Journal of Statistical Software

January 2014, Volume 56, Issue 1. http://www.jstatsoft.org/

R Package FrF2 for Creating and Analyzing
Fractional Factorial 2-Level Designs

Ulrike Gromping
Beuth University of Applied Sciences Berlin

Abstract

This article describes the R package FrF2 for design and analysis of experiments with
2-level factors. The package offers both regular and non-regular fractional factorial 2-
level designs, in the regular case with blocking and split plot facilities and algorithms
for ensuring estimability of certain two-factor interactions. Furthermore, simple analysis
facilities are on offer, first and foremost plotting functions for half normal plots, main
effects and interaction plots, and cube plots. Package FrF2 receives infrastructure support
from package DoE.base and heavily builds on a subgraph isomorphism algorithm from
package igraph for one of its estimability algorithms.

Keywords: design of experiments, DoE, fractional factorial 2-level designs, DoE.base, FrF2.

1. Introduction

Factorial experiments are very common in experimentation. Experiments with 2-level fac-
tors only are most widely spread, particularly in industrial experimentation. Both regular
(fractional) factorial 2-level designs and non-regular ones are heavily used. The design and
execution of industrial experiments is often done by subject matter experts during everyday
work without support from a statistical expert — thus it is important to have a software avail-
able that can be safely used by non-statisticians. At the same time, statisticians are often
involved in the more important experimental projects, and there are many facets to construc-
tion of (industrial) fractional factorial 2-level experiments for which a statistician very much
appreciates support from a powerful software.

This article presents the R package FrF2 (Gromping 2014) — implemented in the open-source
programming environment R (R Core Team 2013) — that tries to serve non-statisticians and
statistical experts alike: non-statisticians are supported in creating, conducting and analyzing
valid experiments, whereas statistical experts find advanced tools for tailoring experiments to

http://www.jstatsoft.org/

2 FrF2: Fractional Factorial 2-Level Designs in R

the specific needs of the experimental situation. R package FrF2 is part of a suite of several
R packages: DoE.base provides the infrastructure for the suite and creates general factorial
designs, DoE.wrapper interfaces to other packages for design of experiments on the Compre-
hensive R Archive Network (CRAN, http://CRAN.R-project.org/), and RemdrPlugin.DoE
provides graphical user interface (GUI) access to the suite (Gromping 2013b,c,e, 2011b). A
fifth package FrF2.catlgl128 (Gromping 2013d) supports FrF2 for non-standard design creation
tasks in 128 runs. These packages and all further packages on which they depend are available
from CRAN. The functionality implemented in FrF2 is discussed in this article, with occa-
sional digressions into relevant functions from DoE.base and subsequent use of FrF2 designs
by DoE.wrapper. The article provides an example-based discussion of the most important
functionality aspects, as well as of the general philosophy regarding input and output struc-
ture. Details of algorithmic implementations are not covered, as this would exceed the scope
of one article.

R provides various further packages for creating and analyzing regular fractional factorial 2-
level designs. An overview is given in the CRAN task view "Design of Experiments (DoE) &
Analysis of Experimental Data” (Gromping 2013a). Besides package FrF2 (Gromping 2014),
R packages BHH2 (Barrios 2012a, companion package to Box, Hunter, and Hunter (2005)),
BsMD (Barrios 2012b), qualityTools (Roth 2013) and planor (Kobilinsky, Bouvier, and Monod
2013) also allow creation of fractional factorial 2-level designs, however with less comfort and
automatism: FrF2 is the only package that relies on a comprehensive catalogue of designs,
automatically determines the overall best design or the best design for a certain estimation
purpose (option estimable) and offers automatic blocking and automatic creation of split plot
designs. It should be mentioned here that the new package planor offers creation of regular
fractional factorial designs not only for 2-level factors but also for factors at more than 2 levels
and mixed levels. planor appears to be more flexible than FrF2 regarding randomization
structures; however, planor does not guarantee the quality criterion “minimum aberration”
(see Section 3.1), is restricted to regular designs, offers less comfort and appears to be still
in an early implementation phase as an R package. Regarding analysis features, FrF2 offers
various effects plots for fractional factorial 2-level designs. Packages BsMD and qualityTools
also offer such functionality. One feature of BsMD is particularly noteworthy: it allows
to conduct the Box and Meyer (1993) Bayesian assessment of effects in a screening design;
this methodology is uniquely implemented in that package, to the author’s knowledge; FrF2
provides a function (BsProb.design) for convenient access to the methodology for designs
created with the package.

The remainder of this article is organized as follows: Section 2 briefly explains general ter-
minology and important experimental principles, Section 3 presents the mathematical back-
ground and terminology for fractional factorial 2-level designs. Section 4 provides two pub-
lished examples that are used throughout the article for illustrating some design generation
and analysis features. The implementation of regular fractional factorial 2-level designs in
function FrF2 is discussed in Section 5, while simple analysis tools are presented in Section 6.
Design and analysis of non-regular fractional factorial 2-level designs is discussed in Section 7.
Section 8 gives a brief overview of tools for augmenting or combining fractional factorial 2-level
designs. Finally, a brief overview of interesting topics not covered in this article is provided.
Appendix A provides some information on the class design (as far as relevant for fractional
factorial 2-level designs), Appendix B discusses data export and import utilities provided by
DoE.base, Appendix C gives details on the class catlg for catalogues of fractional factorial

http://CRAN.R-project.org/

Journal of Statistical Software 3

2-level designs, and Appendix D provides details on the column orders used for screening
designs with function pb.

2. Basic terminology for experimentation

This section briefly explains basic terminology for experimental design, using full factorial
plans as a starting point. The principle of replication is explained and distinguished from
repeated measurements, and randomization and randomization restrictions are discussed.

This article defines an experimental design as a rectangular table each row of which contains
a prescription for the settings of all design factors (columns) in a particular run of the experi-
ment. An unreplicated full factorial 2-level design in k factors is an experimental design in 2"
runs (= experimental setups) that contains each possible level combination exactly once. A
replicated design contains each of its runs exactly r times, if r is the number of replications.
It is helpful to distinguish between

e proper replications for which all sources of variability are newly set for the replicate
runs,

e and repeated measurements, for which the settings of the experimental factors remain
unchanged, and only the measurement process is repeated.

While proper replications are independent observations, it would be misleading to treat re-
peated measurements as such.

Two important principles of experimentation are blocking and randomization. The scientific
community agrees that blocking should be used for keeping in check known influential factors
that are not of interest in themselves (like batch variation), whereas randomization should
be used as a safeguard against bias from unknown influences (see e.g., Box et al. 2005, p. 93:
“Block What You Can and Randomize What You Cannot”). For blocking a 2-level factorial
experiment, a block factor at two, four, eight, ...levels is defined such that the known influ-
ential factor can be kept constant within each block. For a useful experiment, the effect of
the block factor need not be estimable itself, but can be aliased with other effects, as long as
those are not of interest either. The design and analysis usually assumes that block factors
do not interact with experimental factors.

Randomization means that the experimental runs are conducted in random order; if the order
is completely randomized, all experimental runs can be treated as independent observations,
and there is little risk of systematic bias from things like experimental order etc. For a
blocked experiment, the experimental runs are randomized within each block only, which is
a randomization restriction (blocks as a whole can also be randomized). Another random-
ization restriction occurs in case of repeated measurements: they are usually not separately
randomized but conducted directly together, which is another way of distinguishing them
from proper replications.

It can sometimes be necessary to keep some experimental factors fixed while changing others,
mostly because of resource reasons. For example, when using a climate chamber for modifying
two environmental factors at two levels each, it will be impractical to conduct the runs in
random order, readjusting the climate chamber after each run. Instead, one will want to
combine several runs with the same combination of levels of the environmental factors and

4 FrF2: Fractional Factorial 2-Level Designs in R

run them together, either in sequence or simultaneously, depending on the size and nature of
the climate chamber. This is yet another type of randomization restriction: it is different from
the blocking situation, since some factors of interest are kept fixed longer than the others.
This situation is called a split plot design with so-called whole plot factors (the ones that are
kept constant) and so-called split plot factors (the ones that change within whole plots). For
split plot designs, the runs within whole plots are randomized, and the order of the whole
plots is randomized. Split plot designs call for specific analysis strategies, e.g., mixed models.

3. Fractional factorial 2-level designs

This section provides the mathematical background for fractional factorial 2-level designs.
There is a specific vocabulary that is reasonably straight-forward to grasp but may not be
known to all readers. Readers interested in more detail are referred to Mee (2009), Box et al.
(2005) or Montgomery (2001), for example.

3.1. Regular fractional factorial 2-level designs

For regular fractional factorial 2-level designs in m factors, like for full factorial 2-level designs,
the number of runs must be a power of 2, but it is only a fraction of the number of runs (2"")
needed for a full factorial design (hence their name). Fractional factorial designs can also
be replicated or run with repeated measurements and can also be completely randomized
or subject to randomization restrictions. (Replicating a fractional factorial design is not
recommended; it would usually be more useful to run a larger fraction without replication.)

The Yates matriz

For constructing a regular fractional factorial design for m factors in 2* runs, one starts
from the Yates matrix of a full factorial design for k 2-level factors (the base factors) and
subsequently assigns m — k additional factors (the generated factors) to interaction columns
among the k base factors. For the construction of the Yates matrix, the base factors are
denoted with —1/1 contrasts, and the Yates matrix is the model matrix of the full model
up to the highest order interaction (except for the missing constant column of ones). The
interaction columns are the elementwise products of the respective main effects columns and
are arranged in a particular order, the so-called Yates order: Before a new base factor is added,
all interactions of the base factors already present are included into the matrix, as shown for
three factors in Table 1: the two-factor interaction (2fi) of factors A and B is added after
the first two columns, the third base factor then sits on the fourth column (= 237!), followed
by the interactions of the third factor with the effects already present, in the order of the
previous columns. For a regular fractional factorial 2-level design, all columns are orthogonal
to each other. Note that the column ordering is important because regular fractional factorial
designs are catalogued in terms of Yates matrix column numbers. The typical standard row
ordering is the one shown in Table 1: The first base factor changes its levels with each run
(=1,+1,—1,41,...), the second every other run (—1,—1,4+1,+1,—1,—1,+1,41,...), the
third every fourth run, and so forth. With this row ordering, the Yates matrix can easily be
extended to arbitrarily many factors in an obvious way: for example, for extending the 8 run
matrix in Table 1 to a 16 run full factorial matrix, the existing 8 run matrix is duplicated into
16 rows by stacking two copies on top of each other, an 8th column headed “D” is added with 8

Journal of Statistical Software 5

A B AB C AC BC ABC

1 2 3 4) 6 7
1 -1 -1 1 -1 1 1 -1
2 1 -1 -1 -1 -1 1 1
3 -1 1 -1 -1 1 -1 1
4 1 1 1 -1 -1 -1 -1
5 -1 -1 1 1 -1 -1 1
6 1 -1 -1 1 1 -1 -1
7T -1 1 -1 1 -1 1 -1
8 1 1 1 1 1 1 1

Table 1: Yates matrix for full factorial in 3 factors.

1 2 3 4 5 6 7
I A B AB C AC BC D
ABCD BCD ACD CD ABD BD AD ABC

Table 2: Yates matrix column headers for (best) 8 run design in 4 factors.

—1 and 8 +1 entries each, and the subsequent columns 9 to 15 are obtained by appending the
“D” to each header and multiplying the column headed with “D” with all previous columns.

There are different versions for the row order of the Yates matrix, all with the same column
order and thus compatible with the design catalogues; the order of Table 1 is the most
common, but it is convenient for some purposes to have runs sorted such that factor A
changes slowest, factor B second slowest etc., or to even use the special run order proposed
by Cheng, Martin, and Tang (1998).

Design generators and words

If a fourth factor is to be added to the design of Table 1 without increasing the number of
runs, it is possible to use an existing interaction column for assigning the factor levels, e.g., —
usually best — the column for the 3-factor interaction ABC, i.e., column 7. ABC (or column 7)
is called the generator of factor D, which implies that ABC = D, i.e., the product of ABC
and D is a constant column of ones. “I” is the usual notation for a constant column of ones,
and ABCD = I is then called a “word”. If ABCD =1, clearly, AB = CD, AC = BD, and AD
= BC. Furthermore, A = BCD, B = ACD, C = ABD, and D = ABC (as we used initially).
Thus, as a consequence of adding an additional factor, each column of the design now holds
two effects instead of one effect only (see Table 2), which is called “aliasing”.

If more than one factor is added to a design, things become slightly more complicated. For
example, adding two factors to the full factorial in three factors will generate not two but
three words, because the product of the two generating words is itself a word again. Generally,
adding g factors implies g generators and 29 — 1 nontrivial words for the design. For example,
adding a factor D to column 3 and E to column 5 of the Yates matrix in Table 1 implies
the generators AB and AC, which in turn imply the words ABD and ACE, and consequently
the additional word ABDACE = BCDE. Thus, this design has three words, and its complete
alias structure is shown in the upper part of Table 3. The lower part shows the alias struc-
ture without interactions of order higher than two — assuming negligibility of higher order

6 FrF2: Fractional Factorial 2-Level Designs in R

1 2 3 4 5 6 7
I A B D C E BC CD
ABD BD AD AB AE AC DE BE

ACE CE CDE BCE BDE BCD ABE ABC
BCDE ABCDE ABCE ACDE ABCD ABDE ACD ADE

A B D C E BC CD
BD AD AB AE AC DE BE
CE

Table 3: Yates matrix column headers for (best) 8 run design in 5 factors.

interactions. Such assumptions are often made and may be justified by a low order Taylor
approximation, if the experimental area is reasonably small. In the following, the k factors
originally spanning the 2 full factorial design are called the “base factors”, the g = m — k
additional factors are called the “generated factors”.

Simple analysis tools

Generally, results from (fractional) factorial 2-level designs can be analyzed using a linear
model. With regular fractional factorial experiments, the model with all conceivable interac-
tions is not estimable, because of perfect aliasing of some effects. Of course, the number of
estimable effects cannot exceed the number of different experimental runs. For example, the
design of Table 2 allows estimation of the constant and the seven effects A+BCD, B+ACD,
AB+CD, C+ABD, AC+BD, BC+AD and D+ABC. If one is prepared to assume negligibility
of 3-factor interactions, main effects can be estimated without bias in that design. For a valid
analysis, it is of course absolutely crucial to be aware of the alias structure of a design.

Some assessment of significance is needed in order to distinguish random variation from real
experimental effects. For a design with proper replications, the estimable effects or effect
sums can be tested for significance in the linear model. For unreplicated fractional factorial
designs, significance tests from linear models often lack error degrees of freedom (dfs). For
such cases, as linear model analysis does not work well, plotting methods for assessing effect
significance have been proposed (Daniel 1959; Lenth 1989). These work reasonably well under
an assumption of effect sparsity: If the majority of effects is not active (i.e., has the expected
value zero), this non-active majority of effects can serve as an assessment of error variation.
(Half) Normal plots of the effects show this majority of effects on a normality line and active
effects as sticking out from that line. A half normal plot is often called Daniel plot, since it
was proposed by Daniel (1959); Lenth (1989) proposed a numerical method for assessing effect
significance. There are also approaches different from the one by Lenth (1989), which are,
however, not implemented in FrF2 and are therefore not discussed here. For an appropriate
Daniel plot, it is crucial to include as many effects in the model as possible, i.e., as many as
there are columns in the Yates matrix. Daniel plots work better for larger than for smaller
designs — often a design in 8 runs with only seven effects will not yield a clear picture.

For effect interpretation, simple effects plots (main effects and interaction plots that visualize
averages for each level of one factor or for each combination of levels of two factors) are helpful;
cube plots visualize the occasional 3-factor interaction. Of course, awareness of the aliasing
structure is again very important for drawing correct conclusions from any such plots.

