
JSS Journal of Statistical Software
February 2020, Volume 92, Issue 7. doi: 10.18637/jss.v092.i07

SQUAREM: An R Package for Off-the-Shelf
Acceleration of EM, MM and Other EM-Like

Monotone Algorithms

Yu Du
Johns Hopkins University

Ravi Varadhan
Johns Hopkins University

Abstract

We discuss the R package SQUAREM for accelerating iterative algorithms which ex-
hibit slow, monotone convergence. These include the well-known expectation-maximization
algorithm, majorize-minimize (MM), and other EM-like algorithms such as expectation
conditional maximization, and generalized EM algorithms. We demonstrate the sim-
plicity, generality, and power of SQUAREM through a wide array of applications of
EM/MM problems, including binary Poisson mixture, factor analysis, interval censor-
ing, genetics admixture, and logistic regression maximum likelihood estimation (an MM
problem). We show that SQUAREM is easy to apply, and can accelerate any fixed-point,
smooth, contraction mapping with linear convergence rate. The squared iterative scheme
(SQUAREM) algorithm provides significant speed-up of EM-like algorithms. The mar-
gin of the advantage for SQUAREM is especially huge for high-dimensional problems or
when the EM step is relatively time-consuming to evaluate. SQUAREM can be used
off-the-shelf since there is no need for the user to tweak any control parameters to opti-
mize performance. Given its remarkable ease of use, SQUAREM may be considered as
a default accelerator for slowly converging EM-like algorithms. All the comparisons of
CPU computing time in the paper are made on a quad-core 2.3 GHz Intel Core i7 Mac
computer. R package SQUAREM is available from the Comprehensive R Archive Network
(CRAN) at https://CRAN.R-project.org/package=SQUAREM/.

Keywords: EM algorithm, fixed-point iteration, monotone convergence, convergence acceler-
ation, optimization, high dimensional models, extrapolation methods.

1. Introduction
The R package SQUAREM provides convergence acceleration techniques for speeding-up slow,
monotone iterative algorithms. These include the well-known expectation-maximization (EM)
algorithm (Dempster, Laird, and Rubin 1977), majorize-minimize (MM; Lange, Hunter, and

https://doi.org/10.18637/jss.v092.i07
https://CRAN.R-project.org/package=SQUAREM/

2 SQUAREM: Accelerating the EM Algorithm in R

Yang 2000), and other algorithmic variants such as expectation-conditional maximization
(ECM; Meng and Rubin 1993), expectation-conditional maximization or either (ECME; Liu
and Rubin 1998), among others. Dempster et al. (1977) refer to such variants as “generalized
EM (GEM)” when the M step is only partially implemented. In this paper, we term these
“EM-like algorithms”, because they all have a contractive fixed-point mapping with linear
rate of convergence, like EM. For the definition of linear rate of convergence and contractive
mapping, please refer to Ortega and Rheinboldt (1970, Chapter 5). All of these algorithms are
essentially based on the idea that a relatively difficult optimization problem can be converted
to a much simpler iterative algorithm with guaranteed, albeit slow, convergence. A visual
imagery is apt here: Instead of embarking upon a direct and treacherously steep climb, we
approach the summit through a winding, gradually ascending path. Interestingly, this idea
has become very attractive now with the advent of big data revolution and high-dimensional
applications, where solving the original optimization problem is either impossible or pro-
hibitively expensive. There is a nice analogy to this in numerical linear algebra for solving
large-scale linear system of equations. Indirect, iterative techniques (e.g., Gauss-Seidel) for
solving linear systems were considered to be too slow and impractical, and only of pedagogi-
cal interest. Instead, the attention of the research community was focused on direct methods
such as the various decomposition and factorization methods (LU, QR, SVD). But, such di-
rect techniques are ill-suited to solve the modern day, large-scale linear systems with millions
of equations. Therefore, clever adaptations of indirect iterative methods are emerging as the
methods of choice (e.g., conjugate-gradient; Censor and Zenios 1997; Saad 2003). Similarly,
for the estimation of statistical models in large, high-dimensional modern applications, EM-
like algorithms are becoming indispensable tools in the arsenal of computational scientists
(Patro, Mount, and Kingsford 2014; Shiraishi, Tremmel, Miyano, and Stephens 2015; Raj,
Shim, Gilad, Pritchard, and Stephens 2015; Chiou, Xu, Yan, and Huang 2018, etc.).

EM-like algorithms are characterized by two essential features: reliable, monotone conver-
gence, and slow, linear rate of convergence. Therefore, any strategy that can accelerate the
rate of convergence of these algorithms, without compromising on their reliability and ease
of use, will be of huge help. Zhou, Alexander, and Lange (2011) remarked that “In many
statistical problems, maximum likelihood estimation by an EM or MM algorithm suffers from
excruciatingly slow convergence. This tendency limits the application of these algorithms to
modern high-dimensional problems in data mining, genomics, and imaging. Unfortunately,
most existing acceleration techniques are ill-suited to complicated models involving large
numbers of parameters. The squared iterative methods (SQUAREM) recently proposed by
Varadhan and Roland constitute one notable exception.” The goal of this paper is to demon-
strate the utility of this “notable exception”, SQUAREM, proposed by Varadhan and Roland
(2008), which is available in the R package SQUAREM (Varadhan 2020).

The main aim of SQUAREM is to facilitate the development of computationally efficient new
statistical models. In particular, our package provides acceleration schemes which can speed
up the estimation of the statistical models, where the model parameters are estimated with
monotone, EM-like algorithms. Acceleration of these estimation algorithms can be readily
achieved using the function squarem(). Here we demonstrate the simplicity, generality, and
power of SQUAREM through a wide array of applications of EM/MM problems in R (R Core
Team 2019), showcasing how easy it is to use SQUAREM to derive efficient solutions. How-
ever, it should be recognized that there is no foolproof numerical algorithm; in poorly identified
problems, where even the EM algorithm can fail, SQUAREM is not guaranteed to work.

Journal of Statistical Software 3

2. Squared iterative method
Suppose we have observed data y = (y1, . . . , yN)> that comes from a probability density
function g(y; θ) where θ ∈ Ω ⊂ Rp is the parameter of interest. We are often interested in
computing the MLE (maximum likelihood estimates) of θ, denoted by θ?. The EM algorithm
is a popular technique for computing MLE, which consists of two steps, E step and M step
(Dempster et al. 1977). The EM algorithm is natural when there is a missing data component
z in the probability model, which when known greatly simplifies the estimation of θ?. Let us
use x = {y, z} to denote the complete data. EM algorithm then becomes:

E step: A Q function is constructed such that

Q(θ; θn) =
∫
Lc(θ;x)f(z; y, θn)dz, n = 0, 1, . . . ,

where n refers to the nth iteration of the algorithm, Lc(θ;x) is the complete data log-
likelihood, and f(z; y, θn) is the conditional density function of missing data z given
observed data y. Thus, the Q function computes the expected value of the complete
data log-likelihood given the current parameter estimates and observed data.

M step: M step maximizes the Q function obtained in the E step over θ ∈ Ω ⊂ Rp to
iteratively compute the next, (n+ 1)th iteration of parameter values, θn+1, such that

θn+1 = argmaxQ(θ; θn), n = 0, 1, . . . , .

The EM algorithm therefore defines a fixed-point mapping F such that F : Ω ⊂ Rp 7→ Ω and

θn+1 = F (θn), n = 0, 1,

Two convergence criteria can be applied and are both satisfied by the EM algorithm : 1)
for parameter estimates θn, as n −→ ∞, ‖θn − θ?‖ −→ 0 (‖ · ‖ is the Euclidean norm); 2) the
convergence is defined by the sequence of the likelihood function of the parameter estimates,
L(θn), such that |L(θn)− L(θ?)| −→ 0, as n −→ ∞. The EM algorithm guarantees to produce
monotone convergence such that L(θn+1) ≥ L(θn). By Taylor’s theorem under regularity
conditions, expand F (θn) around θ?:

θn+1 − θ? = J(θ?)(θn − θ?) + o(‖θn − θ?‖),

where J(θ?) is the Jacobian matrix of F evaluated at θ?. Dempster et al. (1977) showed
that J(θ?), the Jacobian matrix, measures the fraction of missing information. Under weak
regularity conditions, the eigenvalues of J(θ?) lie on [0, 1). Thus, the largest eigenvalue of
J(θ?) governs the rate of convergence for EM. The closer this is to unity, the slower EM
converges as it indicates a large fraction of missing information.
Motivated by the Cauchy-Barzilai-Borwein (CBB) method (Raydan and Svaiter 2002), Roland
and Varadhan (2005) and Varadhan and Roland (2008) constructed SQUAREM by defining
the following recursive error relation:

en+1 = [I − αn(J − I)]2en,

where en = θn − θ?, I is the identity matrix and αn is the steplength that takes into account
the larger eigenvalues of J(θ?). The pseudocode for the SQUAREM algorithm is listed in

4 SQUAREM: Accelerating the EM Algorithm in R

Algorithm 1: Pseudocode for SQUAREM.
Input: F , L, θ0, η ≥ 0
while not converged do

θ1 = F (θ0)
θ2 = F (θ1)
r = θ1 − θ0
v = (θ2 − θ1)− r
Compute steplength α
θsq = θ0 − 2αr + α2v
if L(θsq) > L(θ2)− η then

Set θ′ = θsq.
else

θ′ = θ2
end
θ0 = F (θ′), stabilization step (done only if θ′ = θsq)

end

Algorithm 1 (Varadhan and Roland 2008), which demonstrates the remarkable simplicity of
the proposed method.
There are three choices for α, the steplength as described in Varadhan and Roland (2008).
It is our experience that α = − ‖r‖‖v‖ generally works the best, and hence it is the default
steplength used in SQUAREM. Varadhan and Roland (2008) also showed global convergence
of the SQUAREM algorithm, i.e., SQUAREM can converge to a stationary point from any
starting value in the parameter space, or at least, in a large part of it by modifying steplength
to ensure monotonicity. Note that when steplength is equal to −1, one SQUAREM evaluation
is equivalent to two EM iterations. Thus, each iteration of SQUAREM involves 2 or 3
evaluations of EM. Hence, when we compare the two methods, we use the number of EM
steps rather than the number of iterations. Apart from the EM steps, there is minimal
cost in computing the SQUAREM parameter updates, including the computation of the
value of likelihood functions. In addition to the convergence criteria provided earlier, we
give a definition of convergence acceleration as follows: Suppose {θn} is the sequence of
estimates produced by Algorithm 1, while {θ′n} is that given by Algorithm 2, then we say
that Algorithm 2 accelerates Algorithm 1 if ‖θ

′
n−θ?‖
‖θn−θ?‖ −→ 0 as n −→∞.

3. Description of R package SQUAREM
R package SQUAREM is available from the Comprehensive R Archive Network (CRAN)
at https://CRAN.R-project.org/package=SQUAREM/. SQUAREM works for any smooth,
contraction mapping with a linear convergence rate (e.g., EM-like algorithms). We describe
below the two main functions, squarem() and fpiter(). Undoubtedly, squarem() is the
featured function in the package.

• squarem(), for squared iterative scheme:
squarem() is a function to accelerate any smooth, contractive, fixed-point iteration

https://CRAN.R-project.org/package=SQUAREM/

Journal of Statistical Software 5

algorithm including EM/MM and other EM-like algorithms. The main arguments in-
clude par, fixptfn, objfn and control. par denotes the starting value of parame-
ters. The argument fixptfn defines a function F constituting the fixed-point iteration:
θk+1 = F (θk). fixptfn encodes a single step of any EM-like algorithm.

