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Abstract

We describe an R package which implements grammatical evolution (GE) for auto-
matic program generation. By performing an unconstrained optimization over a popu-
lation of R expressions generated via a user-defined grammar, programs which achieve
a desired goal can be discovered. The package facilitates the coding and execution of
GE programs, and supports parallel execution. In addition, three applications of GE
in statistics and machine learning, including hyper-parameter optimization, classification
and feature generation are studied.
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1. Introduction
Grammatical evolution (GE, O’Neill and Ryan 2001) generates complete programs, optimized
towards performing a certain task by combining context-free grammars (CFG, Knuth 1964)
and genetic algorithms (GA, Holland 1992). Specifically, syntactically correct programs are
generated from a user-defined grammar, using a binary string to choose grammatical pro-
duction rules. Through a formulation involving a user-defined cost function, the fitness score
of programs for solving a problem can be evaluated, and an optimization process is used
to search through a subspace for the best program. This optimization’s objective function,
i.e., mapping a binary string to a program and subsequently to a numeric score, is often
non-smooth and non-convex, precluding gradient-based optimization algorithms and favoring
evolutionary optimization techniques such as GA.
GE is an alternative to genetic programming (GP, Koza 1992) for generating programs via
evolution. While GP directly operates on the actual program’s tree structure, GE applies evo-
lutionary operators on binary strings which are subsequently converted to the final program.
GP normally requires a custom search strategy to generate correct programs, whereas GE
can utilize an unconstrained evolutionary search, relying on the mapping to generate correct
programs.

http://dx.doi.org/10.18637/jss.v071.i01
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Figure 1: The evolutionary process and associated operators.

GE allows quick and easy integration of domain specific knowledge into the optimization
problem through a customizable grammar. It has been successfully applied to many research
areas in science and engineering, including computational finance, smart grid forecasting,
music, and robotic control. A survey by McKay, Hoai, Whigham, Shan, and O’Neill (2010)
discusses the range of GE research and applications.
In this paper, we present the R package gramEvol (Noorian and de Silva 2016), which facil-
itates the construction and execution of programs in R (R Core Team 2016) using GE. The
rest of the paper is structured as follows. In Section 2, evolutionary algorithms with empha-
sis on GE are briefly studied. Section 3 introduces the package and describes its functions.
Finally, in Section 4, three example problems are analyzed and solved using GE. It is shown
how a grammar can simplify model selection, hyper-parameter optimization, classification,
and feature generation.

2. Background

2.1. Canonical genetic algorithms

Canonical GA (Holland 1992) is an optimization algorithm which operates on a population of
chromosomes, performing evolutionary operations including selection, crossover, and muta-
tion as illustrated in Figure 1. Inspired by biological evolution, GA has been successfully used
in applications with complex fitness landscapes and multiple local optimas (Mitchell 1996).
In canonical GA, a chromosome is represented by a binary string. Normally, modern GA
implementations do not directly operate on binary values. Instead, bits are grouped into n-
bit values creating a codon, each of which is used as a parameter in the optimization problem.
If the problem is made of multiple building blocks, codons related to each block are grouped
together as a gene (Figure 2). This arrangement is a logical presentation of data and does
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010100010110    .   ..011100111001 Binary string
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0101 0001 0110 ... 0111 0011 1001

5    1    6 ... 7     3     9

Figure 2: Chromosome representations in GA.

not affect the low level representation of the chromosome.
The initial population is created from randomly generated chromosomes, each representing a
solution to the formalized problem. The chromosomes are then evaluated based on a given
cost function φ. The objective is to minimize the cost function, or maximize the fitness of
the chromosome. The better scoring chromosomes are deemed to be more desirable, and
hence their data is retained. Conversely, the low scoring chromosomes are discarded from the
population and replaced with new chromosomes to form a new generation. Elitism favors the
highest ranking chromosomes, and directly forwards them to the new generation’s population.
Others are created by recombination of selected chromosomes.
The selection operator is applied to select chromosomes with likelihood proportional to their
fitness score. Different selection schemes exist, including roulette wheel selection and tourna-
ment selection. In roulette wheel selection, the probability of selecting the ith chromosome,
denoted with bi, follows a Bernoulli distribution by p = φ(bi)/

n∑
j=0

φ(bj).

The crossover operator is applied on two randomly selected chromosomes. In canonical GA,
a single-point crossover is used, where a position in the binary string is chosen at random and
the opposing string sections of the two parents are exchanged, creating two new offsprings.
The mutation operator randomly flips single bits on a specific chromosome with a predefined
mutation probability. Mutation is necessary to maintain genetic diversity from one generation
of a population to the next.
The evolutionary process is repeated until a given termination criterion is satisfied. This
criterion may include reaching a predetermined number of generations, finding a chromosome
with fitness better than a certain minimum, or lack of improvement in the population fitness
despite evolution.
Since its introduction in 1975 (Holland 1975), other techniques and evolutionary algorithms
have been proposed to extend canonical GA. For example, to facilitate complex data repre-
sentation, GA is often implemented with integer or floating point codons and evolutionary
operators are applied directly to the codons instead of the underlying bit string. This method
also takes the advantage of the architecture of modern processors to speed-up computation.
For a review of other GA techniques, readers are referred to a survey by Srinivas and Patnaik
(1994).