Journal of Statistical Software

Word length pattern and resolution

The less aliasing there is in a design, the more effects can be estimated without bias risk. The
word list of a design summarizes all the aliasing that has been caused by adding g generated
factors to the k base factors of the design. Words with three letters (= words of length 3)
imply aliasing of main effects with 2fis; for example, the design in Table 3 has the word
ABD, which implies confounding of the main effect of factor A with the BD interaction, and
likewise B with AD and D with AB. Words with four letters imply aliasing of main effects
with 3-factor interactions (3fis), and of 2fis with each other. Often, 3fis are assumed to be
negligible, so that interest in 4-letter words results from their consequences for the aliasing
of 2fis with each other (e.g., the word BCDE implies aliasing of BC with DE, of BD with
CE and of BE with CD). Longer words have less severe consequences for usability of a design
than shorter words, if one is prepared to accept the rationale that low order effects like main
effects and 2fis are much more likely to be “active” than higher order effects.

It is customary to consider frequency tables of the word lengths of a design, the so-called
“word length patterns” (WLPs): These are usually denoted as (As, A4,...). (Note that
there cannot be words of length 2, because this would contradict orthogonality of the array.)
For example, the WLPs for the designs of Tables 2 and 3 are (A3, A4, A5) = (0,1,0) and
(As, A4, As) = (2,1,0). The length of the shortest word of a design is called the “resolution”
of the design. Resolution is usually denoted in roman numerals and can be directly inferred
from the WLP: it is the smallest word length with non-zero frequency. For example, the
designs in Tables 2 and 3 have resolution IV and III, respectively.

Regular fractional factorial designs of resolution III are quite risky to use, because they
confound main effects with 2fis: Even if interest is in main effects only, active 2fis can invalidate
inference on these main effects. If the resolution is IV, main effects are no longer aliased with
2fis and can be estimated without bias, as long as interactions of order three or higher are
negligible. However, 2fis can be aliased with each other. If all 2fis must be estimable (given
that no effects of order three or higher exist), a design of resolution V is needed.

Minimum aberration

For larger designs, there are many different possibilities for adding ¢ factors to an existing
full factorial in k& base factors. Some of these possibilities are structurally identical (= “iso-
morphic”), i.e., can be obtained from each other by swapping rows and/or columns and/or
levels within columns. A lot of work has been invested in cataloguing non-isomorphic designs.
Existing catalogues assess the comparative quality of catalogued designs by comparing their
WLPs: a design D; is better than a design D, if it has smaller A3, or in case of equal Aj
smaller A4 or ... Thus, a design with higher resolution (see previous section) is always better,
and in case of identical resolution, the word length pattern is successively minimized. This
criterion is called “minimum aberration” (MA). Within FrF2, a catalogue of non-isomorphic
designs ordered by the minimum aberration criterion is available (see Section 3.2 for more
detail).

Maximum number of clear two-factor interactions, and MA clear designs

It has also been suggested to consider the number of “clear” 2fis as a quality criterion (Wu
and Hamada 2000; Wu and Wu 2002). 2fis are called clear, if they are not aliased with
main effects or other 2fis (usually, this criterion is used for resolution IV and higher only).

8 FrF2: Fractional Factorial 2-Level Designs in R

Design Generator columns Ag, A4, As, ... No. of clear 2fis

8 runs
411 7 010 0
4-1.2 3 100 3
5-2.1 35 210 0
6-3.1 356 430 0
7-41 3567 77001 0

16 runs
5-1.1 15 001 10
5-1.2 7 010 4
5-1.3 3 100 7
6-2.1 711 030 0
6-2.2 313 111 6
6-2.3 312 2001 9
6-2.4 35 210 5

Table 4: Principle of catalogue entries (8 runs and first 16 run entries).

The corresponding criterion is MaxC2, and designs can also be ranked w.r.t. that criterion.
However, it has been argued (Cheng, Steinberg, and Sun 1999) that this is not a good general
purpose criterion, because it severely increases aliasing for the remaining 2fis, which should
only be accepted with very good reason. In the spirit of this latter thinking, FrF2 contains an
algorithm for creating the minimum aberration design that can estimate a pre-specified set of
2fis clearly (Gromping 2012), which is implemented in function FrF2. This functionality will
be detailed in Section 5.7. For brevity, designs that keep a requirement set of 2fis clear, will
be called “clear designs” in the following.

3.2. Catalogues of regular fractional factorial 2-level designs

Several authors catalogued non-isomorphic regular fractional factorial 2-level designs, among
them Chen, Sun, and Wu (1993), Block and Mee (2005, 2006), Mee (2009), Xu (2009) and
Ryan and Bulutoglu (2010). Regular fractional factorial 2-level designs can be parsimoniously
catalogued by listing their generators via Yates matrix column numbers. Table 4 shows the
principle of the classical catalogue by Chen et al. (1993) (they started with 16 run designs).

The ordering of the catalogue is by number of runs, within that by number of factors, and
within that by the MA criterion. The designs are named as m-g.pos, where m is the number
of factors, g the number of generated factors (see 3.1), 279 the number of runs, and “pos”
the position number in the MA ranking. Within FrF2, all catalogue entries contain the
information available in the Chen et al. (1993) catalogue, and have additionally been enhanced
by so-called clear interactions graphs (CIGs, see Gromping 2012) in support of the estimability
functionality of function FrF2 (see Section 5.7).

Figure 1 shows which designs are available within FrF2 (in a catalogue named catlg, which
also has the class catlg, with more detail in C). This figure is displayed for users of the
GUI package RemdrPlugin.DoE on pressing an info button of the dialog for regular fractional
factorial 2-level designs.

Journal of Statistical Software

number of runs
g 16| 32| 64| 128] 266 512| 1024] 2048] 4096
only the MA design

m

<]

5 VI [Xi_| full |
5 Vi [v [|
. I\FM \'ﬂll [X |
a bl
E

3

=

Resolution Il up to h | 63 127 factors.

Resolution IV up to 32 64 30 160 factors.

Resolution V up to number of factors: 33 47 65
Resolution VI up to number of factors: 24 34 43

First design is MA up to number of factors:
N 63 127 36 29 28 32 26

Figure 1: Designs available in catlg. The catalogue is complete for up to 32 runs for all
resolutions and for 64 runs in resolution IV (up to 32 factors). For 128 runs with up to
24 factors, it contains a good selection from the catalogue of even/odd designs, which is
separately available (FrF2.catlgl28). (A complete catalogue of 128 run resolution IV designs
with up to 24 factors was available in earlier versions of FrF2.catlg128 and is now still available
on the author’s web page.)

Complete catalogues of non-isomorphic designs sorted by a quality criterion are a very helpful
tool in finding the best design with certain properties — they can simply be looped from
beginning to end, and the first success will yield the best possible design. This principle
is behind the estimability functionality of function FrF2 (see Section 5.7). While it often
works well, the computational burden can sometimes be enormous both in terms of storage
space and computing time. A recent result by Wu, Mee, and Tang (2012) has been helpful
for reducing the storage space issue substantially: these authors showed that clear designs
cannot be even designs (= designs with only words of even lengths). Thus, even designs can be
eliminated from all catalogues for the purpose of creating clear designs. This has substantially

10 FrF2: Fractional Factorial 2-Level Designs in R

Run size Max. number Run size Max. number
4 2 512 23

8 3 1024 33

16 5 2048 47

32 6 4096 65

64 8 8192 69

128 11 16384 92

256 17 32768 120

Table 5: Maximum number of factors in resolution V regular fractional factorial 2-level
designs.

reduced the size of the 128 run catalogues in R package FrF2.catlg128. For the purpose of
finding MA clear designs, further reduction to so-called dominating designs would be useful
(introduced by Wu et al. 2012, who mainly concentrated on admissible designs). However, for
other purposes, non-dominating designs might be interesting as well. Therefore, dominating
designs have only been flagged as such in order to speed up the search algorithm.

Apart from the classical catalogues of designs, which are limited to designs with up to
4096 runs within FrF2 and — to the authors knowledge — also elsewhere, Sanchez and Sanchez
(2005) proposed a construction algorithm for resolution V designs in many factors (up to 120;
the largest design has 32768 runs); this very simple algorithm is also used in FrF2 (function
FrF2Large). The approach does not require a large number of generators, but just one long
generating vector of Yates matrix column numbers, the first m entries of which constitute a
resolution V design in m factors. The approach does not give any guarantees, except that the
resulting designs are resolution V.

Table 5 shows how many factors can be accomodated at resolution V for various run sizes,
when using the catalogued designs for up to 4096 runs and the Sanchez and Sanchez (2005)
approach for larger designs. For many experiments with physical samples, the larger run
sizes are of course completely infeasible. For some computer experiments with qualitative
(or hard-to-code quantitative) 2-level factors, they may, however, be interesting. The tabled
information can be obtained from within R with function nrunsV.

3.3. Estimability of two-factor interactions

Ideally, one would often like to be able to estimate all main effects and 2fis free of aliasing.
This requires a resolution V design, provided that higher order interactions can be assumed
negligible. However, a resolution V design is often not feasible because of resource limitations
(see Table 5 in Section 3.2). In such cases, it may be helpful to distinguish between 2fis that
need to be estimated and other 2fis that are either not of interest or can even be assumed to
be negligible.

Gromping (2010) discussed the distinction between assuming some 2fis to be negligible (called
the “distinct” approach) and not being interested in some 2fis that are nevertheless not as-
sumed to be negligible (called the “clear” approach). This distinction has also been made in
the literature (see e.g., Wu and Wu 2002), but is not widely spread in computer software.
Two notable exceptions are the longstanding SAS procedure FACTEX (SAS Institute Inc. 2009),
where it is even possible to distinguish between effects of interest, effects not of interest but

Journal of Statistical Software

non-negligible and negligible effects, and the recent R package planor (Kobilinsky et al. 2013)
that appears to provide a similar functionality within R software. (Note, however, that neither
the SAS procedure FACTEX nor the R package planor guarantee that the design they produce
is minimum aberration for the requirements specified by the user.)

Clear and distinct designs

In function FrF2, 2fis of interest are specified in option estimable (see Section 5.7). The
non-interesting 2fis must either be all negligible (the “distinct” approach, option clear =
FALSE) or all allowed to be non-negligible (“clear” approach, default). Under the “distinct”
approach, main effects and the 2fis requested in option estimable have to be on distinct
columns of the Yates matrix. The “clear” approach makes the stricter requirement that even
the non-interesting effects must not be allocated to columns of the Yates matrix that hold
effects of interest. In the author’s experience, the “clear” approach is often more appropriate
than the “distinct” approach. In terms of resolution, a “clear” design usually makes sense
for resolution IV only (resolution V designs are trivially “clear”, resolution III designs are
usually inadequate, as main effects should be considered as important as the 2fis from the
requirement set). Different from the “clear” approach, a “distinct” approach may more often
make sense for resolution III designs. Gromping (2010) gives various examples of the different
numbers of runs and alias structures of designs resulting from both approaches. R package
FrF2 can be considered leading in terms of its ability to create minimum aberration clear
designs; the principle of the algorithmic implementation is described in Gréomping (2012),
and also discussed in Section 5.7.

Compromise plans

Estimability requirements of a specific structure are known under the heading “compromise
plans”. Addelman (1962) introduced three classes of compromise plans, all of which divide
the factors into two groups G1 and G2: Class 1 considers only 2fis within G1 (G1xG1) as
interesting, class 2 2fis within both groups (G1xG1l and G2xG2) and class 3 2fis within G1
and 2fis between the groups (G1xG1l and G1xG2). Later, Sun (1993) introduced a fourth
class for which only the 2fis between G1 and G2 are required to be estimable. Addelman
discussed distinct compromise plans, Ke, Tang, and Wu (2005) discussed clear compromise
plans, Gromping (2012) provided a large catalogue of minimum aberration clear compromise
plans. The latter was created with function FrF2.

Compromise plan type estimability requirements are practically relevant; for example, a com-
promise plan of class 3 or class 4 may be useful in a robustness experiment, in which some
control factors (grouped in G1) are investigated together with some noise factors (grouped in
G2). Especially the interactions between the two groups indicate which settings for the con-
trol factors robustify a product or process w.r.t. the noise factors in G2. Function compromise
from FrF2 supports easy creation of such requirement sets of estimable effects (element
requirements of the output object) and reports the minimum number of runs needed for
a clear compromise plan for that requirement set (see Section 5.7).

3.4. Aspects on blocking a design

As was discussed before, the block factor is not of interest in itself, i.e., its effects are not
required to be estimable. Factor effects that are confounded with the block factor are of

11

12 FrF2: Fractional Factorial 2-Level Designs in R

course not estimable. Thus, confounding of the block factor with main effects of experimental
factors must be prevented. One might think that confounding of the block factor with 2fis of
experimental factors should also be prevented; often, this is in fact a good approach. However,
enforcing this strategy can sometimes imply unnecessary amounts of confounding among the
2fis of the experimental factors which could be avoided by allowing confounding of the block
factor with 2fis of experimental factors. Section 5.4 shows an example of such a situation.

3.5. Non-regular fractional factorial 2-level designs

For regular fractional factorial 2-level designs, we have already considered the concepts of
aliasing, word lengths, WLP and MA (see Section 3.1). There, aliasing is either complete
or absent: For example, the design of Table 3 has two completely aliased triples of factors
(A,B,D and A,C,E), each of which contributes one word of length 3 to the total of two words
of length 3, whereas all other triples are clear of aliasing. For the completely aliased triples,
any main effect of a factor from the triple is completely aliased with the 2fi of the other
two factors; for the unaliased triples, on the other hand, the design (when ignoring all other
factors) is (a replicate of) a full factorial in that triple, and the main effect of any factor in
the triple is orthogonal to the 2fi of the other two factors. Because of this behavior, the WLP
contains integer entries only.

For non-regular fractional factorial 2-level designs, Deng and Tang (1999) and Tang and Deng
(1999) considered generalizations of the WLP and of resolution: Defining the f-dimensional
J-characteristics (or J¢-characteristics) as the sums of the elementwise products of f design
columns in —1/+1 notation, they proposed to base an assessment of a design’s quality on the
normalized Jy-characteristics, i.e., the absolute Jy-characteristics divided by NNV, the number
of runs. Clearly, all normalized Jy-characteristics are 0 or 1 for regular fractional factorial
2-level designs, and the elements of WLP are sums of the respective squared normalized
J-characteristics:

A= Y JHS)N W

S an f tuple

For non-regular 2-level designs, at least some (and perhaps all) normalized .J;-characteristics
are between 0 and 1, and the Ay of Equation (1) constitute the generalized word length
pattern (GWLP), which can also contain non-integer values (expression GWLP coined later
by Xu and Wu 2001). Based on this GWLP, Tang and Deng (1999) defined minimum Ga-
aberration in complete analogy to MA. Xu and Wu (2001) introduced the term “Generalized
minimum aberration” (GMA) for more general designs and showed that GMA coincides with
Tang and Deng’s minimum G4 aberration. Gromping (2011a) gave an accessible account on
the definition of GWLP for general orthogonal arrays.

Based on the GWLP, the resolution R can be defined as the smallest f for which A is non-
zero (i.e., for which there is at least one non-zero Jy-characteristic), in complete analogy to
the definition for regular fractional factorials based on WLP. For 2-level designs, Deng and
Tang (1999) introduced “Generalized resolution” (GR) as a refinement of resolution:

GR=R+1— max ’JR]ETS”. (2)

S an R tuple

Journal of Statistical Software

Thus, GR = R for all regular fractional factorial 2-level designs, but for non-regular designs
GR > R is possible, and the larger GR, the closer the design to the next higher resolution.
For interested readers, Deng and Tang (1999) gave a projection interpretation of GR.