R> fixptfn <- function(par, data, ...) {
+ pnew <- F(par, data, ...)
+ return(pnew)
+ }

objfn is the objective function we want to minimize. In the case of EM-like algorithms,
it would be the negative log-likelihood function of data. It is not essential to supply
the objective function in order for the function to work, but its provision guarantees
global convergence. control specifies a list of algorithm options including maxiter,
maximum number of iterations, and tol, tolerance, among others. If ‖F (θk) − θk‖ ≤
tol, the algorithm declares convergence at the (k + 1)-th iteration (‖ · ‖ shows the
Euclidean norm). Under regularity conditions given by Wu (1983), the satisfaction
of the convergence does imply a local optimum. There are 3 other important control
parameters in squarem(), namely, K, method and objfn.inc. method specifies the
choice of steplength and K specifies the order of the squared iterative scheme. The default
values method = 3 and K = 1 generally work well. objfn.inc guides the monotonicity
of the objective function. Setting objfn.inc = 0 ensures strict monotonicity, while
objfn.inc = Inf results in an unguarded acceleration scheme, where the objective
function is not evaluated at all. The default is objfn.inc = 1, resulting in a nearly-
monotone acceleration scheme. Another option is to set the value at the average log-
likelihood, i.e., the log-likelihood per individual sample.
To summarize, the default usage of squarem() is

squarem(par, fixptfn, objfn, ..., control = list())

• fpiter(), for fixed-point iteration scheme:
fpiter() is a function to implement the fixed-point iteration algorithm including EM,
MM and other EM-like algorithms as is. The main arguments include par, fixptfn,
objfn and control, working the same way as in squarem() except that there are no
SQUAREM specific control parameters in the argument control.
To summarize, the default usage of fpiter() is

fpiter(par, fixptfn, objfn, ..., control = list())

In the next section, we demonstrate a detailed illustration of how to implement SQUAREM
in R.

4. How to apply SQUAREM acceleration
Imagine that an EM-like algorithm is used to estimate a model, with slow, linear rate of
convergence. In order to speed up the algorithm using R package SQUAREM, there are two
main steps to be prepared.

6 SQUAREM: Accelerating the EM Algorithm in R

Death, i Frequency, ni Death, i Frequency, ni
0 162 5 61
1 267 6 27
2 271 7 8
3 185 8 3
4 111 9 1

Table 1: Data on deaths of women 80 years or older during 1910 to 1912 from The London
Times.

Step 1: Create an R function that fulfils one iteration of the EM-like algorithm. This function
corresponds to the argument fixptfn in function squarem().

Step 2: Write an associated merit function to minimize, for example, the negative log-
likelihood function. This function passes to the argument objfn in function squarem().

There are several other arguments in function squarem() as specified in Section 3, such as
starting values, tolerance and maximum number of iterations, but the default choices often
work well. Once we have these arguments ready, we can launch the function squarem() to put
the acceleration into production, simple and easy. We next illustrate the usage of R package
SQUAREM in detail with a simple example of a mixture problem introduced below, which
was also discussed in Varadhan and Roland (2008). Here we revisit this example, mainly to
illustrate how remarkably easy it is to apply the squarem() function from an existing EM
algorithm script.
In many studies, the study sample comes from a population mixing two or more types of
units, each with varying characteristics. Finite mixture models are ideally suited to account
for this kind of heterogeneity. A finite mixture model estimates parameters describing each
subpopulation and their mixing probabilities. The EM algorithm is a popular technique to
compute the maximum likelihood estimates for mixture models, but is notorious for its slow
convergence. Here, we use a two-component Poisson mixture to illustrate the usage and power
of SQUAREM compared to the EM algorithm. We use the data on the number of deaths of
women 80 years and older during the years 1910–1912 from The London Times (Hasselblad
1969).
We use p to denote the mixing probability and let µ1, µ2 be the mean of the Poisson distri-
bution from population 1 and 2, respectively. Let i be the number of death, i = 0, 1, . . . , 9
and ni be the number of days when number of death i occurred.
The real data are displayed in Table 1, where the number of death varies with values i =
0, 1, . . . , 9.

EM algorithm

For derivation of the EM step, see Appendix B.1.
The EM update is such that

p(k+1) =
∑
i nip

(k)
i∑

i ni
, µ

(k+1)
1 =

∑
i inip

(k)
i∑

i nip
(k)
i

, µ
(k+1)
2 =

∑
i ini(1− p

(k)
i)∑

i ni(1− p
(k)
i)

,

Journal of Statistical Software 7

where p(k+1), µ
(k+1)
1 , µ

(k+1)
2 are the derived estimates in the (k + 1)th iteration and p

(k)
i

is defined in Appendix B.1. Below demonstrates how easy it is to set up SQUAREM
acceleration of an EM-like algorithm. We implement the EM algorithm using function
EM.poisson.mixture() provided below.

R> EM.poisson.mixture <- function(p, maxiter = 5000, tol = 1e-08, y) {
+ iter <- 1
+ conv <- FALSE
+ pnew <- rep(NA_real_, 3)
+ while (iter < maxiter) {
+ i <- 0 : (length(y) - 1)
+ zi <- p[1] * exp(-p[2]) * p[2]^i /
+ (p[1] * exp(-p[2]) * p[2]^i + (1 - p[1]) * exp(-p[3]) * p[3]^i)
+ pnew[1] <- sum(y * zi) / sum(y)
+ pnew[2] <- sum(y * i * zi) / sum(y * zi)
+ pnew[3] <- sum(y * i * (1 - zi)) / sum(y * (1 - zi))
+ res <- sqrt(crossprod(pnew - p))
+ p <- pnew
+ if (res < tol) {
+ conv <- TRUE
+ break
+ }
+ iter <- iter + 1
+ }
+ return(list(par = p, fpevals = iter, convergence = conv))
+ }

In order to implement SQUAREM using function squarem(), we extract the part in the
above EM function that corresponds to one EM step and put it into a separate function
poissmix.em(). This function corresponds to the argument fixptfn in the squarem() func-
tion. By cutting and pasting the relevant code chunk from the function above, we create such
a function for fixptfn and complete step 1 in applying SQUAREM.

R> poissmix.em <- function(p, y) {
+ pnew <- rep(NA_real_, 3)
+ i <- 0 : (length(y) - 1)
+ zi <- p[1] * exp(-p[2]) * p[2]^i /
+ (p[1] * exp(-p[2]) * p[2]^i + (1 - p[1]) * exp(-p[3]) * p[3]^i)
+ pnew[1] <- sum(y * zi) / sum(y)
+ pnew[2] <- sum(y * i * zi) / sum(y * zi)
+ pnew[3] <- sum(y * i * (1 - zi)) / sum(y * (1 - zi))
+ p <- pnew
+ return(pnew)
+ }

Step 2 is to write an associated merit function to minimize, in this case, namely the negative
log-likelihood function. The log-likelihood of observed data i, ni is such that:

`(p, µ1, µ2) =
∑
i

ni(log [pe−µ1µi1/i! + (1− p)e−µ2µi2/i!]).

8 SQUAREM: Accelerating the EM Algorithm in R

Therefore, the negative log-likelihood is coded into function poissmix.loglik(). This func-
tion corresponds to the argument objfn in function squarem().

R> poissmix.loglik <- function(p, y) {
+ i <- 0 : (length(y) - 1)
+ loglik <- y * log(p[1] * exp(-p[2]) * p[2]^i / exp(lgamma(i + 1)) +
+ (1 - p[1]) * exp(-p[3]) * p[3]^i / exp(lgamma(i + 1)))
+ return(-sum(loglik))
+ }

We are now all set to apply squarem() and compare to the EM algorithm. We set the starting
value (p, µ1, µ2) = (0.3, 1, 5) and tolerance being 10−8.

R> library("SQUAREM")
R> poissmix.dat <- data.frame(death = 0 : 9,
+ freq = c(162, 267, 271, 185, 111, 61, 27, 8, 3, 1))
R> y <- poissmix.dat$freq
R> p0 <- c(0.3, 1, 5)
R> system.time(f0 <- EM.poisson.mixture(p = p0, y = y))

user system elapsed
0.036 0.005 0.040

R> f0

$par
[1] 0.3598864 1.2560968 2.6634056
$value.objfn
[1] 1989.946

$fpevals
[1] 2696

$convergence
[1] TRUE

R> system.time(f1 <- fpiter(par = p0, fixptfn = poissmix.em,
+ objfn = poissmix.loglik, control = list(tol = 1.e-08), y = y))

user system elapsed
0.039 0.000 0.039

R> f1

$par
[1] 0.3598864 1.2560968 2.6634056

Journal of Statistical Software 9

$value.objfn
[1] 1989.946

$fpevals
[1] 2696

$objfevals
[1] 0

$convergence
[1] TRUE

R> system.time(f2 <- squarem(par = p0, fixptfn = poissmix.em,
+ objfn = poissmix.loglik, control = list(tol = 1.e-08), y = y))

user system elapsed
0.003 0.000 0.002

R> f2

$par
[1] 0.3598859 1.2560960 2.6634050

$value.objfn
[1] 1989.946

$iter
[1] 19

$fpevals
[1] 54

$objfevals
[1] 19

$convergence
[1] TRUE

The output shows the equivalence in parameter estimates, maximum likelihood value and
the number of EM iterations between the EM algorithm function EM.poisson.mixture()
and the function fpiter() provided in R package SQUAREM. A dramatic improvement for
SQUAREM over the EM algorithm has been seen as it outperforms EM by a factor of 50
in terms of the number of EM evaluations and by a factor of 20 with regards to the CPU
running time. From this point on, we use function fpiter() to implement EM and other
EM-like algorithms for ease of illustration.
We next run two algorithms (EM and SQUAREM) for 5000 randomly generated starting
values

(p, µ1, µ2) = (U [0.05, 0.95], U [0, 20], U [0, 20]),

10 SQUAREM: Accelerating the EM Algorithm in R

fevals CPU time (s)
EM 3140 (2511, 3182) 0.039 (0.031, 0.046)
SQUAREM 101 (57, 132) 0.003 (0.002, 0.005)

Table 2: The convergence performance in terms of the number of EM evaluations, fevals
and the CPU running time comparing EM to SQUAREM for Poisson mixture estimation
with 5000 randomly generated starting values. The median value is reported along with a
corresponding window (2.5-th percentile, 97.5-th percentile).

1e−05

1e−03

1e−01

0 25 50 75 100

The number of EM Evaluations

E
rr

or
 ||

θ(k
)
−

θ∗ ||
(lo

g1
0

sc
al

e)

Algorithm
EM
Squarem

Figure 1: The comparison of convergence behavior between SQUAREM and EM.

where U [a, b] is a uniform random variable on the interval [a, b]. Table 2 displays the re-
sults. We provide the median and a corresponding window from 2.5th to 97.5-th percentile
for the number of EM evaluations, fevals and the CPU running time (in seconds). In gen-
eral, SQUAREM converges 13 times faster than EM with only 3.2% of the number of EM
evaluations that the EM algorithm would take.
We also plot the error curve ‖θ(k) − θ∗‖ as a function of the number of EM evaluations k
in Figure 1 using the starting value (p, µ1, µ2) = (0.3, 1, 5), where θ(k) are the kth iteration
estimates (p(k), µ

(k)
1 , µ

(k)
2). The truth, θ∗, is derived by running squarem() with a very small

convergence tolerance, e.g., 10−18. Figure 1 shows that the error for SQUAREM drops at a
much faster rate than EM. SQUAREM converges in approximately 50 EM evaluations while
the error still remains considerably large for EM after 100 iterations.
In the next section, we continue to demonstrate the utility of SQUAREM through a wide
array of applications of EM/MM problems, including interval censoring, genetics admixture,
and logistic regression maximum likelihood estimation (an MM problem).