2.2. Context-free grammar

A context-free grammar (CFG) is a mechanism to generate patterns and strings using hi-
erarchically organized production rules (Sipser 1997). A CFG is described by the tuple
(T ,N ,R,S) where T is a set of terminal symbols, N is a set of non-terminal symbols with
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N = {expr, op, coef , var}
T = {÷, ×, +, -, v1, v2, c1, c2, (, )}
S = <expr>

R = Production rules:

〈expr〉 ::= (〈expr〉)〈op〉(〈expr〉) (1.a)
| 〈coef 〉×〈var〉 (1.b)

〈op〉 ::= + | - | × | ÷ (2.a), (2.b), (2.c), (2.d)
〈coef 〉 ::= c1 | c2 (3.a), (3.b)
〈var〉 ::= v1 | v2 (4.a), (4.b)

Table 1: An example grammar in BNF notation. The three first lines define the non-terminal
(N ), terminal (T ), and start (S) symbol sets respectively. The rest of the lines define the
production rules (R).

N∩T = ∅, and S ∈ N is the start symbol. A non-terminal symbol is one that can be replaced
by other non-terminal and/or terminal symbols, while terminal symbols are literals. N and
T form the lexical elements used in R, the production rules of a CFG. R is defined as a set of
relations (also referred to as production rules) in the form of x→ α with x ∈ N , α ∈ (N∪T )∗,
where ∗ is the Kleene star. If the grammar rules are defined as R = {x→ xa, x→ ax}, a is
a terminal symbol since no rule exists to change it.
CFGs are commonly described using Backus-Naur form (BNF, Knuth 1964). To differenti-
ate between terminal and non-terminal symbols in the BNF, the non-terminal symbols are
enclosed within angle brackets (i.e., ‘<’ and ‘>’). Also in each production rule, possible
replacement sequences are separated by a vertical bar (i.e., ‘|’).
An example grammar in BNF notation is given in Table 1. In this grammar, the start symbol
(S) is <expr>. Each of the non-terminal symbols defined in N , <expr>, <op>, <coef>
and <var>, can be replaced by an appropriate terminal as specified in R. For example,
<expr> can either expand to (<expr>)<op>(<expr>) or <coef>×<var>, and <op> can
be replaced by one of the +, -, ×, or ÷ operators.

2.3. Genotype to phenotype mapping using grammar rules

In evolutionary biology, chromosome data is referred to as the genotype, while an organism’s
observable characteristics are called the phenotype. Biological organisms use complicated
methods to map their genotype to phenotype. Advanced evolutionary algorithms, such as
GE, use a similar notion to create complex objects from simple chromosome structures.
In GE, genotype to phenotype mapping is performed according to the production rules of a
CFG selected using the chromosome’s codon values. The usual mapping function used is the
mod rule defined as: (codon integer value) mod (number of rules for the current non-terminal),
where mod is the modulus operator. Mapping begins from the start symbol S, and continues
by replacing each non-terminal element N according to the production rule R chosen by the
mapping function. At each step, the resulting expression can contain terminal (i.e., T ) or



Journal of Statistical Software 5

Step Codon mod operator Rule Current element state
0 S <expr>
1 2 2 mod 2 0 (1.a) (<expr>)<op>(<expr>)
2 1 1 mod 2 1 (1.b) (<coef>×<var>)<op>(<expr>)
3 0 0 mod 2 0 (3.a) (c1 ×<var>)<op>(<expr>)
4 0 0 mod 2 0 (4.a) (c1 × v1)<op>(<expr>)
5 3 3 mod 4 3 (2.d) (c1 × v1) ÷ (<expr>)
6 3 3 mod 2 1 (1.b) (c1 × v1) ÷ (<coef>×<var>)
7 3 3 mod 2 1 (3.a) (c1 × v1) ÷ (c2 ×<var>)
8 1 1 mod 2 1 (4.a) (c1 × v1) ÷ (c2 × v2)

Table 2: Production of an expression using the grammar of Table 1. The process starts from
the start symbol S, and continues by replacing the first symbol present in N with another.
This later symbol is selected from the production rules R according to the value of the current
codon. In 8 steps, all of non-terminal symbols are replaced and the string [2|1|0|0|3|3|3|1] is
mapped to (c1 × v1) ÷ (c2 × v2).

non-terminal elements. The mapping continues until all non-terminal elements are replaced
with terminals.
If the chromosome is too short, it may run out of codons with non-terminal elements still
remaining. A common approach is to wrap the chromosome and continue the mapping process
by reusing the codons from the beginning. However, in cyclic grammars, infinite recursion
may occur. This is addressed by introducing a limit on the number of allowed chromosome
wrappings and returning a poor fitness score if the limit is reached.
In this section, the grammar in Table 1 is used as an example of expression generation.
Consider the chromosome with a 16-bit genotype, [2|1|0|0|3|3|3|1], where the integer numbers
represent 2-bit codon values. There are two production rules to choose from for the start
symbol S = <expr>, (1.a) and (1.b). The mod operation on the current codon becomes 2
mod 2=0, hence rule (1.a) is chosen. The successive application of rules is demonstrated in
Table 2, showing how an expression is generated by the example chromosome. The resulting
phenotype, (c1 × v1) ÷ (c2 × v2), can be later evaluated in different contexts as a numerical
value.
GE uses the standard evolutionary operators from canonical GAs to evolve the chromosomes
and generate new programs. An in-depth explanation of GE can be found in the original GE
paper by O’Neill and Ryan (2001).

