quite different from repeating measurements only: For a proper
replication, all experimental settings have to be redone for each replicate. Sometimes, with

Journal of Statistical Software 5

very variable measurement devices, it may make sense not to include replications but to
repeat the measurement process only. This is called “repeated measurements” and has to
be treated quite differently from proper replication. Several design generation functions of
packages DoE.base and FrF2 offer the option replications for specifying the number of
replications and repeat.only for indicating whether these are proper replications (default)
or repeated measurements only.

One of the very useful aspects of factorial experiments is implicit replication: When exper-
imenting with many factors, one can often expect higher order interactions to be irrelevant.
If this is the case, the degrees of freedom that would have to be dedicated to higher order
interactions can instead be used for estimating error variation (or for accommodating further
experimental factors). Therefore, in factorial experimentation, one will encounter experiments
without replicated runs.

A further important principle is blocking, which can be used to control for known influential
factors that are not of interest in themselves, like batch-to-batch variation. For an orthogonal
array design, one can simply include the block factor as an additional factor and thus has to
find an array of the desired structure. A full factorial design can be blocked without increasing
the number of runs, by allocating the degrees of freedom for the block factor to portions from
interaction effects. This functionality is implemented in function fac.design (see Section 4).

Randomization means that the experimental runs are conducted in random order; it is a
safeguard against bias from unknown influences. If the run order is completely randomized,
all experimental runs can be treated as independent observations, and there is little risk of
systematic bias from experimental order or unknown factors related to experimental order
or time. In real life, there are sometimes so-called randomization restrictions; for example,
experimental runs may be randomized within each block only. Function fac.design allows
randomization within blocks, while designs created with function oa.design have to be re-
randomized with function rerandomize.design for using one of the factors as a block factor.

Whenever proper replication is used, package DoE.base separately randomizes each replication
as though it were a block; however, it does not include a block factor for the replications. Users
who want to include a block factor for replications in the analysis can obtain such a factor
using the function getblock. Users who want to change the randomization, i.e., randomize all
replications together instead of in separate blocks, can use the function rerandomize .design.
Using the [method for the class ‘design’, users can also reorder a design according to
a randomization scheme that has been worked out outside of R. Of course, whenever the
randomization involves non-trivial restrictions like randomizing in meaningful blocks, the
analysis has to be conducted accordingly.

3. General orthogonal arrays

This section provides the mathematical background for general orthogonal arrays, as far as
it can be helpful for using the orthogonal arrays available in R package DoE.base.

3.1. Terminology for orthogonal arrays

An array in the sense of this article is a rectangular table of numbers with n rows and
k columns, like the L18 shown on p. 3. The rows correspond to experimental runs, the
columns to experimental factors. In the cataloged arrays in DoE.base, the levels of an [-

6 DoE.base for Factorial Experiments in R

level factor are denoted by the numbers 1...[. An array becomes an experimental design by
allocating numbers to factor levels. The array is orthogonal, i.e., an OA] if for each pair of
columns each combination of levels occurs equally often. If this is the case, main effects of all
factors can be estimated separately from each other (provided, no higher order effects are in
the model).

An OA is said to be of strength s, if each combination of levels occurs equally often for each
subset of s columns. Thus, each OA is at least of strength 2. Strength of an OA is directly
related to resolution of an array: Resolution, denoted by roman numerals, is always one higher
than the strength, i.e., strength 2 arrays are of resolution III and so forth. For an array of
resolution III, main effects are not aliased with main effects, but can be aliased with two-factor
interactions (three factors involved); for an array of resolution IV, main effects are not aliased
with two-factor interactions, but can be aliased with three-factor interactions, while two-
factor interactions can be aliased with other two-factor interactions (four factors involved).
This notion is well-known for regular fractional factorial 2-level designs, and is completely
analogous for non-regular designs and for designs with factors at more than 2 levels or in
mixed level situations. Note that a full factorial in k factors has strength k.

3.2. Generalized word length pattern and refinements

Xu and Wu (2001) introduced the generalized word length pattern (GWLP) for general or-
thogonal arrays. It is an extension of the well-known word length pattern (WLP) for regular
fractional factorial 2-level designs: In the latter, one starts out with a set of base factors and
allocates additional factors to interactions among these (the generating contrasts). Coding
all main effects model matrix columns with “—1” (one level) and “41” (the other level), this
way of design generation causes products of model matrix columns to be either half “—1” and
half “4+1”, or constant columns. Factors, whose product of model matrix columns yields a
constant column, form a “word” together. The word length pattern is a frequency table of
word lengths. For regular fractional factorial 2-level designs, each group of ¢ factors either
does or does not form a word, i.e., contributes one or zero to the count for words of length c.
This results in a word length pattern with only integer entries.

In general, partial aliasing is possible. Even if there are only 2-level factors, e.g., in a Plackett-
Burman design (Plackett and Burman 1946), a set of factors can contribute a fraction of a
word to the GWLP count for the respective word length. Consequently, GWLP entries need
not be integers. For example, the GWLP of the L18 is

R> GWLP(L18)

0 1 2 3 4 5 6 7 8
1.0 0.0 0.0 28.0 52.5 52.5 70.0 33.0 6.0

The GWLP is denoted as Ag, A1, Ao, A3, ..., Ar with A, the number of generalized words
of length c¢. The entry “1” for Ag is generic and does not indicate confounding. The GWLP
for orthogonal arrays and designs based on them is usually presented starting with As, since
orthogonality implies absence of words of lengths one or two. The GWLP coincides with the
WLP for regular fractional factorial 2-level designs; for details, consult Xu and Wu (2001)
themselves or Gromping (2011a) for a more accessible account. The concepts of strength and
resolution directly relate to the (G)WLP: The shortest word length with a non-zero count

Journal of Statistical Software

is the resolution of the design, the longest word length with a zero count is the strength.
Hence, the L18 has resolution III and strength 2. Note that it is not adequate to use the term
“generalized resolution” here, because that term is already in use for a different concept that
is also implemented in package DoE.base (see below).

The GWLP can be used for selecting a best design by comparing designs with respect to
their so-called aberration: A design is better than another one, if it has higher resolution; in
case of equal resolution, a design has smaller aberration, if its number of shortest words is
smaller, in case of ties, successively considering longer words until a difference is encountered.
If this principle is applied to a complete set of possible designs, the best design is said to
have “generalized minimum aberration” (GMA; analogous to minimum aberration for regular
fractional factorial 2-level designs). For orthogonal arrays, one seldom compares complete
sets of possible designs; however, the website by Eendebak and Schoen (2010) provides GMA
arrays for various scenarii.

The number A, of generalized words of length ¢ is the sum over contributions from all sets
of ¢ factors. For a set of R factors with l; ...l levels in a resolution R design (equivalent to
s + 1 factors in a strength s design), Gromping and Xu (2014) have shown an upper bound
for the contribution to the count Ag to be min((ly — 1),...,(lg — 1)), i.e., the upper bound
for the number of generalized words in a set of R factors depends on the pattern of levels in
the set and is given by the main effect degrees of freedom for the factor with the fewest levels
(the analogous result for symmetric designs was shown earlier by Xu, Cheng, and Wu 2004).
Furthermore, Gromping and Xu (2014) provided a statistical rationale for the contributions
of sets of R factors to Ar in resolution R designs, i.e., the building blocks for the number
of shortest words: Each R-set contribution can be seen as the sum of R? values from linear
models explaining orthogonal contrast columns for any one of the R factors by a full model
in the other R — 1 factors (provided the factor to be explained has orthogonally coded model
matrix columns; otherwise, R? values have to be replaced by squared canonical correlations).
Thus, the number of shortest words measures the extent of worst case confounding in a
plausible way. It is therefore particularly instructive to study R factor sets in resolution R
designs. Based on these, Table 1 and Figure 1 illustrate the meaning of words in an informal
sense, using mosaic plots of contingency tables as proposed in Gromping (2014a). The main
purpose of a mosaic plot in this context is the visualization of balance or the absence thereof;
the most critical imbalances occur in case of empty cells, which are visualized by flat lines
(present in situations (a) and (b)); the ideal balance occurs in a (replicated) full factorial
design, for which a mosaic plot shows equally-sized rectangles only (situation (d)). The
mosaic plots in Figure 1 show the first row factor and the column factor of Table 1 in the
row and column subdivision (nine approximately square areas that represent 4 runs each)
and subdivide this area proportionally to the frequencies of the second row factor of Table 1.
Let us consider the top left square for all situations: In situation (a), all four runs belong to
level “1” of factor C' with both other levels represented by flat lines; in situation (b), all four
runs belong to level “2” of factor F, with level “1” represented by a flat line, the allocation in
situation (c) is % of the runs for level “1” and % for level “2” of factor F, and that of situation
(d) is completely balanced with half of the runs for each of the two levels of factor D.

The severe imbalance shown in situation (a) of Table 1 and Figure 1 implies that the factor
level combination of any pair of factors completely determines the level of the third factor.
This is a resolution III regular array, for which each main effect is completely confounded by
the two-factor interaction of the other two factors. This is reflected in the number of words,

8 DoE.base for Factorial Experiments in R

Situation (a) Situation (b)
B C

A C 1 2 3 B E 1 2 3

1 1. 4 0 O 1 1 0 4 2
2 0 0 4 2 4 0 2
3 0 4 0

2 1 0 0 4 2 1 2 0 4
2 0 4 0 2 2 4 0
3 4 0 0

3 1.0 4 0 3 1.4 2 0
2 4 0 0 2 0 2 4
3 0 0 4

Situation (c) Situation (d)
C C

B E 1 2 3 B D 1 2 3

1 1 3 2 1 1 1 2 2 2
21 2 3 2 2 2 2

2 1 1 3 2 2 1 2 2 2
2 3 1 2 2 2 2 2

3 1 2 1 3 3 1 2 2 2
2 2 3 1 2 2 2 2

Table 1: Contingency tables for the 36-run designs of Figure 1.

which coincides with the aforementioned upper bound. The plot shows a triple from the array
L36.2.16.3.4 from package DoE.base; an analogous plot can be produced from columns 2,
4 and 5 of the well-known Taguchi L18 shown on p. 3. For the other factor sets shown in
Table 1 and Figure 1, the upper bound is one because of one degree of freedom only for the
2-level factor in the set. However, with a 2-level and two 3-level factors in an orthogonal array,
this upper bound cannot be attained. The upper bound can only be attained if the smallest
number of levels is a divisor of all the other numbers of levels, which is for example the case
in symmetric designs. In summary, the four situations illustrate that more words are related
to less balance.

