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Abstract

This paper introduces the R package twostageTE for estimation of an inverse regression
function at a given point when one can sample an explanatory covariate at different
values and measure the corresponding responses. The package implements a number of
nonparametric methods for budget constrained threshold value estimation. Specifically,
it contains methods for classical one-stage designs and also adaptive two-stage designs,
which have been shown to yield more efficient and accurate results. A major advantage
of the methods in package twostageTE is that threshold value estimation is performed
without penalization or kernel smoothing, and hence, avoids the well-known problems of
choosing the corresponding tuning parameter (regularization, bandwidth). The user can
easily perform a two-stage analysis with twostageTE by (i) identifying the second stage
sampling region from an initial sample, and (ii) computing various types of confidence
intervals to ensure a robust analysis. The package twostageTE is illustrated through
simulated examples.
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1. Introduction
The problem of estimating an inverse regression function has a long history in statistics, and
has impacted a diverse set of areas including toxicology (Rosenberger and Haines 2002), sta-
tistical calibration studies (Osborne 1991), and engineering (Tang, Banerjee, and Michailidis
2011).
The canonical formulation posits

Y = f(X) + ε, (1)

where f is a function establishing the relationship between the design variable X and the
response Y , and ε is an error term with zero mean and finite variance. It is further assumed
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that f is monotone. The main problem is to estimate d0 = f−1(θ0) for some θ0 in the range
of f .

In practice, there are situations where the total budget of measurements to be obtained is
fixed a priori. Given the limited budget of points that can be sampled and lack of a priori
knowledge about the location of d0, the adaptive two-stage methods of Tang et al. (2011) and
Tang, Banerjee, Michailidis, and Mankad (2015) have been shown to provide more accurate
estimates compared to one-stage procedures.

In particular with two-stage procedures, given the monotonicity assumption on f , isotonic
regression is used at stage one to obtain an initial estimate. Subsequently, the remaining
portion of the available points is sampled from a neighborhood around this initial estimate to
yield a new estimate of d0. The more intensive sampling around the initial estimate produces
a more accurate estimate than the one that would have been obtained by utilizing the entire
budget in a uniform fashion. Tang et al. (2011) and Tang et al. (2015) show two-stage methods
accelerate the convergence rate of one-stage procedures and achieve the parametric n1/2 rate
under certain regularity conditions.

This paper introduces the R (R Core Team 2015) package twostageTE (Mankad, Michailidis,
and Banerjee 2015), which implements a number of nonparametric methods for budget con-
strained threshold value estimation using one- and two-stage designs and is available from
the Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.org/package=
twostageTE. twostageTE is created to facilitate such analysis by providing functions that
perform classical one-stage analysis, identify the second stage sampling region from an initial
sample, and compute various types of one- and two-stage confidence intervals to ensure a
robust analysis.

A notable feature about the inference methods in package twostageTE is that they do not
utilize penalization or kernel smoothing and, thus, are easier to implement. Moreover, the
case for smoothing-based methods is dubious, as extensive investigations (see Section 5 and
Tang et al. 2015, for further details) have found that kernel based two-stage methods do not
perform well for more “ill-behaved” functions, nor do they yield significant gains over simpler
methods, as in Tang et al. (2011), for well-behaved functions.

The remainder of this article is organized as follows: In the next section, we review estimation
methods and the underlying nonparametric procedures based on isotonic regression. Section 3
discusses the structure of twostageTE, and Section 4 illustrates the methodology on simulated
examples. The article concludes with a brief discussion (Section 5). Appendix A contains a
brief overview of the main theoretical results for one- and two-stage procedures.

2. A general adaptive two-stage estimation framework

2.1. Background on isotonic regression

We provide a brief description of the main nonparametric procedure underlying both one- and
two-stage approaches, named the isotonic regression procedure. Specifically, given n fixed or
random design points {Xi}ni=1 in [a, b] and the corresponding responses {Yi}ni=1, the isotonic
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Figure 1: Isotonic regression estimates for a quadratic function f(x) = x2 over the [0, 1]
interval.