2.4. Software implementations of GE

Several open source software implementations of GE are available for different program-
ming languages. These include GEVA (O’Neill, Hemberg, Gilligan, Bartley, McDermott,
and Brabazon 2008) in Java, PonyGE (Hemberg and McDermott 2012) and PyNeurGen
(Smiley 2012) in Python, GEM (Hemberg 2011) for MATLAB, and GERET (Suchmann 2013)
for Ruby. gramEvol (Noorian and de Silva 2016) is the first package for R.
The design goal of this package is to evolve programs natively in R. While it is possible to
generate and call R code from other languages, a native implementation has the following
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advantages:

• R’s expression objects are used to define a grammar, removing an error prone text-
based BNF interpretation or compilation step, allowing dynamic grammar manipulation
and rapid prototyping.

• Expression are created directly in R as expression objects, which removes the overhead
of calling R from an external program.

• Only R’s base packages are used for evolutionary operations and grammar processing
along with parsing and running generated programs. This eliminates the need for third-
party libraries and external dependencies.

A disadvantage of gramEvol is its speed compared to compiled GE libraries, such as libGE
(Nicolau 2006) or AGE (Nohejl 2011), which are written in C++. We assume that the
computational overhead of processing the cost function is greater than the overhead of GE
operators. Hence any major speed-up will be a result of moving the cost function compu-
tational bottleneck to C, C++ or Fortran. This is already a common practice in the design
and implementation of R packages. Furthermore, packages such as Rcpp (Eddelbuettel and
Francois 2011) are available to facilitate porting existing R code to C++.

3. Package gramEvol
The gramEvol package implements grammatical evolution (GE) for R. It offers facilities for
defining, creating, evaluating, and evolving programs based on context-free grammars, which
are introduced in this section.

3.1. Defining a grammar

In gramEvol, a grammar is defined by passing a list of productions rules to the function
CreateGrammar. CreateGrammar automatically determines the terminal, non-terminal and
start symbols based on the rules. gramEvol supports two type of rules: expression based
rules defined using grule, and character string rules defined using gsrule.
For example, the following commands will construct the CFG of Table 1 using gsrule:

R> library("gramEvol")
R> ruleDef <- list(expr = gsrule("(<expr>)<op>(<expr>)", "<coef>*<var>"),
+ op = gsrule("+", "-", "*", "/"), coef = gsrule("c1", "c2"),
+ var = gsrule("v1", "v2"))
R> grammarDef <- CreateGrammar(ruleDef)
R> grammarDef

<expr> ::= (<expr>)<op>(<expr>) | <coef>*<var>
<op> ::= + | - | * | /
<coef> ::= c1 | c2
<var> ::= v1 | v2
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Using R’s native expression objects require a change to the grammar, as expr op expr is
not valid in R. Instead, a functional form of op(expr, expr) is used with grule:

R> ruleDef <- list(expr = grule(op(expr, expr), coef*var),
+ op = grule(`+`, `-`, `*`, `/`), coef = grule(c1, c2),
+ var = grule(v1, v2))
R> CreateGrammar(ruleDef)

<expr> ::= <op>(<expr>, <expr>) | <coef> * <var>
<op> ::= `+` | `-` | `*` | `/`
<coef> ::= c1 | c2
<var> ::= v1 | v2

The grammar properties are reported via the summary function:

R> summary(grammarDef)

Start Symbol: <expr>
Is Recursive: TRUE
Tree Depth: Limited to 4
Maximum Rule Choices: 4
Maximum Sequence Length: 18
Maximum Sequence Variation: 2 2 2 2 4 4 2 2 2 4 2 2 2 2 4 2 2 2
No. of Unique Expressions: 18500

This summary reports that:

• The non-terminal symbol of the first production rule (i.e., <expr>) was selected as the
start symbol S.

• The grammar is cyclic, i.e., the non-terminal symbol <expr> expands to more <expr>s.
To avoid infinite recursion, the maximum recursion depth is limited to the number of
production rules.

• The grammar tree depth is limited to four.

• Maximum choices in a production rule is four, given by <op>.

• Maximum length of a chromosome, avoiding wrapping and limiting recursions, is 18.

• The maximum variation of each integer codon in the chromosome. This value depends
on the location of the codons and the grammar, and helps reduce the search space of
chromosomes.

• The grammar, with recursion limited to four, can create 18500 different expressions.

GrammarMap maps a sequence of integers (the genotype in evolutionary algorithms) to a sym-
bolic expression (the phenotype). The example below converts the numeric genome in Table 2
to its analytical phenotype, using the verbose argument to show the steps of the mapping.
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R> genome <- c(2, 1, 0, 0, 3, 3, 3, 1)
R> expr <- GrammarMap(genome, grammarDef, verbose = TRUE)

Step Codon Symbol Rule Result
0 starting: <expr>
1 2 <expr> (<expr>)<op>(<expr>) (<expr>)<op>(<expr>)
2 1 <expr> <coef>*<var> (<coef>*<var>)<op>(<expr>)
3 0 <coef> c1 (c1*<var>)<op>(<expr>)
4 0 <var> v1 (c1*v1)<op>(<expr>)
5 3 <op> / (c1*v1)/(<expr>)
6 3 <expr> <coef>*<var> (c1*v1)/(<coef>*<var>)
7 3 <coef> c2 (c1*v1)/(c2*<var>)
8 1 <var> v2 (c1*v1)/(c2*v2)

Valid Expression Found

R> expr

(c1 * v1)/(c2 * v2)

The returned object is of class GEPhenotype. It can be cast to a character string or an
expression and subsequently evaluated using R’s eval function:

R> as.character(expr)

[1] "(c1 * v1)/(c2 * v2)"

R> c1 <- 1
R> c2 <- 2
R> v1 <- 3
R> v2 <- 4
R> eval(as.expression(expr))

[1] 0.375

To inspect some random expressions of the grammar, GrammarRandomExpression can be
used. For the purpose of reproducibility, the random generator seed value is first set to a
fixed value:

R> set.seed(0)
R> GrammarRandomExpression(grammarDef, numExpr = 4)

[[1]]
expression((c2 * v2) + (c1 * v1))

[[2]]
expression((c1 * v1) - (c1 * v2))
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[[3]]
expression(c1 * v1)

[[4]]
expression((((c1 * v2) - ((c1 * v2) - (c2 * v2))) + ((c1 * v1) +

(c1 * v2))) - ((c1 * v2) - (c2 * v2)))

From the example, it can be seen that this grammar is capable of generating both simple and
complex expressions.