Over and above the GWLP, package DoE.base allows to look at individual R-factor set
confounding through mosaic plots (Gromping 2014a), like the ones shown in Figure 1, and
provides an overview of the confounding in R-factor projections through projection frequency
tables (functions P2.2, P3.3 or P4.4), average R’ frequency tables (ARFT) and squared
canonical correlation frequency tables (SCEFT); the latter are based on the results by Gréomping
and Xu (2014) and detailed in Grémping (2017a). Sometimes, several designs that have GMA
can be distinguished further by the more detailed criteria. Gromping and Xu (2014) also
introduced a generalization of the generalized resolution GR as proposed by Deng and Tang
(1999): GR refines the resolution R by indicating the distance from complete confounding.
We have R < GR < R + 1; the larger GR, the less severe the worst case confounding in the
design; if GR = R, there is at least one instance of complete confounding in an R-factor set.
Furthermore, GR;,q is a stricter version of GR which already becomes equal to R if there
is a triple of factors for which there is a coding such that at least one degree of freedom of

Journal of Statistical Software

N @
N O

& o~
s -
(a) Complete aliasing: 2 words of length 3 (b) 2/3 words of length 3

36 runs; 3, 3, 3 levels. 36 runs; 2, 3, 3 levels.
1 g 3 1 g 3

4‘ - -

)

- -

[]))

-

’—‘ N o~

(¢) 1/6 words of length 3 (d) Perfect balance: 0 words of length 3

36 runs; 2, 3, 3 levels. 36 runs; 2, 3, 3 levels.

Figure 1: Mosaic plots of different degrees of confounding for triples of factors in 36-run
designs.

at least one factor is completely confounded. Besides the overall GR and GRj,q, individual
factor versions GRiot; and GRing; capture the corresponding worst cases for R factor sets
involving the -th factor.

The GWLP can be obtained with function GWLP (or with the older function lengths, which
is usually slower but performs better for designs with many runs); GR can be obtained with
the (old and fast) function GR or — together with GRjyq, the individual GRio; and GRing i,
ARFT and SCFT — with function GRind.

4. Full factorial designs with function fac.design

Function fac.design creates full factorial designs. There is also a simple way in base R for
creating all combinations of factor levels: Function expand.grid with subsequent random-

10 DoE.base for Factorial Experiments in R

ization of the run order will do the job. The benefits of using function fac.design lie in the
inclusion into the general framework, and in the possibility of automatically blocking designs.
The blocking method makes use of the aforementioned pseudo factors: Whenever the number
of levels of a factor is not prime, it can of course be factored into primes, e.g., 6 into 2 and 3;
thus, a six-level factor can be obtained by the six different factor level combinations of a full
factorial in a 2- and a 3-level factor; such component factors are called pseudo factors (e.g.,
Fy and F; below).

Function fac.design uses a method by Collings (1984, 1989) for creating the block factor;
in case of automatic blocking, the blocking pattern for several 2- or 3-level factors is taken
from optimal blocked catalogs (internal objects block.catlg and block.catlgd); if a factor
contains several pseudo factors with the same prime, its use in block generators ensures that
different pseudo factors are used for different block generators involving the factor (where
possible). However, the procedure does not ensure overall optimality of the blocking strategy.
Neither does function regular.design from package planor; however, that function may be
worth a try if the result from function fac.design is not satisfactory, and it can be used for
situations outside fac.design’s scope for automatic blocking.

The following two code examples exemplify situations for which automated blocking works
without or with confounding of two-factor interactions of experimental factors (with a warning
in the latter case).

For a full factorial design with six factors with 2, 3, 3, 2, 2 and 6 levels (hence 432 runs),
running in six blocks is possible without confounding blocks with two-factor interactions in
experimental factors:

c(2, 3, 3, 2, 2, 6),

R> full.factorial.blocked6 <- fac.design(nlevels
+ blocks = 6)
R> summary(full.factorial.blocked6)

Call:
fac.design(nlevels = c(2, 3, 3, 2, 2, 6), blocks

6)

Experimental design of type full factorial.blocked
432 runs
blocked design with 6 blocks of size 72

Confounding of 2 -level pseudo-factors with blocks
(each row gives one independent confounded effect):
ABCDEFF
1001110

Confounding of 3 -level pseudo-factors with blocks
(each row gives one independent confounded effect):
ABCDEFF
0110001

Journal of Statistical Software 11

Factor settings (scale ends):
ABCDETF
1111111
2222222
3 33
4
5
6

(o) B2 B V)

The summary indicates that the design confounds the block factor with the interactions
ADEF, and BCF5, where I} and F5 denote two different pseudo factors that make up the
six-level factor F. This means, in particular, that there is no confounding of the block factor
with two-factor interactions of experimental factors.

Blocking this full factorial in four or nine blocks is also possible, but confounds the block factor
with a two-factor interaction among experimental factors, which is signaled by a warning
message and is also visible from the summary:

R> full.factorial.blocked4 <- fac.design(nlevels c(2, 3, 3, 2, 2, 6),
+ blocks = 4)

R> summary(full.factorial.blocked4)

Call:
fac.design(nlevels = c(2, 3, 3, 2, 2, 6), blocks

4)

Experimental design of type full factorial.blocked
432 runs
blocked design with 4 blocks of size 108

Confounding of 2 -level pseudo-factors with blocks
(each row gives one independent confounded effect):
BCDEFF

b

A
(1,1 1

0
11

Factor settings (scale ends):
ABCDETF
1111111
2222222
3 33
4
5
6

()T 62 B V)

Function fac.design allows automatic blocking for the most frequent situations, where most
prime level (pseudo) factors have two or three levels, and only single prime level (pseudo)

12 DokE.base for Factorial Experiments in R

factors have more than three levels; there is also a limit on the number of 2- and 3-level factors
(see the package manual).

We now consider an example, for which block generators have to be manually specified: For
blocking a full factorial in one 2-level factor, three 5-level factors and one 10-level factor into
25 blocks, the prime 5 is needed twice for creating the block factor; thus, two block generators
for the prime 5 need to be specified. These can be given as a matrix with two rows (one for
each block generator) and a column for each prime factor (in the order of factors, and within
each factor, in increasing order, i.e., 2, 5, 5, 5, 2, 5 for the present design). The following
code yields the desired blocked full factorial for the above requirement.

R> BG <- rbind(c(0, 1, 1, 2, 0, 0), c(0, 0, 1, 1, 0, 1))

R> full.factorial.blocked25 <- fac.design(nlevels = c(2, 5, 5, 5, 10),
+ blocks = 25, block.gen = BG)

R> summary (full.factorial.blocked25)

Call:
fac.design(nlevels = c(2, 5, 5, 5, 10), blocks = 25, block.gen = BG)

Experimental design of type full factorial.blocked
2500 runs
blocked design with 25 Dblocks of size 100

Confounding of b5 -level pseudo-factors with blocks
(each row gives one independent confounded effect):

A BCDE1E2
(t,Jo112 0 O
2,J] 0011 0 1
[3,J] 0123 0 1
(4,1 0134 0 2
(5, 0140 0 3
6,] 0101 0 4

Factor settings (scale ends):

ABCD E
1 1111 1
2 2222 2
3 333 3
4 4 44 4
5 555 5
6 6
7 7
8 8
9 9
10 10

The above design is reasonable and does not confound two-factor interactions of experimental

Journal of Statistical Software

factors with the block factor. Function fac.design would throw an error, if the chosen block
generator confounded a block effect with a main effect contrast of experimental factors or did
not provide an appropriate number of blocks. Apart from these gross issues, responsibility
for an appropriate choice of block.gen is completely with the user.

If the user is not able to come up with a satisfactory block structure, function regular.design
from package planor can be used to create a design with the required properties (see code
below). If that function takes a very long time for a reasonably-sized problem, there is in
many cases no solution for the requested situation; it can, however, also mean that an existing
solution is difficult to find for regular designs with factors that have non-prime numbers of
levels.

R> library("planor")
R> planor.blocked25 <- regular.design(
+ factors = C(”BlOCk", IIAH, "BII’ HC", IIDH, "Ell)’

+ nlevels = c(25, 2, 5, 5, 5, 10), block = ~Block, nunits = 2500,
+ model = ~ (A +B+ C+ D+ E) ~ 2 + Block,
+ estimate = ~ (A + B+ C+ D+ E) ~ 2)

The search is closed: max.sol 1 solution(s) found

1 solution(s) found

The search is closed: max.sol

For the design planor.blocked25, the estimate option guarantees that blocks are not con-
founded with two-factor interactions. The block generator used by function regular.design
is different from the one chosen in function fac.design above, but of the same quality with
respect to the GMA criterion. This can be verified by applying function GWLP or function
lengths to both designs (as mentioned before, lengths is faster for designs with many runs):

R> round(lengths(full.factorial.blocked25, with.blocks = TRUE), 2)

2 3 4 65
0 016 8

R> round(lengths(data2design(getDesign(planor.blocked25))), 2)

4

2 3 5

0 016 8

Neither function fac.design nor function regular.design from package planor guarantees
optimality of the confounding structure, and neither is generally superior to the other.

5. Orthogonal arrays with package DoE.base

If more than two levels are required for some factors, but a full factorial cannot be afforded, a
regular or non-regular orthogonal array can be used. For the creation of reqular designs, also
with mixed levels, function regular.design from package planor is very useful. As seen in
the code of the previous section, the function can specify a model and separately a (sub)model

13

14 DokE.base for Factorial Experiments in R

to be estimable; in this way, it was, e.g., possible to treat the block factor differently from
the other factors. Note, however, that it is not possible to generate non-regular designs, and
that no effort is made at a better design in terms of overall model robustness, whenever the
requested estimability requirements are satisfied. Furthermore, creation of some designs takes
a very long time, even for relatively small designs (e.g., 32 runs).

Package DoE.base pursues a different route: It contains the previously-mentioned catalog of
orthogonal arrays; most of its arrays have been taken from Kuhfeld (2010). In addition, since
version 0.28, it contains a small separate catalog oacat3 of orthogonal arrays of strength
at least 3 from other sources. Similarly to most experimental design software, the default
approach of function oa.design is to use the smallest array possible and to take columns
with the requested numbers of levels from left to right until the design has been filled. If the
user does not influence the chosen columns with the columns option, a warning is issued to
make the user aware of potential improvements. The following subsections discuss the catalogs
oacat and oacat3 and ways to select arrays from them, the optimization of column selection
from a selected array, and ways to inspect experimental plans regarding their suitability for
the experiment at hand.

5.1. The data frames oacat and oacat3 and the function show.oas

The arrays available in package DoE.base are documented in the data frames oacat and
oacat3; oacat contains strength 2 arrays, oacat3 a selection of stronger arrays. Both data
frames contain the following columns:

e mname gives a structured array name, which indicates the number of runs and the fre-
quency of factors with different numbers of levels; for example, the name L18.2.1.3.7
indicates 18 runs with one 2-level factor and seven 3-level factors. nruns directly gives
the number of runs. n2 to n72 give the number of factors with 2 to 72 levels. Thus, for
L18.2.1.3.7, nruns = 18, n2 = 1, n3 = 7, and all other nx entries have the value 0.

e lineage contains a string variable which indicates how the array was constructed from
so-called parent arrays. An empty string indicates that the array itself is a parent array.
Parent arrays are stored in the package and are objects of class ‘oa’, which are matrices
that usually contain an "origin" attribute and sometimes also a "comment" attribute.
Arrays with a lineage entry are constructed from the parent arrays.