Journal of Statistical Software 11

5. Examples

5.1. Interval censoring

Interval censoring is a common phenomenon in survival analysis, where we do not observe
the precise time of an event for each individual, but we only know the time interval during
which the individual’s event occurs. Following the notations in Gentleman and Geyer (1994),
we assume that survival time, X, also known as failure time, come from a distribution F .
Each individual i goes through a sequence of inspection times ti,1, ti,2, . . . The survival time
xi for individual i is not observed, however, the last inspection time prior to xi and the
first inspection time after are recorded. An example of interval censored data is displayed in
Table 3.
Therefore, data consist of time intervals Ii = (Li, Ri) for each individual i, i = 1, 2, . . . , n and
the event for individual i is known to happen during that interval. Let {sj}mj=0 be the unique
ordered times of {0, {Li}ni=1, {Ri}ni=1}, and αij , i = 1, 2, . . . , n, j = 1, 2, . . . ,m, the ij cell of
an α matrix, be such that

αij =
{

1 if (sj−1, sj) ⊆ Ii, the event for individual i can occur in (sj−1, sj)
0 otherwise

and pj = F (sj−)−F (sj−1), p = (p1, p2, . . . , pm)>. The log-likelihood of the data is therefore

`(p) =
n∑
i=1

log

 m∑
j=1

αijpj

.
The negative log-likelihood is coded in function loglik(), corresponding to the argument
objfn in squarem(). A in function loglik() refers to the alpha matrix α and pvec is the
vector of probabilities, p.

R> loglik <- function(pvec, A) {
+ -sum(log(c(A %*% pvec)))
+ }

EM algorithm

For derivation of the EM step, see Appendix B.3.

Last inspection time prior to xi First inspection time after xi
Individual 1 1 3
Individual 2 2 6
...

...
...

Individual n 3 4

Table 3: The example of interval censored data (unit: year).

12 SQUAREM: Accelerating the EM Algorithm in R

(45, Inf] (6, 10] (0, 7] (46, Inf] (7, 16] (17, Inf]
(7, 14] (37, 44] (0, 8] (4, 11] (15, Inf] (11, 15]

(22, Inf] (46, Inf] (46, Inf] (25, 37] (46, Inf] (26, 40]
(46, Inf] (27, 34] (36, 44] (46, Inf] (36, 48] (37, Inf]
(40, Inf] (17, 25] (46, Inf] (11, 18] (38, Inf] (5, 12]
(37, Inf] (0, 5] (18, Inf] (24, Inf] (36, Inf] (5, 11]
(19, 35] (17, 25] (24, Inf] (32, Inf] (33, Inf] (19, 26]
(37, Inf] (34, Inf] (36, Inf] (46, Inf]

Table 4: The censored intervals when cosmetic deterioration occurred.

The EM update is such that

p
(k+1)
j = 1

n

n∑
i=1

µij , j = 1, 2, . . . ,m, p(k+1) = (p(k+1)
1 , p

(k+1)
2 , . . . , p(k+1)

m)>,

where p(k+1) is the (k+1)th iteration of derived estimates and µij = αijpj∑
s
αisps

, i = 1, 2, . . . , n, j =
1, 2, . . . ,m. Such one EM update is written in function intEM(), corresponding to the argu-
ment fixptfn in squarem().

R> intEM <- function(pvec, A) {
+ tA <- t(A)
+ Ap <- pvec * tA
+ pnew <- colMeans(t(Ap)/colSums(Ap))
+ pnew * (pnew > 0)
+ }

EM-ICM algorithm

Wellner and Zhan (1997) developed a hybrid algorithm called EM-ICM for the MLE compu-
tation of interval censored data. This algorithm alternates steps of iterative convex minorant
(ICM) and of EM. Wellner and Zhan (1997) showed that EM-ICM substantially improves
the performance of the EM algorithm. In addition to comparing to EM, we also compare
SQUAREM with EM-ICM, the dedicated method for this problem, using a real data example
and simulations. We use function EMICM() in R package interval (Fay and Shaw 2010) to
implement the EM-ICM algorithm.

Real data example. The real data come from Finkelstein and Wolfe (1985) and provide
the interval when cosmetic deterioration occurred in 46 individuals with early breast cancer
under radiotherapy. Table 4 shows the censored intervals for each individual.
We use function Aintmap in R package interval to produce matrix α and then generate starting
values.

R> library("interval")
R> A <- Aintmap(dat[, 1], dat[, 2])
R> m <- ncol(A)
R> pvec <- rep(1/m, length = m)

Journal of Statistical Software 13

We modified the function EMICM() in R package interval in order to keep the same starting
values across all algorithms, a uniform starting value where pi = 1/m, i = 1, 2, . . . ,m. We
next compare the performance of the aforementioned three algorithms, EM, SQUAREM and
EM-ICM. We did not include EM-ICM for comparison in the number of EM evaluations
because intrinsically the EM-ICM algorithm is a hybrid algorithm where each EM-ICM step
is different from an EM evaluation. The tolerance for convergence is set at 10−8, the same
across all algorithms.

EM algorithm:

R> system.time(ans1 <- fpiter(par = pvec, fixptfn = intEM,
+ objfn = loglik, A = A, control = list(tol = 1e-8)))

user system elapsed
0.008 0.000 0.009

R> ans1$fpevals

[1] 216

SQUAREM:

R> system.time(ans2 <- squarem(par = pvec, fixptfn = intEM,
+ objfn = loglik, A = A, control = list(tol = 1e-8)))

user system elapsed
0.002 0.000 0.002

R> ans2$fpevals

[1] 40

EM-ICM algorithm:

R> system.time(ans3 <- EMICM.mod(dat, EMstep = TRUE, ICMstep = TRUE,
+ keepiter = FALSE, tol = 1e-08, maxiter = 1000))

user system elapsed
0.025 0.001 0.027

R> max(abs(ans1$par - ans2$par))

[1] 0

R> max(abs(ans2$par - ans3$pf))

[1] 4.707805e-05

14 SQUAREM: Accelerating the EM Algorithm in R

0.1

1.0

10.0

EM SQUAREM EMICM

Algorithm

C
P

U
 r

un
ni

ng
 ti

m
e

(lo
g1

0
sc

al
e)

Algorithm
EM
SQUAREM
EMICM

1

10

EM SQUAREM EMICM

Algorithm

C
P

U
 r

un
ni

ng
 ti

m
e

(lo
g1

0
sc

al
e)

Algorithm
EM
SQUAREM
EMICM

Figure 2: The comparison of CPU running time among EM, SQUAREM and EM-ICM algo-
rithms, applied to 100 simulated datasets for varied sample size n = 200 (left) and n = 2000
(right).

All three algorithms converge to the same point as evidenced by the maximum difference
in absolute value between the parameter estimates returned by these algorithms. The EM
algorithm performs fairly well on this real dataset, largely due to the small sample size.
Even so, SQUAREM still outperforms the EM by a factor of 5 in terms of the number of
EM evaluations and a factor of 4 in CPU running time. We show in the following section
that SQUAREM and EM-ICM algorithms are more advantageous than the EM algorithm as
sample size increases using simulated examples.

Simulation example. For each individual, we randomly generate censored intervals by
creating a survival time (event) and a stochastic sequence of inspection times. The left end
of the interval is the last inspection time before the event while the right end is the first
inspection time after. The function we use to generate interval censored data is coded in
gendata().

R> gendata <- function(n, mu.nexam = 5) {
+ foo <- matrix(NA_real_, nrow = n, ncol = 3)
+ for (i in 1:n) {
+ st <- rweibull(1, shape = 1, scale = 5)
+ nexam <- rpois(1, mu.nexam)
+ exam <- round(runif(nexam, 0, 10), 1)
+ exam <- c(0, exam, Inf)
+ foo[i,] <- c(time = st, L = max(exam[st > exam]),
+ R = min(exam[st <= exam]))}
+ return(foo)
}

We compare the performance of the EM, SQUAREM and EM-ICM algorithms starting from
sample size n = 200 with 100 simulations. The results are summarized in Figure 2 on the left.
It can be seen from the left plot in Figure 2 that SQUAREM and EM-ICM algorithms are
both, on average, approximately 10 times faster than EM, for a moderate sample size n = 200.

Journal of Statistical Software 15

n EM SQUAREM
200 Mean 6746 446

Standard deviation 4738 306
2000 Mean 13398 792

Standard deviation 3948 263

Table 5: The comparison of mean and standard deviation of the number of EM evaluations
between the EM algorithm and SQUAREM on the simulated data examples for a moderate
sample size n = 200 and a large sample size n = 2000.

The performance of both algorithms are comparable, with EM-ICM having a much compact
distribution of CPU running time. In order to show the improvement in the number of EM
evaluations comparing SQUAREM to EM, we summarize the mean and standard deviation
of the number of EM evaluations for both algorithms in Table 5 for this simulation study.
On average, EM algorithm takes 15 times more EM steps to converge than SQUAREM for
this simulation study with a moderate sample size n = 200. Next, we increase the sample
size from n = 200 to n = 2000 and evaluate again the performance of the three algorithms
on another set of 100 simulated interval censored datasets.
As sample size expands to n = 2000, the right plot in Figure 2 shows that the advantage of
SQUAREM and EM-ICM algorithms becomes greater compared to EM. EM-ICM is specifi-
cally tailored to interval censoring maximum likelihood estimation, hence it is not surprising
that it is the fastest algorithm. However, it is noteworthy that SQUAREM, a general pur-
pose and off-the-shelf EM-like algorithm accelerator, is competitive with EM-ICM in this
example to which EM-ICM is a dedicated algorithm. Table 5 also compares the number of
EM evaluations between the EM algorithm and SQUAREM for the sample size n = 2000.
SQUAREM on average outperforms EM algorithm by a factor of 17 in terms of the number
of EM evaluations.

5.2. Genetics global ancestry estimation problem

Here we demonstrate the use of SQUAREM to solve an important problem in quantitative
genetics that is notoriously computationally challenging. Suppose our study population is
an admixed population with K ancestral populations. The goal is to estimate the propor-
tion of ancestry from each contributing population for each individual’s entire genome and
simultaneously estimate the allele frequencies of the K ancestral populations. Let us use
qi = (qi1, qi2, . . . , qiK)> to denote such admixture proportions for individual i, i = 1, 2, . . . , n
where qik is the proportion of subject i genome that is attributed to the ancestral popula-
tion k, k = 1, 2, . . . ,K and n is the number of subjects. Let Q be the n × K admixture
proportions matrix. We assume that all p genome-wide markers are bi-allelic (either allele
1 or allele 2). Let F be the p × K population allele frequency matrix with fjk being the
frequency of allele 1 at marker j, j = 1, 2, . . . , p in population k. Matrices F and Q consist of
parameters we are interested in estimating. The data consist of genetic polymorphism data
sampled from n diploid individuals. Specifically, we have recorded the genotype at p genetic
polymorphisms (“markers”) for each individual. Genotype at marker j for individual i is
represented as allele 1 counts, xij = 0, 1, 2. We assume that individuals are independent and

16 SQUAREM: Accelerating the EM Algorithm in R

under the admixture model, the log-likelihood of data is:

`(F,Q) =
n∑
i=1

p∑
j=1

(xij log
K∑
k=1

qikfjk + (2− xij) log
K∑
k=1

qik(1− fjk)) + C,

where C is a constant that does not contain the parameters F and Q. See Alexander,
Novembre, and Lange (2009) for a full description of the model.
The negative log-likelihood of such data is coded in function loglike(), corresponding to
the argument objfn in squarem().

R> loglike <- function(param, X, K) {
+ n <- nrow(X); p <- ncol(X)
+ F <- matrix(param[1 : (p * K)], p, K)
+ Q <- matrix(param[(p * K + 1) : (p * K + n * K)], n, K)
+ loglikelihood <- sum(X * log(Q %*% t(F)) + (2 - X) *
+ log(Q %*% (1 - t(F))))
+ return(-loglikelihood)
+ }

EM algorithm

For derivation of the EM step, see Appendix B.4.
The EM update of matrices F and Q is

fjk =
n

(1)
jk

n
(1)
jk + n

(0)
jk

, qik = mik∑
kmik

,

where n(1)
jk , n

(0)
jk ,mik are defined in Appendix B.4.