regression estimate of f(·) is given by

fI(x) = f?1 1{x ∈ [a,X1]}+
n−1∑
i=1

f?i 1{x ∈ [Xi, Xi+1)}+ f?n1{x ∈ [Xn, b]} (2)

where {f?i }ni=1 = argmin
f1≤f2≤...≤fn

∑n
i=1 (Yi − fi)2. This minimizer exists uniquely, has a nice

geometric characterization as the slope of the greatest convex minorant of a stochastic process
and is readily computable using the pool adjacent violators algorithm (PAVA, see De Leeuw,
Hornik, and Mair 2009; Robertson, Wright, and Dykstra 1988, for further discussion). Then,
for a prespecified value θ0 ∈ (f(a), f(b)), the one-stage isotonic regression estimator of d0 is
defined by

dI = f−1
I (θ0) = inf{x ∈ [a, b] : fI(x) ≥ θ0}, (3)

where inf{∅} = b.
To illustrate, Figure 1 shows isotonic regression (IR) estimates, where the design space is
the [0, 1] interval for a quadratic function f(x) = x2; the random error follows a N(0, σ2)
distribution with σ = 0.1. We can see the IR procedure provides an accurate estimate with
relatively few samples. The estimated curve is computed by calling the function pava in
package twostageTE on the sampled data. Details on this and other functions are given in
Section 3.
An alternative nonparametric estimate of f(·) is given by smoothing the isotonic regression
estimate. However, as noted in the previous section, smoothed two-stage procedures do not
bring significant gains. Thus, in this article and in package twostageTE, we discuss inference
procedures that do not utilize penalization or kernel smoothing.

2.2. Two-stage frameworks
As noted in Section 1, adaptive two-stage procedures can lead to accelerated convergence
rates and hence to sharper confidence intervals for d0. The main steps of such an adaptive
two-stage fully nonparametric procedure are outlined next:
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Type Function
(i) External (Wrapper) stageOneAnalysis, stageTwoAnalysis
(ii) Internal likelihoodConfidenceInterval,

linearBootstrapConfidenceInterval_stageTwo,
waldConfidenceInterval_ir_stageOne,
waldConfidenceInterval_ir_stageTwo,
threshold_estimate_ir, threshold_estimate_locLinear

(iii) Internal Helper estimateDeriv, estimateSigmaSq, pava

Table 1: Organizational hierarchy for the R package twostageTE.

1. Allocate n1 samples to the first stage and n2 samples to the second stage, where n1+n2 =
n, the total budget.

2. Generate the first stage data {(X1,i, Y1,i)}n1
i=1 with a design density g1 on [a, b]. Then,

compute a first stage monotone nonparametric estimator f̂1 of f and obtain the corre-
sponding first stage estimator d̂1 = f̂−1

1 (θ0) of d0 for a prespecified value θ0.

3. Specify the second stage sampling interval [L1, U1] based on a high probability confidence
interval from the first stage data.

4. Obtain the second stage data {(X2,i, Y2,i)}n2
i=1 with a design density g2 on [L1, U1].

Employ these data and a nonparametric procedure (which could be different from the
one used previously) to compute a monotone second stage estimator f̂2 and, as in the
first stage, the corresponding d̂2.

5. Construct confidence intervals for d0 using the (asymptotic) distribution of d̂2.

There are a number of different approaches one could pursue in the first and second stages.
For example, Tang et al. (2011) utilize a local linear approximation at the second stage to ac-
celerate the convergence rate from n1/3 to n1/2 under certain regularity conditions. However,
as shown in Tang et al. (2015), the local linear approximation and other nonparametric pro-
cedures that require an estimate of the derivative f ′(d0) struggle when faced with underlying
regression functions that exhibit strong nonlinearity at d0. To overcome these difficulties, one
can pursue likelihood ratio type confidence intervals, which are preferred due to their sim-
plicity and robustness. A number of these different procedures are implemented in package
twostageTE, which is discussed next.

3. Package description and functional structure
The twostageTE package contains three main components: (i) wrapper functions that a user
would need to call in the course of a typical analysis; (ii) internal functions that compute
first and second stage point estimates and confidence intervals; and (iii) auxiliary functions
that support functions in (ii). This organizational structure is summarized in Table 1 and
Figure 2.
In the following subsections, we highlight various aspects of the package and present simple
examples based on simulated data.
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Figure 2: Flowchart of the R package twostageTE.

3.1. Creating a ‘twostageTE’ object
The wrapper function StageOneAnalysis requires inputs of the samples and their correspond-
ing responses, the threshold of interest f(d0), a confidence level, and a string that specifies
what type of confidence interval to compute (Wald or likelihood ratio). Thus, this function is
appropriate after obtaining a first stage sample, or if one were to proceed in a classical fashion
by using the entire sampling budget uniformly. StageTwoAnalysis additionally requires as
input the object returned from StageOneAnalysis. Both functions return a ‘twostageTE’
object.
We illustrate below use of these functions for the following procedures.