« Logical columns indicate a full factorial array (£f), an array that is R? regular according
to the definition by Gromping and Bailey (2016) (regular.strict with only average
R? values 0 and 1 for all factor sets), or an array that is CC regular according to the
definition by Gromping and Bailey (2016), if their conjecture holds, i.e., if it suffices to
check for squared canonical correlations 0 and 1 for all full resolution factor sets only
(regular); for some large arrays, the necessary checks for CC regularity — even given
the conjecture — have not been fully done, so that it is conceivable (but considered highly
unlikely) that some of the designs indicated as regular may be non-regular according to
a higher order non-regularity.

e Column SCones contains the number of squared canonical correlations in R factor sets
that are one.

e Columns GR and GRind contain the GR and GRi,q values, respectively.

Journal of Statistical Software 15

o Columns maxAR and maxSC contain the maximum average R? or squared canonical cor-
relation, respectively.

e Column dfe provides the number of error degrees of freedom, if all columns of the array
are used.

o Columns A3 to A8 provide the numbers of generalized words of lengths 3 to 8. (There
are no words of shorter lengths, of course.)

It is possible to use the data frames oacat or oacat3 directly for inspecting which arrays
of a certain nature are available, for example for finding strength 2 32-run arrays which are
regular but not strictly regular:

R> oacat$name[oacat$nruns == 32 & oacat$regular & !oacat$regular.strict]
[1] "L32.2.28.4.1" "L32.2.25.4.2" ".32.2.24.8.1"
[4] "L32.2.22.4.3" "L32.2.21.4.1.8.1" "L32.2.19.4.4"
[7] "L32.2.18.4.2.8.1" "L32.2.16.4.5" "L32.2.16.16.1"

[10] "L32.2.15.4.3.8.1" "L32.2.13.4.6" "L32.2.12.4.4.8.1"

[13] "L32.2.10.4.7" "L32.2.9.4.5.8.1" "L32.2.7.4.8"

[16] "L32.2.6.4.6.8.1" "L32.2.4.4.9" "L32.2.3.4.7.8.1"

[19] "L32.4.8.8.1"

The author prefers non-regular arrays for many situations, at least for the creation of screening
designs. Looking at regular arrays in package DoE.base may nevertheless be of interest, if
function regular.design of package planor runs for a long time without indicating failure for
a run size that is in the scope of package DoE.base: If there is a regular array of the desired
size in DoE.base, this array can be inspected and perhaps used after column optimization
(see Section 5.2). Also, in principle, function regular.design can be expected to eventually
succeed, unless estimability requirements make the existing array unsuitable.

The function show.oas allows inspection of the available arrays in a more convenient way; it
shows arrays from oacat, unless option Rgt3 = TRUE requests arrays from oacat3. Suppose,
for example, that a design for three 2-level factors, two 3-level factors and one 6-level factor
is to be created, and between 20 and 54 runs are affordable (a full factorial would have 432).
The following statement allows to inspect the candidate arrays, displaying also the quality
metrics:

R> show.oas(nruns = c(20, 54), nlevels = c(2, 3, 3, 2, 2, 6),
+ showmetrics = TRUE)

5 arrays found

name nruns lineage GR GRind regular SCones A3 Ad
78 L36.2.13.3.2.6.1 36 3.00 3.00 FALSE 6 45.3 158.4
81 1L36.2.10.3.8.6.1 36 3.18 3.18 FALSE 0 130.3 737.2
83 136.2.9.3.4.6.2 36 3.00 3.00 FALSE 17 82.3 338.2
87 L136.2.3.3.9.6.1 36 3.18 3.00 FALSE 12 73.8 300.2
88 136.2.3.3.2.6.3 36 3.00 3.00 FALSE 37 35.6 73.1

16 DoE.base for Factorial Experiments in R

A5 A6 A7 A8
78 426 1010 1753.2 2306.8
81 3063 11096 31380.8 68828.1
83 1025 2828 b5507.5 7780.0
87 912 2404 4354.2 5793.4
88 120 125 63.5 13.9

Only arrays in 36 runs have been found; these are quite different in the available patterns
of numbers of levels, and therefore the quality metrics (especially the Aj) are not directly
comparable. Nevertheless, the values for GR and GR;,q suggest that one might try the
array L36.2.10.3.8.6.1, which is the only one without any completely confounded degree
of freedom.

5.2. Optimization methods for function oa.design

Function oa.design allows to select an array, and to specify columns from that array either
manually or by an optimization approach. As was mentioned earlier, if no array is specified,
the function picks the first (and thus smallest) array in the catalog that is able to accommodate
the requested factors. If no column selection approach is specified, the function simply takes
the first available columns (from left to right).

The code below compares three designs:

o an unoptimized default design (i.e., the left-most suitable columns of the first array
encountered, which is the L36.2.13.3.2.6.1);

o an optimized default design with optimization option columns = "min34" (i.e., an op-
timized choice of columns from the array L36.2.13.3.2.6.1, optimization being with
respect to the number of generalized words of length 3, and subsequently length 4);

« and an optimized design obtained by selecting columns from the array L36.2.10.3.8.6.1
selected in Section 5.1 because of its GR;,q value.

R> oa.default <- oa.design(nlevels = c(2, 3, 3, 2, 2, 6))
R> GWLP(oa.default, digits = 2)

0 1 2 3 4 5 6
1.00 0.00 0.00 5.78 2.11 2.44 0.67

R> oa.optimized <- oa.design(nlevels = c(2, 3, 3, 2, 2, 6),
+ columns = "min34")
R> GWLP(oa.optimized, digits = 2)

0 1 2 3 4 5 6
1.00 0.00 0.00 4.11 3.61 2.78 0.50

R> oa.manualoptimized <- oa.design(L36.2.10.3.8.6.1,
+ nlevels = ¢c(2, 3, 3, 2, 2, 6), columns = "min34")
R> GWLP(oa.manualoptimized, digits = 2)

Journal of Statistical Software

0 1 2 3 4 5 6
1.00 0.00 0.00 2.44 6.44 1.78 0.33

Clearly, optimization improves the design from the default array, and the optimized pre-
selected array is even better.

There are various methods for optimizing column allocation (see the documentation of func-
tion oa.design in the manual); columns = "min34" is the most important one among these.
Depending on the number of columns on offer and the number of columns to be selected, op-
timization can take a very long time; in the above examples, (133) . (3) = 286 or (130) : (g) = 3360
column choices had to be checked, which is doable in reasonably short time. For larger de-
signs, the resource implications of the numbers of available columns of the required lengths

may also be considered in selecting an array to use.

5.3. Blocking general orthogonal arrays

Suppose a design with the above factors is to be run, and the 6-level factor is a blocking
factor. In that case, the design should be randomized such that runs are randomized within
blocks. Function oa.design does not directly allow to block randomization. However, the
function rerandomize.design allows a post-hoc randomization within a single design factor
declared as the block factor.

R> blockedoal <- rerandomize.design(oa.manualoptimized, seed = 24652,
+ block = "F")
R> blockedoal

run.no run.no.std.rp F A B CD E
1 1 2254521112
2 2 5.6.2512322
3 3 15.6.3 513311
4 4 1.56.1511211
5 5 36.6.6 522121
6 6 33.56.6 523222
run.no run.no.std.rp F A B CDE
7 7 32.3.6322122
8 8 14.3.3312211
9 9 34.3.6 321321
10 10 4.3.2311222
11 11 3.3.1313111
12 12 24.3.4 323312
run.no run.no.std.rp F A B CDE
13 13 18.4.3 413322
14 14 2645422221
15 15 30.4.6 423111
16 16 11.4.2412112
17 17 7.4.1411321
18 18 19.4.4 421212
run.no run.no.std.rp F A B CDE

17

18 DoE.base for Factorial Experiments in R

19 19 10.2.2211312
20 20 21.2.4223112
21 21 29.2.6 222311
22 22 17.2.3 212222
23 23 9.2.1213221
24 24 26.2.6221121

run.no run.no.std.rp F A B CDE
25 25 2006.46 22312
26 26 16.6.3 6 11122
27 27 8.6.1612121
28 28 12.6.2 6 13212
29 29 28.6.6 621211
30 30 27r.6.56 23321

run.no run.no.std.rp F A B CDE
31 31 31.1.5121322
32 32 36.1.6 123221
33 33 13.1.3111111
34 34 211112311
35 35 23.1.4122212
36 36 6.1.2113122

class=design, type= oa.blocked
NOTE: columns run.no and run.no.std.rp are annotation,
not part of the data frame

Function GWLP per default ignores confounding with the block factor, but can be requested
to include it using the with.block = TRUE option:

R> GWLP(blockedoal, digits = 2)

0 1 2 3 4 5
1.00 0.00 0.00 0.28 0.33 0.39

R> GWLP(blockedoal, with.block = TRUE, digits = 2)

0 1 2 3 4 5
1.00 0.00 0.00 2.44 6.44 1.78

For designs that can also be created with function FrF2 (package FrF2) and/or function
regular.design (package planor), using one of the latter two may be a better choice, since
they allow a more direct control over design quality via minimum aberration or estimable
effects: The code below (results not shown) creates and inspects a 16-run design with eight
2-level factors in eight blocks of size 2 with all three methods; in all three cases, the design is
resolution IV in terms of the experimental factors, which is systematically requested in both
FrF2 (by the minimum aberration approach of the function) and regular.design (by the
model and estimate options). For function oa.design, the design quality is not as finely
tunable, apart from the overall optimization that may precede usage of an array for which
not all columns are used. For the designs below, however, the quality is the same for all three

Journal of Statistical Software 19

designs: The GWLPs, starting with As, are (28, 14, 56, 0, 28, 1) including the block factor
and (0, 14, 0, 0, 0, 1) for the experimental factors alone.

R> planFrF2 <- FrF2(16, 8, blocks = 8, alias.block.2fis = TRUE)

R> planDoEbase <- oa.design(L16.2.8.8.1,

+ nlevels = c(2, 2, 2, 2, 2, 2, 2, 2, 8),

+ factor.names = c(Letters[1:8], "Block"))

R> planDoEbase <- rerandomize.design(planDoEbase, seed = 31525,

+ block = "Block")

R> planplanor <- regular.design(factors = c(Letters[1:8], "Block"),
+ nlevels = c(rep(2, 8), 8),

+ model =~ (A+B+C+D+E+F+ G+ H) ~ 2 + Block,
+ estimate = ~A+B+C+D+E+ F + G + H,
+ nunits = 16, randomize = ~ Block / UNITS)

R> GWLP(planFrF2, with.block = TRUE)
R> GWLP(planFrF2)

R> GWLP(planDoEbase, with.block = TRUE)
R> GWLP(planDoEbase)

R> GWLP(planplanor@design)

R> GWLP(planplanor@design[, 1:8])

5.4. Inspection methods for factorial designs

Any experimental plan should be carefully checked before using it for experimentation, since
experimentation usually involves a lot of effort: Adverse consequences from mistakes in design
creation may be severe, but can often be prevented without much trouble, if attended to at
the design creation stage. For example, when implementing a self-chosen blocking, mistakes
can easily happen:

R> planstupid <- FrF2(16, 8, blocks = c("AB", "AC", "BCD"),
+ alias.block.2fis = TRUE)

R> GWLP(planstupid, with.blocks = TRUE)

R> plot(data2design(undesign(planstupid)), select = "all2")

A simple check of the GWLP can serve as a first indication whether the design behaves
as expected; here we find Ay = 4 (not shown), which is of course undesirable. Further
checks can involve plotting. The plot command in the code above reveals (not shown) that
factors D, F', G and H are aliased with the block factor for the design planstupid, which
explains the four words of length 2. Instead of looking at all two-factor sets with option
select = "all2", one can also look at a percentage of worst cases (see below). Note that
the data2design(undesign()) construction is used for incorporating the block factor, since
the plot method for class ‘design’ does not have a with.blocks option and works on the
design factors only.