This one EM evaluation is written in function admixture.em(), corresponding to the argu-
ment fixptfn in squarem(). We adapt the code provided on Peter Carbonetto’s GitHub
account (Carbonetto 2016).

R> admixture.em <- function(param, X, K) {
+ eps <- 1e-6
+ n <- nrow(X); p <- ncol(X)
+ m <- matrix(eps, n, K)
+ n0 <- n1 <- matrix(eps, p, K)
+ F <- matrix(param[1 : (p * K)], p, K)
+ Q <- matrix(param[(p * K + 1): (p * K + n * K)], n, K)
+ r <- array(0, dim = c(p, 4, K, K))
+ for (i in 1:n) {
+ colnames(r) <- c("00", "01", "10", "11")
+ for (j in 1:K) {
+ for (k in 1:K) {
+ r[, "00", j, k] <- (X[i,] == 0) * (1 - F[, j]) * (1 - F[, k])
+ r[, "01", j, k] <- (X[i,] == 1) * (1 - F[, j]) * F[, k]

Journal of Statistical Software 17

+ r[, "10", j, k] <- (X[i,] == 1) * F[, j] * (1 - F[, k])
+ r[, "11", j, k] <- (X[i,] == 2) * F[, j] * F[, k]
+ r[, , j, k] <- r[, , j, k] * Q[i, j] * Q[i, k]
+ }
+ }
+ dim(r) <- c(p, 4 * K^2)
+ r <- r / rowSums(r)
+ dim(r) <- c(p, 4, K, K)
+ colnames(r) <- c("00", "01", "10", "11")
+ m[i,] <- m[i,] + apply(r, 3, sum) + apply(r, 4, sum)
+ for (k in 1:K) {
+ n0[, k] <- n0[, k] + rowSums(drop(r[, "00", k,])) +
+ rowSums(drop(r[, "01", k,])) +
+ rowSums(drop(r[, "00", , k])) +
+ rowSums(drop(r[, "10", , k]))
+ n1[, k] <- n1[, k] + rowSums(drop(r[, "10", k,])) +
+ rowSums(drop(r[, "11", k,])) +
+ rowSums(drop(r[, "01", , k])) +
+ rowSums(drop(r[, "11", , k]))
+ }
+ }
+ F <- n1 / (n0 + n1)
+ Q <- m / rowSums(m)
+ return(c(as.vector(F), as.vector(Q)))
+ }

Simulation example. We simulate an allele 1 count matrix X where there are 150 indi-
viduals and 100 markers for each individual. We use K = 3. The starting value of fjk is
randomly drawn from a uniform distribution in the range of (0, 1), while that of qik is 1

K . We
implement the EM algorithm and SQUAREM to compute maximum likelihood estimates of
the matrices F and Q and compare their performance.

EM algorithm:

R> load("geno.sim.RData")
R> set.seed(413)
R> p <- 100; n <- 150; K <- 3
R> F <- matrix(runif(p * K), p, K)
R> Q <- matrix(1/K, n, K)
R> param.start <- c(as.vector(F), as.vector(Q))
R> system.time(f1 <- fpiter(par = param.start, fixptfn = admixture.em,
+ objfn = loglike, control = list(tol = 1e-4), X = geno, K = 3))

user system elapsed
197.094 5.817 203.040

R> f1$fpevals

18 SQUAREM: Accelerating the EM Algorithm in R

[1] 1115

SQUAREM:

R> system.time(f2 <- squarem(par = param.start, fixptfn = admixture.em,
+ objfn = loglike, control = list(tol = 1e-4, maxiter = 2000),
+ X = geno, K = 3))

user system elapsed
47.460 1.403 48.869

R> f2$fpevals

[1] 270

In this example, SQUAREM outperforms the EM algorithm by a factor of 4 in terms of both
CPU running time and the number of EM evaluations. For large genetic datasets, the E step is
by far the most computationally intensive part of the algorithm. For a faster implementation
of the E step using C (and interfaced to R using the .Call() function), see Carbonetto (2016).
Although the admixture problem is naturally framed using EM, its convergence is very slow.
Alexander et al. (2009) implemented a faster solution to this problem (using a block relaxation
optimization method), which has permitted application of the admixture model to very large
genetic datasets. Our EM-based implementation in R is much slower than this admixture
specific implementation, but, nevertheless, it serves to illustrate the benefits of SQUAREM
in a difficult optimization problem from genetics.

5.3. MM algorithm: Logistic regression maximum likelihood estimation

In this section, we discuss a quadratic majorization algorithm (an MM algorithm) for com-
puting the maximum likelihood estimates of logistic regression coefficients. Minorize and
maximize or equivalently, majorize and minimize (MM) algorithms typically exhibit slow lin-
ear convergence just like the EM algorithm. We show that SQUAREM can provide significant
acceleration of MM algorithms. The example in this section comes from (De Leeuw 2006).
The EM algorithm may be viewed as a special case of MM algorithms (Zhou and Zhang 2012).
The majorization algorithms are widely applied, for example, in the work of De Leeuw (1994),
Heiser (1995), Lange et al. (2000), among others. Suppose we want to minimize function f
over X ⊆ Rn. We construct a majorization function g on X ×X such that

f(x) ≤ g(x, x(k)) ∀x, x(k) ∈ X,

f(x(k)) = g(x(k), x(k)) ∀x(k) ∈ X,

where k denotes the kth iteration, k = 0, 1, . . . Therefore, instead of minimizing f , we minimize
g such that

x(k+1) = argmin
x∈X

g(x, x(k)).

We repeat the updates of x until convergence and this completes the majorization algorithm.
Note that in the EM algorithm, the Q(θ; θk) function plays the role of the minorizing function.

Journal of Statistical Software 19

Quadratic majorization algorithm
Taylor’s theorem often leads to quadratic majorization algorithms (Böhning and Lindsay
1988) where the majorization function g is quadratic. By Taylor’s theorem, expand f(x) at
x(k),

f(x) = f(x(k)) + (x− x(k))>∂f(x(k)) + 1
2(x− x(k))>∂2f(ξ)(x− x(k)),

where ξ is on the line between x and x(k). The majorization function g is constructed by
constructing a matrix B such that B− ∂2f(ξ) is always positive semi-definite regardless of ξ.
So,

g(x, x(k)) = f(x(k)) + (x− x(k))>∂f(x(k)) + 1
2(x− x(k))>B(x− x(k))

is a majorization function for f . Let us define a clever variable z(k) such that z(k) = x(k) −
B−1∂f(x(k)) and majorization function g is equivalent to the following:

g(x, x(k)) = f(x(k)) + 1
2(x− z(k))>B(x− z(k))− 1

2∂f(x(k))>B−1∂f(x(k)).

At the kth iteration, to minimize g(x, x(k)) over x ∈ X is simply to minimize (x−z(k))>B(x−
z(k)), thus the majorization algorithm becomes:

x(k+1) = x(k) −B−1∂f(x(k)).

Therefore, in order to implement the quadratic majorization algorithm, we need to construct
the matrix B and compute the gradient of function f . Let us consider logistic regression
maximum likelihood estimation. Suppose we have an n× p design matrix X where there are
n subjects and p predictors. Let yi be the number of successes for subject i, i = 1, 2, . . . , n
given the overall number of experiments, Ni. We use β to denote the regression coefficients.
The goal is to derive the maximum likelihood estimates of β.
The negative log-likelihood of data is:

f(β) = − log (
∏
i

P(yi)) ∝ − log (
∏
i

pi(β)yi(1− pi(β))(Ni−yi))

= −
n∑
i=1

yi log pi(β)−
n∑
i=1

(Ni − yi) log (1− pi(β))

= −
n∑
i=1

yix
>
i β −

n∑
i=1

Ni log (1− pi(β)),

where
pi(β) = 1

1 + exp (−x>i β)
.

The gradient of f(β) is such that:

∂f(β) =
n∑
i=1

(Nipi(β)− yi)xi = X>u(β),

where the ith element of u(β) is Nipi(β)− yi, while the second derivative of f(β) is:

∂2f(β) =
n∑
i=1

(Nipi(β)(1− pi(β)))xix>i = X>V (β)X,

20 SQUAREM: Accelerating the EM Algorithm in R

where V (β) is a diagonal matrix with the ith diagonal element Nipi(β)(1− pi(β)). Based on
the fact that pi(β)(1− pi(β)) ≤ 1

4 , the matrix B can be constructed such that B = 1
4X
>NX,

where N is the diagonal matrix consisting of elements Ni. Thus the quadratic algorithm
becomes:

β(k+1) = β(k) − 4(X>NX)−1X>u(β).

Let us refer to the above algorithm as uniform bound quadratic algorithm since pi(β)(1 −
pi(β)) ≤ 1

4 uniformly for any β and each subject i. Jaakkola and Jordan (2000) and Groenen,
Giaquinto, and Kiers (2003) developed a non-uniform bound, X>W (β)X, where W (β) is
a diagonal matrix that consists of elements wi(β) = Ni

2pi(β)−1
2x>i β

, i = 1, 2, . . . , n. Thus the
non-uniform bound quadratic algorithm becomes:

β(k+1) = β(k) − (X>W (β)X)−1X>u(β).

Real data example. We use the cancer remission data in Lee (1974). The outcome is
a binary indicator of whether cancer remission occurred for the subject. Column 1 is the
intercept and variables V2, V3, . . ., V7 are results of six medical tests. The first five lines of
data are as follows:

R> ld <- read.table("lee_data.txt")
R> head(ld, 5)

V1 V2 V3 V4 V5 V6 V7 V8
1 0.8 0.83 0.66 1.9 1.100 0.996 1
1 0.9 0.36 0.32 1.4 0.740 0.992 1
1 0.8 0.88 0.70 0.8 0.176 0.982 0
1 1.0 0.87 0.87 0.7 1.053 0.986 0
1 0.9 0.75 0.68 1.3 0.519 0.980 1

The negative log-likelihood function f(β) is coded in binom.loglike(), corresponding to the
argument objfn in squarem().

R> binom.loglike <- function(par, Z, y) {
+ zb <- c(Z %*% par)
+ pib <- 1 / (1 + exp(-zb))
+ return(as.numeric(-t(y) %*% (Z %*% par) - sum(log(1 - pib))))
+ }

The one iteration update for both the uniform and the non-uniform bound quadratic ma-
jorization algorithms is written in function qmub.update() and qmvb.update(), respectively,
corresponding to the argument fixptfn in squarem(). Note that for high dimensional linear
problems, it is worthwhile to investigate more efficient computation that can further reduce
computing time. See examples in Bates (2004).

R> qmub.update <- function(par, Z, y) {
+ Zmat <- solve(crossprod(Z)) %*% t(Z)
+ zb <- c(Z %*% par)

Journal of Statistical Software 21

+ pib <- 1 / (1 + exp(-zb))
+ ub <- pib - y
+ par <- par - 4 * c(Zmat %*% ub)
+ par
+ }
R> qmvb.update <- function(par, Z, y) {
+ zb <- c(Z %*% par)
+ pib <- 1 / (1 + exp(-zb))
+ wmat <- diag((2 * pib - 1)/(2 * zb))
+ ub <- pib - y
+ Zmat <- solve(t(Z) %*% wmat %*% Z) %*% t(Z)
+ par <- par - c(Zmat %*% ub)
+ par
+ }

We next apply these two quadratic majorization algorithms and their “squared” versions
where we implement the aforementioned squared iterative scheme (SQUAREM), to compare
their performance. The tolerance used is 10−7 and the starting value is β(0) = (10, 10, . . . , 10)>.