Functions lengths and GR in package DoE.base calculate the (G)WLP and GR. These are
now exemplified for the well-known 12 run Plackett-Burman design for 11 factors, which
has resolution IIT with all normalized Js-characteristics (and therefore of course also their
maximum) equal to 1/3:

R> lengths(pb(12))

2 3 4 5
0.00000 18.33333 36.66667 29.33333

R> GR(pb(12))$GR
[1] 3.67

Note that the GWLP starts with length 2 in order to give indication of non-orthogonality, if
needed. GMA for non-regular designs is not as useful as MA for the regular designs, as it is
much more difficult to catalogue all non-isomorphic non-regular designs so that it is in most
cases not possible to confirm overall optimality of an array.

Plackett-Burman designs (Plackett and Burman 1946) are the best-known non-regular frac-
tional factorial 2-level designs. They exist, where the number of runs is a multiple of four.
The resolution III 12 run array or 20 run array have been recommended for screening pur-
poses, because they avoid complete aliasing of main effects with 2fis (because of GR > 3).
Whenever the number of runs is a power of four, Plackett-Burman designs coincide with a
regular fractional factorial design. This is unfortunate for screening purposes, because it im-
plies complete aliasing among some triples of factors. Therefore, alternative designs have been
developed: Box and Tyssedal (2001) recommended a 16 run design that allows estimating the
main effects of up to 14 factors without any complete aliasing. Samset and Tyssedal (1999)
proposed a 32 run design that is better for screening than the regular fractional factorial
2-level design obtained by the Plackett-Burman approach. Doubling (see Appendix D) allows
to increase that 32 run design to 64 runs. Only the 8 run design cannot be improved upon
vs. the regular fractional factorial 2-level design. Section 7.2 and Appendix D provide details
about the way Plackett-Burman or related arrays are implemented in FrF2.

4. Examples

This section introduces two example experiments, a regular and a non-regular fractional
factorial, respectively. These will be used in the sections afterwards for illustrating design
creation and analysis.

4.1. A regular fractional factorial: The MI experiment

Bafna and Beall (1997) published an experiment on factors that affect the accuracy of Melt
Index (MI) measurements. The MI is used for assessing the quality of a plastic melt; it

13

14 FrF2: Fractional Factorial 2-Level Designs in R

has high economic importance and is therefore regulated by a strict procedure. In their
experimental setup, Bafna and Beall (1997) prepared a homogeneous plastic melt that was
then measured under different conditions all of which were in compliance with the standard
for the measurement procedure, or as close as was possible within the constraints of the
experimental setup. The experimental goal was to distinguish between factors that have a
strong or a weak effect on measurement accuracy. The idea was that specifications for the
measurement process might have to be tightened for factors with a relevant effect on MI
measurements at the experimental settings, while there might be opportunities for loosening
a specification of the measurement process regarding a factor with no relevant effect.

Mee (2009, pp. 249) presented the data from the Bafna and Beall (1997) experiment. This
16 run experiment in six factors will be called the “MI experiment” in the sequel. It was
conducted with 3 repeated measurements per run. Mee (2009) emphasized that these were
repeated measurements but not replications and therefore analyzed the run-wise averages.
The six experimental factors are

e the die orifice diameter in mm (2.0930 or 2.1448),

the piston diameter in mm (9.462 or 9.500),

the sample mass in g (4 or 8),

the temperature in degree Celsius (188.1 or 191.1),
e the die cleanliness (dirty or clean) and

e the barrel cleanliness (dirty or clean).

The experiment itself and the observed MI values (averages or individual measurements) will
be used for illustrating the use of function FrF2 in Section 5 and the analysis features in
Section 6.

4.2. A non-regular fractional factorial: shot length of a potato cannon

This example has been published on the internet (Mayfield 2007). The experiment investigates
a so-called potato cannon that works according to the following principle: the cannon is
powered by an air chamber set under pressure and then released by a valve which gets triggered
by battery-driven electricity. The air sets a wad into motion which will move a golf ball
through a barrel of a certain length into the air. The angle of the barrel can also be modified.
The experimental goal is to find settings for the experimental factors such that a golf ball (or
a potato or a similar object) consistently travels a far distance (the farther the better). The
following eight experimental factors are investigated:

e Air volume (size of air chamber) in cubic inches (198 or 672),
e Pressure in psi (20 or 40),

e Valve (two different ones from the same manufacturer whose valves are known to be
quite variable),

e Voltage (one or three 9V batteries) (9 or 27),

Journal of Statistical Software

Barrel length in feet (4 or 6),

Angle in degrees (45 or 60),

Wad type (paper or cloth),

Ball type (white = expensive, pink = cheap).

The design was conducted as a 12 run Plackett-Burman experiment (in its Taguchi arrange-
ment). Each run was repeated (not properly replicated) four times, and the travel distance
of the golf ball (in feet) was recorded. This example will be used for illustrating design and
analysis functionality in Section 7.

5. Regular fractional factorial 2-level designs with FrF2

Function FrF2 implements regular fractional factorial 2-level designs, i.e., designs created
according to the construction principle discussed in Section 3, in up to 4096 runs. Based on
a catalogue of designs — complete for resolution IIT up to 32 runs and resolution IV up to 64
runs, and with only selected larger designs as pointed out in Section 3.2 — it is possible to
search for the best catalogued design according to various specifications, as well as to block
designs or create split plot designs.

This section provides overview information on which aspects of fractional factorial 2-level
designs are implemented in FrF2 in which way. The first section introduces the syntax of
function FrF2, giving an overview about groups of options for various purposes. Afterwards,
usage of function FrF2 for the simple case of a fractional factorial without any randomization
restrictions or specific estimability requirements is presented, including options on annota-
tion, randomization and replication/repeated measurements. Subsequently, further aspects —
blocking, split plot, estimability of certain 2fis in spite of resolution IV only — are dealt with
one at a time.

5.1. Available options

The R function FrF2 comes with many options, most of which have reasonable defaults and
can be left unspecified in most situations. Table 6 summarizes and categorizes them. Their
use will be illustrated in the appropriate context.

Note that some specific features cannot be combined with each other — first of all, split
plotting cannot be combined with any other special feature, not even with the addition of
center points. Furthermore, estimability and blocking features cannot be combined with each
other.

5.2. Creating regular fractional factorial 2-level designs for simple cases

Suppose we are at the outset of planning the MI experiment; the six factors and their levels
have been tentatively fixed, and the design is to be created. Complete randomization is
considered possible, i.e., no blocking or split plotting is necessary. All effects are considered
equally important, i.e., we want to create the MA design for the six factors; we would like to
limit the experiment to 16 runs, if a reasonable design in 16 runs exists.

15

16 FrF2: Fractional Factorial 2-Level Designs in R

Also valid for
Option Default setting pb FrF2Large Section

General options

nruns NULL * * 5.2
nfactors NULL * * 5.2
factor.names NULL * * 5.2
default.levels c(-1, 1) * * 5.2
replications 1 * * 5.3
repeat.only FALSE * * 5.3
randomize 1 * * 5.2
seed 1 * * 5.2
resolution NULL 5.2
Center points
ncenter 0 * * 5.9
center.distribute NULL * * 5.9
Ezxplicit design specification
generators NULL * 5.2
design NULL 5.2
select.catlg catlg C
Estimability requirements
estimable NULL 5.7
clear TRUE 5.7
sort "natural" 5.7
res3 FALSE 5.7
max.time 60 (5.7)
perm.start NULL (5.7)
perms NULL (5.7)
MaxC2 FALSE (5.7)
alias.info 2 * 9)
Options for blocking
blocks 1 5.4
block.name "Blocks" 5.4
bbreps replications (5.4)
wbreps 1 (5.4)
alias.block.2fis FALSE 5.4
Options for split plot designs
hard NULL (5.6)
check.hard 10 (5.6)
WPs 1 9.9
nfac.WP 0 5.5
WPfacs NULL (5.5)
check.WPs 10 (5.5)

Table 6: Options for function FrF2.

Journal of Statistical Software 17

A very simple call to function FrF2 creates the MA design for six factors in the specified
16 runs. The summary function displays its properties, and per default prints it. For a
preliminary check, it may be desirable to switch off randomization, in order to make it easier
to grasp the design structure from its printout:

R> plan <- FrF2(16, 6, randomize = FALSE)
R> summary(plan)

Call:
FrF2(16, 6, randomize = FALSE)

Experimental design of type FrF2
16 runs

Factor settings (scale ends):
A B C D E F

1-1-1-1-1-1-1

21 1 1 1 1 1

Design generating information:
$legend
[1] A=A B=B C=C D=D E=E F=F

$generators
[1] E=ABC F=ABD

Alias structure:
$£i2
[1] AB=CE=DF AC=BE AD=BF AE=BC AF=BD CD=EF CF=DE

The design itself:
A B C D E F

1 -1-1-1-1-1-1
2 1-1-1-1 1 1
3 -1 1-1-1 1 1
4 1 1-1-1-1-1
5 -1-1 1-1 1-1
6 1-1 1-1-1

7 -1 1 1-1-1

8 11 1-1 1-1
9 -1-1-1 1-1 1
10 1-1-1 1 1-1
11 -1 -1 1 1-1
12 1 1-1 1-1

13-1-1 1 1 1

14 1-1 1 1-1-1
i5-1 1 1 1-1-1

18 FrF2: Fractional Factorial 2-Level Designs in R

16 1 1 1 1 1 1
class=design, type= FrF2

The same design is also created by the following request, which leaves it to the software to
determine the smallest design in the required resolution for the given number of factors:

R> FrF2(nfactors = 6, resolution = 4, randomize = FALSE)

At the other extreme, if the user wants to specify the details, the same design can also be
requested by explicit specification of its generators or by giving the design name from the
catalog catlg:

R> FrF2(design = "6-2.1", randomize = FALSE)
R> FrF2(16, gen = c("ABC", "ABD"), randomize = FALSE)

The simplest design version is convenient for quickly checking possibilities. If a design has
finally been selected, e.g., the above design for the MI experiment, it is usually useful to
adapt some options: randomization should be switched on (this is the default), and choosing
a seed ensures that exactly the same randomization order can be obtained again later. Using
the default.levels and/or factor.names options prepares easy documentation of exported
design files or analysis output. This is illustrated for the MI example. The first code example
produces the design plan with levels coded as - and + and abbreviated factor names specified:

R> plan <- FrF2(16, 6, default.levels = c("-", "+"), factor.names = c(
+ "DieOrif", "PistDiam", "Temp", "DieClean", "SMass'", "BarClean"),
+ seed = 6285)

A second more heavily annotated version of the design specifies the factor levels for each
factor separately (see design plan.annotated below). Whether one prefers the first or the
second version is a matter of taste. After the design itself has been created, it can be exported
to html or csv format using function export.design, formatted as a data collection sheet for
the experimenter etc. For keeping the structural design information intact, the responses —
usually collected offline somewhere in a laboratory, workshop or field — have to be reimported
into the design by function add.response. Appendix B describes the recommended way
for exporting designs and re-importing response data in experimental practice. Here, for
expository simplicity, a simple typed vector of responses is used:

R> plan.annotated <- FrF2(16, 6, factor.names = list(

+ DieOrif = c(2.093, 2.1448), PistDiam = c(9.462, 9.5),
+ Temp = c(188.1, 191.1), DieClean = c("Dirty", "Clean"),
+ SMass = c(4, 8), BarClean = c("Dirty", "Clean")),

+ seed = 6285)

R> MI <- ¢(35.77, 35.03, 38.5, 39.33, 35.7, 35.1, 39.27, 37, 41.07, 32.03,
+ 42, 37.63, 40.2, 37, 40.1, 35.03)

R> plan.resp <- add.response(plan.annotated, MI)

R> summary(plan.resp)

Call:

Journal of Statistical Software

FrF2(16, 6, factor.names = list(DieOrif = ¢(2.093, 2.1448), PistDiam =
c(9.462, 9.5), Temp = c(188.1, 191.1), DieClean = c("Dirty", "Clean"),
SMass = c(4, 8), BarClean = c("Dirty", "Clean")), seed = 6285)

Experimental design of type FrF2
16 runs

Factor settings (scale ends):
DieOrif PistDiam Temp DieClean SMass BarClean

1 2.0930 9.462 188.1 Dirty 4 Dirty
2 2.1448 9.500 191.1 Clean 8 Clean
Responses:

[1] MI

Design generating information:
$legend
[1] A=DieOrif B=PistDiam C=Temp D=DieClean E=SMass F=BarClean

$generators
[1] E=ABC F=ABD

Alias structure:
$£i2
[1] AB=CE=DF AC=BE AD=BF AE=BC AF=BD CD=EF CF=DE

The design itself:
DieOrif PistDiam Temp DieClean SMass BarClean MI

1 2.093 9.462 191.1 Dirty 8 Dirty 35.77
2 2.093 9.5 188.1 Clean 8 Dirty 35.03
3 2.1448 9.462 188.1 Clean 8 Dirty 38.50
4 2.1448 9.462 188.1 Dirty 8 Clean 39.33
5 2.093 9.5 188.1 Dirty 8 Clean 35.70
6 2.093 9.462 188.1 Clean 4 Clean 35.10
7 2.1448 9.5 188.1 Clean 4 Clean 39.27
8 2.093 9.5 191.1 Clean 4 Dirty 37.00
9 2.1448 9.462 191.1 Clean 4 Dirty 41.07
10 2.093 9.462 188.1 Dirty 4 Dirty 32.03
11 2.1448 9.5 191.1 Clean 8 Clean 42.00
12 2.093 9.462 191.1 Clean 8 Clean 37.63
13 2.1448 9.462 191.1 Dirty 4 Clean 40.20
14 2.1448 9.5 188.1 Dirty 4 Dirty 37.00
15 2.1448 9.5 191.1 Dirty 8 Dirty 40.10
16 2.093 9.5 191.1 Dirty 4 Clean 35.03

class=design, type= FrF2

This design will be analyzed in Section 6.

20 FrF2: Fractional Factorial 2-Level Designs in R

5.3. Replication and repeated measurements

The MI experiment was conducted with three repeated measurements for each run. It has
already been mentioned that repeated measurements must not be treated like individual
independent outcomes. The simplest permissible analysis just analyzes average measurements
for each run, which is compatible with inputting the data directly as means only, as it was
done in the previous section. However, more detailed analysis is possible, if all individual
values are available, for example a mixed model analysis or the analysis of measurement
variability as a function of the experimental factors.

For the MI experiment, the repeated measurement version of the design can be generated with
the options replication = 3 and repeat.only = TRUE: function FrF2 creates three rows
for each run. The resulting design object knows that these have to be treated as repeated
measurements rather than proper replications. The responses are then the individual repeated
measurements, given in three successive rows of the design. A function reptowide allows to
arrange them within one row instead of underneath each other.