3.2. Exhaustive and random search in grammar

Context-free grammars are a general way of describing program structures, not bound to evo-
lutionary optimization. As a result, gramEvol additionally supports exhaustive and random
search.
The first step in any optimization is defining a cost function. This function receives an
expression generated using the grammar, and returns an appropriate score. For example,
in order to find the numeric sequence that generates a certain expression, the following cost
function returns the generalized Levenshtein distance of the current expression and the target:

R> evalFunc <- function(expr) {
+ adist(as.character(expr), "(c1 * v1) - (c2 * v2)")
+ }

The objective is to find a suitable chromosome, and therefore the expression, that minimizes
the cost function, i.e., the string distance. GrammaticalExhaustiveSearch performs an ex-
haustive search to find this expression:

R> GrammaticalExhaustiveSearch(grammarDef, evalFunc)

GE Search Results:
Expressions Tested: 18500
Best Chromosome: 0 1 0 0 1 1 1 1
Best Expression: (c1 * v1) - (c2 * v2)
Best Cost: 0

GrammaticalRandomSearch performs a similar albeit random search. The terminationCost
option allows the algorithm to terminate if the required minimum cost is found. In our
example, the optimal cost is zero:

R> GrammaticalRandomSearch(grammarDef, evalFunc, terminationCost = 0)

GE Search Results:
Expressions Tested: 1000
Best Chromosome: 0 1 2 0 2 3 1 1 0 3 1 1 0 0 1 1 1 2
Best Expression: (c1 * v1) * (c2 * v2)
Best Cost: 1
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Both of these methods have their drawbacks: testing 18500 expressions requires extensive com-
putation, and a random search is ineffective. In such cases, considering the non-smoothness
and non-convexity of the search space, evolutionary algorithms are often an efficient choice.

3.3. Evolving a grammar

GrammaticalEvolution uses evolutionary optimization to find the minima of evalFunc. Con-
tinuing the previous example, the best expression is determined using the same grammar and
cost function, optimized using GrammaticalEvolution. Details of evolutionary optimization,
such as size of the population and number of iterations are automatically chosen by an internal
heuristic:

R> result <- GrammaticalEvolution(grammarDef, evalFunc, terminationCost = 0)
R> print(result, show.genome = TRUE)

Grammatical Evolution Search Results:
No. Generations: 3
Best Genome: 2 1 0 0 1 1 1 1 0 3 3 1 2 1 2 0 2 1
Best Expression: (c1 * v1) - (c2 * v2)
Best Cost: 0

It is evident that the evolutionary algorithm has quickly converged to the optimization ob-
jective.
GrammaticalEvolution allows monitoring the status of each generation using a callback
function. This function, if provided to parameter monitorFunc, receives an object similar to
the return value of GrammaticalEvolution. For example, the following function prints the
information about the current generation and the best chromosome in the current generation:

R> customMonitorFunc <- function(results) print(results)
R> ge <- GrammaticalEvolution(grammarDef, evalFunc, terminationCost = 0,
+ monitorFunc = customMonitorFunc)

Internally, GrammaticalEvolution uses GeneticAlg.int, which is a GA implementation
with integer codons partially based on genalg package by Willighagen (2015):

• Using the information obtained about the grammar (e.g., number of possibles expres-
sions and maximum sequence length), GrammaticalEvolution applies a heuristic al-
gorithm based on the work of Deb and Agrawal (1999) to automatically determine a
suitable value for the popSize (i.e., the population size) and the iterations (i.e., the
number of iterations) parameters.

• The ordinary crossover operator is considered destructive when homologous production
rules are not aligned, such as for cyclic grammars (O’Neill, Ryan, Keijzer, and Cat-
tolico 2003). Consequently, GrammaticalEvolution automatically changes crossover
parameters depending on the grammar to improve optimization results.

• Each integer chromosome is mapped using the grammar, and its fitness is assessed by
calling evalFunc (i.e., the cost function).
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• After reaching a termination criteria, e.g., the maximum number of iterations or the
desired terminationCost, the algorithm stops and returns the best expression found
so far.

• GrammaticalEvolution also supports multi-gene operations, generating more than one
expression per chromosome using the numExpr parameter.

GrammaticalEvolution’s algorithm is summarized in Figure 3.