1. One-stage procedure based on isotonic regression with Wald confidence intervals (IR).

2. One-stage procedure based on isotonic regression with likelihood ratio (LR) confidence
intervals.

3. Two-stage procedure based on isotonic regression for both stages and using Wald confi-
dence intervals both for selecting (L1, U1) and constructing the final confidence interval
(IR + IR).

4. Two-stage procedure similar to (IR + IR), but employing LR confidence intervals in
both stages (LR + LR).

5. Two-stage procedure from Tang et al. (2011) that uses isotonic regression followed by a
local linear approximation and bootstrapping for constructing confidence intervals for
d0 (IR + locLinear).

For the first stage, we generate synthetic data shown in Figure 1 with the following R code.

R> X <- runif(25, 0, 1)
R> Y <- X^2 + rnorm(n = length(X), sd = 0.1)
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One stage: IR
The one-stage IR-Wald procedure uses isotonic regression to estimate d0 and quantiles of
the standard Chernoff distribution to form confidence intervals. Additional discussion can be
found in Appendix A.1.
To obtain a 99% Wald-type confidence interval using IR for the threshold θ = 0.25 (d0 =
f−1(θ) = 0.5), we call stageOneAnalysis.

R> library("twostageTE")
R> oneStage_IR <- stageOneAnalysis(X, Y, 0.25, type = "IR-wald", 0.99)
R> class(oneStage_IR)

[1] "twostageTE"

R> oneStage_IR

Call:
stageOneAnalysis(X, response = Y, threshold = 0.25, type = "IR-wald",

level = 0.99)

99.0% Confidence Interval
n Lower d0_hat Upper
25 0.119 0.507 0.923

One stage: LR
The one-stage LR procedure uses isotonic regression to estimate d0, and inverts the likelihood
ratio test to form confidence intervals. Previous investigations (Tang et al. 2015) have demon-
strated the superiority of likelihood ratio type confidence intervals. Additional discussion can
be found in Appendix A.1.
To obtain a likelihood ratio-based 99% confidence interval for θ = 0.25, we call

R> oneStage_LR <- stageOneAnalysis(X, Y, 0.25, type = "IR-likelihood", 0.99)
R> oneStage_LR

Call:
stageOneAnalysis(X, response = Y, threshold = 0.25, type = "IR-likelihood",

level = 0.99)

99.0% Confidence Interval
n Lower d0_hat Upper
25 0.209 0.507 0.696

3.2. Implementing the second stage

Two-stage analysis: LR + LR
The two-stage LR procedure is similar to its single stage counterpart. Both procedures
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use isotonic regression to estimate d0, and invert the likelihood ratio test statistic to form
confidence intervals. Additional discussion can be found in Appendix A.2.
We simulate the second stage by generating 75 second stage samples using the 99% LR-type
confidence interval computed above from oneStage_LR as the second stage design space.

R> X2 <- seq(oneStage_LR$L1, oneStage_LR$U1, length.out = 75)
R> Y2 <- X2^2 + rnorm(n = length(X2), sd = 0.1)

To obtain a two-stage 95% confidence interval based on the likelihood ratio for both stages,
we call stageTwoAnalysis.

R> twoStage_LR_LR <- stageTwoAnalysis(oneStage_LR, X2, Y2,
+ type = "IR-likelihood", 0.95)
R> twoStage_LR_LR

Call:
stageTwoAnalysis(oneStage_LR, explanatory = X2, response = Y2,

type = "IR-likelihood", level = 0.95)

95.0% Confidence Interval
n1 n2 Lower d0_hat Upper
25 75 0.433 0.544 0.604

Two-stage analysis: IR + LocLinear
The main idea for the procedure in Tang et al. (2011) is to utilize a local linear approximation
in the vicinity of the first stage estimate, and to bootstrap this local approximation to obtain
confidence intervals. Additional details are provided in Appendix A.2.
To perform the local linear procedure, we first simulate the second stage by repeatedly
sampling from the 99% IR Wald-type confidence interval end points computed above in
oneStage_IR.

R> X2 <- c(rep(oneStage_IR$L1, 37), rep(oneStage_IR$U1, 38))
R> Y2 <- X2^2 + rnorm(n = length(X2), sd = 0.1)

Then we obtain a 95% confidence interval based on the two-stage local linear approximation
by calling

R> twoStage_IR_linear <- stageTwoAnalysis(oneStage_IR, explanatory = X2,
+ response = Y2, type = "locLinear", level = 0.95)
R> twoStage_IR_linear

Call:
stageTwoAnalysis(oneStage_LR, explanatory = X2, response = Y2,

type = "logLinear", level = 0.95)

95.0% Confidence Interval
n1 n2 Lower d0_hat Upper
25 75 0.323 0.350 0.377
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The local linear approximation in this particular example is downward biased over the interval
[0, 1], because the true function is quadratic. As the budget and/or noise-level is increased,
the local linear approximation improves and the bias decreases. When the true function is well
approximated locally with a linear function, then this procedure should work well. Thus, we
recommend the local linear approximation is used only when the user is comfortable making
the linearity assumption. Otherwise, the nonparametric techniques should be preferred.