Uniform bound quadratic majorization algorithm:

R> library("SQUAREM")
R> Z <- as.matrix(ld[, 1:7])
R> y <- ld[, 8]p0 <- rep(10, 7)
R> system.time(ans1 <- fpiter(par = p0, fixptfn = qmub.update,
+ objfn = binom.loglike, control = list(maxiter = 20000), Z = Z,
+ y = y))

user system elapsed
0.051 0.003 0.055

R> ans1

$par
[1] 58.0384838 24.6615508 19.2935824 -19.6012695 3.8959635
[6] 0.1510923 -87.4339059

$value.objfn
[1] 10.87533

$fpevals
[1] 1127

$objfevals
[1] 0

$convergence
[1] TRUE

22 SQUAREM: Accelerating the EM Algorithm in R

Squared uniform bound quadratic majorization algorithm:

R> system.time(ans2 <- squarem(par = p0, fixptfn = qmub.update,
+ objfn = binom.loglike, Z = Z, y = y))

user system elapsed
0.011 0.000 0.011

R> ans2

$par
[1] 58.0384863 24.6615466 19.2935777 -19.6012645 3.8959634
[6] 0.1510923 -87.4339043

$value.objfn
[1] 10.87533

$iter
[1] 41

$fpevals
[1] 118

$objfevals
[1] 43

$convergence
[1] TRUE

Non-uniform bound quadratic majorization algorithm:

R> system.time(ans3 <- fpiter(par = p0, fixptfn = qmvb.update,
+ objfn = binom.loglike, control = list(maxiter = 20000), Z = Z,
+ y = y)

user system elapsed
0.029 0.001 0.030

R> ans3

$par
[1] 58.0384866 24.6615451 19.2935760 -19.6012627 3.8959634
[6] 0.1510923 -87.4339030

$value.objfn
[1] 10.87533

$fpevals

Journal of Statistical Software 23

[1] 442

$objfevals
[1] 0

$convergence
[1] TRUE

Squared non-uniform bound quadratic majorization algorithm:

R> system.time(ans4 <- squarem(par = p0, fixptfn = qmvb.update,
+ objfn = binom.loglike, Z = Z, y = y))

user system elapsed
0.009 0.000 0.009

R> ans4

$par
[1] 58.0384868 24.6615443 19.2935751 -19.6012618 3.8959633
[6] 0.1510923 -87.4339024

$value.objfn
[1] 10.87533

$iter
[1] 30

$fpevals
[1] 88

$objfevals
[1] 30

$convergence
[1] TRUE

All four algorithms converge to the same maximum likelihood estimates but SQUAREM im-
proves on both uniform and non-uniform bound quadratic majorization algorithms in terms of
the number of quadratic majorization updates and CPU running time (in seconds). For uni-
form bound, SQUAREM converges around 5 times faster and saves the number of quadratic
majorization updates by a factor of 10. The non-uniform bound quadratic majorization per-
forms better than the uniform bound counterpart, but its squared version empowers further
acceleration. Compared to the non-uniform bound algorithm, SQUAREM shortens the com-
puting time by a factor of 3 and cuts the number of quadratic majorization updates by a
factor of 5.

24 SQUAREM: Accelerating the EM Algorithm in R

0.01

QM_Unif SQUARE QM_Unif QM_Non SQUARE QM_Non

Algorithm

C
P

U
 r

un
ni

ng
 ti

m
e(

lo
g1

0
sc

al
e)

Algorithm
QM_Unif
SQUARE QM_Unif
QM_Non
SQUARE QM_Non

Figure 3: The comparison among the original and squared uniform/non-uniform bound
quadratic majorization algorithms in terms of CPU running time (in seconds).

100

1000

QM_Unif SQUARE QM_Unif QM_Non SQUARE QM_Non

Algorithm

T
he

 n
um

be
r

of
 Q

M
 u

pd
at

es
(lo

g1
0

sc
al

e)

Algorithm
QM_Unif
SQUARE QM_Unif
QM_Non
SQUARE QM_Non

Figure 4: The comparison among the original and squared uniform/non-uniform bound
quadratic majorization algorithms in terms of the number of quadratic majorization(QM)
updates.

Journal of Statistical Software 25

Ub QM Squared Ub QM Non-Ub QM Squared Non-Ub QM
CPU time (mean) 0.068 0.016 0.019 0.006
CPU time (sd) 0.002 0.005 0.001 0.001
QM updates (mean) 2068 273 419 80
QM updates (sd) 22 81 19 15

Table 6: The comparison among the original and squared uniform/non-uniform bound
quadratic majorization algorithms in terms of the mean and standard deviation of CPU
running time and the number of quadratic majorization (QM) updates for cancer remission
data with 500 randomly selected starting values.

We randomly generate 500 starting values β(0) = (U(0, 10), U(0, 10), . . . , U(0, 10))> where
U(0, 10) is a uniform random variable in the range of (0, 10). We then summarize the per-
formance for these four algorithms in terms of CPU running time and the number of QM
(quadratic majorization) updates in Figures 3 and 4.
Figures 3 and 4 clearly show that SQUAREM consistently provides substantial acceleration
for both uniform bound and non-uniform bound quadratic majorization algorithms. Table 6
displays that for different starting values, compared to the uniform bound QM algorithm, its
corresponding squared version on average saves the number of QM updates by a factor of 7
and runs 4 times faster. Non-uniform bound QM algorithm already improves the performance
of the uniform bound counterpart, however, its squared version makes further improvement
by a factor of 3 in CPU running time and a factor of 5 in the number of QM updates.

6. Discussion

Since the seminal work of Dempster et al. (1977), EM and its variants have become the
workhorse of computational statistics. More broadly, there are iterative algorithms which do
not fit into the missing data framework, but which are EM-like in the sense that they exhibit
slow, monotone, global convergence like the EM algorithm. These include the minorize and
maximize (MM) algorithm. Even more broadly, we can include all fixed-point iterations which
are contractive (Ortega and Rheinboldt 1970) and linearly convergent. They are broader in
the sense that there need not be an objective function (e.g., log-likelihood) associated with
the contraction mapping. The remarkable fact is that it is extremely easy to use SQUAREM
to try and accelerate these iterative algorithms. All that the user has to do is to create a
function, fixptfn(), that implements a single step of the fixed-point iteration, whether it
is EM/ECM/ECME/GEM/MM or any other contractive mapping. The objective function,
objfn(), is optional, although we recommend that it be provided, if it is easy to code. The
convergence criterion used in function squarem() is stringent for high-dimensional problems,
and in future versions, we will incorporate other parameter-based criteria and criteria based
on the objective function. In addition, there are other features of SQUAREM not illustrated
in this paper, including the options of higher-order SQUAREM schemes and the tracking of
algorithm’s progress. For full features of SQUAREM, see https://CRAN.R-project.org/
package=SQUAREM/SQUAREM.pdf.
The main theme of the paper is that existing modeling problems based on EM-like algorithms
can potentially be made computationally more efficient by using the convergence acceleration

https://CRAN.R-project.org/package=SQUAREM/SQUAREM.pdf
https://CRAN.R-project.org/package=SQUAREM/SQUAREM.pdf

26 SQUAREM: Accelerating the EM Algorithm in R

provided by SQUAREM. This is particularly true in high-dimensional problems where EM-
like algorithms can be excruciatingly slow. There are several examples in the literature
where SQUAREM has been effectively used. To name a few, Matthew Stephens’ lab at
the University of Chicago has been using SQUAREM in many of their models pertaining
to genetic studies where a very large number of parameters are estimated (Shiraishi et al.
2015; Raj et al. 2015, among others). Patro et al. (2014) incorporated SQUAREM in the
development of their new computational method, “Sailfish”, to substantially increase the
efficiency of processing sequencing reads. More recently, Chiou et al. (2018) used SQUAREM
to speed up the estimation in a semi-parametric model for panel recurrent event count data.
There are more such examples.
SQUAREM is computationally efficient. It requires little effort beyond the basic fixed-point
iteration. The computation of SQUAREM parameter update is trivially easy since it only
requires a couple of vector products. The only place where some inefficiency could occur
is in the evaluation of the objective function to assess whether the SQUAREM step can be
accepted. When the SQUAREM step results in non-monotonicity, it is rejected and instead
the most recent EM update is retained. This results in some wasted effort. This is typical for
algorithms with fast local convergence, for example, the Newton’s method in unconstrained
optimization which needs to be safe-guarded with line-search or a trust-region approach to
ensure global convergence. However, SQUAREM is efficient when the objective function
evaluation is relatively cheaper than that of the fixed-point iteration, which is often the case.
SQUAREM can be used off-the-shelf since there is no need for the user to tweak any control
parameters to optimize its performance. Given its ease of application, SQUAREM may
be considered as a default accelerator for EM-like algorithms. We invite the reader to try
SQUAREM acceleration on their own EM-like algorithm or any slowly convergent, contractive
fixed-point iteration.

References

Alexander DH, Novembre J, Lange K (2009). “Fast Model-Based Estimation of Ancestry in
Unrelated Individuals.” Genome Research, 19(9), 1655–1664. doi:10.1101/gr.094052.
109.

Bates D (2004). “Least Squares Calculations in R.” R News, 4(1), 17–20. URL https:
//CRAN.R-project.org/doc/Rnews/.

Böhning D, Lindsay BG (1988). “Monotonicity of Quadratic-Approximation Algorithms.”
The Annals of the Institute of Statistical Mathematics, 40(4), 641–663. doi:10.1007/
bf00049423.

Carbonetto P (2016). “admixture.” GitHub repository, URL https://github.com/pcarbo/
admixture.

Censor Y, Zenios SA (1997). Parallel Optimization: Theory, Algorithms, and Applications.
Oxford University Press.

Chiou SH, Xu G, Yan J, Huang CY (2018). “Semiparametric Estimation of the Accelerated
Mean Model with Panel Count Data under Informative Examination Times.” Biometrics,
74(3), 944–953. doi:10.1111/biom.12840.

https://doi.org/10.1101/gr.094052.109
https://doi.org/10.1101/gr.094052.109
https://CRAN.R-project.org/doc/Rnews/
https://CRAN.R-project.org/doc/Rnews/
https://doi.org/10.1007/bf00049423
https://doi.org/10.1007/bf00049423
https://github.com/pcarbo/admixture
https://github.com/pcarbo/admixture
https://doi.org/10.1111/biom.12840

Journal of Statistical Software 27

De Leeuw J (1994). “Block-Relaxation Algorithms in Statistics.” In Information Systems and
Data Analysis, pp. 308–324. Springer-Verlag.

De Leeuw J (2006). “Quadratic and Cubic Majorization.” eScholarship 46r0p0vz, UCLA:
Department of Statistics, UCLA. URL https://escholarship.org/uc/item/46r0p0vz.

Dempster AP, Laird NM, Rubin DB (1977). “Maximum Likelihood from Incomplete Data
via the EM Algorithm.” Journal of the Royal Statistical Society B, 39(1), 1–38. doi:
10.1111/j.2517-6161.1977.tb01600.x.

Fay MP, Shaw PA (2010). “Exact and Asymptotic Weighted Logrank Tests for Interval
Censored Data: The interval R Package.” Journal of Statistical Software, 36(2), 1–34.
doi:10.18637/jss.v036.i02.

Finkelstein DM, Wolfe RA (1985). “A Semiparametric Model for Regression Analysis of
Interval-Censored Failure Time Data.” Biometrics, 41(4), 933–945. doi:10.2307/2530965.

Gentleman R, Geyer CJ (1994). “Maximum Likelihood for Interval Censored Data: Consis-
tency and Computation.” Biometrika, 81(3), 618–623. doi:10.1093/biomet/81.3.618.

Groenen PJF, Giaquinto P, Kiers HAL (2003). “Weighted Majorization Algorithms for
Weighted Least Squares Decomposition Models.” Technical report, Econometric Institute
Research Papers.

Hasselblad V (1969). “Estimation of Finite Mixtures of Distributions from the Exponential
Family.” Journal of the American Statistical Association, 64(328), 1459–1471. doi:10.
1080/01621459.1969.10501071.

Heiser WJ (1995). “Convergent Computation by Iterative Majorization: Theory and Appli-
cations in Multidimensional Data Analysis.” In WJ Krzanowski (ed.), Recent Advances in
Descriptive Multivariate Analysis, pp. 157–189. Clarendon Press.