1 Function GrammaticalEvolution is
2 if missing crossover parameters then
3 determine crossover parameters based on grammar
4 end
5 if missing popSize or iterations then
6 determine the optimal popSize and iterations based on grammar
7 end
8 genotypes ← suggestions
9 for i := length(suggestions) + 1 to popSize do

10 genotypes Append←−−−− random chromosome
11 end
12 for generation := 1 to iterations do
13 for i := 1 to len(genotypes) do
14 phenotypes[i] ← GrammarMap (grammarDef, genotypes[i], wrappings)
15 end
16 fitnesses ← evalFunction(phenotypes)
17 if terminationCost is given & minimum(fitnesses) < terminationCost

then
18 break For loop
19 end
20 genotypes ← sort genotypes by their fitness
21 new_genotypes ← genotypes[1 to elitism]
22 for i := elitism+1 to popSize do
23 parent1 ← Select from genotypes using Roulette Wheel operator
24 parent2 ← Select from genotypes using Roulette Wheel operator
25 new_genotypes[i] ← Crossover(parent1, parent2, crossover parameters)
26 if random number > mutationChance then
27 Mutate new_genotypes[i]
28 end
29 end
30 genotypes ← new_genotypes
31 end
32 return the genotype and phenotype (i.e., the expression) with the best fitness
33 end

Figure 3: Pseudocode for the GE algorithm implemented in gramEvol.
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3.4. Parallel processing option

Processing expressions and computing their fitness is often computationally expensive. The
gramEvol package can utilize parallel processing facilities in R to improve its performance.
This is done through the plapply argument of GrammaticalEvolution function. By default,
lapply function is used to evaluate all chromosomes in the population.
Multi-core systems simply benefit from using mclapply from package parallel (R Core Team
2016), which is a drop-in replacement for lapply on POSIX compatible systems. The follow-
ing code optimizes evalFunc on 4 cores:

R> library("parallel")
R> options(mc.cores = 4)
R> ge <- GrammaticalEvolution(grammarDef, evalFunc, plapply = mclapply)

To run gramEvol on a cluster, clusterapply functions can be used instead. The gramEvol
package must be first installed on all machines and the evaluation function and its data depen-
dencies exported to all cluster nodes before GE is called. The following example demonstrates
a four-process cluster running on the local machine:

R> library("parallel")
R> cl <- makeCluster(type = "PSOCK", c("127.0.0.1", "127.0.0.1",
+ "127.0.0.1", "127.0.0.1"))
R> clusterEvalQ(cl, library("gramEvol"))
R> clusterExport(cl, c("evalFunc"))
R> ge <- GrammaticalEvolution(grammarDef, evalFunc,
+ plapply = function(...) parLapply(cl, ...))
R> stopCluster(cl)

3.5. Non-terminal expressions

As demonstrated in Section 3.1, a cyclic grammar allows complex expressions to be derived
from a compact description. However, if the chromosome is too short, the expression may
still contain non-terminal symbols even after wrapping multiple times. For example:

R> chromosome <- c(0)
R> expr <- GrammarMap(chromosome, grammarDef)
R> expr

Non-Terminal Sequence:
(((<expr>)<op>(<expr>))<op>(<expr>))<op>(<expr>)

Non-terminal expressions are identified using GrammarIsTerminal function:

R> GrammarIsTerminal(expr)

[1] FALSE
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GrammaticalEvolution and other search functions automatically filter non-terminal expres-
sions, and the user does not need to worry about them in practice.

4. Grammatical evolution for machine learning
In this section, three applications of grammatical evolution in statistics and machine learning
are explored. Other applications, such as symbolic regression and regular expression discovery
using package rex (Ushey, Hester, and Krzyzanowski 2016) are explained in the package’s
vignette.

4.1. Model selection and hyper-parameter optimization

Selecting the best learning model in a machine learning task is often performed in three steps:

• Feature selection, where different features are selected as inputs to for a learning model.

• Model selection, where candidate learning models are compared and one of them is
selected.

• Hyper-parameter optimization, where hyper-parameters of the model are optimized for
the current objective, (e.g., the kernel type and parameters for kernel methods).

Due to their importance, dedicated packages such as caret (Kuhn 2008, 2016) support feature
selection and hyper-parameter optimization for many machine learning techniques. Extending
these packages to support new algorithms or combining additional steps into their operation,
however, require structural changes to the package’s code. In this section, we show how CFGs
can offer an easily extensible framework for a simultaneous feature selection, model selection
and hyper-parameter optimization.
Here, the ChickWeight dataset (R Core Team 2016) is used to demonstrate these steps. The
objective is to learn the weight of a chicken based on the Time passed since its birth and its
Diet. The Chick identifier is also included.
We choose a linear model, an artificial neural network (ANN) from nnet (Venables and Rip-
ley 2002) and support vector regression (SVR) from e1071 (Meyer, Dimitriadou, Hornik,
Weingessel, and Leisch 2015) as the possible learning algorithms.

R> data("ChickWeight")
R> library("e1071")
R> library("nnet")
R> grammarDef <- CreateGrammar(list(
+ learner = grule(function(train.data) {
+ result <- NULL
+ features <- weight ~ F1 + F2 + F3
+ if (length(attr(terms(features), "variables")) > 2) {
+ capture.output({
+ result <- model
+ })
+ }
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+ return(result)
+ }),
+ model = grule(lm(features, train.data),
+ nnet(features, train.data, size = nn.size),
+ svm(features, train.data, cost = svm.c, svm.hyperparam)),
+ F1 = grule(Time, 0), F2 = grule(Chick, 0), F3 = grule(Diet, 0),
+ nn.size = grule(4, 8, 16),
+ svm.hyperparam = grule(.(kernel = "linear"),
+ .(kernel = "polynomial", degree = svm.degree),
+ .(kernel = "radial", gamma = svm.gamma)),
+ svm.c = grule(0.1, 1, 10, 100, 1000),
+ svm.degree = grule(1, 2, 3, 4, 5),
+ svm.gamma = grule(0.1, 0.2, 0.5, 1.0)))

The start symbol, the <learner>, has only one production rule, which creates a function that
receives the training data and returns the trained model:

• It first selects the appropriate formula of features, and if there is at least one regressor
variable, it returns a <model>. The features formula is built by either selecting a
variable (i.e., Time, Chick, and Diet), or 0 using <F1>, <F2>, and <F3> rules.