Two-stage analysis: IR + IR
As with one-stage IR, the two-stage IR-Wald procedure uses isotonic regression to estimate
d0 from second stage samples, and quantiles of the standard Chernoff distribution to form
confidence intervals. Additional discussion can be found in Appendix A.2.
We again simulate the second stage by generating 75 second stage samples using the 99% IR
Wald-type confidence interval computed above in oneStage_IR as the second stage design
space.

R> X2 <- seq(oneStage_IR$L1, oneStage_IR$U1, length.out = 75)
R> Y2 <- X2^2 + rnorm(n = length(X2), sd = 0.1)

To obtain a 95% IR + IR confidence interval for θ = 0.25 (d0 = 0.5), we call stageTwoAnalysis.

R> twoStage_IR_IR <- stageTwoAnalysis(oneStage_IR, X2, Y2, type = "IR-wald",
+ 0.95)
R> twoStage_IR_IR

Call:
stageTwoAnalysis(oneStage_IR, explanatory = X2, response = Y2,

type = "IR-wald", level = 0.95)

95.0% Confidence Interval
n1 n2 Lower d0_hat Upper
25 75 0.127 0.532 0.923

Combining first and second stage data
When calling stageTwoAnalysis, there is an optional Boolean input called combineData that,
if set to TRUE, will utilize all available data (from both stages) that are contained in the second
stage design space for estimation of auxiliary parameters and inversion of the likelihood ratio
statistic. Combining data can help overcome difficulties of working with modest budgets.
By default, however, stageTwoAnalysis does not combine data from both stages, since this
practice is outside the strict purview of most theoretical results. In our toy example, we find
that combining data from both stages results in a slightly more precise confidence interval.

R> stageTwoAnalysis(oneStage_IR, X2, Y2, type = "IR-wald", 0.95,
+ combineData = TRUE)

Call:
stageTwoAnalysis(oneStage_IR, explanatory = X2, response = Y2,
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type = "IR-wald", level = 0.95, combineData = TRUE)

95.0% Confidence Interval
n1 n2 Lower d0_hat Upper
25 98 0.123 0.499 0.876

Internal and helper functions

The internal and helper functions that support StageOneAnalysis and StageTwoAnalysis
are fairly straightforward. The function pava in particular is critical to the package. It
computes IR estimates with the pool adjacent violators algorithm (PAVA), and depends on
the function gpava in the package isotone (De Leeuw et al. 2009).
PAVA is an iterative algorithm for solving monotonic regression problems. It starts with
measurement pairs (Xi, Yi), ordered with respect to the responses Yi. The initialization of
PAVA sets the estimated regression function f̂(Xi) = Yi. When violations of monotonicity
are discovered, e.g., f̂(Xi+1) < f̂(Xi), then f̂(Xi+1) and f̂(Xi) are replaced by their average.
This iterative process stops when the estimated regression function f̂(Xi) is non-decreasing.
The function gpava by default utilizes the sample mean at repeated Xi values. An extensive
description of the PAVA algorithm and its implementation are provided in De Leeuw et al.
(2009, Section 3.1) and references therein.
For the estimation of σ2, estimateSigmaSq computes the nonparametric estimator proposed
by Gasser, Sroka, and Jennen-Steinmetz (1986). This estimator takes ordered triples of design
points Xi−1, Xi, Xi+1, joins the two outer observations by a straight line and then computes
the difference between this straight line and the middle observation. Specifically,

ε̃i = Xi+1 −Xi

Xi+1 −Xi−1
Yi−1 + Xi −Xi−1

Xi+1 −Xi−1
Yi+1 − Yi (4)

= aiYi−1 + biYi+1 − Yi. (5)

The estimate of σ2 is then

σ̂2 = 1
n− 2

n−1∑
i=1

c2
i ε̃

2
i , (6)

where ci = 1/(ai + bi + 1) for i = 2, . . . , n − 1. As in gpava, estimateSigmaSq utilizes the
sample mean when given replicate Xi values.
To estimate f ′(d0), a local quadratic regression procedure is implemented in estimateDeriv.
Specifically, let K(·) denote the Epanechnikov kernel function and h > 0 the bandwidth, so
that Kh(·) = (1/h)K(·/h).
The bandwidth h is chosen based on Equation 3.20 of Fan and Gijbels (1996, p. 67). In
particular,