The above experiment created in this way looks as follows:

R> plan.repeat <- FrF2(16, 6, default.levels = c("-", "+"),
+ factor.names = 1list(DieOrif = c(2.093, 2.1448),

+ PistDiam = c(9.462, 9.5), Temp = c(188.1, 191.1),

+ DieClean = c("Dirty", "Clean"), SMass = c(4, 8),
+
+

BarClean c("Dirty", "Clean")),

seed = 6285, replication = 3, repeat.only = TRUE)
R> MIr <- c(36.6, 35.4, 35.3, 35.8, 34.7, 34.6, 38.6, 38.1, 38.8, 38.9,
+ 39.5, 39.6, 36, 36, 35.1, 35.2, 34.6, 35.5, 38.9, 39.4, 39.5,
+ 36.6, 36.8, 37.6, 41.1, 40.9, 41.2, 31.9, 32.3, 31.9, 42.5,
+ 41.9, 41.6, 37.8, 37.9, 37.2, 40.7, 40.9, 39, 36.6, 37.4, 37,
+ 40, 39.8, 40.5, 34.8, 35.5, 34.8)
R> plan.repeat.resp <- add.response(plan.repeat, MIr)
R> summary(reptowide (plan.repeat.resp))

Call:

FrF2(16, 6, default.levels = c("-", "+"), factor.names = list(
DieOrif = c(2.093, 2.1448), PistDiam = c(9.462, 9.5),
Temp = c(188.1, 191.1), DieClean = c("Dirty", "Clean"), SMass = c(4, 8),
BarClean = c("Dirty", "Clean")), seed = 6285, replication = 3,
repeat.only = TRUE)

Experimental design of type FrF2
16 runs

Factor settings (scale ends):

DieOrif PistDiam Temp DieClean SMass BarClean
1 2.0930 9.462 188.1 Dirty 4 Dirty
2 2.1448 9.500 191.1 Clean 8 Clean

Responses:

Journal of Statistical Software

MIr
1 MIr.1
2 MIr.2
3 MIr.3

Design generating information:
$legend
[1] A=DieOrif B=PistDiam C=Temp D=DieClean E=SMass F=BarClean

$generators
[1] E=ABC F=ABD

Alias structure:
$fi2
[1] AB=CE=DF AC=BE AD=BF AE=BC AF=BD CD=EF CF=DE

The design itself:

DieOrif PistDiam Temp DieClean SMass BarClean MIr.1 MIr.2 MIr.3
1 2.093 9.462 191.1 Dirty 8 Dirty 36.6 35.4 35.3
2 2.093 9.5 188.1 Clean 8 Dirty 35.8 34.7 34.6
3 2.1448 9.462 188.1 Clean 8 Dirty 38.6 38.1 38.8
4 2.1448 9.462 188.1 Dirty 8 Clean 38.9 39.5 39.6
5 2.093 9.5 188.1 Dirty 8 Clean 36.0 36.0 35.1
6 2.093 9.462 188.1 Clean 4 Clean 35.2 34.6 35.5
7 2.1448 9.5 188.1 Clean 4 Clean 38.9 39.4 39.5
8 2.093 9.5 191.1 Clean 4 Dirty 36.6 36.8 37.6
9 2.1448 9.462 191.1 Clean 4 Dirty 41.1 40.9 41.2
10 2.093 9.462 188.1 Dirty 4 Dirty 31.9 32.3 31.9
11 2.1448 9.5 191.1 Clean 8 Clean 42.5 41.9 41.6
12 2.093 9.462 191.1 Clean 8 Clean 37.8 37.9 37.2
13 2.1448 9.462 191.1 Dirty 4 Clean 40.7 40.9 39.0
14 2.1448 9.5 188.1 Dirty 4 Dirty 36.6 37.4 37.0
15 2.1448 9.5 191.1 Dirty 8 Dirty 40.0 39.8 40.5
16 2.093 9.5 191.1 Dirty 4 Clean 34.8 35.5 34.8

class=design, type= FrF2

This design will be analyzed in Section 6.5.

5.4. Blocked designs

The MI experiment did not require blocking. For the sake of illustration, now suppose that
it can only be conducted in two blocks of eight runs each. In that case, the experiment (now
again without explicit creation of repeated measurements) can be created with an additional
blocks = 2 option:

R> planB <- FrF2(16, 6, default.levels = c("-", "+"), factor.names = c(
+ "DieOrif", "PistDiam", "Temp", "DieClean", "SMass", "BarClean"),
+ seed = 6285, blocks = 2)

22 FrF2: Fractional Factorial 2-Level Designs in R

R> summary(planB)

Call:

FrF2(16, 6, default.levels = c("-", "+"), factor.names = c("DieOrif",
"PistDiam", "Temp", "DieClean", "SMass", "BarClean"), seed = 6285,
blocks = 2)

Experimental design of type FrF2.blocked
16 runs
blocked design with 2 blocks of size 8

Factor settings (scale ends):
DieOrif PistDiam Temp DieClean SMass BarClean
1 - - - - - -
+ + + + + +

Design generating information:
$legend
[1] A=DieOrif B=PistDiam C=Temp D=DieClean E=SMass F=BarClean

$" generators for design itself"
[1] E=ABC F=ABD

$ block generators’
[1] ACD

Alias structure:
$£i2
[1] AB=CE=DF AC=BE AD=BF AE=BC AF=BD CD=EF CF=DE

Aliased with block main effects:
[1] none

The design itself:

run.no run.no.std.rp Blocks DieOrif PistDiam Temp DieClean SMass BarClean

+
+

1 1 5.1.3 1 - + - - +
2 2 10.1.5 1 + - - + +
3 3 .1.4 1 - + + + -
4 4 1.1.1 1 - - - - -
5 5 14.1.7 1 + + - + -
6 6 15.1.8 1 + + + - +
7 7 11.1.6 1 + - + - -
8 8 4.1.2 1 - - + + +
run.no run.no.std.rp Blocks DieOrif PistDiam Temp DieClean SMass BarClean
9 9 6.2.3 2 - + - + +
10 10 2.2.1 2 - - - + -

11 11 9.2.5 2 + - - - +

+
+

Journal of Statistical Software

12 12 3.2.2 2 - - + - + -
13 13 12.2.6 2 + - + + - -
14 14 7.2.4 2 - + + - - +
15 15 16.2.8 2 + + + + + +
16 16 13.2.7 2 + + - - - -

class=design, type= FrF2.blocked
NOTE: columns run.no and run.no.std.rp are annotation, not part of the data
frame

The output above is annotated with block information from the run.order attribute of the
design. The column run.no.std.rp contains the original run number in the non-randomized
design in Yates order, the block number and the original position of the run within that block.
The rp in run.no.std.rp stands for replication information; if there are replications and/or
repeated measurements, this will also be reflected in further components of run.no.std.rp.
Note that, for blocked and split plot designs, the run number in standard order refers to the
run order with the first base factor changing slowest, which was also mentioned in Section 3.1,
as that this is the order from which blocked or split plot designs are created. As an aside,
also note that the run number in standard order in case of designs with estimable 2fis (see
Section 5.7) or split plotting (see Section 5.5) can be based on an unexpected selection and
ordering of base factors (this is documented in the help file for function FrF2).

Blocking ensures that the experimental effects can be separated from the block factor’s effect.
In this particular example, the design obtained by the above command appears adequate. In
Section 3.4, it was mentioned that there are both advantages and disadvantages of preventing
the block factor from being aliased with any 2fi. Per default, function FrF2 does this. However,
it can sometimes be better to allow aliasing of the block factor with one or very few 2fis in
order to achieve less confounding among experimental effects overall. Whether or not this is
the case for the experiment at hand can be investigated with the alias.block.2fis = TRUE
option. Generally, it is recommended to also try this option, as it may occasionally yield a
better design (for the above example, the design would deteriorate when using this option).
For example, when allocating only five factors to 16 runs in two blocks, alias.block.2fis
= TRUE confounds one 2fi with the block factor but has all other 2fis clear (planB2 below),
whereas a request without this option would confound six 2fis in three pairs, keeping the
block factor clear from aliasing with low order experimental effects (planB1 below). If the
experiment contains any one 2fi that is not at all interesting, the allocation of planB2 will be
considered better:

R> planB1 <- FrF2(16, 5, default.levels = c("-", "+"), blocks = 2)
R> summary(planB1, brief = TRUE)

Call:
FrF2(16, 5, default.levels = c("-", "+"), blocks = 2)

Experimental design of type FrF2.blocked
16 runs

blocked design with 2 blocks of size 8

Factor settings (scale ends):

23

24 FrF2: Fractional Factorial 2-Level Designs in R

Design generating information:
$legend
[1] A=A B=B C=C D=D E=E

$ generators for design itself”
[1] E=ABC

$ block generators”
[1] ABD

Alias structure:
$fi2
[1] AB=CE AC=BE AE=BC

Aliased with block main effects:
[1] none

R> planB2 <- FrF2(16, 5, default.levels = c("-", "+"), blocks = 2,
+ alias.block.2fis = TRUE)
R> summary(planB2, brief = TRUE)

Call:
FrF2(16, 5, default.levels = c("-", "+"), blocks = 2, alias.block.2fis =
TRUE)

Experimental design of type FrF2.blocked
16 runs
blocked design with 2 blocks of size 8

Factor settings (scale ends):
ABCDE

Design generating information:
$legend
[1] A=A B=B C=C D=D E=E

$generators for design itself"
[1] E=ABCD

$ block generators’
[1] AB

Journal of Statistical Software

no aliasing of main effects or 2fis among experimental factors

Aliased with block main effects:
[1] AB

Alternatively to the automatic generation, it is also possible to specify the generators for the
experimental factors themselves (option generators) and the generators for the block factor
(give to option blocks instead of number of blocks). For example, design planB2 for the five
factors can also be created by the command

R> FrF2(16, 5, default.levels = c("-", "+"), generators = "ABCD",
+ blocks = "AB")

With explicit specification of block generators, the user is responsible for their alias behavior,
and option alias.block.2fis is not needed. The online help for function FrF2 mentions
further possibilities of specifying option blocks, which are not covered in this article.

5.5. Split plot designs

Now, again for the MI experiment, suppose that the factors Temp and SMass can only be
varied together and should not have to be changed too often; these two factors are thus made
whole plot factors of a split plot design. (Note that this choice is completely arbitrary; the
MI experiment does not require a split plot structure.) In that case, we would have to make
sure that the experiment is run in four whole plots within which the factors Temp and SMass
are not changed.

R> planSP <- FrF2(16, 6, default.levels = c("-", "+"), factor.names = c(
+ "DieOrif", "PistDiam", "Temp", "DieClean", "SMass'", "BarClean"),
+ seed = 6285, WPs = 4, nfac.WP = 2, WPfacs = c("Temp", "SMass"),

+ design = "6-2.1")

R> MI.SP <- MI[c(5, 16, 8, 2, 3, 4, 9, 13, 6, 1, 12, 10, 7, 11, 15, 14)]
R> MI.SP <- MI[c(5, 4, 3, 2, 8, 16, 9, 13, 6, 14, 7, 10, 12, 11, 15, 1)]
R> planSP.resp <- add.response(planSP, MI.SP)

R> summary(planSP.resp)

Call:

FrF2(16, 6, default.levels = c("-", "+"), factor.names = c("DieOrif",
"PistDiam", "Temp", "DieClean", "SMass", "BarClean"), seed = 6285,
WPs = 4, nfac.WP = 2, WPfacs = c("Temp", "SMass"), design = "6-2.1")

Experimental design of type FrF2.splitplot
16 runs

Factor settings (scale ends):

Temp SMass DieOrif PistDiam DieClean BarClean
1 - - - - - -
2 + + + + + +

25

26

Responses:

[1] MI.SP

Design generating information:

$legend

[1] A=Temp

FrF2: Fractional Factorial 2-Level Designs in R

B=SMass

$generators
[1] B=ACD F=CDE

Alias structure:

$f

i2

[1] AB=CD=EF AC=BD

split-plot design:

The design itself:

DS W N -

0 N o O,

9

10
11
12

13
14
15
16

A

C=DieOrif D=PistDiam E=DieClean F=BarClean

D=BC

AE=BF

4 whole plots
: first 2 factors are whole plot factors

AF=BE

CE=DF

CF=DE

run.no run.no.std.rp Temp SMass DieOrif PistDiam DieClean BarClean
1 5.2.1 - + - + - +
2 9.2.3 - + + - - +
3 10.2.4 - + + - + -
4 6.2.2 - + - + + -
run.no run.no.std.rp Temp SMass DieOrif PistDiam DieClean BarClean
5 8.3.2 + - - + + -
6 7.3.1 + - - + - +
7 12.3.4 + - + - + -
8 11.3.3 + - + - - +
run.no run.no.std.rp Temp SMass DieOrif PistDiam DieClean BarClean
9 2.1.2 - - - - + +
10 13.1.3 - - + + - -
11 14.1.4 - - + + + +
12 1.1.1 - - - - - -
run.no run.no.std.rp Temp SMass DieOrif PistDiam DieClean BarClean
13 4.4.2 + + - - + +
14 16.4.4 + + + + + +
15 15.4.3 + + + + - -
16 3.4.1 + + - - - -

class=design, type=
NOTE: columns run.no and run.no.std.rp are annotation, not part of the data

fr

Design creation would have been easier, if the whole plot factors had been the first factors in
factor.names. In that case, it would have been sufficient to specify the numbers of whole
plots and whole plot factors (options WPs and nfac.WP) without having to specify WPfacs and
— more important — a specific design. The online help describes further detail, for example

ame

FrF2.splitplot

usage of option check.WPs.

MI.
35.
39.
38.
35.
MI.
37.
35.
41.
40.

MI.
35.
37.
39.
32.
MI.
37.
42,
40.
35.

SP
70
33
50
03
SP
00
03
07
20
SP
10
00
27
03
SP
63
00
10
7

Journal of Statistical Software 27

In the creation of the split plot experiment above, it had to be made sure that the experiment
was created such that the response values from the published MI experiment can be used for
demonstrating analysis features for split plot designs later on, as response values are available
for 16 level combinations of the 64 possible ones only. The 16 response values (averages used
again) had to be reordered, as the split plot structure implies a randomized ordering different
from the previous one. The design planSP.resp will be used for demonstrating the only
analysis feature for split plot designs in Section 6.4.

5.6. Hard to change factors

The previous section discussed split plotting. Split plotting can also be used for accomodating
hard to change factors, by making these the whole plot factors. Sometimes, researchers
see the need to enforce even fewer changes than obtainable from such a split plot design
with randomized whole plots. This can be achieved in function FrF2, using option hard for
specifying the number of hard to change factors (these have to be the first factors specified);
the function uses the slow-changing matrix given in Cheng et al. (1998). This option creates
a split plot design with non-randomized and very systematic order of whole plots; runs within
whole plots are randomized, like always. The resulting design is a multilevel split plot design:
the first hard to change factor changes most slowly, the second one second most slowly etc.
As long as

e the order of the runs is not influential,

e and the variability from changing hard-to-change factors is close to negligible relative
to measurement variability and variability from changing easy-to-change factors,

a pragmatic researcher may consider this type of procedure as preferrable to not being able
to conduct the experiment. Therefore, the package offers this type of design. For analysis,
the package treats such a design as a split plot design, although its whole plot order is not
randomized. It must be emphasized that the user is responsible for assessing whether the
approach can be responsibly used. Whenever feasible, a proper split plot design with the hard
to change factors as whole plot factors (and resetting their levels between whole plots even if
there is no level change between adjacent whole plots!) should be used instead!

5.7. Estimability of two-factor interactions in package FrF2

The general option resolution is adequate whenever users simply want to treat all effects
of the same order in the same way. Mainly for resolution IV designs, it is not uncommon to
consider some 2fis to be more important than others, as was discussed in Section 3.3. For this
situation, option estimable selects these more important 2fis (the requirement set), option
clear governs whether or not a clear design is requested, and option res3 allows the user to
downgrade from the natural requirement of resolution IV to resolution III only. The other
estimability options from Table 6 handle technicalities, more or less. Note that the general
option resolution cannot be specified together with the estimable option.