• The <model> can be either a lm, an svm or a nnet and is wrapped in capture.output
to suppress the diagnostic but useless messages by nnet.

• Each learning algorithm has its own set of hyper-parameters: nnet’s hidden layer size is
determined using <nn.size>, and svm uses <sym.hyperparamm> to select its kernel and
its associated parameter in one-step. Here, .() is used to avoid premature interpretation
of assignment operator and comma (i.e., = and ,) by R.

The remaining rules, assign certain ranges of values to different hyper-parameters, similar to
an ordinary grid search.
An example of an expression generated by this grammar is:

R> GrammarRandomExpression(grammarDef)

expression(function(train.data) {
result <- NULL
features <- weight ~ 0 + 0 + Diet
if (length(attr(terms(features), "variables")) > 2) {

capture.output({
result <- nnet(features, train.data, size = 4)

})
}
return(result)

})

This uses Diet as a feature, and an ANN with four neurons in its hidden layer as its model.
The grammar can generate 432 unique models:
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R> summary(grammarDef)

Start Symbol: <learner>
Is Recursive: FALSE
Tree Depth: 4
Maximum Rule Choices: 5
Maximum Sequence Length: 8
Maximum Sequence Variation: 1 2 2 2 3 5 3 5
No. of Unique Expressions: 432

To assess each model, a cost function is required. In this example, we define a simple cross-
validation test, returning the out-of-sample mean square error (MSE):

R> set.seed(0)
R> data("ChickWeight")
R> total.samples <- nrow(ChickWeight)
R> train.ind <- sample(total.samples, trunc(total.samples * 0.8))
R> train.data <- ChickWeight[train.ind,]
R> test.data <- ChickWeight[-train.ind,]
R> eval.chicken <- function(expr) {
+ trainer <- eval(expr)
+ model <- trainer(train.data)
+ if (is.null(model)) {
+ return (Inf)
+ }
+ test.results <- predict(model, test.data)
+ cost <- mean((test.results - test.data$weight)^2)
+ return (cost)
+ }

The eval.chicken function, first evaluates the expression to get its underlying function. This
function is then applied to the training data to obtain a model. If the model is NULL, i.e.,
some error has occurred during the training, it returns a very high cost. Otherwise, the model
is used on the testing data, and the MSE of the results is returned.
To find the best combination of features, model and hyper-parameters, Grammatical Evolu-
tion is applied to the appropriate grammar and cost function:

R> result <- GrammaticalEvolution(grammarDef, eval.chicken)
R> result

Grammatical Evolution Search Results:
No. Generations: 108
Best Expression: function(train.data) {

result <- NULL
features <- weight ~ Time + Chick + 0
if (length(attr(terms(features), "variables")) > 2) {

capture.output({
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result <- svm(features, train.data, cost = 100,
kernel = "radial", gamma = 0.1)

})
}
return(result)

}
Best Cost: 68.3212558249473

The optimal model uses only two of the available features with a radial kernel SVR, and is
identical to the result of an exhaustive search:

R> GrammaticalExhaustiveSearch(grammarDef, eval.chicken)

GE Search Results:
Expressions Tested: 432
Best Chromosome: 0 0 0 1 2 3 2 0
Best Expression: function(train.data) {

result <- NULL
features <- weight ~ Time + Chick + 0
if (length(attr(terms(features), "variables")) > 2) {

capture.output({
result <- svm(features, train.data, cost = 100,

kernel = "radial", gamma = 0.1)
})

}
return(result)

}
Best Cost: 68.32126

To compare the performance of GE and exhaustive search, the GE was run 100 times, with
termination condition set to reaching the global optima obtained by the exhaustive search.
The error, number of generations and the duration of execution was measured. The tests
were performed on a single thread on a 3.40 GHz Intel Core i7-2600 CPU. To ensure repro-
ducibility, set.seed(0) was executed before running the code. The results are presented
in Table 3. Overall, the GE’s average execution time is better than that of the exhaustive
search. It must be noted that however, as the GE is an stochastic optimization, on some
occasions it was unable to find the global minima before reaching the maximum number of
allowed iterations. In this example this was limited to 108 generations, set automatically
by GrammaticalEvolution. As a result, the optimization terminated prior to reaching the
global optima.
The final model can be constructed from the results of GE optimization:

R> train.func <- eval(result$best$expression)
R> final.model <- train.func(ChickWeight)

The machine learning approach used in this section was intentionally kept simple. Other
learning algorithms can be added as additional rules, each with their own hyper-parameters.
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Exhaustive search GE minimum GE median GE maximum
Error 68.32 68.32 68.32 988.45
Generations - 1 39.50 108
Time (s) 71.72 0.61 19.60 149.57

Table 3: Summary of GE’s performance for 100 runs of the model selection example.

Different options, such as scaling or dimension reduction techniques can also be added to the
<learner> function, each described using separate rules.

4.2. Classification
In the second example, we use GE for classification. There are many ways that GE can be
adopted for classification, e.g., a model selection on classifiers similar to Section 4.1. Here,
we directly define a grammar which takes input variables and returns the classification result,
with a structure similar to a decision tree.
In this example, the objective is defined as separating Iris versicolor from other species in
the Iris flower dataset. Here the data is evaluated from a data-frame instead of the program’s
environment.