ĥopt(d̂0) = C1,2(K)
[

σ̂2

(f̂ (3)(d̂0))2

]1/7

n−1/7, (7)

where C1,2(K) = 2.275 and f̂ (3)(d̂0) is the third order derivative of f at d̂0. First, a fifth
order polynomial function is fit to the data, where f(x) =

∑5
j=0 αjx

j . Then, an estimate of
the third order derivative at d̂0 is obtained by f (3)(d̂0) = 6α3 + 24α4d̂0 + 60α5d̂

2
0.
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Once the bandwidth is set, the estimate of f ′(d0) is given by β̂1 from

β̂ = argmin
β∈R3

n∑
i=1

Yi − 2∑
j=0

βj(Xi − d̂0)j
2

Khopt(Xi − d̂0), (8)

where β̂ = (β̂0, β̂1, β̂2).

3.3. Using a ‘twostageTE’ object

Upon building a ‘twostageTE’ object, one can explore the model characteristics by using the
summary and plot functions.

The summary function

To summarize a ‘twostageTE’ object, the summary function returns the confidence interval,
and estimates of d0, σ

2 and f ′(d0).
The following code runs summary on one- and two-stage results.

R> summary(oneStage_IR)

Call:
stageOneAnalysis(X, response = Y, threshold = 0.25, type = "IR-wald",

level = 0.99)

99.0% Confidence Interval
n Lower d0_hat Upper
25 0.119 0.507 0.923

Auxiliary Estimates
f'(d_0) sigma^2
0.749 0.007

R> summary(twoStage_IR_IR)

Call:
stageTwoAnalysis(oneStage_IR, explanatory = X2, response = Y2,

type = "IR-wald", level = 0.95)

95.0% Confidence Interval
n1 n2 Lower d0_hat Upper
25 75 0.127 0.532 0.923

Auxiliary Estimates
f'(d_0) sigma^2
0.746 0.011
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Figure 3: Visualizing samples and results. The dashed vertical lines denote the first stage
confidence interval (second stage design space), full vertical lines denote the second stage
confidence interval, and “X” marks the threshold and most current point estimate.

The plot method

The plot method for ‘twostageTE objects overrides the default plot function in R by plotting
the full data (from both stages, if available), first and second stage confidence intervals, the
final point estimate, and the isotonic regression estimate using the most current stage data.
The output of calling plot(oneStage_IR) and plot(twoStage_IR_IR) is shown in the left
and right panels, respectively, of Figure 3.

4. A synthetic example based on the isotonic sine function
In this section we test the different methods on a synthetic example that allows us to compare
and validate the methods’ abilities to estimate the inverse regression function at a given point
when the underlying function is “ill-behaved.” In particular, we investigate the isotonic sine
function, which is of special interest as it features severe departures from linearity that can
adversely affect estimation of auxiliary parameters and the local linear-based approximation.
As noted above, Tang et al. (2015) show that the likelihood ratio based procedures are most
robust with respect to this highly nonlinear function.
We first create a sampling function (sampleData) that is repeatedly invoked to simulate a
true adaptive two-stage sampling and compare it against classical one-stage procedures. In
the following code, we also define the total budget, true value of d0, as well as the first and
second stage sample allocations. The true, underlying function is set to be an isotonic sine
shown in the left panel of Figure 4. Specifically, the function is

f(x) = (1/40) sin(6πx) + 1/4 + (1/2)x+ (1/4)x2x. (9)

The key aspect of the isotonic sine is that its derivative is not well-behaved, as shown in
Figure 4, which degrades the performance of less flexible techniques. Thus, this function is
useful for illustration, since it provides key insights about different techniques when the true
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Figure 4: As shown in the left panel the isotonic sine function (solid) is challenging due to
its derivative (dashed). The right hand panel shows the output of plot on the two-stage
likelihood ratio approach.

underlying function is far from linear. In practice, deviation from linearity can be visually
assessed after the first stage or a priori information may be useful. The target point is again
set to be d0 = 0.5, so f(d0) ≈ 0.56 is known.