Jaakkola TS, Jordan MI (2000). “Bayesian Parameter Estimation via Variational Methods.”
Statistics and Computing, 10(1), 25–37. doi:10.1023/a:1008932416310.

Jöreskog KG (1967). “A General Approach to Confirmatory Maximum Likelihood Factor
Analysis.” ETS Research Bulletin Series, 1967(2), 183–202. doi:10.1002/j.2333-8504.
1967.tb00991.x.

Lange K, Hunter DR, Yang I (2000). “Optimization Transfer Using Surrogate Objective
Functions.” Journal of Computational and Graphical Statistics, 9(1), 1–20. doi:10.1080/
10618600.2000.10474858.

Lee ET (1974). “A Computer Program for Linear Logistic Regression Analysis.” Computer
Programs in Biomedicine, 4(2), 80–92. doi:10.1016/0010-468x(74)90011-7.

Liu C, Rubin DB (1998). “Maximum Likelihood Estimation of Factor Analysis Using the
ECME Algorithm with Complete and Incomplete Data.” Statistica Sinica, 8(3), 729–747.

Meng XL, Rubin DB (1993). “Maximum Likelihood Estimation via the ECM Algorithm: A
General Framework.” Biometrika, 80(2), 267–278. doi:10.1093/biomet/80.2.267.

https://escholarship.org/uc/item/46r0p0vz
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.18637/jss.v036.i02
https://doi.org/10.2307/2530965
https://doi.org/10.1093/biomet/81.3.618
https://doi.org/10.1080/01621459.1969.10501071
https://doi.org/10.1080/01621459.1969.10501071
https://doi.org/10.1023/a:1008932416310
https://doi.org/10.1002/j.2333-8504.1967.tb00991.x
https://doi.org/10.1002/j.2333-8504.1967.tb00991.x
https://doi.org/10.1080/10618600.2000.10474858
https://doi.org/10.1080/10618600.2000.10474858
https://doi.org/10.1016/0010-468x(74)90011-7
https://doi.org/10.1093/biomet/80.2.267

28 SQUAREM: Accelerating the EM Algorithm in R

Ortega JM, Rheinboldt WC (1970). Iterative Solution of Nonlinear Equations in Several
Variables, volume 30. SIAM.

Patro R, Mount SM, Kingsford C (2014). “Sailfish Enables Alignment-Free Isoform Quantifi-
cation from RNA-Seq Reads Using Lightweight Algorithms.” Nature Biotechnology, 32(5),
462–464. doi:10.1038/nbt.2862.

Raj A, Shim H, Gilad Y, Pritchard JK, Stephens M (2015). “msCentipede: Modeling Hetero-
geneity across Genomic Sites and Replicates Improves Accuracy in the Inference of Tran-
scription Factor Binding.” PlOS ONE, 10(9), e0138030. doi:10.1371/journal.pone.
0138030.

Raydan M, Svaiter BF (2002). “Relaxed Steepest Descent and Cauchy-Barzilai-Borwein
Method.” Computational Optimization and Applications, 21(2), 155–167. doi:10.1023/a:
1013708715892.

R Core Team (2019). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Roland C, Varadhan R (2005). “New Iterative Schemes for Nonlinear Fixed Point Problems,
with Applications to Problems with Bifurcations and Incomplete-Data Problems.” Applied
Numerical Mathematics, 55(2), 215–226. doi:10.1016/j.apnum.2005.02.006.

Rubin DB, Thayer DT (1982). “EM Algorithms for ML Factor Analysis.” Psychometrika,
47(1), 69–76. doi:10.1007/bf02293851.

Saad Y (2003). Iterative Methods For Sparse Linear Systems. SIAM.

Shiraishi Y, Tremmel G, Miyano S, Stephens M (2015). “A Simple Model-Based Approach to
Inferring and Visualizing Cancer Mutation Signatures.” PLOS Genetics, 11(12), e1005657.
doi:10.1371/journal.pgen.1005657.

Varadhan R (2020). SQUAREM: Squared Extrapolation Methods for Accelerating EM-Like
Monotone Algorithms. R package version 2020.1, URL https://CRAN.R-project.org/
package=SQUAREM.

Varadhan R, Roland C (2008). “Simple and Globally Convergent Methods for Accelerating the
Convergence of Any EM Algorithm.” Scandinavian Journal of Statistics, 35(2), 335–353.
doi:10.1111/j.1467-9469.2007.00585.x.

Wellner JA, Zhan Y (1997). “A Hybrid Algorithm for Computation of the Nonparametric
Maximum Likelihood Estimator from Censored Data.” Journal of the American Statistical
Association, 92(439), 945–959. doi:10.1080/01621459.1997.10474049.

Wu CFJ (1983). “On the Convergence Properties of the EM Algorithm.” The Annals of
Statistics, 11(1), 95–103. doi:10.1214/aos/1176346060.

Zhou H, Alexander D, Lange K (2011). “A Quasi-Newton Acceleration for High-Dimensional
Optimization Algorithms.” Statistics and Computing, 21(2), 261–273. doi:10.1007/
s11222-009-9166-3.

Zhou H, Zhang Y (2012). “EM vs. MM: A Case Study.” Computational Statistics & Data
Analysis, 56(12), 3909–3920. doi:10.1016/j.csda.2012.05.018.

https://doi.org/10.1038/nbt.2862
https://doi.org/10.1371/journal.pone.0138030
https://doi.org/10.1371/journal.pone.0138030
https://doi.org/10.1023/a:1013708715892
https://doi.org/10.1023/a:1013708715892
https://www.R-project.org/
https://doi.org/10.1016/j.apnum.2005.02.006
https://doi.org/10.1007/bf02293851
https://doi.org/10.1371/journal.pgen.1005657
https://CRAN.R-project.org/package=SQUAREM
https://CRAN.R-project.org/package=SQUAREM
https://doi.org/10.1111/j.1467-9469.2007.00585.x
https://doi.org/10.1080/01621459.1997.10474049
https://doi.org/10.1214/aos/1176346060
https://doi.org/10.1007/s11222-009-9166-3
https://doi.org/10.1007/s11222-009-9166-3
https://doi.org/10.1016/j.csda.2012.05.018

Journal of Statistical Software 29

A. Additional example

A.1. Factor analysis

Factor analysis is a statistical modeling approach that aims to explain the variability among
observed variables in terms of a smaller set of unobserved factors. Factor analysis is widely
applied in areas where observed variables may be conceptualized as manifesting from some
unobserved latent factors, such as psychometrics, behavioral sciences, social sciences, and
marketing. The latent factors can be regarded as missing data in a multivariate normal
model and the EM algorithm (Dempster et al. 1977), therefore, becomes a natural way to
compute the maximum likelihood estimates. We will illustrate using two examples the dra-
matic accelerations of EM by Squarem and also compare with ECME (Liu and Rubin 1998),
an acceleration of EM. One example comes from real data, as used by Liu and Rubin (1998)
and Rubin and Thayer (1982), while the other is a simulation example.

Notations
Following the notation in Rubin and Thayer (1982), let Y be the n× p observed data matrix
and Z be the n × q unobserved factor matrix where q ≤ p. (Yi, Zi), i = 1, 2, . . . , n are
independently and identically distributed vectors following multivariate normal distribution.
The marginal distribution of Zi, i = 1, 2, . . . , n is such that

Ziq×1 ∼ multivariate normal




0
0
...
0


q×1

, Rq×q

 .
Let the variance of each component of Zi, i = 1, 2, . . . , n be 1, so R is also the correlation
matrix for Zi. The factor analysis model assumes that given the factors Zi, the components of
vector Yi become independent and Yip×1 |Ziq×1 ∼multivariate normal

(
αp×1 + β>q×pZiq×1 , τ

2
p×p

)
where τ2 = diag{τ2

1 , τ
2
2 , . . . , τ

2
p }. βq×p is called factor loading matrix while the diagonal

variances in τ2 are called uniquenesses in factor analysis. In general, maximum likelihood
factor analysis involves estimating α, β, τ2 and R. But R is often considered to be the identity
matrix (orthogonal factor model) and the maximum likelihood estimator of α is always Ȳ ,
the column means of the observed data matrix Y . Suppose we center matrix Y by its column
means, α is always the zero vector. Therefore, we are left with only β, τ2 to estimate. Given
β, τ2, the marginal distribution of Yi, i = 1, 2, . . . , n is multivariate normal with mean zero
vector and covariance matrix τ2 + β>β. Thus we can write the log-likelihood of the observed
data matrix Y ,

`(τ2, β) = −n2 log |τ2 + β>β| − n

2 tr[Cyy(τ
2 + β>β)−1],

where Cyy is the sample covariance of Y . The negative log-likelihood to be minimized is coded
in function factor.loglik(), to check monotonicity in the Squarem algorithm.

EM algorithm
For derivation of the EM step, see Appendix B.2.

30 SQUAREM: Accelerating the EM Algorithm in R

If the loading matrix β is unrestricted, the EM update is such that

β(k+1) = (δ>Cyyδ + ∆)−1(Cyyδ)>,

τ2(k+1) = diag{Cyy − Cyyδ(δ>Cyyδ + ∆)−1(Cyyδ)>},

where β(k+1), τ2(k+1) are the estimates at the (k + 1)th iteration and δ,∆ are defined in
Appendix B.2.
Similarly, if the loading matrix β has a priori zeroes, the EM update is such that

β
(k+1)
1j = (δ>Cyyδ + ∆)1j

−1(Cyyδ)>1j ,

τ2(k+1)
j = Cyyj − (Cyyδ)1j(δ>Cyyδ + ∆)1j

−1(Cyyδ)>1j ,

where j refers to the jth variable in vector Yi, i = 1, 2, . . . , n, subscript 1j corresponds to the
factors with nonzero loadings for the jth variable and Cyyj is the jth diagonal element of Cyy.
Next we consider two data examples to illustrate the simplicity and stability of Squarem to
accelerate the EM algorithm.

Real data example
We use the real data from Jöreskog (1967) as in Rubin and Thayer (1982) and Liu and Rubin
(1998). The data set consists of 9 variables, 4 factors, and 2 patterns of a priori zeroes for the
loadings with one a priori zero loadings on factor 4 for variables 1 through 4, and a different
a priori zero loadings on factor 3 for variables 5–9. There are otherwise no restrictions. The
sample covariance matrix Cyy is given below:

Cyy =



1.0 0.554 0.227 0.189 0.461 0.506 0.408 0.280 0.241
1.0 0.296 0.219 0.479 0.530 0.425 0.311 0.311

1.0 0.769 0.237 0.243 0.304 0.718 0.730
1.0 0.212 0.226 0.291 0.681 0.661

1.0 0.520 0.514 0.313 0.245
1.0 0.473 0.348 0.290

1.0 0.374 0.306
1.0 0.672

1.0


.

We use the starting values of β and τ2 as in Liu and Rubin (1998), where

βstart> =



0.5954912 −0.4893347 −0.3848925 0.0000000
0.6449102 −0.4408213 −0.3555598 0.0000000
0.7630006 0.5053083 −0.0535340 0.0000000
0.7163828 0.5258722 0.0219100 0.0000000
0.6175647 −0.4714808 0.0000000 0.1931459
0.6464100 −0.4628659 0.0000000 0.4606456
0.6452737 −0.3260013 0.0000000 −0.3622682
0.7868222 0.3690580 0.0000000 0.0630371
0.7482302 0.4326963 0.0000000 0.0431256


,

and τ2
j

start = 10−8 for j = 1, 2, . . . , 9.

Journal of Statistical Software 31

The negative log-likelihood is given by the function factor.loglik() below, which corre-
sponds to the argument objfn in squarem().