We now visualize the worst case confounding of the two optimized designs discussed in Sec-
tion 5.2:

R> plot(oa.optimized, select = "worst", selprop = 0.05)

20 DoE.base for Factorial Experiments in R

- :
)) [
— | | = . .
mzuzzm e ﬁ
—— R S] | - | :
(a) Autoselected array, worst (b) Manually selected array, (c) Manually selected array,
case. same case. worst case.

Figure 2: Mosaic plots of triples of factors.

R> plot(oa.manualoptimized, select = c(2, 3, 6))
R> plot(oa.manualoptimized, select = "worst", selprop = 0.05)

The code above generates the three mosaic plots of Figure 2. The optimized design based
on the array that was automatically picked severely confounds the interaction of the two
3-level factors with the 6-level factor (factors 2, 3 and 6 of the design): A mosaic plot of
that projection is created by the first line of the above code and is shown in Figure 2(a). It
shows that the interaction of the two 3-level factors restricts the 6-level factor to a third of
its possibilities only, which is the most severe form of aliasing possible for a triple of factors
with this level combination; of the 54 possible level combinations in this triple of factors,
the design contains 18 distinct variants only (instead of the possible 36). In comparison, a
mosaic plot of the same projection for the optimized manually selected design shows a much
better picture: Now, the design has 36 distinct level combinations, the maximum possible
(see Figure 2(b)). The worst case confounding for that design is shown in Figure 2(c). It is
distinctly less severe than that of Figure 2(a); however, apart from the one worst case shown
in Figure 2(a), the optimized automatically-selected design is also quite reasonable.

Mosaic plots concentrate on individual low order projections. Package DoE.base offers another
diagnostic plot for looking at the entire design at once: Function corrPlot inspects the
correlations between model matrix columns. The creation of function corrPlot was inspired
by function colormap of package daewr (Lawson 2016). Figure 4 in Section 6.1 illustrates
its default version applied to a real life example. This function also offers a possibility to
include the design’s run order among the effects to be considered, since there are applications
for which the run order might be of relevance. For such situations, a simple approach could
be to re-randomize the design (with function rerandomize.design) until a randomization is
encountered for which the correlation of the run order to relevant effect columns (as shown
in the plot of absolute correlations) is reasonably small.

Numeric quality criteria can also be obtained; the function names for obtaining them were
already mentioned in Section 3.2. These advanced criteria might deter practitioners but may
be useful for experts: The function GRind calculates the metrics introduced by Grémping and
Xu (2014) with the additional detail proposed in Gromping (2017a). For example, the code
below shows that the optimized design based on the manually selected array has a clearly

Journal of Statistical Software 21

better overall behavior regarding factor-specific worst case confounding (GRyot,; and GRing ;;
see Section 3.2) than the optimized design based on the automatically selected first array.

R> GRindl <- GRind(oa.optimized)
R> GRind2 <- GRind(oa.manualoptimized)
R> print(cbind(rep(c("oa.optimized", "oa.manualoptimized"), each = 2),

+ rbind (GRind1$GR.i, GRind2$GR.i)), quote = FALSE)

A B C D E F
GRtot.i oa.optimized 3.667 3 3 3.423 3.423 3.368
GRind.i oa.optimized 3.667 3 3 3.423 3.423 3
GRtot.i oa.manualoptimized 3.184 3.5 3.423 3.423 3.667 3.635
GRind.i oa.manualoptimized 3.184 3.5 3.423 3.423 3.667 3.423

6. An example from plant biotechnology

Vasilev et al. (2014) investigated cultivation factors for geraniol production by plant cells.
There were four quantitative 2-level factors, two 3-level factors (one quantitative and one
qualitative) and one qualitative 4-level factor. The data, including response values, have
been published with the paper and are also included in package DoE.base as object VSGFS.
The 2-level factors are coded in —1/41 coding, the other factors in R’s default dummy coding.

6.1. Creating and inspecting the design

For this experiment, a full factorial design would have had 576 runs. It would certainly have
been necessary to conduct it in blocks, say in eight blocks of size 72 each. Such a design
could have been created by function fac.design or by function regular.design of package
planor, as shown in Section 4.

A full factorial design appeared neither feasible nor appropriate for the screening situation of
the experiment. Instead, the design was conducted using a 72-run orthogonal array, which
was generated with function oa.design, using automatic optimization (option columns =
"min34") of the manually pre-selected array L72.2.43.3.8.4.1.6.1. The optimization took
quite a long time and resulted in the selection of columns 4, 22, 37, 41 for the 2-level factors,
46 and 48 for the 3-level factors, and 52 for the 4-level factor. The design is available as object
VSGFS, and the code for reproducing it can be found in the manual.

When constructing the experimental plan for VSGFS, the array was pre-selected by intuition
and trial and error from all 33 72-run designs that can accommodate the requested fac-
tors, using the versions of function show.oas and data frame oacat available at the time
(no metrics information was contained in oacat, and thus, metric-based filtering was not
possible with function show.oas). A key driver for the ad-hoc selection of designs within
which to select columns was the number of choices a design offered for accommodating the
factors; this criterion was used intuitively rather than systematically; post-hoc, note that
the actually chosen design offers 3455480 choices, ranking fourth behind three designs of-
fering 8959566, 5151510 and 3455760 possibilities. After the resource-intensive optimization
of the L72.2.43.3.8.4.1.6.1, some further designs with distinctly fewer possibilities were
additionally tried; all of these yielded worse As.

22 DokE.base for Factorial Experiments in R

With the present possibilities of function show.oas, the GRgt3 = "ind" option (i.e., request-
ing that GRing > 3 which means absence of any instance of complete confounding for indi-
vidual degrees of freedom), one can pick arrays that are particularly promising for screening
purposes. The following command shows the available arrays without any complete con-
founding for the example situation, together with the GR metrics (requested by the showGRs
option):

R> show.oas(nlevels = c(2, 2, 2, 3, 2, 3, 4), GRgt3 = "ind", showGRs = TRUE)

4 arrays found

name nruns lineage GR
366 L72.2.53.3.2.4.1 72 3.18
380 L72.2.44.3.12.4.1 72 3.18
382 L72.2.43.3.8.4.1.6.1 72 3.18
431 L72.2.13.3.25.4.1 72 3~24;24~1;:(24~112~13;3~1;4~1;) 3.18
GRind
366 3.18
380 3.18
382 3.18
431 3.13

The array used in actual experimentation is the third array in this list; thus, the intuitive
approach was lucky to pick a particularly promising array in this case. It can be expected that
all four arrays listed above are reasonably suited for screening the experimental factors. As
the designs are far from saturated, optimal column allocation can substantially improve the
worst case confounding (and thus GR and GRj,q): For the eventual design, the output below
shows GR = GR;,q = 3.6; ARFT and SCFT have been suppressed, because their background
is outside the scope of this paper.

R> GRind(VSGFS, arft = FALSE, scft = FALSE)

$GRs
GR GRind
3.667 3.667
$GR. 1
Light ShakFreq InocSize FilledVol CM Sugar CDs
GRtot.i 3.667 3.667 3.667 3.864 3.667 3.864 3.808
GRind.i 3.667 3.667 3.667 3.808 3.667 3.808 3.667

attr(,"class")
[1] "GRind" "list"

For illustrating the worst case degree of confounding, Figure 3 shows the triple 3, 5, 7 in quite
reasonable balance (this is one of the two worst case triples); the option sub = "A" in the code
requests that the Az value for the triple is printed as a subtitle. Figure 4 shows for the entire
design that the main effect model matrix columns have reasonably low correlations with

Journal of Statistical Software

R> plot (VSGFS, select = 1list(c(3, 5, 7)), sub = "A")

CM

CMm- CM+
o
[¢
o
o
’—‘)
©
@‘ el
L 8
9]
<
’—‘ a
©

InocSize

1S+
CD4 CD3 CD2 CD1

CDs

A3=0.1111

Figure 3: Mosaic plot for the worst case triple in the VSGFS example.

R> corrPlot (VSGFS)

Plot of absolute correlations

InocSizel

Light1 1B
ShakFreql
i

FilledVoll
FilledVol2 | | |
Sugarl
Sugar2 | | |
CDs1
CDs2 | |
CDs3 B | |
TSN R R T eSS TN B NS N B RS S SN N R IR R R EE DR DB DR
gugggggooougggggooogggggoooggggggooooooggooooooooo
LNTTS50000NTTS55000TTS50007 55550000005 5000000000
£ 822200 g 8ggE—"ﬂ.‘!?'ﬂo'_"—'c'_"—io'_ggE@@ggg%%@@@@ﬂﬁﬂﬁﬂﬁ@@gggéﬁﬂ@'gfg
cCiilipdgEcccitict 9dd LN dJaddNoooooodd CCCC T T
0SS e e A BRI R R RS 5555228855555555000 255555
JEEE 8- - - oo I I~ 0000088322000 020000000 PADDDD
cooo th;xxmmm__:oocccuumwww======
o530 LLLnScEccnNN—00Lc s ====Luuuuw
5 %%% ﬁﬁwwwgg £c LICIL
ccco £c
nnv

Figure 4: Plot of absolute correlations of main effects model matrix columns with two factor
interaction model matrix columns for the VSGFS example (default normalized orthogonal

coding is the Xu Wu coding).

0.25

0.20

0.15

0.10

0.05

0.00

23

the two-factor interaction model matrix columns; note that function corrPlot defaults to
recoding all factors in normalized orthogonal coding (see also Section 7), in order to eliminate

avoidable confounding.

The team was happy with the design and used it for collecting the data.

Software-wise,

data collection happened in Excel, exporting the randomized design with the export.design

24 DokE.base for Factorial Experiments in R

function and re-importing it after data entry using the exported RDA file together with a
CSV file with response values added to the data rows using function add.response.

6.2. Analyzing experimental data

The data frame VSGFS contains the experiment with response data. Package DoE.base offers
a few functions for analysis purposes:

e The plot method for class ‘design’, in case of data with responses, creates simple main
effects plots, by invoking the plot method from package graphics.

e The 1m method for class ‘design’ runs a linear model with a modifiable default degree.
For orthogonal arrays created with function oa.design, the default degree is one, i.e.,
a model with main effects only. Linear models can of course also be run by the 1m
function from the core package stats, and analysis of variance functionality can also be
used (see below).

e The halfnormal method for classes ‘lm’ or ‘design’ creates a half-normal effects plot
(see Section 7).