Distinct designs

For demonstrating estimability features, let us now consider the MI experiment, assuming
that we can afford 16 runs only and that we are interested in the main effects and the 2fis of

28 FrF2: Fractional Factorial 2-Level Designs in R

any of the first three factors (A, B and C) with any of the last three factors (D, E and F), i.e.,
in a class 4 compromise plan with G1 consisting of the first three factors. The requirement
set can be obtained using function compromise:

R> req.set <- compromise(6, 1:3, class = 4)$requirement
R> req.set

[1] HADH llBDlI IICDII IIAEH IIBE" llCE" |IAFH IIBF" I|CFII

The message produced by function compromise tells us that a clear design for that require-
ment set would require 32 runs:

a clear design requires at least 32 runs (resolution V)

As only 16 runs have been declared feasible, a clear compromise plan is not in reach. If it
appears acceptable that all 2fis outside the requirement set are negligible, option clear can
be set to FALSE. Function FrF2 then searches for a design that can accomodate the main
effects and the required 2fis on distinct columns of the Yates matrix:

R> FrF2(16, 6, estimable = req.set, clear = FALSE)

Error in mapcalc.distinct(estimable, nfac, nruns, res3 = res3, max.time =
max.time, : The required interactions cannot be accomodated on distinct
columns in 16 runs with resolution IV or higher.

The function reports a failure, because the default is to allow resolution IV and higher designs
only. If we really believe in negligibility of the non-required 2fis, we can decide to permit
resolution III using the res3 option. This leads to the following design:

R> plan.estim <- FrF2(16, 6, estimable = req.set, clear = FALSE, res3 = TRUE)
R> summary(plan.estim, brief = TRUE)

Call:
FrF2(16, 6, estimable = req.set, clear

FALSE, res3 = TRUE)

Experimental design of type FrF2.estimable
16 runs

Factor settings (scale ends):
A B C D E F

1-1-1-1-1-1-1

21 1 1 1 1 1

Design generating information:
$legend
[1] A=A B=B C=C D=D E=E F=F

Journal of Statistical Software

$generators
[1] C=AB F=ADE

Alias structure:
$main
[1] A=BC B=AC C=AB

$£fi2
[1] AD=EF AE=DF AF=DE

The output shows that the design plan.estim confounds main effects of factors A, B and C
with the 2fi of the respective other two factors. As these 2fis have been assumed negligible, this
design is acceptable under the “distinct” approach. For readers interested in the generation of
the array, the map entry of the design.info attribute of the design shows that it was obtained
by using the second best design for 6 factors in 16 runs, and by pulling the 5th design factor
to the third position in order to make the design match the required structure (i.e., A =1, B
=2,C=5D=3 E=4,F=6):

R> design.info(plan.estim)$map

$°6-2.2°
(1] 125346

Clear designs

The implementation of clear designs uses the algorithm of Gromping (2012). It heavily relies
on package igraph (Csardi and Nepusz 2006). As a prerequisite, each catalogue entry of
the catalogue catlg contains the CIG of the design, which is the unique graph that has an
edge for each clear 2fi. Likewise, a requirement set for an experiment can be considered as a
CIG, and an experiment can be accomodated within a design, if its requirement set CIG is
a subgraph of the design’s CIG. Internally, this subgraph relation is analyzed with function
graph.subisomorphic.vf2 from igraph. Manual insights into the structure of requirement
set CIG and design CIG can be gained using function CIG from FrF2: Suppose (very simple
example) one wants to run a 32 run experiment in 9 factors and wants to keep all interactions
between two noise factors N1 and N2 on the one hand and five control factors C1 to C5 on the
other hand clear, having two further environment factors E1 and E2 in the model. Then, the
requirement set contains 10 2fis; factors E1 and E2 need not be included in the requirement
set CIG (if included nevertheless, they are vertices without edges). For this simple situation,
Figure 2 shows that the requirement set cannot be accomodated in design 9-4.1, but in 9-4.2,
by assigning N1 and N2 to columns 5 and 9; the figure has been created by the code below:

R> par(mfrow = c(1, 3), cex = 1.1, mar = c(0, 0.4, 2, 0.4))

R> req.set <= 7 (N1 + N2) * (C1 + C2 + C3 + C4 + C5)

R> set.seed(2571)

R> CIG(req.set, static = TRUE, vertex.color = "white", vertex.size = 40,
+ vertex.label.family = "sans", vertex.label.color = "black",

+ vertex.label.cex = 1, edge.color = "black", edge.width = 1.3,

+ main = "Requirement set")

29

30 FrF2: Fractional Factorial 2-Level Designs in R

Requirement set Design 9-4.1 Design 9-4.2
SN

N/ s\ o)
QB)T?Z\@ //\\\(6 @/W@

S
&2 3@ ®

Figure 2: CIGs for requirement set and two candidate designs.

R> CIG("9-4.1", static = TRUE, vertex.color = "white", vertex.size = 35,
+ vertex.label.family = "sans", vertex.label.color = "black",

+ vertex.label.cex = 1.1, main = "Design 9-4.1", edge.color = "black",
+ edge.width = 1.3)

R> CIG("9-4.2", static = TRUE, vertex.color = "white'", vertex.size = 35,
+ vertex.label.family = "sans", vertex.label.color = "black",

+ vertex.label.cex = 1.1, main = "Design 9-4.2", edge.color = "black",
+ edge.width = 1.3)

When using option estimable, the task of matching the requirement set CIG to the best
possible design CIG is performed automatically; again, the map element of the design.info
attribute indicates, how the requirement set was accomodated:

R> plan <- FrF2(32, 9,

+ factor.names = C (”Nl ”, "N2 ”’ "Cl ”’ "C2 ll, "c3 ”, "C4 ”, ”C5 "’ ”El ", ”E2 ") ,
+ estimable = ~ (N1 + N2) * (C1 + C2 + C3 + C4 + C5))

R> design.info(plan)$map

$°9-4.2°
[1] 5912346738

As expected, the example requirement set was accommodated in design “9-4.2”, assigning
factors N1 and N2 to its columns 5 and 9, the other factors to the remaining columns.

Often, the search for clear designs is very fast. However, as subgraph isomorphism search is an
NP-hard problem, the algorithm sometimes takes very long. Option sort sometimes but not
always speeds up the algorithm (see manual). If the automatic search is very slow, a manual
search of the design that the algorithm got stuck with can be helpful. After interrupting
an unsuccessful search, the name of the last search design can be retrieved by the command
FrF2.currentlychecked(). If a manual inspection of this design reveals that there is no
chance of accommodating the requirement set in that design, the search can be restarted,
restricting the catalogue to later designs only with the select.catlg option. For manual
inspection, it will be helpful to omit the static = TRUE option from function CIG (see code
chunk for the graphs above), which yields an interactive graph.

Journal of Statistical Software

5.8. Large designs

Function FrF2 is limited to designs with up to 4096 runs, regardless of the way a design is
specified. Larger fractional factorial 2-level designs can be created with function FrF2Large.
The latter function is more limited than FrF2 in terms of design structures (no blocking, no
split plot designs, no estimability requirements). The available options are those asterisked
in Table 6. Function FrF2Large implements automatic design creation with the method by
Sanchez and Sanchez (2005) that was introduced in Section 3.2. Alternatively, users can
manually generate a design by specifying the generators (with slightly more restrictive entries
than in function FrF2). Attempts to use this function for designs with up to 4096 runs return
an error.

5.9. Randomization, replication and center points

Center points

Regular fractional factorial 2-level designs with quantitative factors are often used as the
starting point for response surface investigations. For these, it can be quite useful to use
some center points in the design. Center points can also be useful for checking for curvature
in non-regular fractional factorial 2-level designs. Center points can be requested with option
ncenter of functions FrF2, FrF2Large and pb. Note that their position in the design is not
randomized, but can be controlled via option center.distribute. Per default, center points
are placed at the beginning, in the middle and at the end of the design (i.e., distributed over
three points). It is also possible to augment a design with center points after its creation
using function add.center.

Note that the center points functionality does not work simultaneously with a split plot
structure or specification of hard to change factors. The reason is that it is usually not a
good idea to have a separate whole plot that consists of center points only, and that it is not
obvious how to handle center points in a standard way in split plot designs.

Randomization and replication

Design generating functions generally block the randomization of proper replications on time,
i.e., they generate a randomized sequence of all first replicates, then a randomized sequence
of all second replicates, and so forth (run FrF2(8, 4, replications = 3) to see what this
means). As the user has not a-priori specified time as a block factor, this is a mere precaution
against surprises from time effects that are not unheard of; if such a time trend is found, an
analysis including a replication block factor can partially account for it. However, since the
user did not ask for blocking on time in the first place, the replicated design does not contain
a block column, and its default analysis does not include a block factor.

If desired, the block factor that reflects the replication blocking on time can be retrieved using
function getblock; this function will also provide separate factors for the other randomization
restrictions. Users can use these factors in a custom analysis with R function 1m or advanced
analysis functions from packages.

Users who dislike the fact that replications are blocked on time or that center points are
systematically placed can apply the function rerandomize.design to the design; this func-
tion does not randomize the replications in blocks and does randomize the position of center

31

32 FrF2: Fractional Factorial 2-Level Designs in R

points, and it also randomizes the position of blocks; in the default randomization, block
order is fixed, and it is assumed that users randomize their units to the blocks. Of course,
rerandomize.design keeps a block or split plot structure intact and keeps repeated mea-
surements together. Users who decide to use this function have to make sure to add center
points directly with design creation, as subsequent adding of center points is not possible for
a re-randomized design.

6. Simple analysis tools

Simple analysis tools for regular fractional factorial 2-level designs have been discussed in
Section 3.1. Their R implementation is presented here, using the MI experiment. As a
prerequisite of any useful interpretation, awareness of the alias structure — obtainable from
the summary function — is necessary.

6.1. Main effects plots

A very simple analysis visualizes the response means for the different factor levels: the main
effects plot. Two versions of main effects plots are available, and which one to use is purely
a matter of taste:

R> plot(plan.resp, cex = 1.2, cex.lab = 1.2, cex.axis = 1.2,
+ main = "Main effects plot for MI", cex.main = 2)
R> MEPlot(plan.resp, abbrev = 5, cex.xax = 1.6, cex.main = 2)

The main effects plot for the MI experiment (both graphs in Figure 3) shows the differences
between factor levels. Clearly, controlling the die orifice diameter has the largest effect, with
a difference of about 4.3 between its levels. Temperature follows suit, with a difference of
about 2. The relevance of the effect sizes can usually be decided by the experimenter’s gut
feel, while the significance must be decided by statistical methods (see Sections 6.3 and 6.4).

In resolution III designs, the user should be aware of aliased 2fis which can mask or inflate a
main effect. This is not an issue in the resolution IV MI experiment.

6.2. Interaction plots

For resolution IV or higher regular fractional factorial 2-level designs, it makes sense to look
at interaction plots. Function IAPlot with its method for class design objects can be used
for that purpose. The graphs in Figure 4 have been created with the following code:

R> IAPlot(plan.resp, abbrev = 5, show.alias = TRUE, lwd = 2, cex = 2,
+ cex.xax = 1.2, cex.lab = 1.5)

R> IAPlot(plan.resp, abbrev = 5, select = 3:6, lwd = 2, cex = 2,

+ cex.xax = 1.2, cex.lab = 1.5)

The show.alias = TRUE option marks aliased interactions with the same number in order to
indicate that these can only be estimated together in one sum (see top graph in Figure 4); this
is very helpful for avoiding over-interpretation. For example, the summary of the design in
Section 5.2 showed that the interaction between temperature and barrel cleanliness is aliased

Journal of Statistical Software 33

Main effects plot for Ml

2.1448
o _|
[32]
191.1
o Clean
> & [8 Clean
S
[
5 9462+ J J
[}
£ ~ | . 4 Dirty
™ Dirty
188.1
© _|
™
2.093+
DieOrif ~ PistDiam Temp DieClean = SMass BarClean
Factors
(a) plot method for class design.
Main effects plot for Ml
DieOrif PistDiam Temp DieClean SMass BarClean
?r 4
[|
% i
|]
— { |
= u / /
© |
™
[|
[To R
(32}
T 1 r 1) 1 r 1 r 1 r 1
2.093 2.1449.462 9.5 |188.1 191.1| Dirty Clean| 4 8 | Dirty Clean

(b) Function MEPlot.

Figure 3: Main effects plots for the MI example.

with the interaction of die cleanliness with the sample mass (CF=DE); this is also visible from
the figure, as these interactions are both marked with the number 13. The selection of only
some factors in the bottom graph shows a larger display of some 2fis. (The selection has
been based on the analysis results from the following two sections.) The interactions can be
interpreted as follows: For dirty die, sample mass makes a difference, for clean die it does
not OR for dirty barrels, temperature makes a difference, for clean barrels it does not OR a
combination of both (OR, even, a stronger effect for one of these, and the opposite effect for
the other).

34

34 38 34 38 34 38 34 38 34 38

34 38

39 35 37 39

37

39 35 37 39 35

37

35

FrF2: Fractional Factorial 2-Level Designs in R

Interaction plot matrix for Ml

w2003 |ala| B2 24 104, 11a
3 DieOrif
J a2.144 m ™ ...,.~. ..._.~l - .-m - n
4 7 0.462 10 11 8 9
3 PistDiam .——*"“ -——-*'“" ‘-r-‘.
E 9.5 /
= 8 10 12 7 13
3 A M m188.1
3 A/: —a | Temp g | A | —
- ol al011 | = " -
3 9 11 12 mDirty 13 7
3 H B | DieClean “__" f"
-5 AClean | ®
3 10 8 7 13 4 12
3 —A | L1 A—A | Syass
= u = A8
= 11 9 13 7 12 ;
= mDirty
3 .—‘ a—"A — -8 | BarClean
E ‘/‘ = L ‘/‘ AClean
L Ll L Ll L Ll L Ll L Ll L Ll
2093 21449462 95 1881 1911 Dity Clean 4 8 Dirty Clean
(a) All interactions with alias numbering.
Interaction plot matrix for Ml
m188.1 /A .
Temp = .m ...
1 a1911 R L .
] mDirty
4 —A | L—
] ... DieClean .| ...-:
L AClean L -
] m4
i —h ‘/4 /
SMass | &— ...]
J o
" w A8
- mDirty
7 / A/= =/: BarClean
1 e o AClean
L Ll L Ll L Ll L Ll
188.1 191.1 Dirty Clean 4 8 Dirty Clean

(b) Selected interactions.

Figure 4: Interaction plots for the MI example.

Journal of Statistical Software

6.3. Linear model

A linear model analysis for the MI example can be run using the 1m method for class design
objects provided in package DoE.base. For regular fractional factorial designs, the default
analysis models the first response with all main effects and all 2fis; in case of several responses,
a different response can be specified with option response; the polynomial degree can be
adjusted with the degree option.