R> factor.loglik <- function(param, cyy) {
+ beta.vec <- param[1:36]
+ beta.mat <- matrix(beta.vec, 4, 9)
+ tau2 <- param[37:45]
+ tau2.mat <- diag(tau2)
+ Sig <- tau2.mat + t(beta.mat) %*% beta.mat
+ loglik <- -145/2 * log(det(Sig)) - 145/2 * sum(diag(solve(Sig, cyy)))
+ return(-loglik)
+ }

One EM update is given by the function factor.em() below, which corresponds to the
argument fixptfn in squarem().

R> factor.em <- function(param, cyy) {
+ beta.vec <- param[1:36]
+ beta.mat <- matrix(beta.vec, 4, 9)
+ tau2 <- param[37:45]
+ tau2.mat <- diag(tau2)
+ inv.quantity <- solve(tau2.mat + t(beta.mat) %*% beta.mat)
+ small.delta <- inv.quantity %*% t(beta.mat)
+ big.delta <- diag(4) - beta.mat %*% inv.quantity %*% t(beta.mat)
+ cyy.inverse <- t(small.delta) %*% cyy %*% small.delta + big.delta
+ cyy.mat <- t(small.delta) %*% cyy
+ beta.new <- matrix(0, 4, 9)
+ beta.p1 <- solve(cyy.inverse[1:3, 1:3]) %*% cyy.mat[1:3, 1:4]
+ beta.p2 <- solve(cyy.inverse[c(1, 2, 4), c(1, 2, 4)]) %*%
+ cyy.mat[c(1, 2, 4), 5:9]
+ beta.new[1:3, 1:4] <- beta.p1
+ beta.new[c(1, 2, 4), 5:9] <- beta.p2
+ tau.p1 <- diag(cyy)[1:4] - diag(t(cyy.mat[1:3, 1:4]) %*%
+ solve(cyy.inverse[1:3, 1:3]) %*% cyy.mat[1:3, 1:4])
+ tau.p2 <- diag(cyy)[5:9] - diag(t(cyy.mat[c(1, 2, 4), 5:9]) %*%
+ solve(cyy.inverse[c(1, 2, 4), c(1, 2, 4)]) %*%
+ cyy.mat[c(1, 2, 4), 5:9])
+ tau.new <- c(tau.p1, tau.p2)
+ param.new <- c(as.numeric(beta.new), tau.new)
+ param <- param.new
+ return(param.new)
+ }

In order to compare with the ECME algorithm as implemented by Liu and Rubin (1998), we
also write the function factor.ecme() below to do one ECME iteration. The only difference
from the EM algorithm is that for M step, after we update the loading matrix β, we find
τ2 that maximizes the actual constrained likelihood of the observed data matrix Y given the
updated β using Newton-Raphson.

32 SQUAREM: Accelerating the EM Algorithm in R

R> factor.ecme <- function(param, cyy) {
+ n <- 145
+ beta.vec <- param[1:36]
+ beta.mat <- matrix(beta.vec, 4, 9)
+ tau2 <- param[37:45]
+ tau2.mat <- diag(tau2)
+ inv.quantity <- solve(tau2.mat + t(beta.mat) %*% beta.mat)
+ small.delta <- inv.quantity %*% t(beta.mat)
+ big.delta <- diag(4) - beta.mat %*% inv.quantity %*% t(beta.mat)
+ cyy.inverse <- t(small.delta) %*% cyy %*% small.delta + big.delta
+ cyy.mat <- t(small.delta) %*% cyy
+ beta.new <- matrix(0, 4, 9)
+ beta.p1 <- solve(cyy.inverse[1:3, 1:3]) %*% cyy.mat[1:3, 1:4]
+ beta.p2 <- solve(cyy.inverse[c(1, 2, 4), c(1, 2, 4)]) %*%
+ cyy.mat[c(1, 2, 4), 5:9]
+ beta.new[1:3, 1:4] <- beta.p1
+ beta.new[c(1, 2, 4), 5:9] <- beta.p2
+ A <- solve(tau2.mat + t(beta.new) %*% beta.new)
+ sum.B <- A %*% (n * cyy) %*% A
+ gradient <- - tau2/2 * (diag(n*A) - diag(sum.B))
+ hessian <- (0.5 * (tau2 %*% t(tau2))) * (A * (n * A - 2 * sum.B))
+ diag(hessian) <- diag(hessian) + gradient
+ U <- log(tau2)
+ U <- U - solve(hessian, gradient)
+ tau.new <- exp(U)
+ param.new <- c(as.numeric(beta.new), tau.new)
+ param <- param.new
+ return(param.new)
+ }

Next we use R package SQUAREM to compute the MLE by EM, Squarem, ECME, and
squared ECME algorithms. Tolerance is set to be 10−8 across all algorithms.

EM: In order to perform the EM algorithm, we use function fpiter() in the SQUAREM
package. The arguments consist of a starting value, the function factor.em() that
encodes one EM update, the negative log-likelihood function factor.loglik(), other
variables as needed by these functions, and a control list to specify changes to default
values. The starting values for β and τ2 are taken from Liu and Rubin (1998).

R> library("SQUAREM")
R> system.time(f1 <- fpiter(par = param.start, cyy = cyy,
+ fixptfn = factor.em, objfn = factor.loglik,
+ control = list(tol = 10^(-8), maxiter = 20000)))

user system elapsed
2.805 0.028 2.834

R> f1$fpevals

Journal of Statistical Software 33

[1] 14659

It takes 14659 iterations to converge for the EM algorithm, which spends 2.834 seconds.

ECME: We replace function factor.em() by factor.ecme() that implements one ECME
update and thus implement the ECME algorithm.

R> system.time(f2 <- fpiter(par = param.start, cyy = cyy,
+ fixptfn = factor.ecme, objfn = factor.loglik,
+ control = list(tol = 10^(-8), maxiter = 20000)))

user system elapsed
1.378 0.029 1.409

R> f2$fpevals

[1] 6408

It takes 6408 iterations of ECME updates to converge, less than half of what the EM
needs. Also it spends 1.409 seconds, approximately half of the time it takes for the EM
to converge.

Squarem: Next, we use function squarem() in the SQUAREM package to apply the Squarem
algorithm to accelerate the EM. The arguments are the same as in function fpiter()
except a few control parameters particularly set for the Squarem algorithm.

R> system.time(f3 <- squarem(par = param.start, cyy = cyy,
+ fixptfn = factor.em, objfn = factor.loglik,
+ control = list(tol = 10^(-8))))

user system elapsed
0.226 0.006 0.233

R> f3$fpevals

[1] 876

It only takes 876 iterations of EM updates to converge, which is faster by a factor of 17
and 7 in terms of the number of fixed point evaluations when compared to the EM and
ECME, respectively. Moreover, Squarem only uses 0.233 seconds to converge, 12 times
faster than EM and 6 times faster than ECME.

Squared ECME: The Squarem algorithm can even be used to accelerate ECME, which is
already a faster version of the EM algorithm. Let us call this squared ECME.

R> system.time(f4 <- squarem(par = param.start, cyy = cyy,
+ fixptfn = factor.ecme, objfn = factor.loglik,
+ control = list(tol = 10^(-8))))

user system elapsed
0.111 0.005 0.117

34 SQUAREM: Accelerating the EM Algorithm in R

EM ECME Squarem Squared ECME
CPU time 2.799 (0.116) 1.382 (0.046) 0.221 (0.012) 0.107 (0.005)
Number of EM iterations 14659 6408 876 400

Table 7: The comparison of EM, ECME, Squarem and squared ECME algorithms on real
data from Jöreskog (1967). The CPU time is in seconds.

R> f4$fpevals

[1] 400

The squared ECME converges in only 400 iterations compared to 6408 iterations for
ECME, and it takes only 0.117 seconds.

In order to accommodate the randomness of CPU time, we run the above 4 schemes 100
times and summarize the mean and standard deviation of CPU running time in Table 7,
along with the number of fixed point evaluations needed. Table 7 demonstrates that the
Squarem algorithm can greatly and easily improve on both EM and ECME algorithms for
the factor analysis problem.

Simulation example

In the simulation example, we generate 200 observations of 32 subject scores and we assume
that there are 4 latent factors. In this case, we do not impose any a priori zero loadings for
convenience of comparison. The function used to generate data and compare the performance
of EM to Squarem is coded into simulate.FAEM(), accessible from the replication script.
The results of comparison of CPU running time and the number of EM evaluations between
EM algorithm and Squarem are summarized in Figure 5. It can be seen that Squarem performs
consistently better than the EM algorithm for both criteria, by a factor of at least 10 in most
cases.

B. Derivation of EM

B.1. Poisson mixtures

Let us define the missing variable Zi, i = 0, 1, . . . , 9 such that

Zi =
{

1 if death number i comes from population 1,
0 if death number i comes from population 2.

Let P(Zi = 1) = p, i = 0, 1, . . . , 9. Given Zi = 1, the death number i comes from population
1, following a Poisson distribution with mean µ1 while otherwise, the death number i comes
from population 2, following a Poisson distribution with mean µ2.

Journal of Statistical Software 35

0.00

0.25

0.50

0.75

1.00

−1 0 1

CPU running time

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Algorithm
EM
SQUAREM

(a) The cumulative distribution function of CPU run-
ning time for the EM algorithm versus Squarem.

0.00

0.25

0.50

0.75

1.00

2 3 4 5

The number of EM evaluations

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Algorithm
EM
SQUAREM

(b) The cumulative distribution function of the num-
ber of EM evaluations (log10 scale) for the EM algo-
rithm versus Squarem.

y = 10x

0

10

20

30

40

0 2 4 6

CPU running time for Squarem

C
P

U
 r

un
ni

ng
 ti

m
e

fo
r

E
M

(c) The scatter plot of CPU running time for the EM
algorithm versus Squarem.

y = 10x

0

50000

100000

150000

200000

0 5000 10000 15000 20000

The fevals for Squarem

T
he

 fe
va

ls
 fo

r
E

M

(d) The scatter plot of the number of EM evaluations
for the EM algorithm versus Squarem.

Figure 5: The comparison of CPU running time and the number of EM evaluations between
the EM algorithm and Squarem.

E step:

Q(p, µ1, µ2|p(k), µ
(k)
1 , µ

(k)
2)

= E[log [
∏
i

P(i, ni, Zi)]|p(k), µ
(k)
1 , µ

(k)
2 , i, ni]

= E[log [
∏
i

((pe−µ1µi1/i!)Zi((1− p)e−µ2µi2/i!)1−Zi)ni]|p(k), µ
(k)
1 , µ

(k)
2 , i, ni]

=
∑
i

ni[p(k)
i (log p+ log (e−µ1µi1/i!)) + (1− p(k)

i)(log (1− p) + log (e−µ2µi2/i!))],

where

36 SQUAREM: Accelerating the EM Algorithm in R

p
(k)
i = E[Zi|p(k), µ

(k)
1 , µ

(k)
2 , i, ni]

= P(Zi = 1|p(k), µ
(k)
1 , µ

(k)
2 , i, ni)

= P(i|Zi = 1, µ(k)
1)P(Zi = 1|p(k))

P(i|Zi = 1, µ(k)
1)P(Zi = 1|p(k)) + P(i|Zi = 0, µ(k)

2)P(Zi = 0|p(k))

= p(k)e−µ
(k)
1 (µ(k)

1)i/i!
p(k)e−µ

(k)
1 (µ(k)

1)i/i! + (1− p(k))e−µ
(k)
2 (µ(k)

2)i/i!

M step: We take the derivative of the Q function with respect to p, µ1, µ2 and set it to zero
in order to derive the estimates of the (k + 1)th iteration.

Let

dQ

dp
=
∑
i nip

(k)
i

p
−
∑
i ni(1− p

(k)
i)

1− p = 0

So,

∑
i nip

(k)
i∑

i ni −
∑
i nip

(k)
i

= p

1− p

p(k+1) =
∑
i nip

(k)
i∑

i ni
.