Of course, in general, other R functionality can also be used, for example interaction plots
or functionality for mixed model analysis (not applicable for the example data). The func-
tionality for handling repeated measurement data or replicated data (also not needed for this
example) has been described for package FrF2 in Sections 5.3 and 5.9 of Gromping (2014c¢)
and is analogous here.

Main effects plots can be obtained by the simple command plot (VSGFS), which creates these
plots for all three response variables. Figure 5 shows the plots with default labeling, arranged
with three plots on one page and reduced margin sizes. Of course, one would usually adapt
the annotation for final reports or publications. The plot shows that the sugar sucrose is very
beneficial for the biomass, not very good for the content, but nevertheless, because of the
strong effect on biomass, beneficial for the yield. The content apparently can be increased by
choosing the sugar mannitol, level one of factor CD and the +-level of light. Apart from the
+-level of light, the other settings for high content are not helpful for overall yield.

An assessment of significance can be obtained from a linear model analysis. This can be
obtained separately for each response, for example for the content. Here, the analysis confirms
the findings from the main effects plot.

R> summary(1m(VSGFS, response = "Content"))

Number of observations used: 72

Formula:

Content ~ Light + ShakFreq + InocSize + FilledVol + CM + Sugar +
CDs

Call:
Im.default(formula = fo, data = model.frame(fo, data = formula))

Residuals:

mean of Biomass

mean of Content

mean of Yield

18.0 185 19.0 19.5 20.0

175

40 50 60 70 80 90 100

30

Journal of Statistical Software

Suc T
FV+
IS+ }V Gluc T
Loht+ T SF+T T M- gg% T
Lght- L SF- L I Fvo CMF= i
1S—- CD1
FV-
Mannit -
Light ShakFreq InocSize FilledVol Cc™M Sugar CDs
Mannit T
CD1 T
Lght+ +
SF- Fv- CM- T
T IS+ T £\
J- 1IS- L J- CD4 1
Sk FVo cM+
Gluc 1+ 1
Lght- L EB3t
Suc -+
Light ShakFreq InocSize FilledVol CcM Sugar CDs
Suc T
s FV+
+ 1
Lght+ '|' “V Gluc
s e
— CM+
Lght- J- l I CcD1
1S- EvV-
Mannit -
Light ShakFreq InocSize FilledVol Cc™M Sugar CDs

Figure 5: Main effects plots for all three responses.

25

26 DoE.base for Factorial Experiments in R

Min 1Q Median 3Q Max
-2.5472 -1.1746 -0.1052 0.7008 4.6994

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 18.67611 0.55106 33.891 < 2e-16 **x
Light1l 0.63264 0.19483 3.247 0.00191 x*x*
ShakFreql -0.15792 0.19483 -0.811 0.42083
InocSizel 0.05903 0.19483 0.303 0.76296
FilledVolFVO -0.36958 0.47723 -0.774 0.44172
FilledVolFV+ -0.14958 0.47723 -0.313 0.75503

CM1 -0.22069 0.19483 -1.133 0.26182
SugarGluc 0.54917 0.47723 1.151 0.25441
SugarMannit 2.51167 0.47723 5.263 2e-06 **x
CDsCD2 -1.63222 0.55106 -2.962 0.00438 **
CDsCD3 -1.57111 0.55106 -2.851 0.00597 **
CDsCD4 -1.10722 0.55106 -2.009 0.04901 =*
Signif. codes: O 'x*x*x' 0.001 '*x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.653 on 60 degrees of freedom
Multiple R-squared: 0.4787, Adjusted R-squared: 0.3831
F-statistic: 5.008 on 11 and 60 DF, p-value: 1.75e-05

The model explains less than 50% of the response variability, which is far from perfect; the
relatively large unexplained variation can be due both to random error and to the presence
of interaction effects not captured in the main effects model. Nevertheless, the main effects
results are trustworthy. The strong heredity principle — interactions are only active if both
their component factors are active — suggests to look at a model with the three active main
effect factors and their interactions, which leaves a somewhat confusing picture (not shown).

For the data at hand, there are enough degrees of freedom to run an Anova analysis with the
full degree 2 model. Of course, while main effects are orthogonal to each other, two-factor
interactions can be slightly confounded with main effects and severely confounded with other
two-factor interactions. However, at least, the theory tells us that the estimable effects can
be estimated without bias (unless effects of order higher than two bias them). As Anova
analyses sums of squares, the analysis is invariant with respect to factor coding. In order
to obtain an order-invariant assessment of significance, the function Anova from package car
(Fox and Weisberg 2011) can be used; contrary to function anova from package stats, Anova
avoids order-dependence by using type II sums of squares, which condition on all other effects
except for the ones that contain the effect under investigation. The results point to the main
effects that were also identified before, and a liberal look at p values additionally indicates
some marginal two-factor interactions (sugar with each of InocSize, FilledVol, CDs, Light,
and ShakFreq:CM, which is completely unrelated to the active main effects).

R> library("car")
R> Anova(1m(VSGFS, response = "Content", degree = 2))

Journal of Statistical Software 27

Anova Table (Type II tests)

Response: Content
Sum Sq Df F value Pr (>F)

Light 16.345 1 8.2606 0.0165515 =*
ShakFreq 0.483 1 0.2441 0.6319195
InocSize 1.604 1 0.8105 0.3891387
FilledVol 0.889 2 0.2247 0.8026463
CM 0.805 1 0.4069 0.5378565
Sugar 67.692 2 17.1048 0.0005921 *x*x*
CDs 29.468 3 4.9642 0.0230814 *
Light :ShakFreq 1.672 1 0.8450 0.3795988
Light:InocSize 0.320 1 0.1616 0.6961803
Light:FilledVol 3.296 2 0.8330 0.4628103
Light:CM 2.874 1 1.4524 0.2558948
Light:Sugar 11.387 2 2.8774 0.1030201
Light:CDs 6.073 3 1.0231 0.4231004
ShakFreq:InocSize 1.162 1 0.5871 0.4612301
ShakFreq:FilledVol 0.420 2 0.1061 0.9003686
ShakFreq:CM 6.303 1 3.1856 0.1046054
ShakFreq:Sugar 3.074 2 0.7767 0.4857813
ShakFreq:CDs 11.717 3 1.9738 0.1819413
InocSize:FilledVol 1.626 2 0.4109 0.6737704
InocSize:CM 0.752 1 0.3802 0.5512885
InocSize:Sugar 20.475 2 5.1739 0.0286697 *
InocSize:CDs 7.710 3 1.2989 0.3280819
FilledVol:CM 2.976 2 0.7521 0.4962887
FilledVol:Sugar 24.172 4 3.0539 0.0692876 .
FilledVol:CDs 6.333 6 0.5334 0.7719232
CM:Sugar 3.387 2 0.8559 0.4538120
CM:CDs 10.566 3 1.7799 0.2144014
Sugar:CDs 33.0756 6 2.7858 0.0734918 .
Residuals 19.787 10

Signif. codes: O '*xxx' 0.001 'x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Even though this design does not require analysis with half-normal effects plots, the next
section will illustrate application of half-normal effects plots for this example.

7. Half-normal effects plots

In (almost) saturated designs, conventional analysis of variance methods are not very suc-
cessful, because there are too few degrees of freedom for error. If one assumes a screening
design, for which most effects are inactive, the inactive effects actually represent experimental
error; however, it is not known a-priori, which are the active effects. Daniel (1959) proposed
to use half-normal effects plots for diagnosing which effects are active, and Lenth (1989) pro-

28 DoE.base for Factorial Experiments in R

posed a numerical activity check for these, known as “Lenth’s method”. The critical values
proposed by Lenth were later found to be conservative, and it was proposed to use simulated
ones instead. Half-normal effects plots with Lenth’s method and simulated critical values are
implemented in function halfnormal of package DoE.base.

7.1. The principle

The standard use for such plots is with 2-level factors which are conventionally coded in
—1/+1 coding (see, e.g., Gromping 2014c). Function halfnormal from package DoE.base
covers not only these standard situations, but also offers half-normal plots for:

o 2-level designs with a few error degrees of freedom. For these, it automatically augments
the estimated effects with error effects, distinguishing these into lack-of-fit and pure
error. Significance assessment can be done with Lenth’s method on the augmented set
of estimates, or with other methods proposed in the literature (Larntz and Whitcomb
1998; Edwards and Mee 2008). Note that error effects are not necessarily uniquely
determined.

o 2-level designs with partially confounded effects. For these, it projects out all preceding
effects from the remaining ones (thus, the plotting points depend on the model order
for such situations).

o Mixed level designs, for which there is no unique coding and the plotting points are
coding dependent. Mixed level designs can also have error degrees of freedom or partially
confounded effects.

The strategy chosen in function halfnormal seems to be similar to that applied in the JMP
software (SAS Institute Inc. 2018) screening platform (see Chapter 8 of SAS Institute Inc.
2012), both regarding the treatment of error points and the single degree of freedom repre-
sentations for factors with more than two levels. On the contrary, Design-Expert (Stat-Ease
Inc. 2017) does not plot individual degrees of freedom, but scaled Chi-squared values for ef-
fects with more than one degree of freedom. This avoids the coding dependence, but has the
adverse effect that the number of plotting points is small so that effect sparsity is not easily
achieved.

The steps for augmenting the estimated effects with error degrees of freedom are described,
e.g., in Gromping (2015) and are very similar also to the suggestions by Langsrud (2001) in
a different context. A coarse overview works as follows:

e Make sure the model matrix X has orthogonal columns all of which have the same
Euclidean length; if this is not the case, X has to be pre-treated (see below).

e For N observations, a trivial saturated model matrix is the N-dimensional identity
matrix Iy. If a distinction between lack-of-fit and pure error is sought, one can replace
this matrix by a matrix S of dummy variables for distinct runs, and additionally include
appropriately scaled orthogonal contrast matrices for replicated runs. In the following,
for simplicity, Iy is used.

¢ Residualize the matrix Iy by projecting out the model matrix X, i.e., calculate the
residual matrix R = Iy — X(XTX)"1X".

Journal of Statistical Software

o Create the half-normal effects plot for the augmented model matrix (X|R), which has
been created such that it has orthogonal columns where all have the same length.

The pre-treatment mentioned in the first bullet is as follows: If X has orthogonal columns
of varying Euclidean lengths, one simply has to normalize all columns to a common length.
The case of non-orthogonal columns is more demanding and will be discussed using the model
matrix X for a full model in an unreplicated full factorial design for one 2-level and one 3-level
factor, both in dummy coding, as given in Equation 1:

Int Ay By By A3By A9Bj

1 0 0 0 0 0
1 1 0 0 0 0
X=[1 0 1 0 0 0 (1)
1 1 1 0 1 0
1 0 0 1 0 0
1 1 0 1 0 1

The columns of this matrix are not orthogonal, which can be easily verified by inspecting
XTX. As the intercept estimates the mean for the combination A; By and the coefficients for
the main effects columns estimate deviations from that level, there is an obvious dependency.
With the interaction coefficients also measuring deviations of particular cells from additivity,
there is another clear dependence. It is well-known which effects are estimable in factorial
models: the overall means and the contrasts. A model matrix formulated to directly estimate
these has orthogonal columns.