R> summary(Im(plan.resp))

Number of observations used: 16
Formula:
MI ~ (DieOrif + PistDiam + Temp + DieClean + SMass + BarClean) 2

Call:
1m.default(formula = fo, data = model.frame(fo, data = formula))

Residuals:
1 2 3 4 5 6 7 8 9
0.1050 -0.1175 0.1175 -0.1175 0.1175 0.1050 -0.1050 0.1175 -0.1175
10 11 12 13 14 15 16

-0.1050 0.1050 -0.1050 0.1175 0.1050 -0.1050 -0.1175

Coefficients: (8 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)

(Intercept) 37.54750 0.07879 476.554 4.4e-06 *xx*
DieOrif1 2.13625 0.07879 27.113 0.00136 **
PistDiaml 0.09375 0.07879 1.190 0.35619
Temp1l 1.05250 0.07879 13.358 0.00556 **
DieCleanl 0.65250 0.07879 8.282 0.01427 *
SMass1 0.46000 0.07879 5.838 0.02811 =*
BarCleanl 0.48500 0.07879 6.156 0.02539 *
DieOrifl:PistDiaml -0.18500 0.07879 -2.348 0.14338
DieOrif1l:Templ 0.10625 0.07879 1.349 0.30990
DieOrifl:DieCleanl -0.12625 0.07879 -1.602 0.25025
DieOrifl:SMass1 -0.16125 0.07879 -2.047 0.17731
DieOrifl:BarCleanl 0.03125 0.07879 0.397 0.72996
Templ:DieCleanl 0.17250 0.07879 2.189 0.16000
Templ:BarCleanl -0.37000 0.07879 -4.696 0.04248 x*
Signif. codes: 0O '*%x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3152 on 2 degrees of freedom
Multiple R-squared: 0.9982, Adjusted R-squared: 0.9863
F-statistic: 84.36 on 13 and 2 DF, p-value: 0.01177

In the linear model output, when using the 1m method for class design objects, all NA rows
from aliased effects are suppressed, i.e., only the first occurring effect from each alias group

36 FrF2: Fractional Factorial 2-Level Designs in R

is included. For example, the MI experiment has six main effects and 15 2fis; the output
shows only seven 2fis, which act as representatives from their alias groups. Based on 2 error
dfs, the linear model identifies five of the main effects and one interaction as significant
effects. Of course, it is again important to include knowledge about the alias structure into
the interpretation of results. For example, the significant 2fi of temperature with barrel
cleanliness is completely aliased with that of die cleanliness with sample mass (see previous
section).

The main purpose of the linear model analysis lies in the possibility of assessing significance
of effects. In case of only few or even no degrees of freedom for error, it may be more
appropriate to assess effect significance from effects plots (see next section). Users who prefer
to look at explained variation instead of effects can use the aov method for class design
objects provided in package DoE.base or can apply the anova function to the linear model
result. For the designs considered in this paper with balanced orthogonal 1 df effects only,
the results from 1m and aov are equivalent in terms of significance testing and differ in scaling
only (coefficient scaling versus sum of squares scaling). Users who think about their problem
in terms of sensitivity analysis may prefer the sum of squares perspective.

6.4. Normal and half normal effects plots of a simple design

Normal and half normal effects plots can be obtained with function DanielPlot. Option half
= TRUE creates a Daniel (half normal) plot, option autolab = TRUE (default) labels only those
effects that are significant at the user-specified level alpha (default: 0.05) according to the
method by Lenth (1989). The class design method of function DanielPlot automatically
chooses the degree of interaction such that nruns - 1 effects are included (in this case 15),
which is crucial for the concept of effects plots to work.

The method of function DanielPlot for class design produces a Daniel plot for the MI
experiment (top graph in Figure 5):

R> DanielPlot(plan.resp, code = TRUE, half = TRUE, alpha = 0.1,
+ cex.main = 1.8, cex.pch = 1.2, cex.lab = 1.4, cex.fac = 1.4,
+ cex.axis = 1.2)

As the author prefers a half normal to a full normal effects plot, option half = TRUE is set.
Furthermore, option code = TRUE labels the plot points with capital letters for the factors,
with a legend underneath the plot. For these data, the plot at significance level 10% shows the
same significant effects as the linear model analysis at significance level 5%. Liberal values of
« are often used in Daniel plots, since it is often more important to keep the relevant effects
than to rule out the irrelevant ones.

This is a good place to show the only analysis feature that has so far been implemented
for split plot designs: A split plot design has two types of effects, the whole plot effects
with potentially higher variability and the split plot effects with potentially lower variability.
Looking at these together in one plot may be misleading. Therefore, two different plot symbols
are used, and users are warned. If this design had been conducted as a split plot design as
postulated for the design planSP created in Section 5.5, the bottom graph in Figure 5 tells us
that the effects marked by the symbol “0” are whole plot effects, which may be more variable
than the other effects. Hence, the strong deviation of the effect of factor A from the half
normal distribution line might be partially due to higher whole plot variation, whereas the

Journal of Statistical Software 37

Half Normal Plot for MI, alpha=0.1

* A
o
<
*
C
Qo |
=
3 *D
7]
T ~F
éo] * E
e~ * CF
| *
—
© *
<0 *
S *
*
*
*
*
o | *
© T T T T T T
0 1 2 3 4 5
absolute effects
A = DieOrif, B = PistDiam, C=Temp, D = DieClean, E = SMass, F = BarClean
(a) Design as conducted.
Half Normal Plot for MI.SP, alpha=0.1
WARNING: whole plot effects (marked by o) may have larger variation than split—plot effects
* C
o
S
oA
Sw
=
3 + E
7]
T *F
€9 4 0B
e~ * AF
| o]
—
‘_‘5 *
T *
o 7| *
*
*
*
*
(=R
© T T T T T T
0 1 4 5

2 3
absolute effects
A =Temp, B=SMass, C =DieOrif, D =PistDiam, E = DieClean, F = BarClean

(b) Pretending design was run as split plot.

Figure 5: Daniel plots for the MI example.

conclusions on significance of the other factors are solid. However, as the absolute values of
the two other whole plot effects are just within the unexciting noise line, whole plot variability
does not seem an issue here (which is of course not surprising, because the design was not
conducted as a split plot experiment). An analogous feature is also implemented for linear
model analysis: users are informed, which effects are whole plot effects and may be subject
to higher variability.

6.5. Repeated measurements and replications

For designs with r proper replications, a linear model analysis is preferrable to a (half) normal

38 FrF2: Fractional Factorial 2-Level Designs in R

Half Normal Plot for Mir.sd, alpha=0.1

*

2.0

1.5
|

half-normal scores
1.0
*

0.5

0.0

0.00 0.05 0.20

0.10 0.15
absolute effects
A = DieOrif, B = PistDiam, C=Temp, D = DieClean, E = SMass, F = BarClean

Figure 6: Daniel plot for effects on the standard deviation of the measurements.

effects plot, since there are many error degrees of freedom. Section 5.9 pointed out that
randomization of proper replications is blocked on time, however without adding a block
factor to the design. In the author’s opinion, it is not generally necessary to account for
this blocking in the analysis, and the default analysis does not do so. Users who consider a
blocked analysis necessary for principle or situation-specific reasons can use function getblock
for creating appropriate block factors that can be used for a custom analysis in R function
1m or advanced analysis functions for mixed models. (For users who prefer an unblocked
randomization of replications in the first place, Section 5.9 explained how to re-randomize the
design at the design creation stage.)

Designs with r repeated measurements require special analysis, either by a mixed model
approach (random effect for each run; again, function getblock can be used for creating
a run identifier), or — much more simple and accessible to non-expert users — by analyz-
ing averages (or other scalar functions of the repeated measurements, like the standard
deviation) only. The plotting functions can handle designs with individual repeated mea-~
surements: DanielPlot(plan.repeat.resp, half = TRUE, code = TRUE, alpha = 0.1)
produces the top plot of Figure 5 on the basis of average measurements. For analyzing the
standard deviation of the measurements instead, the standard deviation can be calculated by
aggregating the repeated measurements after reshaping the data frame to wide format:

R> plan.sd <- aggregate(reptowide(plan.repeat.resp), FUN = "sd")

A Daniel plot for the resulting design with the standard deviation as the response shows an
almost ideal random half normal line (see Figure 6), i.e., there appears to be no influence of
the experimental factors on measurement accuracy.

R> DanielPlot(plan.sd, half = TRUE, code = TRUE, alpha = 0.1,
+ cex.main = 1.8, cex.pch = 1.2, cex.lab = 1.4, cex.fac = 1.4,
+ cex.axis = 1.2, cex.legend = 1.2)

Journal of Statistical Software 39

7. Non-regular fractional factorial 2-level designs in FrF2

7.1. Options of function pb

Function pb uses part of the options in complete analogy to those of function FrF2 (see
Table 6). There are only three additional options for special purposes: boxtyssedal (see the
online help), n12.taguchi (see Section 7.3) and oldver (see D.1).

7.2. The implemented arrays

Function pb implements Plackett-Burman designs (Plackett and Burman 1946) with up to
100 runs, as introduced in Section 3.5.

Package FrF2 contains a list with generator information for the implemented arrays (pb.1list).
For some situations, the package uses a different array than the one proposed by Plackett and
Burman: the missing 92 run array is created by a Williamson construction, as reported in
Hedayat, Sloane, and Stufken (1999). Furthermore, for 16, 32 and 64 runs, the alternative
designs discussed in Section 3.5 are implemented in order to avoid complete aliasing of main
effects and 2fis as much as possible. Table 7 provides an overview of the arrays used in
function pb and summarizes information on their properties which are also discussed in the
text below. D gives some detail on doubling, cycling blocks, and the Williamson construction,
especially regarding the column order which deviates from that given in the literature and
also has changed over time in FrF2.

Note that function pb always uses the first m columns of an array for a design in m factors.
Thus, the order of the columns in the arrays is very important. The following considerations
have driven the final default ordering of the columns: the 16 run Hadamard matrix and the
arrays obtained by doubling or cyclic combination of blocks, as well as the 92 run array (i.e.,
the arrays for 40, 52, 56, 64, 76, 88, 92, 96 and 100 runs) contain one column, inclusion of which
dramatically increases aliasing for designs with many factors: this column is completely or
heavily partially (for 52, 76 and 100 runs) aliased with various 2fis. This column has therefore
been moved to the last position of the array, in order to prevent heavy aliasing in screening
designs, as long as not all columns are used. For the doubled arrays, the first n/2 —1 columns
together with the afore-mentioned last column yield a resolution IV design; for up to n/2 —
1 factors, the design is resolution IV per default, for exactly n/2 factors the option oldver
= TRUE is needed for achieving resolution IV. The arrays created by cyclic combination of
blocks yield almost resolution IV designs (GR > 3.9, with GR from Equation (2)) for up to
n/2 — 1 factors. The aliasing properties of the arrays are summarized in Table 7.

7.3. Creation and analysis of Plackett-Burman designs

Usage of function pb is straightforward and works analogously to that of function FrF2 for
all standard cases. Blocking, split plot designs and estimable 2fis cannot be specified, center
points can. Functions 1m, DanielPlot and MEP1lot have methods for Plackett-Burman designs,
and design inspection methods can also be applied.

Usage of function pb is now illustrated using the potato cannon example from Section 3.5.
The following commands generate the design and summarize it. The option n12.taguchi =
TRUE makes sure that the design is generated in the Taguchi arrangement, rather than in the

40 FrF2: Fractional Factorial 2-Level Designs in R

Original Max. no. of factors Max. no. of factors with
Plackett without complete or (almost) resolution IV
and heavy partial aliasing with
Runs Burman Construction with any 2fi default oldver = TRUE
8 yes cycling 4 4
12 yes cycling 11
16 no Hadamard (%) 14 *)
20 yes cycling 19
24 yes cycling 23
28 yes cycling 27
32 no cycling® 31 (*)
36 yes cycling 35
40 yes doubling 38 19 20
44 yes cycling 43
48 yes cycling 47
52 yes cycling blocks 50 (25)
56 yes doubling 54 27 28
60 yes cycling 59
64 no doubling 62 31 32
68 yes cycling 67
72 yes cycling 71
76 yes cycling blocks 74 (37)
80 yes cycling 79
84 yes cycling 83
88 yes doubling 86 43 44
92 no Williamson(©) 90
96 yes doubling 94 47 48
100 yes cycling blocks 98 (49)

(*) For n/2 factors or less, the regular design from function FrF2 should be used.
(a) see Box and Tyssedal (2001)

(b) generating vector from Samset and Tyssedal (1999)

(c) taken from Hedayat et al. (1999, p.160)

Table 7: The arrays used by function pb.

structurally comparable arrangement proposed by Plackett and Burman (1946):

R> pot.cannon <- pb(12, seed = 15143,

+ factor.names = 1list(AirVolume = c (198, 672), Valve = c(1 ,2),

+ Barrel = c("4ft", "6ft"), Angle = c(45, 60), Pressure = c(20, 40),
+ WadType = c("paper", "cloth"), Voltage = c(9, 27),

+ BallType = c("white", "pink")), nl12.taguchi = TRUE)

R> summary (pot.cannon)

Call:
pb(12, seed = 15143, factor.names = list(AirVolume = c(198, 672),
Valve = c(1, 2), Barrel = c("4ft", "6ft"), Angle = c(45,

Journal of Statistical Software

60), Pressure = c(20, 40), WadType = c("paper", "cloth"),
Voltage = c(9, 27), BallType = c("white", "pink")), nl2.taguchi

TRUE)

Experimental design of type pb
12 runs

Factor settings (scale ends):
AirVolume Valve Barrel Angle Pressure WadType Voltage BallType el e2 e3
1 198 1 aft 45 20 paper 9 white -1 -1 -1
672 2 6ft 60 40 cloth 27 pink 1 1 1

The design itself:
AirVolume Valve Barrel Angle Pressure WadType Voltage BallType el e2 e3

1 198 2 4ft 60 40 paper 27 pink -1 -1 1
2 672 1 6ft 60 20 paper 27 pink -1 1 -1
3 672 2 4ft 45 40 paper 27 white 1 1 -1
4 198 1 4ft 45 20 cloth 27 pink 1 1 1
5 198 2 6ft 60 20 cloth 27 white 1 -1 -1
6 672 2 6ft 45 20 paper 9 pink 1 -1 1
7 198 1 aft 45 20 paper 9 white -1 -1 -1
8 198 1 6ft 60 40 paper 9 white 1 1 1
9 198 2 6ft 45 40 cloth 9 pink -1 1 -1
10 672 2 4ft 60 20 cloth 9 white -1

11 672 1 6ft 45 40 cloth 27 white -1 -1

12 672 1 4ft 60 40 cloth 9 pink 1 -1 -1

class=design, type= pb

The summary shows a unique feature of function pb: if not explicitly asked for a smaller
nfactors, the function always assigns the maximum possible number of factors, by creating
additional dummy factors named el, e2 and so forth. This is done for supporting appropriate
Daniel plotting: there are a total of n — 1 orthogonal effects in the design, and the dummy
factors are among them; of course, they are not expected to have relevant effects, but they are
important “no effect” points against which to compare the actual experimental factors (see
Daniel plot in Figure 7). The code below adds the average responses from the four repeated
measurements (asl) and subsequently creates the Daniel plot (autolab = FALSE labels all
points).

R> asl <- ¢c(203.771, 140.046, 424.479, 127.875, 78.667, 167.979, 85.521,

+ 208, 313.813, 166.021, 466.771, 389.958)

R> pot.cannon.resp <- add.response(pot.cannon, asl)

R> DanielPlot (pot.cannon.resp, half = TRUE, autolab = FALSE, cex.main = 1.8,
+ cex.pch = 1.2, cex.lab = 1.4, cex.fac = 1.4, cex.axis = 1.2)

A main effects plot can be created in the same way as for FrF2 type designs and does per
default omit the dummy factors for error. Interaction plots cannot be created and usually do
not make sense. (Even for the — presumably rare — cases, where resolution IV portions of a
Plackett-Burmann design based on doubling are used, function IAPlot cannot be applied to
the linear model object of such a design, because there is partial aliasing among the 2fis.)

41

42

FrF2: Fractional Factorial 2-Level Designs in R

Half Normal Plot for asl

* Pressure
n
@
4 -
g = AirVolume
[S]
%]
ga i « Angle
<]
c » WadType
o+
8o | = Voltage
© + BallType
= Valve
= Barrel
T T T T T T
0 50 200 250

100 150
absolute effects

Figure 7: Daniel plot for the potato cannon experiment, all effects labelled.

For a linear model, the dummy factors for error are not needed in the formula. They are
therefore automatically omitted, when using the method for class design objects of the generic
1m from DoE.base. (With older versions of the package (FrF2 before version 1.3 or DoE.base
before version 0.23), it was necessary to manually delete the dummy factors from the formula.)