R> sampleData <- function(n, lower, upper, equal = FALSE)
+ {
+ if (equal) x <- seq(lower, upper, length.out = n)
+ else x <- runif(n, lower, upper)
+ y <- (1/40) * sin(6 * pi * x) + 1/4 + x/2 + (1/4) * x^2 +
+ rnorm(n = length(x), sd = 0.1)
+ return(list(X = x, Y = y))
+ }
R> Budget <- 100
R> d0 <- 0.5
R> threshold <- (1/40) * sin(6 * pi * d0) + 1/4 + d0/2 + (1/4) * d0^2

Next we simulate two-stage plans using the first and second stage allocations set to the
(asymptotically) optimal ratio of 25% of points in the first stage (Tang et al. 2015).
The following generates first stage data.

R> n1 <- floor(Budget * 0.25)
R> n2 <- Budget - n1
R> samp <- sampleData(n1, lower = 0, upper = 1)
R> X <- samp$X
R> Y <- samp$Y

The following simulates two-stage analysis setting type = "IR-Wald".
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Procedure n1 n2 Confidence interval d̂0
twoStageLR 25 75 [0.370, 0.699]∗ 0.526
twoStageWald 25 75 [0.146, 0.867] 0.507
twoStageLinear 25 75 [0.274, 0.443] 0.359
oneStageLR 100 0 [0.385, 0.626] 0.469
oneStageWald 100 0 [0.051, 0.887] 0.469

Table 2: Summary of output for the isotonic sine simulation. twoStageLR features the shortest
confidence interval that contains d0 = 0.5.

R> stageOne_IR <- stageOneAnalysis(X, Y, threshold, type = "IR-wald", 0.99)
R> samp2 <- sampleData(n2, lower = stageOne_IR$L1, upper = stageOne_IR$U1,
+ equal = TRUE)
R> X2 <- samp2$X
R> Y2 <- samp2$Y
R> twoStageIR <- stageTwoAnalysis(stageOne_IR, X2, Y2, type = "IR-wald",
+ 0.95)

The following simulates two-stage analysis setting type = "IR-likelihood".

R> stageOne_LR <- stageOneAnalysis(X, Y, threshold,
+ type = "IR-likelihood", 0.99)
R> samp2 <- sampleData(n2, lower = stageOne_LR$L1, upper = stageOne_LR$U1,
+ equal = TRUE)
R> X2 <- samp2$X
R> Y2 <- samp2$Y
R> twoStageLR <- stageTwoAnalysis(stageOne_LR, X2, Y2,
+ type = "IR-likelihood", 0.95)

The following simulates two-stage analysis setting type = "locLinear".

R> X2 <- c(rep(stageOne_IR$L1, floor(n2/2)),
+ rep(stageOne_IR$U1, floor(n2/2)))
R> Y2 <- (1/40) * sin(6 * pi * X2) + 1/4 + d0/2 + (1/4) * X2^2 +
+ rnorm(n = length(X2), sd = 0.1)
R> twoStageLinear <- stageTwoAnalysis(stageOne_IR, X2, Y2,
+ type = "locLinear", level = 0.95)

Lastly, the following code computes the classical one-stage estimates using the entire budget
uniformly.

R> samp <- sampleData(Budget, lower = 0, upper = 1)
R> X <- samp$X
R> Y <- samp$Y
R> oneStageIR <- stageOneAnalysis(X, Y, threshold, type = "IR-wald", 0.95)
R> oneStageLR <- stageOneAnalysis(X, Y, threshold, type = "IR-likelihood",
+ 0.95)



14 twostageTE: Two-Stage Plans for Threshold Estimation in R

● ● ● ● ● ● ● ● ● ●0

5

10

15

20

250 500 750 1000
Budget

C
om

pu
tin

g 
T

im
e 

(S
ec

on
ds

)

Procedure ● twoStageWald twoStageLR twoStageLinear oneStageWald oneStageLR

Figure 5: Average computing times with different budgets for the isotonic sine example.
Likelihood ratio based procedures are most robust, but require inverting the likelihood ratio,
which adds computing cost.

The results are summarized in Table 2. In this particular instance, all procedures except
twoStageLinear cover the true value. As expected, the two-stage procedures feature narrower
confidence intervals, with twoStageLR providing the best results. The samples and results
from twoStage_LR are shown in the right panel of Figure 4.
These results are consistent with Tang et al. (2015), who found in an extensive simulation that
the two-stage likelihood ratio type confidence intervals perform well even with “ill-behaved”
functions like the isotonic sine. The local linear approximation and IR-Wald procedures that
require an estimate of the derivative f ′(d0) struggle when faced with the isotonic sine function,
since it exhibits strong nonlinearity at d0 = 0.5.
Altogether, our and previous numerical studies have shown that likelihood ratio based pro-
cedures are robust to small budgets and “ill-behaved” functions. However, inversion of the
likelihood ratio statistic can be computationally costly. The Wald and local linear proce-
dures can be performed faster, though their efficacy is dubious with smaller budgets and with
“ill-behaved” functions, due to auxiliary parameters estimation.