Xu and Wu (2001) showed that it is particularly useful to code all main effects columns using
an orthogonal coding normalized to squared length N, where N is the number of runs: Such
a coding yields orthogonal columns of the model matrix for all effects up to degree s for any
projection of s factors from a strength s design, if the interaction columns are created in
the usual way as products of the normalized main effects contrast columns; the interaction
columns will then also have squared Euclidean length N and will be orthogonal to each
other and to the main effects columns. Such coding will be called Xu Wu coding in the
sequel. It is available in two versions in package DoE.base: There are contr.XuWu and
contr.XuWuPoly contrasts. The model matrix below is obtained by coding both factors A
and B with contr.XuWu contrasts.

Int AQ BQ Bg A232 A2B3
1 -1 =15 —/05 V15 0.5
1 1 —V/15 —V/05 —V15 —/05
X=|1 -1 V15 —/05 —/15 405 (2)
1 1 V15 —=V05 V15 —V0.5
1 -1 0 V2 0 —V2
1 1 0 V2 0 V2

If the design has strength s, a model matrix in a Xu Wu coding for main effects with up to
s-factor interactions can also be obtained post-hoc from a model matrix X based on non-
orthogonal coding by sequential orthogonalization and normalization: Project out the first
column (intercept column) from the second, which is just subtraction of the column mean.
Project out the first two columns from the third and so on. In addition, one also has to

29

30 DoE.base for Factorial Experiments in R

normalize all columns to squared length N (or any other common Euclidean length) in order
to satisfy the requirements for a half-normal effects plot.

If the model has truly confounded effects that cannot be orthogonalized by simply applying
Xu Wu coding, the same orthogonalization strategy can be applied, but the consequence is
not only a recoding of in principle the same information, but an order-dependent removal of
earlier confounded effects from later confounded effects.

7.2. Example application

The example design is an orthogonal array, i.e., main effect contrasts can be estimated inde-
pendently of each other. However, depending on the coding, the actual estimated coefficients
may be correlated, as was discussed above. For example, for 2-level factors, if —1/41 coding
is used, the estimates are uncorrelated, with 0/1 (dummy) coding, however, they are cor-
related. It is advisable to explicitly choose an orthogonal factor coding, ideally the Xu Wu
variant discussed above. The code below creates an orthogonal main effects model matrix
with squared Euclidean length N = 72 (output not shown).

R> VSGFS.XuWuPoly <- change.contr(VSGFS, "contr.XuWuPoly")
R> round(crossprod(model.matrix (1m(VSGFS.XuWuPoly))), 2)

Per default, function halfnormal refuses to work in case of correlated main effects (except
in case of the perfect confounding of regular designs). The option ME.partial = TRUE can
be used to change that; if the partial aliasing among main effects estimates is due to non-
orthogonal coding in an orthogonal array, use of ME.partial = TRUE is acceptable in the
light of the previous considerations (see the first command to create hnauto below), although
it seems preferable to decide on an orthogonal coding explicitly.

For the example design, a main effects analysis is quite well-protected against bias from
two-factor interactions. However, two-factor interactions may be quite heavily confounded
with each other. Nevertheless, we will now consider an almost saturated array in order to
demonstrate the most general usage of the function halfnormal.

R> hnAuto <- halfnormal(1m(VSGFS, response = "Content", degree = 2),

+ ME.partial = TRUE, cex.text = 0.9, cex = 0.9, xlim = c(0, 1.1),

+ ylim = ¢(0, 2.8), main = "Half-normal effects plot for Content")
R> hnXuWuPoly <- halfnormal (1m(VSGFS.XuWuPoly, response = "Content",

+ degree = 2), cex.text = 0.9, cex = 0.9, xlim = c(0, 1.1),

+ ylim = c(0, 2.8), main = "Half-normal effects plot for Content")
R> hnXuWuPolyreordered <- halfnormal(lm(Content -~

+ (CDs + Sugar + CM + FilledVol + InocSize + ShakFreq + Light) ~ 2,
+ VSGFS.XuWuPoly), cex.text = 0.9, cex = 0.9, xlim = c(0, 1.1),

+ ylim = ¢(0, 2.8), main = "Half-normal effects plot for Content")

Figure 6 shows half-normal effects plots from a model with all main effects and two-factor
interactions for the response variable Content. In order to demonstrate the coding dependence
of half-normal effects plots in case of factors with more than two levels, plot (a) shows the
automatic coding obtained by orthogonalizing the model matrix that results from the dummy
coding of the 3- and 4-level factors in VSGFS, plot (b) contr.XuWuPoly coding. Plot (¢) shows

Journal of Statistical Software 31

Half-normal effects plot for Content Half-normal effects plot for Content
Note: Some coefficients are order dependent. Note: Some coefficients are order dependent.
o Sugarl o Sugar.L
Te] Te]
o7 a7
o Sugar2 o Light.L
o InocSize:Sugar? o InocSize:Sugar2

g z 1 o Lightl @ 2 I o Sugar:CDs1
8 - ST cDss 8 . °CDsSQ
2 5 R Iﬂ%dVol:Sugam 2 5 g’
© - o © 5o o
g - § e - 3
5] o 5 &
T o | T o |
s - < -
T T

w0 v

o o

o | o _|#

o o

T T T T T T T T T T T T
00 02 04 06 08 10 00 02 04 06 08 1.0
absolute coefficients absolute coefficients
(a) Automatic coding, default order. (b) contr.XuWuPoly coding, default order.

Half-normal effects plot for Content

Note: Some coefficients are order dependent.

o Sugar.L
To)
(\i] .
o Light.L
o Sugar:InocSize2

¢ <1 S
g s CldgphaKFrea
T L0 4 g

i
£ K
S
T o
= i
T

v

o

e |

o

T T T T T I
00 02 04 06 08 1.0

absolute coefficients

(¢) contr.XuWuPoly coding, reversed order.

Figure 6: Half-normal effects plots for a model with all two-factor interactions, labeling from
Lenth’s method with a = 0.05.

the analysis for contr.XuWuPoly coding with the effects in different order. The actual codings
between (a) and (b) differ in the level ordering for the 3-level factors; for the 4-level factor,
the coding differences are more complicated. Note that plot points from effects with more
than one degree of freedom are not directly comparable between plots from different codings

32 DoE.base for Factorial Experiments in R

(e.g., plots (a) and (b) of Figure 6); the comparable message is restricted to the presence or
absence of individual effect components among the top-ranked absolute coefficients (and even
that may be coding dependent). For the example data, while there are clear visual differences
between the differently-coded plots, the message is more or less the same: As already seen
in the linear main effects model, light, sugar and CDs are active factors. Furthermore, the
sugar by CDs interaction and the inoculum size by sugar interaction seem to have active
components. However, the interaction effects are order dependent. The plot with different
interaction orders brings up three further interactions into the possibly active range and drops
the sugar by CDs interaction; thus, clearly, one has to be cautious with statements on these
effects from half-normal effects plots. However, all effects that show up in the half-normal
effects plots have also been at least marginal in the Anova analysis of the previous section.

The calculation results have been stored in the following list objects: hnAuto, hnXuWuPoly,
and hnXuWuPolyreordered. The list element res indicates which effects have been projected
out from which other effects; furthermore, the results contain the model matrix after orthogo-
nalization, and details about the orthogonalization itself. Printed output of orthogonalization
steps has been suppressed here. The reader is encouraged to check the printed output of the
simple command:

R> hnDemo <- halfnormal(VSGFS, ME.partial = TRUE, plot = FALSE)
which explains how columns of the main effects model matrix stored in

R> mm <- hnDemo$mm[, 2:11]

are obtained from the original model matrix stored (without intercept column) in

R> desnum(VSGFS) [, 1:10]

8. Further developments

Package DoE.base tries a balancing act of offering tools both for practitioners with a relatively
weak statistical background and for statistical experts. In order to save the former from
avoidable grave mistakes, the package takes a cautious strategy issuing many warnings, where
designs might be improvable or analyses might be inadequate. In various cases, it would be
desirable to avoid unnecessary warnings; for example, there are arrays for which it is known
from theoretical work (Butler 2005) that all choices for certain columns are GMA. For these
arrays, warnings for array optimization should be eliminated, which requires some slightly
tedious work.

The current design catalog covers many situations, but is also limited especially with respect
to availability of non-regular designs. Augmenting the catalog with further useful non-regular
designs is a difficult task and should not be addressed before studying in more detail the
relation between recently developed design quality criteria like GR, GRinq, ARFT and SCFT
and a design’s usefulness for experimentation. Ideally, it should eventually be possible to au-
tomate the entire process of obtaining a good experimental design, combining array selection
with the selection of columns within the array. It would also be good to have an option for

Journal of Statistical Software

requesting a design whose main effects model matrix columns are (near) orthogonal to run
order. The latter wishes are, however, quite resource intensive.

So far, the design catalog is used for selecting designs and optimizing column choices from
them. Kuhfeld (2010) makes much more extensive use of the catalog within a SAS software
macro suite for creating experimental designs from the arrays in the catalog, specifically
created with marketing applications in mind (Kuhfeld 2010). Such use can certainly also
be combined with the catalog in package DoE.base. The dependent package support.CEs
(Aizaki 2012) implements choice experiments in R. However, implementing a functionality as
flexible as the one offered in the SAS macros by Kuhfeld (2010) would require substantial
additional effort.

Package DoE.base also serves as a tool for supporting further theoretical investigations into
aspects like design regularity and new design quality criteria. For example, the work for
Gromping and Bailey (2016) was supported by the package, and recent efforts at developing
further criteria for checking arrays for combinatorial equivalence have been implemented in
the package (Gromping 2018a).

Last but not least, the class ‘design’ and infrastructure for it are also available for use
by other packages. Authors of other S3-based packages are invited to use it; the methods
within package DoE.base for its class ‘design’ can be adjusted to accommodate further types
of designs; please inform the package maintainer, if you would like a new type of design
included into the methods offered.

Acknowledgments

Boyko Amarov and Hongquan Xu contributed code to the package. Creation of generalized
resolution functionality was partly supported by grant GR 3843/1-1 of Deutsche Forschungs-
gemeinschaft. An anonymous reviewer provided valuable suggestions for improving the paper.

References

Aizaki H (2012). “Basic Functions for Supporting an Implementation of Choice Experiments
in R” Journal of Statistical Software, Code Snippets, 50(2), 1-24. doi:10.18637/jss.
v050.c02.

Box GEP, Tyssedal J (1996). “Projective Properties of Certain Orthogonal Arrays.”
Biometrika, 83(4), 950-955. doi:10.1093/biomet/83.4.950.

Butler N (2005). “Generalised Minimum Aberration Construction Results for Symmetrical
Orthogonal Arrays.” Biometrika, 92(2), 485-491. doi:10.1093/biomet/92.2.485.