R> summary (Im(pot.cannon.resp))

Number of observations used: 12

Formula:

asl © AirVolume + Valve + Barrel + Angle + Pressure + WadType +
Voltage + BallType

Call:

Im.default(formula = fo, data = model.frame(fo, data = formula))

Residuals:
1

2 3 4 5 6 7 8 9

-8.387 4.885 8.387 -6.957 10.460 -4.885 6.957 -6.957 4.885

10

11 12

-10.460 -8.387 10.460

Coefficients:
Estimate Std. Error t value Pr(>|tl)

(Intercept)
AirVolumel
Valvel
Barrell
Anglel
Pressurel

231.075 4.583 50.423 1.72e-05 **x*
61.467 4.583 13.413 0.000896 *x*x*
-5.287 4.583 -1.154 0.332219
-1.862 4.583 -0.406 0.711701

-33.331 4.583 -7.273 0.005364 *x*

103.390 4.583 22.561 0.000191 *x*x*

Journal of Statistical Software

WadTypel 26.109 4.583 5.697 0.010722 *

Voltagel 9.193 4.583 2.006 0.138514

BallTypel -7.168 4.583 -1.564 0.215736

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 15.87 on 3 degrees of freedom
Multiple R-squared: 0.9962, Adjusted R-squared: 0.986
F-statistic: 97.78 on 8 and 3 DF, p-value: 0.001539

8. Design augmentation and combination

8.1. Center points and central composite designs

A fractional factorial design can be created with center points (see Section 5.9) or can later
be augmented with center points by function add.center. (Note that immediate inclusion
of center points is preferrable, especially in cases where experimental results may depend
on time.) Regular fractional factorial designs, preferrably ones that already contain center
points and have at least resolution V, can later be augmented into a central composite design
— a special design for response surface exploration (e.g., Montgomery 2001) — using function
ccd.augment from DoE.wrapper. This feature is based on the function rsm from rsm (Lenth
2009). Note that DoE.wrapper cannot augment split plot designs into central composite
designs.

8.2. Fold-over

If a fractional factorial design yields ambiguous results because of aliasing of main effects with
2fis, ambiguities can be resolved by the fold-over approach, which removes all or certain words
of length 3. A classical fold-over requires to run another block of the same size as the original
experiment. Fold-over is covered in various text books, for example Box et al. (2005), Mee
(2009) or Montgomery (2001). In FrF2, function fold.design implements fold-over; note,
however, that only standard designs can be folded (no center points, no blocked or split plot
structure).

8.3. Robustness designs

Robustness experiments are often conducted using a Taguchi approach with a so-called inner
and outer array (see e.g., Montgomery 2001). For the analysis, one often takes aggregate
measures (e.g., mean, standard deviation or signal-to-noise ratio) over the outer array and
analyzes their dependence on the factors of the inner array. It is possible to create such
experiments using function param.design from DoE.base. There is some support for au-
tomatic calculation of aggregated measures, similar to the tools for designs with repeated
measurements (see Section 6.5).

It has been discussed in the literature whether one should conduct robustness experiments
as one large experiment with estimability requirements (as e.g., mentioned in Section 5.7) or

43

44 FrF2: Fractional Factorial 2-Level Designs in R

whether the inner-outer array approach is more useful. Like so often, the answer depends on
the situation. If robustness can be achieved by exploiting interactions, the combined array
is often more useful; on the other hand, if there are genuine influences of inner array factors
on the variability of the outcome, possibly not even moderated by the outer array factors, an
inner-outer array approach is preferable.

9. Further developments

Package FrF2 contains all basic features and many advanced ones for fractional factorial
2-level designs. Some further features would still be desirable.

It is possible to create designs with some factors at 4 or 8 levels, based on regular 2-level
fractional factorial designs. So far, such designs are not specifically supported in FrF2. Pack-
age DoE.base contains designs with 2-; 4- and 8-level factors, which can be used but do not
explicitly control the alias structure, apart from keeping all main effects orthogonal to each
other. Expert users can use the estimability features for obtaining suitable designs: a resolu-
tion IIT design with one 4-level factor can be obtained by using two 2-level factors and their
interaction, keeping the interaction estimable with options clear = FALSE and res3 = TRUE;
a resolution IV design with one 4-level factor is obtained in the same way, but omitting these
two options; a resolution III design with one 8-level factor can be obtained by using three
2-level factors for creation of the 8-level factor, making sure that all the 2fis among these
three factors are kept clear; this also ensures that the 3-factor interaction of the three factors
is not aliased with any main effect. A resolution IV design with two 4-level factors requires
manual intervention: in addition to keeping the 2fis of the pairs of factors for generating the
4-level factors clear, it is necessary to make sure that the four generating factors together do
not occur in a word of length 5. Whether or not this is the case can be checked by setting
option alias.info = 3. An analogous approach can also yield a resolution IV design with
an 8-level factor. However, in both cases, it is not possible to automatically request the de-
sired behavior. It would be desirable to have options for automatic creation of designs with
number of levels a power of two that also handle the alias structure of the resulting design.
However, with the advent of the new package planor, the priority on this improvement has
reduced; it would only be added value if the resulting design could be guaranteed to be best
in some well-defined way, or if finding a design would be much faster (which might be the
case for moderate and large scenarios, at least when considering the current implementation
of planor).

Some features are currently not combinable, for example center points with split plot designs,
crossing of blocked designs, or estimability requests and blocking. The implementation of all
these combinations requires substantial mathematical and programming work; it will have to
be checked whether it is feasible within the current approaches to blocking, estimability and
split plotting to achieve any of the combinations with acceptable effort.

There are (not so many) instances for which creation of a clear design is prohibitively slow in
the current implementation that evaluates subgraph isomorphism with the VF2 algorithm by
Cordella, Foggia, Sansone, and Vento (2001) as implemented in igraph. Recent experiences
with a few of these showed that the LAD algorithm (Solnon 2010) was very fast in ruling out
impossible matches, where VF2 took a long time. Once LAD has been implemented in igraph
(it will be part of the next major release), it will replace or complement the VF2 algorithm

Journal of Statistical Software

in FrF2, depending on broader experiences to be gained with LAD.

It would be desirable to enhance the automatic analysis features to also include some more
advanced types, like mixed model analyzes of designs with repeated measurements or split
plot designs. The recently-added function getblock is a first step towards that goal.

References

Addelman C (1962). “Symmetrical and Asymmetrical Fractional Factorial Plans.” Techno-
metrics, 4, 47-58.

Bafna SS, Beall AM (1997). “A Design of Experiments Study on the Factors Affecting Variabil-
ity in the Melt Index Measurement.” Journal of Applied Polymer Science, 65(2), 277-288.

Barrios E (2012a). BHH2: Useful Functions for Box, Hunter and Hunter II. R package
version 2012.04-0, URL http://CRAN.R-project.org/package=BHH2.

Barrios E (2012b). BsMD: Bayes Screening and Model Discrimination. R package version
0.7-0.1, URL http://CRAN.R-project.org/package=BsMD.

Block R, Mee R (2005). “Resolution IV Designs with 128 Runs.” Journal of Quality Technol-
ogqy, 37, 282-293.

Block R, Mee R (2006). “Corrigenda.” Journal of Quality Technology, 38, 96.

Box GEP, Hunter JS, Hunter WG (2005). Statistics for Experimenters. 2nd edition. John
Wiley & Sons, New York.

Box GEP, Meyer RD (1993). “Finding the Active Factors in Fractionated Screening Experi-
ments.” Journal of Quality Technology, 25, 94-105.

Box GEP, Tyssedal J (2001). “Sixteen Run Designs of High Projectivity for Factor Screening.”
Communications in Statistics — Simulation and Computation, 30, 217-228.

Chen J, Sun DX, Wu CFJ (1993). “A Catalogue of Two-Level and Three-Level Fractional
Factorial Designs with Small Runs.” International Statistical Review, 61, 131-145.

Cheng CS, Martin RJ, Tang B (1998). “T'wo-Level Factorial Designs with Extreme Numbers
of Level Changes.” The Annals of Statistics, 26, 1522-1539.

Cheng CS, Steinberg DM, Sun DX (1999). “Minimum Aberration and Model Robustness for
Two-Level Fractional Factorial Designs.” Journal of the Royal Statistical Society B, 61,
85-93.

Cordella LP, Foggia P, Sansone C, Vento M (2001). “An Improved Algorithm for Matching
Large Graphs.” In Proceedings of the 3rd IAPR TC-15 Workshop on Graphbased Represen-
tations in Pattern Recognition, pp. 149-159.

Csardi G, Nepusz T (2006). “The igraph Software Package for Complex Network Research.”
InterJournal, Complex Systems, 1695. URL http://igraph.sf.net/.

45

http://CRAN.R-project.org/package=BHH2
http://CRAN.R-project.org/package=BsMD
http://igraph.sf.net/

46 FrF2: Fractional Factorial 2-Level Designs in R

Daniel C (1959). “Use of Half Normal Plots in Interpreting Two Level Experiments.” Tech-
nometrics, 1, 311-340.

Deng LY, Tang B (1999). “Generalized Resolution and Minimum Aberration Criteria for
Plackett-Burman and Other Nonregular Factorial Designs.” Statistica Sinica, 9, 1071-1082.

Gromping U (2010). “Clear and Distinct Designs: Two Approaches for Fractional Factorial
Designs with Some Estimable Two-Factor Interactions.” Reports in Mathematics, Physics
and Chemistry 2, Beuth University of Applied Sciences Berlin, Germany.

Gromping U (2011a). “Relative Projection Frequency Tables for Orthogonal Arrays.” Reports
in Mathematics, Physics and Chemistry 1, Beuth University of Applied Sciences Berlin,
Germany.

Gromping U (2011b). “Tutorial for Designing Experiments Using the R Package RemdrPlu-
gin.DoE.” Reports in Mathematics, Physics and Chemistry 4, Beuth University of Applied
Sciences Berlin, Germany.

Gromping U (2012). “Creating Clear Designs: A Graph-Based Algorithm and a Catalog of
Clear Compromise Plans.” IIE Transactions, 44(11), 988-1001.

Gromping U (2013a). “CRAN Task View: Design of Experiments (DoE) & Analysis
of Experimental Data.” Version 2013-03-20, URL http://CRAN.R-project.org/view=
ExperimentalDesign.

Gromping U (2013b). DoE.base: Full Factorials, Orthogonal Arrays and Base Utilities for
DoE Packages. R package version 0.25-3, URL http://CRAN.R-project.org/package=
DoE.base.

Gromping U (2013c). DoE.wrapper: Wrapper Package for Design of Experiments Function-
ality. R package version 0.8-9, URL http://CRAN.R-project.org/package=DoE.wrapper.

Gromping U (2013d). FrF2.catlg128: Catalogues of Resolution IV 128 Run 2-Level Frac-
tional Factorials up to 33 Factors That Do Have 5-Letter Words. R package version 1.2-1,
URL http://CRAN.R-project.org/package=FrF2.

Gromping U (2013e). RemdrPlugin.DoE: R Commander Plugin for (Industrial) Design
of Experiments. R package version 0.12, URL http://CRAN.R-project.org/package=
RcmdrPlugin.DoE.

Gromping U (2014). FrF2: Fractional Factorial Designs with 2-Level Factors. R package
version 1.6-9, URL http://CRAN.R-project.org/package=FrF2.

Hedayat AS, Sloane NJ, Stufken J (1999). Orthogonal Arrays: Theory and Applications.
Springer-Verlag, New York.

Ke W, Tang B, Wu H (2005). “Compromise Plans with Clear Two-Factor Interactions.”
Statistica Sinica, 15, 709-715.

Kobilinsky A, Bouvier A, Monod H (2013). planor: Generation of Regular Factorial Designs.
R package version 0.1-5, URL http://CRAN.R-project.org/package=planor.

http://CRAN.R-project.org/view=ExperimentalDesign
http://CRAN.R-project.org/view=ExperimentalDesign
http://CRAN.R-project.org/package=DoE.base
http://CRAN.R-project.org/package=DoE.base
http://CRAN.R-project.org/package=DoE.wrapper
http://CRAN.R-project.org/package=FrF2
http://CRAN.R-project.org/package=RcmdrPlugin.DoE
http://CRAN.R-project.org/package=RcmdrPlugin.DoE
http://CRAN.R-project.org/package=FrF2
http://CRAN.R-project.org/package=planor

Journal of Statistical Software 47

Lenth R (1989). “Quick and Easy Analysis of Unreplicated Factorials.” Technometrics, 31,
469-473.

Lenth RV (2009). “Response-Surface Methods in R, Using rsm.” Journal of Statistical Soft-
ware, 32(7), 1-17. URL http://www.jstatsoft.org/v32/i07/.

Mayfield P (2007). “Potato Cannons and the Taguchi L12: A Design of Experiments Case
Study.” URL http://www.sigmazone.com/Taguchi_L12_SpudGun.htm.

Mee R (2009). A Comprehensive Guide to Factorial Two-Level Experimentation. Springer-
Verlag, New York.

Montgomery D (2001). Design and Analysis of Experiments. 5th edition. John Wiley & Sons,
New York.

Plackett RL, Burman JP (1946). “The Design of Optimum Multifactorial Experiments.”
Biometrika, 33(4), 305-325.

R Core Team (2013). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:
//www.R-project.org/.

Roth T (2013). qualityTools: Statistical Methods for Quality Science. R package version
1.54, URL http://CRAN.R-project.org/package=qualityTools.

Ryan KJ, Bulutoglu DA (2010). “Minimum Aberration Fractional Factorial Designs with
Large N.” Technometrics, 52, 250-255.

Samset O, Tyssedal J (1999). “Two-Level Designs with Good Projection Properties.” Technical
report 12, department of mathematical sciences, The Norwegian University of Science and
Technology, Norway.

Sanchez SM, Sanchez PJ (2005). “Very Large Fractional Factorial and Central Composite
Designs.” ACM Transactions on Modeling and Computer Simulation, 15, 362-377.

SAS Institute Inc (2009). SAS/QC User’s Guide. SAS Institute Inc., Cary, NC. URL http:

//www.sas.com/.

Solnon C (2010). “AllDifferent-Based Filtering for Subgraph Isomorphism.” Artificial Intelli-
gence, 174(12-13), 850-864.

Sun DX (1993). FEstimation Capacity and Related Topics in Ezperimental Designs. Ph.D.
thesis, University of Waterloo, Waterloo, Canada.

Tang B, Deng LY (1999). “Minimum Gs-Aberration for Non-Regular Fractional Factorial
Designs.” The Annals of Statistics, 27, 1914-1926.

Wu CFJ, Hamada M (2000). Ezperiments: Planning, Analysis, and Parameter Design Opti-
mization. John Wiley & Sons, New York.

Wu H, Mee R, Tang B (2012). “Fractional Factorial Designs with Admissible Sets of Clear
Two-Factor Interactions.” Technometrics, 54(2), 191-197.

http://www.jstatsoft.org/v32/i07/
http://www.sigmazone.com/Taguchi_L12_SpudGun.htm
http://www.R-project.org/
http://www.R-project.org/
http://CRAN.R-project.org/package=qualityTools
http://www.sas.com/
http://www.sas.com/

48 FrF2: Fractional Factorial 2-Level Designs in R

Wu H, Wu CFJ (2002). “Clear Two-Factor Interactions and Minimum Aberration.” The
Annals of Statistics, 30, 1496-1511.

Xu H (2009). “Algorithmic Construction of Efficient Fractional Factorial Designs with Large
Run Sizes.” Technometrics, 51(3), 262-277.