R> data("iris")
R> iris$Species <- ifelse(iris$Species == "versicolor", "versicolor", "other")
R> ClassifyFitFunc <- function(expr) {
+ sum(eval(expr, envir = iris) != iris$Species)
+ }

The grammar is defined using the following code:

R> ruleDef <- list(
+ result = grule(ifelse(expr, "versicolor", "other")),
+ expr = grule((expr) & (sub.expr), (expr) | (sub.expr), sub.expr),
+ sub.expr = grule(comparison(var, func.var)),
+ comparison = grule(`>`, `<`, `==`, `>=`, `<=`),
+ func.var = grule(num, var, func(var)), func = grule(mean, max, min, sd),
+ var = grule(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width),
+ num = grule(1, 1.5, 2, 2.5, 3, 4, 5))
R> grammarDef <- CreateGrammar(ruleDef)

In this grammar, the start symbol, <result>, receives a TRUE/FALSE and returns either
‘versicolor’ or ‘other’. The TRUE/FALSE value is generated by recursively applying
boolean operators to <sub.expr>s. In turn, each <sub.expr> is created by a <comparison>
of a <var> in Iris features and another value created using <func.var>.
A few examples of the grammar generated expression, formatted through the pretty.print
function, are as follows:

R> pretty.print <- function(expr) cat(gsub("|", "|\n\t",
+ gsub("&", "&\n\t", as.character(expr), fixed = TRUE), fixed = TRUE),
+ "\n")
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Value Minimum Median Maximum
Error 4 8 22
Generations 1000 1000 1000
Time (s) 12.56 12.87 13.24

Table 4: Summary of GE’s performance for 100 runs of the classification example.

R> pretty.print(GrammarRandomExpression(grammarDef))

ifelse(((Petal.Width > Petal.Length) &
(Sepal.Length >= sd(Petal.Length))) &
(Petal.Length == 5), "versicolor", "other")

R> pretty.print(GrammarRandomExpression(grammarDef))

ifelse((Sepal.Width == min(Petal.Length)) |
(Sepal.Length <= sd(Sepal.Length)), "versicolor", "other")

The GE optimization is performed by:

R> set.seed(10)
R> ge <- GrammaticalEvolution(grammarDef, ClassifyFitFunc)
R> expr <- ge$best$expression
R> pretty.print(expr)

ifelse(((Sepal.Width >= max(Sepal.Length)) |
(Petal.Width <= sd(Petal.Length))) &
(Petal.Length >= Sepal.Width), "versicolor", "other")

R> err <- sum(eval(expr, envir = iris) != iris$Species)
R> err

[1] 6

The classification results are visualized in Figure 4.
Table 4 summarizes the performance of GE classifier for 100 executions. As no termination
condition was given, all of the runs terminated only after reaching the maximum allowed
number of generations. It is evident that on average, GE is able to find an acceptable
expression with in this limit.

4.3. Symbolic regression and feature generation

Symbolic regression is the process of discovering a function, in analytical form, which fits a
given set of data. Commonly, evolutionary algorithms such as GP and GE are used for this
task. Symbolic regression suffers from a possibly infinite, non-smooth and non-convex search
space, and therefore is not widely used in machine learning.
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Figure 4: Classification of Iris versicolor using GE.

Feature generation is the process of deriving new features from existing features (Guo, Jack,
and Nandi 2005). In this technique, an evolutionary algorithm is used to generate and combine
results of multiple independently discovered expression, e.g., by using a linear combination of
GP results (Keijzer 2004; Costelloe and Ryan 2009), or by using non-linear function estimators
applied to GE (de Silva, Noorian, Davis, and Leong 2013). This can be considered a type of
machine learning and symbolic regression hybrid, as the final learning model is constructed
from combination of simpler features created through a process similar to symbolic regression.
For example, consider learning of the following sextic polynomial from numeric data:

f(X) = X6 +X5 +X4 +X3 +X2 +X + 1

Evolving an expression that matches the observed data to this polynomial would either require
a very well crafted grammar, or a successful search over a huge space, both of which are
extremely computationally expensive.
However, linear dependencies exist between components of this function. By designing amulti-
gene chromosome, we can generate individual expressions independently and then combine
them through a linear regression model to create the final expression. This effectively breaks
the search space to several smaller ones, enabling a faster search over the whole space. Figure 5
illustrates the difference between these two approaches.
To compare the symbolic regression and the feature generation with ordinary GE, two ap-
proaches are benchmarked using the same grammar:

R> ruleDef <- list(expr = grule(op(expr, expr), func(expr), var),
+ func = grule(sin, cos, log, sqrt), op = grule(`+`, `-`, `*`),
+ var = grule(X, X^n, n), n = grule(1, 2, 3, 4))
R> grammarDef <- CreateGrammar(ruleDef)
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Figure 5: Symbolic regression (using a single gene) vs. feature generation (using multiple
genes).

The grammar can be used to generate many different types of expressions:

R> set.seed(0)
R> GrammarRandomExpression(grammarDef, numExpr = 3)

[[1]]
expression(log(2))

[[2]]
expression(sqrt(X * X) + cos(sqrt(cos(X^3))) - sqrt(log(sin(X))))

[[3]]
expression(X^3)

Obviously, this grammar is not tuned for the purpose of fitting high-degree polynomials.