Chambers JM, Hastie TJ (1984). Statistical Models in S. Wadsworth & Brooks/Cole, Pacific
Grove.

Chasalow S (2012). combinat: Combinatorics Utilities. R package version 0.0-8, URL http:
//CRAN.R-project.org/package=combinat.

33

https://doi.org/10.18637/jss.v050.c02
https://doi.org/10.18637/jss.v050.c02
https://doi.org/10.1093/biomet/83.4.950
https://doi.org/10.1093/biomet/92.2.485
http://CRAN.R-project.org/package=combinat
http://CRAN.R-project.org/package=combinat

34 DoE.base for Factorial Experiments in R

Collings BJ (1984). “Generating the Intrablock and Interblock Subgroups for Confounding
in General Factorial Experiments” The Annals of Statistics, 12(4), 1500-1509. doi:
10.1214/a0s/1176346806.

Collings BJ (1989). “Quick Confounding.” Technometrics, 31(1), 107-110. doi:10.2307/
1270370.

Daniel C (1959). “Use of Half Normal Plots in Interpreting Two Level Experiments.” Tech-
nometrics, 1(4), 311-340. doi:10.2307/1266715.

Deng LY, Tang B (1999). “Generalized Resolution and Minimum Aberration Criteria for
Plackett-Burman and Other Nonregular Factorial Designs.” Statistica Sinica, 9(4), 1071~
1082.

Edwards DJ, Mee RW (2008). “Empirically Determined p-Values for Lenth ¢-Statistics.”
Journal of Quality Technology, 40(4), 368-380. doi:10.1080/00224065.2008.11917743.

Eendebak P, Schoen E (2010). “Complete Series of Non-Isomorphic Orthogonal Arrays.” URL
http://pietereendebak.nl/oapage/.

Fox J, Weisberg S (2011). An R Companion to Applied Regression. 2nd edition. Sage, Thou-
sand Oaks. URL http://socserv.socsci.mcmaster.ca/jfox/Books/Companion.

Gromping U (2011a). “Relative Projection Frequency Tables for Orthogonal Arrays.” Reports
in Mathematics, Physics and Chemistry 1/2011, Beuth University of Applied Sciences
Berlin, Germany.

Gromping U (2011b). “Tutorial for Designing Experiments Using the R Package RemdrPlu-
gin.DoE.” Reports in Mathematics, Physics and Chemistry 4/2011, Beuth University of
Applied Sciences Berlin, Germany.

Gromping U (2013). FrF2.catlgl128: Complete Catalogues of Resolution IV 128 Run 2-Level
Fractional Factorials up to 24 Factors. R package version 1.2-1, URL https://CRAN.
R-project.org/package=FrF2.catlgl28.

Gromping U (2014a). “Mosaic Plots Are Useful for Visualizing Low Order Projections of
Factorial Designs.” The American Statistician, 68(2), 108-116. doi:10.1080/00031305.
2014 .896829.

Gromping U (2014b). RemdrPlugin.DoE: R Commander Plugin for (Industrial) Design of
Ezperiments. R package version 0.12-3, URL https://CRAN.R-project.org/package=
RcmdrPlugin.DoE.

Gromping U (2014c). “R Package FrF2 for Creating and Analyzing Fractional Factorial 2-
Level Designs.” Journal of Statistical Software, 56(1), 1-56. doi:10.18637/jss.v056.1i01.

Gromping U (2015). “Augmented Half Normal Effects Plots in the Presence of a Few Error
Degrees of Freedom.” Quality and Reliability International, 31(7), 1185-1196. doi:10.
1002/qre.1842.

Gromping U (2017a). “Frequency Tables for the Coding Invariant Quality Assessment of
Factorial Designs.” IISE Transactions, 49(5), 505-517. doi:10.1080/0740817x.2016.
1241458.

https://doi.org/10.1214/aos/1176346806
https://doi.org/10.1214/aos/1176346806
https://doi.org/10.2307/1270370
https://doi.org/10.2307/1270370
https://doi.org/10.2307/1266715
https://doi.org/10.1080/00224065.2008.11917743
http://pietereendebak.nl/oapage/
http://socserv.socsci.mcmaster.ca/jfox/Books/Companion
https://CRAN.R-project.org/package=FrF2.catlg128
https://CRAN.R-project.org/package=FrF2.catlg128
https://doi.org/10.1080/00031305.2014.896829
https://doi.org/10.1080/00031305.2014.896829
https://CRAN.R-project.org/package=RcmdrPlugin.DoE
https://CRAN.R-project.org/package=RcmdrPlugin.DoE
https://doi.org/10.18637/jss.v056.i01
https://doi.org/10.1002/qre.1842
https://doi.org/10.1002/qre.1842
https://doi.org/10.1080/0740817x.2016.1241458
https://doi.org/10.1080/0740817x.2016.1241458

Journal of Statistical Software 35

Gromping U (2017b). DoE.wrapper: Wrapper Package for Design of Experiments Function-
ality. R package version 0.9, URL https://CRAN.R-project.org/package=DoE.wrapper.

Gromping U (2018a). “Coding Invariance in Factorial Linear Models and a New Tool for
Assessing Combinatorial Equivalence of Factorial Designs.” Journal of Statistical Planning
and Inference, 193, 1-14. doi:10.1016/j.jspi.2017.07.004.

Gromping U (2018b). DoE.base: Full Factorials, Orthogonal Arrays and Base Utilities for
DoFE Packages. R package version 1.0, URL https://CRAN.R-project.org/package=DoE.
base.

Gromping U, Bailey RA (2016). “Regular Fractions of Factorial Arrays” In J Kunert,
HC Miiller, CA Atkinson (eds.), mODa 11 — Advances in Model-Oriented Design and Anal-
ysis: Proceedings of the 11th International Workshop in Model-Oriented Design and Analy-
sis held in Hamminkeln, Germany, June 12-17, 2016, pp. 143—-151. Springer International
Publishing, Cham. doi:10.1007/978-3-319-31266-8_17

Gromping U, Xu H (2014). “Generalized Resolution for Orthogonal Arrays.” The Annals of
Statistics, 42(3), 918-939. doi:10.1214/14-a0s1205.

Kobilinsky A, Bouvier A, Monod H (2018). planor: Generation of Regular Factorial Designs.
R package version 1.3-9, URL http://CRAN.R-project.org/package=planor.

Kobilinsky A, Monod H, Bailey RA (2017). “Automatic Generation of Generalised Regular
Factorial Designs.” Computational Statistics & Data Analysis, 113, 311-329. doi:10.
1016/j.csda.2016.09.003.

Kuhfeld W (2010). “Orthogonal Arrays” URL http://support.sas.com/techsup/
technote/ts723.html.

Langsrud @ (2001). “Identifying Significant Effects in Fractional Factorial Multiresponse
Experiments.” Technometrics, 43(4), 415-424. doi:10.1198/00401700152672500.

Larntz K, Whitcomb P (1998). “Use of Replication in Almost Unreplicated Factorials.”
Manuscript of a presentation given at the 42nd ASQ Fall Technical conference in Corning,
New York, downloaded 2013-04-26, URL http://www.statease.com/pubs/use-of-rep.
pdf.

Lawson J (2016). daewr: Design and Analysis of Ezperiments with R. R package version
1.1-7, URL https://CRAN.R-project.org/package=daewr.

Lenth R (1989). “Quick and Easy Analysis of Unreplicated Factorials.” Technometrics, 31(4),
469-473. doi:10.1080/00401706.1989.10488595.

Lenth RV (2009). “Response-Surface Methods in R, Using rsm.” Journal of Statistical Soft-
ware, 32(7), 1-17. doi:10.18637/jss.v032.1i07.

Meyer D, Zeileis A, Hornik K (2006). “The Strucplot Framework: Visualizing Multi-Way
Contingency Tables with ved.” Journal of Statistical Software, 17(3), 1-48. doi:10.18637/
jss.v017.103.

https://CRAN.R-project.org/package=DoE.wrapper
https://doi.org/10.1016/j.jspi.2017.07.004
https://CRAN.R-project.org/package=DoE.base
https://CRAN.R-project.org/package=DoE.base
https://doi.org/10.1007/978-3-319-31266-8_17
https://doi.org/10.1214/14-aos1205
http://CRAN.R-project.org/package=planor
https://doi.org/10.1016/j.csda.2016.09.003
https://doi.org/10.1016/j.csda.2016.09.003
http://support.sas.com/techsup/technote/ts723.html
http://support.sas.com/techsup/technote/ts723.html
https://doi.org/10.1198/00401700152672500
http://www.statease.com/pubs/use-of-rep.pdf
http://www.statease.com/pubs/use-of-rep.pdf
https://CRAN.R-project.org/package=daewr
https://doi.org/10.1080/00401706.1989.10488595
https://doi.org/10.18637/jss.v032.i07
https://doi.org/10.18637/jss.v017.i03
https://doi.org/10.18637/jss.v017.i03

36 DoE.base for Factorial Experiments in R

NIST/SEMATECH (2012). “NIST/SEMATECH e-Handbook of Statistical Methods, Sec-
tion 3.7 Accessed 2015-02-17, URL http://www.itl.nist.gov/div898/handbook/pri/
section3/pri33a.htm.

Plackett RL, Burman JP (1946). “The Design of Optimum Multifactorial Experiments.”
Biometrika, 33(4), 305-325. doi:10.1093/biomet/33.4.305.

R Development Core Team (2018). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.
org/.

Sarkar D (2008). lattice: Multivariate Data Visualization with R. Springer-Verlag, New York.
URL http://1mdvr.R-Forge.R-project.org/.

SAS Institute Inc (2012). JMP Modeling and Multivariate Methods. Cary.
Chapter 8, URL https://www. jmp.com/support/downloads/pdf/jmp1002/
Modeling-and-Multivariate-Methods.pdf.

SAS Institute Inc (2018). JMP, Version 14. Cary, NC. URL https://www.JMP.com/.

Schoen E, Eendebak P, Nguyen M (2010). “Complete Enumeration of Pure-Level and Mixed-
Level Orthogonal Arrays.” Journal of Combinatorial Designs, 18(2), 123-140. doi:10.
1002/jcd.20236.

Stat-Ease Inc (2017). Design-Expert, Version 11. URL https://www.statease.com/dx11.
html.

Tang B, Deng LY (1999). “Minimum Gg-Aberration for Nonregular Fractional Factorial
Designs.” The Annals of Statistics, 27(6), 1914-1926. doi:10.1214/a0s/1017939244.

Vasilev N, Schmitz C, Gromping U, Fischer R, Schillberg S (2014). “Assessment of Culti-
vation Factors That Affect Biomass and Geraniol Production in Transgenic Tobacco Cell
Suspension Cultures.” PLOS One, 9(8), 1-7. doi:10.1371/journal.pone.0104620.

Venables B (2013). conf.design: Construction of Factorial Designs. R package version 2.0.0,
URL http://CRAN.R-project.org/package=conf.design.