Let

dQ

dµ1
=
∑
i

nip
(k)
i (−1 + i

µ1
) = 0

So,

∑
i

nip
(k)
i =

∑
i inip

(k)
i

µ1

µ
(k+1)
1 =

∑
i inip

(k)
i∑

i nip
(k)
i

.

Similarly we can derive that

µ
(k+1)
2 =

∑
i ini(1− p

(k)
i)∑

i ni(1− p
(k)
i)

.

Journal of Statistical Software 37

B.2. Factor analysis

E step:

Q(β, τ2|β(k), τ (k))

= E[log P(Y, Z)|Y, β(k), τ (k)] =
n∑
i=1

E[log P(Yi, Zi)|Yi, β(k), τ (k)]

=
n∑
i=1

E[log [P(Yi|Zi)P(Zi)]|Yi, β(k), τ (k)]

=
n∑
i=1

E[log{[(2π)p/2|τ2|−1/2

exp {−1
2(Yi − β>Zi)>τ2−1(Yi − β>Zi)}P(Zi)]}|Yi, β(k), τ (k)]

= C − n

2 log |τ2| −
n∑
i=1

E[12Y
>
i τ

2−1
Yi − Y >i τ2−1

β>Zi + 1
2Z
>
i βτ

2−1
β>Zi|Yi, β(k), τ (k)]

= C − n

2 log |τ2| −
n∑
i=1

(1
2Y
>
i τ

2−1
Yi − Y >i τ2−1

β>E[Zi|Yi, β(k), τ (k)]

+ 1
2tr{βτ

2−1
β>E[ZiZ>i |Yi, β(k), τ (k)]}),

where C is a constant that does not depend on parameters and k denotes the current
estimates of parameters.

Let us define Cyz = ∑n
1
YiZ
>
i

n , Czz = ∑n
1
ZiZ

>
i

n . So the expected value in the E step
depends on conditional expectations of the statistics Cyy, Cyz and Czz given the observed
data matrix Y and current estimates of τ2(k)

, β(k). Let δ = (τ2(k) +β(k)>β(k))−1(β(k)>),
so by the multivariate normal conditional distribution, E[Zi|Yi, β(k), τ2(k)] = δ>Yi. Let
∆ = VAR[Zi|Yi, β(k), τ (k)] = I − β(k)(τ2(k) + β(k)>β(k))−1β(k)>.
Therefore,

E[Cyy|Y, τ2(k)
, β(k)] = Cyy

E[Cyz|Y, τ2(k)
, β(k)] =

n∑
i=1

E[YiZ>i |Yi, β(k), τ2(k)]
n

=
n∑
i=1

YiY
>
i

n
δ = Cyyδ

E[Czz|Y, τ2(k)
, β(k)] =

n∑
i=1

E[ZiZ>i |Yi, β(k), τ2(k)]
n

=
n∑
i=1

VAR[Zi|Yi, β(k), τ (k)] + E[Zi|Yi, β(k), τ2(k)]E[Z>i |Yi, β(k), τ2(k)]
n

=
n∑
i=1

∆ + δ>YiY
>
i δ

n
= δ>

∑n
i=1 YiY

>
i

n
δ + ∆ = δ>Cyyδ + ∆.

M step: If the loading matrix β is unrestricted:

38 SQUAREM: Accelerating the EM Algorithm in R

In order to obtain the maximizer of the Q function in the E step, we take the derivative
of the Q function with respect to β, τ2−1 (for convenience) and set it to zero.

dQ(β, τ2|β(k), τ (k))
dβ

=
n∑
i=1

τ2−1
YiE[Z>i |Yi, β(k), τ2(k)]

−
n∑
i=1

τ2−1
β>E[ZiZ>i |Yi, β(k), τ2(k)] = 0.

So,
n∑
i=1

τ2−1
β>E[ZiZ>i |Yi, β(k), τ2(k)] =

n∑
i=1

τ2−1
YiE[Z>i |Yi, β(k), τ2(k)]

β>(
n∑
i=1

E[ZiZ>i |Yi, β(k), τ2(k)]) =
n∑
i=1

YiE[Z>i |Yi, β(k), τ2(k)]

β>E[Czz|Yi, β(k), τ2(k)] = E[Cyz|Yi, β(k), τ2(k)]
β>(δ>Cyyδ + ∆) = Cyyδ

β(k+1) = (δ>Cyyδ + ∆)−1(Cyyδ)>.

dQ(β, τ2|β(k), τ (k))
dτ2−1 = n

2 τ
2 −

n∑
i=1

(1
2YiY

>
i − β(k+1)>E[Zi|Yi, β(k), τ2(k)]Y >i

+ 1
2β

(k+1)>E[ZiZ>i |Yi, β(k), τ2(k)]β(k+1)) = 0

So,

n

2 τ
2 =

n∑
i=1

(1
2YiY

>
i − β(k+1)>E[Zi|Yi, β(k), τ2(k)]Y >i

+ 1
2β

(k+1)>E[ZiZ>i |Yi, β(k), τ2(k)]β(k+1))

τ2 =
n∑
i=1

(YiY
>
i

n
− 2β(k+1)>E[ZiY

>
i

n
|Yi, β(k), τ2(k)]

+ β(k+1)>E[ZiZ
>
i

n
|Yi, β(k), τ2(k)]β(k+1))

τ2 = Cyy − 2β(k+1)>E[C>yz|Yi, β(k), τ2(k)]

+ β(k+1)>E[Czz|Yi, β(k), τ2(k)]β(k+1)

τ2 = Cyy − 2β(k+1)>(Cyyδ)>

+ β(k+1)>(δ>Cyyδ + ∆)(δ>Cyyδ + ∆)−1(Cyyδ)>

τ2 = Cyy − 2β(k+1)>(Cyyδ)> + β(k+1)>(Cyyδ)>

τ2 = Cyy − β(k+1)>(Cyyδ)>

τ2(k+1) = diag{Cyy − Cyyδ(δ>Cyyδ + ∆)−1(Cyyδ)>}.

Journal of Statistical Software 39

B.3. Interval censoring

E step: αij tells us the possibility that the event for individual i can occur in interval
(sj−1, sj), but we do not observe whether it actually occurs. Let us encode this missing
information in a new defined variable Zij such that:

Zij =
{

1 if the event for individual i occurs in (sj−1, sj),
0 otherwise.

With this missing variable defined, we now write the Q function in the E step.

Q(p|p(k)) = E[log (
∏
i

∏
j

p
Zij

j)|p(k), α] =
n∑
i=1

∑
j

log pjE[Zij |p(k), α]

Thus the Q function depends on the conditional expectation of the missing variable Zij
given the α matrix and current estimates p(k). By the Bayesian formula,

µij = E[Zij |p(k), α] = P[Zij = 1|p(k), α] = αijpj∑
s αisps

, i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

So,

Q(p|p(k)) =
n∑
i=1

∑
j

log pjµij .

M step: The probability vector that maximizes the Q function serves as the new estimates
p(k+1). We introduce a Lagrange multiplier λ to incorporate the constraint that∑j pj =
1. Taking the derivative with respect to pj ,

dQ(p|p(k))
dpj

=
d(∑n

i=1
∑
j log pjµij + λ(1−∑j pj))

dpj
=

n∑
i=1

µij
pj
− λ = 0.

So,

pj =
∑n
i=1 µij
λ∑

j

pj = 1 =
∑n
i=1

∑
j µij

λ

λ = n

Therefore,

pj =
∑n
i=1 µij
λ

p
(k+1)
j = 1

n

n∑
i=1

µij , j = 1, 2, . . . ,m

p(k+1) = (p(k+1)
1 , p

(k+1)
2 , . . . , p(k+1)

m)>

40 SQUAREM: Accelerating the EM Algorithm in R

B.4. Genetics global ancestry estimation problem

The EM algorithm can be used to compute the maximum likelihood estimates of the ma-
trices F and Q. Let us introduce four missing variables for each individual i and marker j,
u

(pat)
ij , u

(mat)
ij , z

(pat)
ij and z(mat)

ij . u(pat)
ij and u(mat)

ij represent the unobserved allele 1 count from
the paternal chromosome and the maternal chromosome respectively with possible values 0
or 1, while z(pat)

ij and z(mat)
ij refer to the ancestral populations for the paternal and maternal

alleles with possible values 1, . . . ,K.

E step:

Q(F,Q|F (0), Q(0))

= E[log{
∏
i

∏
j

P(xij , u(pat)
ij , u

(mat)
ij , z

(pat)
ij , z

(mat)
ij |X,F (0), Q(0))}]

= E[log{
∏
i

∏
j

(P(xij |u(pat)
ij , u

(mat)
ij)

∏
k

∏
a

(qikf
I(ua

ij=1)
jk

(1− fjk)I(ua
ij=0))I(za

ij=k))}|X,F (0), Q(0)]

=
∑
j

∑
k

n
(1)
jk log fjk + n

(0)
jk log (1− fjk) +

n∑
i=1

∑
k

mik log qik + C ′,

where C ′ is a constant that does not contain the parameters of interest,

n
(u)
jk =

n∑
i=1

∑
a

P(z(a)
ij = k, u

(a)
ij = u|X,F (0), Q(0)), u = 0, 1,

and
mik =

∑
j

∑
a

P(z(a)
ij = k|X,F (0), Q(0)).

To compute n(u)
jk , u = 0, 1 and mik, we need to compute the joint posterior probabilities:

P(u(pat)
ij ,u

(mat)
ij , z

(pat)
ij , z

(mat)
ij |fij , qik, xij)

∝ P(xij |u(pat)
ij , u

(mat)
ij)

∏
k

∏
a

(qikf
I(ua

ij=1)
jk (1− fjk)I(ua

ij=0))I(za
ij=k)

= I(xij = u
(pat)
ij + u

(mat)
ij)

∏
k

∏
a

(qikf
I(ua

ij=1)
jk (1− fjk)I(ua

ij=0))I(za
ij=k).

Thus, n(u)
jk , u = 0, 1 andmik for the tth, t = 0, 1, . . . , iteration are computed by summing

the joint posterior probabilities using F (t) and Q(t).

M step: Taking the derivative of the Q function with respect to fjk and qik gives us the
matrices F and Q of the next iteration,

fjk =
n

(1)
jk

n
(1)
jk + n

(0)
jk

, qik = mik∑
kmik

.

Journal of Statistical Software 41

Affiliation:
Yu Du
Department of Biostatistics
Bloomberg School of Public Health
Johns Hopkins University
Baltimore, United States of America
E-mail: ydu10@jhu.edu
URL: http://www.biostat.jhsph.edu/~ydu/personal/

Ravi Varadhan
Division of Biostatistics and Bioinformatics
Department of Oncology
Johns Hopkins University
Baltimore, United States of America
E-mail: rvaradhan@jhmi.edu
URL: http://www.hopkinsmedicine.org/profiles/results/directory/profile/0452302/
ravi-varadhan

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

February 2020, Volume 92, Issue 7 Submitted: 2016-05-23
doi:10.18637/jss.v092.i07 Accepted: 2018-10-30

mailto:ydu10@jhu.edu
http://www.biostat.jhsph.edu/~ydu/personal/
mailto:rvaradhan@jhmi.edu
http://www.hopkinsmedicine.org/profiles/results/directory/profile/0452302/ravi-varadhan
http://www.hopkinsmedicine.org/profiles/results/directory/profile/0452302/ravi-varadhan
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v092.i07

	Introduction
	Squared iterative method
	Description of R package SQUAREM
	How to apply SQUAREM acceleration
	EM algorithm

	Examples
	Interval censoring
	EM algorithm
	EM-ICM algorithm

	Genetics global ancestry estimation problem
	EM algorithm

	MM algorithm: Logistic regression maximum likelihood estimation
	Quadratic majorization algorithm

	Discussion
	Additional example
	Factor analysis
	Notations
	EM algorithm
	Real data example
	Simulation example

	Derivation of EM
	Poisson mixtures
	Factor analysis
	Interval censoring
	Genetics global ancestry estimation problem