Symbolic regression

Firstly, symbolic regression is tested:

R> target.func <- function(X) X^6 + X^5 + X^4 + X^3 + X^2 + X + 1
R> X <- 1:10
R> Y <- target.func(X)
R> symRegCostFunc <- function(expr) {
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+ result <- suppressWarnings(eval(expr))
+ if (any(is.nan(result)))
+ return (Inf)
+ return (mean((Y - result)^2))
+ }

The cost function handles invalid values (e.g., log(−1)) by assigning a high cost to any expres-
sion with an invalid value. However, R may show warnings about NaNs being produced. To
suppress these warnings, one can wrap the eval in the cost function inside suppressWarnings.
To allow the GE to have enough room for search, the length of the chromosome is set to 60:

R> set.seed(0)
R> ge.single <- GrammaticalEvolution(grammarDef, symRegCostFunc,
+ seqLen = 60, terminationCost = 1e-4)

This test is prone to getting stuck in a local minima and multiple restarts may be required
to find the solution. Results often lack or include additional terms not in the target, e.g.,

R> ge.single

Grammatical Evolution Search Results:
No. Generations: 1000
Best Expression: (X^2 + X^3) * X^3
Best Cost: 21085073.8

The resulting expression can be simplified to X6 +X5, and therefore has a high error.

Feature generation

The second approach uses GrammaticalEvolution’s numExpr option to generate multiple
expressions. Here, numExpr = 5 is set, and for a fair comparison, the length allocated to
each sequence seqLen is also reduced from 60 to 12. GrammaticalEvolution will still use a
chromosome with length of 60, but this is divided into 5 parts (i.e., the genes), each of which
are used individually to generate up to five valid expressions. A simple linear model is then
applied to fit these expressions to data and the fitting residuals are reported as error.
For evaluating multiple expression, the function EvalExpressions offers a simpler interface
compared to eval:

R> X <- 1:10
R> Y <- target.func(X)
R> fitLinearModel <- function(expr.list) {
+ vals <- EvalExpressions(expr.list)
+ if (any(is.nan(unlist(vals))) | any(is.infinite(unlist(vals))))
+ return(NULL)
+ mdl <- lm(Y ~ ., cbind(as.data.frame(vals), Y = Y))
+ return (mdl)
+ }
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R> fitnessFunction <- function(expr.list) {
+ mdl <- fitLinearModel(expr.list)
+ if (class(mdl) != "lm") return (Inf)
+ return(mean(residuals(mdl)^2))
+ }

The fitnessFunction uses fitLinearModel to create a linear model of generated expressions
to data. The model is then fit to the data, and the MSE of residuals are returned as its cost.
All other GE parameters (i.e., population size, mutation chance, termination condition, etc.)
are kept the same:

R> set.seed(10)
R> ge.multi <- GrammaticalEvolution(grammarDef, fitnessFunction,
+ seqLen = 12, numExpr = 5, terminationCost = 1e-4)

This approach is clearly better at finding a close approximation to the target:

R> ge.multi

Grammatical Evolution Search Results:
No. Generations: 12
Best Expressions: X + X^3 * X * ((X + 2) * 1)

: X^4 * X^2
: X^4
: X^2
: X^3

Best Cost: 6.20330039637389e-23

R> expr <- ge.multi$best$expression
R> mdl <- fitLinearModel(expr)
R> mdl

Call:
lm(formula = Y ~ ., data = cbind(as.data.frame(vals), Y = Y))

Coefficients:
(Intercept) expr1 expr2

1 1 1
expr3 expr4 expr5

-1 1 1

R> X <- seq(1, 10, length.out = 40)
R> pred <- predict(mdl, newdata = EvalExpressions(expr))
R> err <- mean((target.func(X) - pred)^2)
R> err

[1] 4.64618e-21
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Symbolic regression Feature generation
Value Minimum Median Maximum Minimum Median Maximum
Error 2.14× 105 9.12× 108 6.15× 109 0.00 0.00 1.48
Generations 1000 1000 1000 5 25.5 200
Time (s) 23.24 24.73 25.17 6.59 30.65 309.93

Table 5: Performance of symbolic regression vs. feature generation using GE, compared over
100 runs.

In the results above, all the elements of the sextic equation are found within five expres-
sions. Three of them (X2, X3, X4 and X6) are found separately, and the other expression,
X + X^3 * X * ((X + 2) * 1), contains the linear combination X + 2X4 + X5. As X4 is
already present separately, the linear regression can extract and combine all elements with the
correct y-intercept. Consequently, the regression model f̂(X) perfectly matches the original
model:

f̂(X) = 1 + (X +X3 ×X × (X + 2)) +X4 ×X2 −X4 +X2 +X3

= 1 +X +X2 +X3 +X4 +X5 +X6

Comparison
To test the stochastic performance of GE with a single and multiple genes, each method was
run 100 times and their error from the target equation was noted. The results are presented
in Table 5. The results show major improvements in error, from an average 9.12 × 108 for
symbolic regression to a worst cast of 1.48 for the feature generation approach. In comparison,
the average time required to process both approaches was almost equal.

5. Conclusion
Context-free grammars provide a concise and versatile mechanism for expressing families
of programs. Combined with evolutionary optimization, grammatical evolution creates a
powerful framework that allows integration of domain specific knowledge, defined using a
grammar, into real-world applications.
The gramEvol package allows creation of native R programs using GE. After specifying a
grammar and evaluation function, users can employ GE techniques with little additional
code. Parallel execution is also supported via parallel computing functions within R.
One disadvantage of GE lies in its stochastic nature, as it does not guarantee the convergence
to the global optima. The gramEvol package includes an exhaustive search option which can
ensure an optimal solution at the expense of computation time.
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