Venables WN, Ripley BD (2002). Modern Applied Statistics with S. 4th edition. Springer-
Verlag, New York. doi:10.1007/978-0-387-21706-2

Wheeler B (2014). AlgDesign: Algorithmic Ezperimental Design. R package version 1.1-7.3,
URL https://CRAN.R-project.org/package=AlgDesign.

Xu H, Cheng SW, Wu CFJ (2004). “Optimal Projective Three-Level Designs for Factor
Screening and Interaction Detection.” Technometrics, 46(3), 280-292. doi:10.1198/
004017004000000310.

Xu H, Wu CFJ (2001). “Generalized Minimum Aberration for Asymmetrical Fractional Facto-
rial Designs.” The Annals of Statistics, 29(4), 1066-1077. doi:10.1214/a0s/1013699993.

http://www.itl.nist.gov/div898/handbook/pri/section3/pri33a.htm
http://www.itl.nist.gov/div898/handbook/pri/section3/pri33a.htm
https://doi.org/10.1093/biomet/33.4.305
https://www.R-project.org/
https://www.R-project.org/
http://lmdvr.R-Forge.R-project.org/
https://www.jmp.com/support/downloads/pdf/jmp1002/Modeling-and-Multivariate-Methods.pdf
https://www.jmp.com/support/downloads/pdf/jmp1002/Modeling-and-Multivariate-Methods.pdf
https://www.JMP.com/
https://doi.org/10.1002/jcd.20236
https://doi.org/10.1002/jcd.20236
https://www.statease.com/dx11.html
https://www.statease.com/dx11.html
https://doi.org/10.1214/aos/1017939244
https://doi.org/10.1371/journal.pone.0104620
http://CRAN.R-project.org/package=conf.design
https://doi.org/10.1007/978-0-387-21706-2
https://CRAN.R-project.org/package=AlgDesign
https://doi.org/10.1198/004017004000000310
https://doi.org/10.1198/004017004000000310
https://doi.org/10.1214/aos/1013699993

Journal of Statistical Software

A. Class ‘design’ and functionality for it

Generally, all design generating functions from packages DoE.base and FrF2 (exceptions high-
lighted in the documentation) create an output design that is of S3 class ‘design’ and thus
the output follows a certain structure (cf. Section A.1) and allows application of certain in-
spection, modification and analysis methods and functions. The first subsection describes the
class ‘design’ itself, the second subsection functionality applicable to class ‘design’ objects.

Experimental design matrices or data frames created with tools that do not output class
‘design’ objects can be brought into that class by function data2design, in order to make
some of the package functionality work on them.

A.1. Class ‘design’

37

An object of S3 class ‘design’is a a data frame with the three attributes "desnum", "run.order"

and "design.info".

o Attribute "desnum" can be used for a numeric version of the data frame, which may be
useful for users who want to do manual matrix calculations. The package functionality
itself makes little use of that attribute.

o Attribute "run.order" has the main purpose of always being able to switch back and
forth between a standard order and the randomized run order.

o Attribute "design.info" is a list that contains all the important information on the
design and is heavily used by the methods and functions discussed in the following
subsection. This attribute will be described in some detail in the rest of this subsection.

The "design.info" attribute has some mandatory elements that have to be present for all
class ‘design’ objects and many elements that are needed for some types of designs only.
The author’s website contains a large table that details which types of designs need which
elements of the "design.info" attribute. Tables 2, 3 and 4 list the elements and their
meaning/context.

Apart from the elements listed in the table, there are further elements for class ‘design’
objects created by design combination functions. These are not discussed here. For such
designs, the entry types given in the table can also be replaced by lists of several such entries.

A.2. Functionality for class ‘design’ objects

Package DoE.base offers inspection functionality (print, summary, plot as methods for their
generics, corrPlot as a standalone function) and analysis methods (plot, 1m, halfnormal) for
this class, as well as a sub-setting method using [, which is useful for reordering experimental
runs (to switch between standard order and randomized order, to re-randomize).

Besides these major functions, there are various further functions tailored to the need of class
‘design’ objects, either as methods for generic functions or just as functions:

38 DoE.base for Factorial Experiments in R

Element Data type Role
Mandatory elements

type character string identifies the type of design

nruns number number of runs (replications not counted)

nfactors number number of factors

factor.names named list factor names and factor levels (or scale ends for
quantitative factors)

replications number number of replications or repeated measure-
ments per run

repeat.only logical if TRUE, the number given in the replications el-
ement refers to repeated measurements only

randomize logical if TRUE, run order has been randomized

seed number the seed used for randomization

creator call or list of menu the creation history of the object

settings in GUI

Optional general elements
response.names vector of character names of the response columns (column names
strings from the data frame)

Elements for blocked designs (from functions fac.design, rerandomize.design,
or FrF2)

block.name character string name of block variable
nblocks number number of blocks
block.gen number Yates matrix column number(s) of factor(s) used

for blocking (FrF2) or block generator matrix
(fac.design)

blocksize number run size of each block (without replications)

bbreps number number of between block replications (identical
to replications)

wbreps number number of within block replications (these can

be proper replications or repeated measure-
ments only)

Further element for full factorial designs and orthogonal array designs (functions
fac.design or oa.design)
nlevels numeric vector with number of levels for each factor
nfactors elements

Further elements for general orthogonal array based designs (function oa.design)
generating.oa character string name of the OA used (from catalog of orthogonal
arrays or user-provided)
selected. columns numeric vector with column number from generating.oa for each

nfactors elements factor
origin character string origin specification from generating.oa
(empty, if there is none)
comment character string comment from generating.oa (empty, if there
is none)
residual.df number residual degrees of freedom for main effects only
analysis

Table 2: Elements of the "design.info" attribute of class ‘design’ — Part L.

Journal of Statistical Software 39

Element

Data type

Role

ndummies

number

Further element for designs created by function pb

number of columns not assigned to experimental
factors

aliased
FrF2.version
generators
catlg.name
catlg.entry
ntreat
aliased.with.
blocks
base.design
nfac.WP
nfac.SP

nWPs
plotsize
res.WP

map
orig.fac.order
clear

res3
quantitative

ncube

ncenter
coding

list with character el-
ements
character string

character vector or
design key matrix

character string

list of length 1 of
class ‘catlg’
number

character vector
character string

number

number

number

number

number

numeric vector with
k elements

numeric vector with
nfactors elements
logical

logical
logical vector with
nfactors elements

number

number
list of formulae

Further elements for designs created by function FrF2

information on the alias structure of the design
up to degree 2

version number of package FrF2, when design
was created

design generators in the format “D = ABC”
etc. for FrF2 designs or design key matrix for
designs created with package planor

name of the catalog used for design creation
the catalog entry used for the design

identical to nfactors, present for blocked de-
signs for historical reasons

lists two-factor interactions that are aliased with
the block main effect

element of design catalog used for creating a
blocked or split plot design from

number of whole plot factors

number of split plot factors

number of whole plots

run size of each plot (without replications)
resolution of the whole plot portion of the design
mapping of base factors so that estimability or
randomization restriction requirement is fulfilled
order of original factors from function call for
split plot designs

if TRUE, the design is clear (for estimability re-
quirement)

if TRUE, resolution III has been permitted for
estimability request

TRUE elements indicate quantitative factors

number of cube points in a design with center
points

number of center points

coding of quantitative factors (for use with pack-
age rsm; Lenth 2009)

Table 3: Elements of the "design.info" attribute of class ‘design’ — Part II.

40

DokE.base for Factorial Experiments in R

Element Data type Role

Further elements for designs created by function Dopt.design

The function also outputs the split plot related elements and element
quantitative described under specific elements for FrF2 above.

plot.name character string name of whole plot factor in split plot re-
quest

digits number number of digits to which quantitative fac-
tors are to be rounded

formula formula model formula for which D-optimality is to
be achieved

constraint logical expression constraint applied to the experimental fac-
tors

optimality.criteria named numeric vec- performance of design on several optimality

tor criteria

Further elements for designs created by function lhs.design

subtype character string type of latin hypercube design
The function also outputs digits and optimality.criteria elements de-
scribed under specific elements for Dopt.design above.

Table 4: Elements of the "design.info" attribute of class ‘design’ — Part III.

Functions design.info, run.order, and desnum extract or set the respective attributes
of a class ‘design’ object.

Functions factor.names and response.names get or set the respective element from
the "design.info" attribute.

Function generators extracts generating information for designs of type FrF2 or planor.
Function getblock extracts block information for replicated designs (see also Section 2).

Function rerandomize.design allows to re-randomize a class ‘design’ object with-
out response data; this also allows explicit blocking of designs created with functions
oa.design and pb (see also Section 5.3).

Functions for designs that can be both in wide or in long format, i.e., parameter designs
and designs with repeated measurements, can change between long and wide format
or aggregate wide format designs: Function rep2wide brings repeated measurement
designs into wide format, reptolong does the opposite; function paramtowide brings
a parameter design to wide format (irreversible, they are created in long format); the
aggregate method for ‘design’ objects aggregates designs in wide format into designs
with a single response.

Functions add.response and col.remove add responses or remove columns; function
response.names can also be used to remove response columns.

Function qua.design influences, which design columns are quantitative, and function
change. contr changes the contrasts of design columns.

Journal of Statistical Software 41

o Functions undesign and redesign remove the class ‘design’ properties from an object
or reinstate them. Using function data2design instead of redesign on the result of
undesign allows to treat a block factor as a normal experimental factor without a special
role (see Section 5.3).

o Functions cross.design and param.design combine class ‘design’ objects into crossed
designs or parameter designs, respectively.

e The fix method for ‘design’ objects has been adapted from package utils; it allows to
edit ‘design’ objects; however, its use is not recommended.

e Function export.design can export a design in HI'ML or CSV format, together with
an R workspace for the design. After entering response data in a spreadsheet program,
responses can be added to the design itself using the add.response function.

Affiliation:

Ulrike Grémping

Department IT — Mathematics, Physics, Chemistry
Beuth University of Applied Sciences Berlin

D-13353 Berlin, Germany

E-mail: groemping@bht-berlin.de

URL: http://prof.beuth-hochschule.de/groemping/

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/
June 2018, Volume 85, Issue 5 Submitted: 2015-04-27

doi:10.18637/jss.v085.105 Accepted: 2017-08-14

mailto:groemping@bht-berlin.de
http://prof.beuth-hochschule.de/groemping/
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v085.i05

	Introduction
	Basics
	Full factorial designs and designs based on orthogonal arrays
	Principles of experimental design

	General orthogonal arrays
	Terminology for orthogonal arrays
	Generalized word length pattern and refinements

	Full factorial designs with function fac.design
	Orthogonal arrays with package DoE.base
	The data frames oacat and the function show.oas
	Optimization methods for function oa.design
	Blocking general orthogonal arrays
	Inspection methods for factorial designs

	An example from plant biotechnology
	Creating and inspecting the design
	Analyzing experimental data

	Half-normal effects plots
	The principle
	Example application

	Further developments
	Class `design' and functionality for it
	Class `design'
	Functionality for class `design' objects