5. Discussion
The simulation results above support the conclusions in Tang et al. (2015) that the local linear
approximation is useful with an approximately linear underlying function near the threshold.
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In practice, linearity can be assessed visually after obtaining the first stage results. We
recommend the local linear approximation is used only when the user is comfortable making
the linearity assumption. Otherwise, the non-parametric techniques should be preferred.
The R package twostageTE implements a broad range of nonparametric methods for threshold
value estimation. A notable and novel feature of twostageTE is that it accommodates and
facilitates two-stage designs, which have been shown to yield more efficient and accurate
results without penalization or kernel smoothing, and hence, avoids the well-known problems
of choosing a penalization or smoothing parameter. The user can easily perform a full two-
stage analysis by (i) identifying the second stage sampling region from an initial sample, and
(ii) computing a battery of confidence intervals based on local linear approximation and other
non-parametric methods to ensure a robust analysis.

References

Banerjee M (2000). Likelihood Ratio Inference in Regular and Non-Regular Problems. Ph.D.
thesis, University of Washington.

Banerjee M (2009). “Inference in Exponential Family Regression Models under Certain Shape
Constraints.” In Advances in Multivariate Statistical Methods, Statistical Science and In-
terdisciplinary Research, volume 4, pp. 249–272. World Scientific.

Banerjee M, Wellner J (2001). “Likelihood Ratio Tests for Monotone Functions.” The Annals
of Statistics, 29(6), 1699–1731. doi:10.1214/aos/1015345959.

De Leeuw J, Hornik K, Mair P (2009). “Isotone Optimization in R: Pool-Adjacent-Violators
Algorithm (PAVA) and Active Set Methods.” Journal of Statistical Software, 32(5), 1–24.
doi:10.18637/jss.v032.i05.

Fan J, Gijbels I (1996). Local Polynomial Modelling and Its Applications, volume 66 of
Monographs on Statistics and Applied Probability. Chapman & Hall, London.

Gasser T, Sroka L, Jennen-Steinmetz C (1986). “Residual Variance and Residual Pattern in
Nonlinear Regression.” Biometrika, 73(3), 625–633. doi:10.1093/biomet/73.3.625.

Mankad S, Michailidis G, Banerjee M (2015). twostageTE: Two-Stage Threshold Estimation.
R package version 1.3, URL http://CRAN.R-project.org/package=twostageTE.

Osborne C (1991). “Statistical Calibration: A Review.” International Statistical Review,
59(3), 309–336. doi:10.2307/1403690.

R Core Team (2015). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Robertson T, Wright F, Dykstra R (1988). Order Restricted Statistical Inference. Wiley Series
in Probability and Mathematical Statistics. John Wiley & Sons, Chichester.

Rosenberger W, Haines L (2002). “Competing Designs for Phase I Clinical Trials: A Review.”
Statistics in Medicine, 21(18), 2757–2770. doi:10.1002/sim.1229.

http://dx.doi.org/10.1214/aos/1015345959
http://dx.doi.org/10.18637/jss.v032.i05
http://dx.doi.org/10.1093/biomet/73.3.625
http://CRAN.R-project.org/package=twostageTE
http://dx.doi.org/10.2307/1403690
http://www.R-project.org/
http://dx.doi.org/10.1002/sim.1229


16 twostageTE: Two-Stage Plans for Threshold Estimation in R

Tang R, Banerjee M, Michailidis G (2011). “A Two-Stage Hybrid Procedure for Estimating
an Inverse Regression Function.” The Annals of Statistics, 39(2), 956–989. doi:10.1214/
10-aos820.

Tang R, Banerjee M, Michailidis G, Mankad S (2015). “Two-Stage Plans for Estimating a
Threshold Value of a Regression Function.” Technometrics, 57(3), 395–407. doi:10.1080/
00401706.2014.940773.

http://dx.doi.org/10.1214/10-aos820
http://dx.doi.org/10.1214/10-aos820
http://dx.doi.org/10.1080/00401706.2014.940773
http://dx.doi.org/10.1080/00401706.2014.940773


Journal of Statistical Software 17

A. Synthesis of theoretical results

A.1. One-stage confidence intervals

One-stage IR

Define CdI
=
(
4σ2/f ′(d0)2)1/3 and let Z follow the standard Chernoff distribution.