Xu H, Wu CFJ (2001). “Generalized Minimum Aberration for Asymmetrical Fractional Fac-
torial Designs.” The Annals of Statistics, 29(4), 1066-1077.

Journal of Statistical Software 49

A. Class design and functionality for it

Functions FrF2, FrF2Large and pb create an output design that is of S3 class design and
thus follows a certain structure (see Section A.1) and allows application of certain inspection,
modification and analysis methods and functions (see Section A.2).

A.1. Class design

An object of S3 class design is a a data frame with the three attributes desnum, run.order
and design.info. All three attributes can be accessed by accessor functions with the same
name (e.g., run.order (plan)).

e Attribute desnum contains a numeric version of the data frame, which may be useful
for users who want to do manual matrix calculations. The package functionality itself
makes little use of that attribute.

e Attribute run.order has the main purpose of always being able to switch back and
forth between a standard order (Yates order, see Section 3.1) and the randomized run
order.

e Attribute design.info is a list that contains important information on the design and
is heavily used by the methods and functions of packages DoE.base and FrF2. This
attribute will be described in some detail in A.3.

A.2. Functionality for class design objects

There are inspection methods (print, summary, plot) and analysis methods (1m, DanielPlot,
MEPlot, IAPlot) for this class, as well as a subsetting method which is currently useful for
reordering designs only.

Furthermore, there are functions useful for inspecting or modifying the content of a class
design object (design.info, run.order, desnum, generators, aggregate.design (method
for the generic aggregate), factor.names, response.names, col.remove, fix.design (method
for the generic fix adapted from package utils), qua.design, change.contr, reptowide,
reptolong, paramtowide, undesign, redesign), functions for augmenting a design with fur-
ther runs or response data (add.center, add.response, ccd.augment, fold.design), and
functions for combining class design objects (cross.design, param.design).

A.3. The design.info attribute

The design.info attribute has some mandatory elements that have to be present for all
class design objects and many elements that are needed for some types of designs only.
The author’s web page contains a large table that details which types of designs need which
elements of the design.info attribute (http://prof.beuth-hochschule.de/fileadmin/
user/groemping/downloads/classDesignOverviewStructure.pdf). Table 8 lists the ele-
ments relevant for designs created with FrF2.

http://prof.beuth-hochschule.de/fileadmin/user/groemping/downloads/classDesignOverviewStructure.pdf
http://prof.beuth-hochschule.de/fileadmin/user/groemping/downloads/classDesignOverviewStructure.pdf

50

FrF2: Fractional Factorial 2-Level Designs in R

Element

Data type

Role

Mandatory elements

type

nruns
nfactors
factor.names

replications
repeat.only
randomize

seed
creator

character string
number

number

named list

number
logical
logical
number

call or list of menu
settings in GUI

Optional general elements

response.names

vector of character
strings

identifies the type of design

number of runs (replications not counted)
number of factors

factor names and factor levels (or scale
ends for quantitative factors)

number of replications or repeated mea-
surements per run

if TRUE, the number given in the replica-
tions element refers to repeated measure-
ments only

if TRUE, run order has been randomized
the seed used for randomization

the creation history of the object

names of the response columns (column
names from the data frame)

Elements for blocked designs (from functions fac.design or FrF2)

block.name
nblocks
block.gen
blocksize

bbreps

wbreps

character string
number
number
number

number

number

name of block variable

number of blocks

Yates matrix column number(s) of fac-
tor(s) used for blocking (FrF2) or block
generator matrix (fac.design)

run size of each block (replications not
counted)

number of between block replications
(identical to replications)

number of within block replications (these
can be proper replications or repeated
measurements only)

Further element for full factorial designs (function fac.design)

nlevels

numeric vector

number of levels for each factor

Further elements for designs created by function FrF2

aliased

FrF2.version

generators

list with character el-
ements

character string

character vector

information on the alias structure of the
design up to degree 2 or 3 (as requested
by option alias.info)

version of FrF2, with which design was
created

design generators in the format “D=ABC”
etc.

Continued on next page

Journal of Statistical Software

Continued from previous page

51

Element Data type

Role

catlg.name character string
catlg.entry

class catlg
ntreat number

aliased.with.blocks character vector

base.design character string

nfac.WP number

nfac.SP number

nWPs number

plotsize number

res.WP number

map numeric vector with
k elements

orig.fac.order
clear logical

res3 logical

list of length 1 of

numeric vector with
nfactors elements

name of the catalogue used for design cre-
ation
the catalogue entry used for the design

identical to nfactors, present for blocked
designs for backwards compatibility

lists 2fis that are aliased with the block
main effect

element of design catalogue named in
catlg.name that has been used for cre-
ating a blocked or split plot design
number of whole plot factors

number of split plot factors

number of whole plots

run size of each plot (replications not
counted)

resolution of the whole plot portion of the
design

mapping of base factors so that estima-
bility or randomization restriction require-
ment is fulfilled

order of original factors from function call
for split plot designs

if TRUE, the design is clear (for estima-
bility requirement)

if TRUE, resolution III has been permit-
ted for estimability request

Further elements common to designs created by functions pb and FrF2

quantitative logical vector with
nfactors elements

ncube number

ncenter number

coding list of formulae

TRUE elements indicate quantitative fac-
tors

number of cube points in a design with
center points

number of center points

coding of quantitative factors (for use with
package rsm)

Further element for designs created by function pb

ndummies number

number of dummy factors for error effects

Table 8: Elements of the design.info attribute of class design.

For class design objects created by design combination functions, some of the entry types

given in the table can also be replaced by lists of several such entries.

combined designs is currently very limited.

Functionality for

52 FrF2: Fractional Factorial 2-Level Designs in R

B. Exporting designs and importing experimental data

For actual usage of an experimental design package, it is crucial that the R user (who may
or may not be the experimenter) can easily customize the design for actual data collection.
In many cases, data collection happens with a spreadsheet software rather than with R.
Therefore, data export and import are important. Specifically, for making full use of the
packages’ functionality, it is necessary to preserve the class design information and to add
adequate response information to the design.info attribute of the design.

This can be done using the functions export.design for exporting the actual design to a csv
or html file. It is strongly recommended to also save an rda file with the current state of the
experimental design R object. This R object can later be used for adding response data to it
with function add.response.

Function export.design exports a design in the desired format, function add.response can
be used for re-importing it. Details can be found in the online help. The code example below
shows the general principle. Of course, settings have to be adapted to the user’s computer
system, e.g., the InDec and OutDec options that influence the decimal separator and separator
settings.

R> getwd()
R> des <- FrF2(8, 4)
R> export.design(des, filename = "des", type = "all", OutDec = ",")

This export command writes the three files ‘des.rda’, ‘des.csv’ and ‘des.html’ to the cur-
rent R working directory (the location could have been changed by the path option of function
export.design). The OutDec = "," option corresponds to the R csv2 command for Euro-
pean csv settings for the author’s German computer. The csv or html file can be used for
collecting response data. The actual re-import of the response data into R must use a csv file
(but the html file could be stored as csv after inputting data). With the same active working
directory as before, the following command can re-import the data, after responses have been
added:

R> des.resp <- add.response('"des", "des.withresponses.csv",
+ rdapath = "des.rda", InDec = ",")

This command reads the design des from the rda file des.rda and adds the response values
from the csv file to it (provided, there are no obvious mismatches between the files in which
case an error message will result).

C. Class catlg and methods for it

The catalogue catlg available in FrF2 contains an ordered list of experimental designs, as
detailed in Section 3.2. Each entry is a list, for example:

R> catlg[["8-4.2"]]

$res
[1] 3

Journal of Statistical Software

$nfac
[1] 8

$nruns
[1] 16

$gen
(1] 3 5 9 14

$WLP
[1] 0037401

$nclear.2fis
(1] 1

$clear.2fis

[,1]
[1,] 1
[2,] 8

$all.2fis.clear
numeric (0)

$dominating
[1] TRUE

The entire list has the class catlg, for which there are a print method, a subsetting method,
and various accessor methods (named in most cases after the list element they access). The
subsetting method makes sure that the ‘[’ subsetting retains the class properties. The effect
of the print method can be observed by observing the difference of the previous output to
the one shown now:

R> catlg["8-4.2"]

Design: 8-4.2
16 runs, 8 factors,
Resolution III
Generating columns: 3 5 9 14
WLP (3plus): 37401, 1 clear 2fis

Besides affecting the way catalogue elements are printed, the print method also has selection
options regarding the number of runs, the number of factors or the resolution of a design.
Details can be found in the online help (?print.catlg).

As an example for application of an accessor method, the following code provides the resolution
for each of the 13 designs of Table 4:

R> res(catlg[1:13])

53

54 FrF2: Fractional Factorial 2-Level Designs in R

3-1.1 4-1.1 4-1.2 5-2.1 6-3.1 7-4.1 5-1.1 5-1.2 5-1.3 6-2.1 6-2.2 6-2.3
3 4 3 3 3 3 5 4 3 4 3 3
6-2.4
3

Instead of an accessor for the gen element, there is a generators method for class catlg,
which allows to print the generators in more human-friendly form, here for all catalogued
designs in 16 runs for 6 factors:

R> generators(catlg[10:13])

$°6-2.1°
[1] "E=ABC" "F=ABD"

$°6-2.2°
[1] "E=AB" "F=ACD"

$°6-2.3"
[1] "E=AB" "F=CD"

$°6-2.4°
[1] "E=AB" "F=AC"

The catalogue catlg is the default catalogue used by function FrF2. A different catalogue
can be selected with the option select.catlg, for example a catalogue from FrF2.catlgl28,
or a subset from catlg for continuing a previously successless search for a design with certain
estimability requirements (omitting the designs that have already been searched and thus
slowly moving forward towards success in case of large important problems). Note that
FrF2.catlgl128 must be installed but need not be loaded; if one of its catalogues is requested
by function FrF2, the function automatically loads that package and the relevant catalogue.

D. Column ordering aspects for Plackett-Burman designs

D.1. Designs based on doubling

Starting from an array D with n rows and n/2 — 1 columns, an array in 2n rows and 2n —
1 columns can be obtained by doubling. Doubling has some history in FrF2. Versions before
1.0-5 used the following arrangement:

D -D 1

D D -1/
The placement of the column of plus one and minus one vectors last is very beneficial, because
that vector is the negative product of n/2 —1 pairs of the n — 1 columns of the doubled design

(column 1 with column n/2, column 2 with column n/2+1 etc.). Hence, whenever this column
is among the design columns, there is severe complete aliasing, so that including it last keeps

Journal of Statistical Software

Partially aliased Completely aliased
52 run triple 56 run triple
Third factor Third factor
-1 +1 -1 +1
Second factor -1 +1 -1 +1 -1 +1 -1 +1
First factor
-1 1 12 12 1 14 0 0 14
+1 12 1 1 12 0 14 14 0

Table 9: Complete and severe partial aliasing.

all designs with n — 2 or fewer factors clear of complete aliasing. With version 1.0-5, it was
decided that the ordering of design columns should allow designs with few factors to benefit
from the fact that up to n/2 factors can be accomodated at resolution IV in a doubled design.
Unfortunately, the placement of the column of plus and minus one vectors was overlooked in
this consideration, and hence these versions had the following structure:

1 -D D
-1 D D)
Consequently, all doubled designs with more than n/2 factors were always affected by some

complete aliasing. The latest version (from 1.3 onwards) moved the column of plus and minus
one vectors to the very end again, i.e. doubling is now implemented as

D D 1
(50 h)
Thus, design based on a doubled array is now automatically resolution IV in case of n/2 —
1 factors (only), with the benefit of avoiding complete aliasing for up to n — 2 factors. Option
oldver (set to TRUE) allows to exactly reproduce designs from version 1.0-5 (Jan 2010) to
version 1.2-10 (updated Feb 2012). A user who wants to use exactly n/2 factors of a doubled

array (e.g., 20 factors in a 40 run design) can also use this option for making the design
resolution IV.

D.2. Designs based on cycling block matrices with special first row and
column

Arrays created on the basis of cycling block matrices with a special first column (52, 76 and
100 runs) have a similar issue as doubled arrays with the first column chosen as the column
of plus and minus one vectors: the extra first column is not completely aliased but quite
heavily partially aliased with the remaining columns, and the GR of a design can be strongly
increased by excluding that first column from the design. The degree of partial aliasing as
compared to complete aliasing is illustrated in Table 9 for two triples of factors from the
52 run and the 56 run design: while only half of the eight possible factor level combinations
occur for the completely aliased design, the partially aliased design has one occurrence each
for the one half and distributes all other runs on the other half of the combinations. While
slightly better than complete aliasing, severe partial aliasing should of course also be avoided
wherever possible.

55

56 FrF2: Fractional Factorial 2-Level Designs in R

Furthermore, a design in n/2 factors that only uses the originally odd-numbered columns (i.e.,
columns 1, 3, 5, ...) is very close to resolution IV (GR > 3.9 in all cases). Thus, starting
with version 1.3 of FrF2, function pb moves the orginally first column to the very end and
the orginally even-numbered columns behind the other originally odd-numbered columns in
order to drastically increase GR for most practically relevant designs. Option oldver can be
used for reproducing a design from an earlier version.

D.3. The 92 run design

Finally, the 92 run array also has a similar issue to that of the just-mentioned arrays: its
69th column is involved in some triples with heavy aliasing. That column has therefore been
moved to the very end in order to improve GR for designs with up to 90 factors; again, option
oldver can be used for reproducing the earlier behavior.

Affiliation:

Ulrike Grémping

Department II — Mathematics, Physics, Chemistry
Beuth University of Applied Sciences Berlin

D-13353 Berlin, Germany

E-mail: groemping@bht-berlin.de

URL: http://prof.beuth-hochschule.de/groemping/

Journal of Statistical Software http://www.jstatsoft.org/
published by the American Statistical Association http://www.amstat.org/
Volume 56, Issue 1 Submitted: 2012-08-16

January 2014 Accepted: 2013-04-02

mailto:groemping@bht-berlin.de
http://prof.beuth-hochschule.de/groemping/
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Basic terminology for experimentation
	Fractional factorial 2-level designs
	Regular fractional factorial 2-level designs
	The Yates matrix
	Design generators and words
	Simple analysis tools
	Word length pattern and resolution
	Minimum aberration
	Maximum number of clear two-factor interactions, and MA clear designs

	Catalogues of regular fractional factorial 2-level designs
	Estimability of two-factor interactions
	Clear and distinct designs
	Compromise plans

	Aspects on blocking a design
	Non-regular fractional factorial 2-level designs

	Examples
	A regular fractional factorial: The MI experiment
	A non-regular fractional factorial: shot length of a potato cannon

	Regular fractional factorial 2-level designs with FrF2
	Available options
	Creating regular fractional factorial 2-level designs for simple cases
	Replication and repeated measurements
	Blocked designs
	Split plot designs
	Hard to change factors
	Estimability of two-factor interactions in package FrF2
	Distinct designs
	Clear designs

	Large designs
	Randomization, replication and center points
	Center points
	Randomization and replication

	Simple analysis tools
	Main effects plots
	Interaction plots
	Linear model
	Normal and half normal effects plots of a simple design
	Repeated measurements and replications

	Non-regular fractional factorial 2-level designs in FrF2
	Options of function pb
	The implemented arrays
	Creation and analysis of Plackett-Burman designs

	Design augmentation and combination
	Center points and central composite designs
	Fold-over
	Robustness designs

	Further developments
	Class design and functionality for it
	Class design
	Functionality for class design objects
	The design.info attribute

	Exporting designs and importing experimental data
	Class catlg and methods for it
	Column ordering aspects for Plackett-Burman designs
	Designs based on doubling
	Designs based on cycling block matrices with special first row and column
	The 92 run design