Then under mild conditions on the regression function and on the design density g, one can
construct a 1− α Wald-type confidence interval for d0:[

dI ± n−1/3 ĈdI
ĝ(d0)

−1/3
q(Z, 1− α/2)

]
, (10)

where the hats denote consistent estimates and q(ξ, τ) is the lower τth quantile of a random
variable ξ. Quantiles of ξ are provided for the user by specifying data("chernoff_realizations",
package = "twostageTE") (see Tang et al. 2011, for more details on this result).

One-stage likelihood ratio
An alternative is to construct confidence intervals through likelihood ratio (LR) testing.
Specifically, the hypotheses of interest are

H0 : f−1(θ0) = d0 ↔ Ha : f−1(θ0) 6= d0. (11)

Then, the LR test statistic is given by

2 log λI = 2 log λI(x0) = 2 [ln(fI , σ̂)− ln(fIc, σ̂)] , (12)

where ln(f, σ) = −(2σ2)−1∑n
i=1(Yi − f(Xi))2, fI is as before, fIc is the constrained isotonic

regression ofm under H0 and σ̂ a consistent estimate of σ. It is known that fIc uniquely exists
(Banerjee 2000). The asymptotic distribution of 2 log λI under H0 is given by: 2 log λI

d→ D,
where D is a “universal” random variable not depending on the parameters of the model (see
Banerjee and Wellner 2001; Banerjee 2009, for more details on this result). Realizations of D
are provided for the user in a data frame called RVforLR_realizations, which can be loaded
with data("RVforLR_realizations", package = "twostageTE")).
The result in Equation 12 allows us to construct a 1− α LR-type confidence region for d0:

{x ∈ [a, b] : 2 log λI(x) ≤ q(D, 1− α)}. (13)

The LR-type confidence region can be shown to be an interval and is typically asymmetric
around dI , unlike the Wald-type ones. Its main advantage is that only σ needs to be estimated
for its construction, whereas for the other confidence intervals, estimation of f ′(d0) is also
needed, a significantly more involved task.

A.2. Two-stage confidence intervals

IR + locLinear
After using a high probability confidence interval for d0 from stage one data, Tang et al.
(2011) advocate the use of a bootstrapped second stage estimate. The main steps are
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1. Allocate the second stage design points equally to the confidence interval end points L1
and U1, and obtain responses Y ′i = f(L1) + ε′ and Y ′′i = f(U1) + ε′′.

2. Fit the second stage data {(L, Y ′i ), (L, Y ′′i )} with the linear model y = β0 + β1x. The
second stage estimator of d0 is given by d̂0 = (θ0 − β̂0)/β̂1.

3. Sample with replacement, responses Y ′∗i and Y ′′∗i from Y ′i and Y ′′i . Construct the
bootstrapped estimator d̂∗0, and calculate Rn = n1/2(d̂ ∗0 −d̂0).

4. After repeating many times, the 1−α Wald-type confidence interval for d0 is given by

[d̂0 − n−1/2q∗u, d̂0 − n−1/2q∗l], (14)

where q∗l and q∗u are the lower and upper α/2 quantiles for Rn.

Two-stage likelihood ratio

Similar to its stage one counterpart, the two-stage LR procedure uses second stage data to
compute and invert the likelihood ratio statistic. The hypotheses of interest and LR test
statistic remain as in Equations 11 and 12, and as before, we use the quantiles of the random
variable D to form confidence intervals. Again, the two-stage LR confidence intervals can
be asymmetric around the estimate of d0, which is found by applying isotonic regression on
second stage data. The two-stage likelihood ratio procedure shares the same advantages of
the one-stage likelihood ratio procedure, namely, enhanced precision and avoidance of f ′(d0)
estimation.

IR + IR

From Step 3 of the two-stage procedure discussed in Section 2.2, the determination of [L1, U1]
is achieved through a high probability confidence interval for d0 from stage one data. So, let
[L1, U1] be the following 1− β Wald-type confidence interval

[d1,I ± n−1/3
1 ĈdI

g1(d1,I)−1/3q(Z, 1− β/2)] ∩ [a, b], (15)

where the computation of ĈdI
involves estimating both σ2 and f ′(d0) and where β is a small

positive number such as 0.01.
Then a Wald-type 1−α asymptotic confidence interval for d0 using second stage data is given
by

[d2,I ± n−(1+γ1)/3Ĉd2,I
q(Z, 1− α/2)], (16)

where Ĉd2,I
is a function of the σ, f ′(d0), the second stage budget allocation and sampling

density at d0.
Additional details and discussion can be found in Tang et al. (2015).
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