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Abstract

We introduce an R package that estimates decision thresholds in diagnostic settings
with a continuous marker and two or three underlying states. The package implements
parametric and non-parametric estimation methods based on minimizing an overall cost
function, as well as confidence interval estimation approaches to account for the sampling
variability of the cut-off. Further features of the package include sample size determination
and estimation of diagnostic accuracy measures. We used randomly generated data and
two real datasets to illustrate the capabilities and characteristics of the package.
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1. Introduction

In the diagnostic area, it is of interest to predict the state of a subject (usually, “diseased”
or “non-diseased”) using a continuous diagnostic test with a classifying threshold, that is,
a value of the diagnostic marker that classifies subjects into two categories: positive and
negative for the disease under study. However, the diagnostic problem can also include more
than two classification states, such as “non-diseased”, “mild condition” or “severe condition”.
The ability of the diagnostic marker to discriminate between states is usually evaluated with
the area under the receiver operating characteristic (ROC) curve in the two-state setting
(Metz 1978; Pepe 2003) and the volume under the surface (VUS) for the three-state setting
(Nakas, Alonzo, and Yiannoutsos 2010).
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To estimate the threshold that optimally discriminates between states, standard methods
consist of choosing a threshold for a desired false positive/negative rate to be achieved or,
more formally, by maximizing the Youden index, which is the sum, diminished by unity,
of the two fractions showing the proportions correctly classified (Youden 1950; Nakas et al.
2010). Another method based on defining an overall cost function, which includes correct
and incorrect classification rates and the relevant weights associated with each decision, thus
allowing disease prevalence to be also considered, was proposed (Metz 1978; Pepe 2003) and
further developed (Jund, Rabilloud, Wallon, and Ecochard 2005; Skaltsa, Jover, and Carrasco
2010; Skaltsa, Jover, Fuster, and Carrasco 2012). In this methodology, the estimation process
is focused on minimizing the cost function. The methodology takes into consideration the
following: (1) all classification rates should be taken into account; (2) each wrong or right
decision can have a different impact on the final result and (3) disease prevalence can also
play a role in threshold selection or estimation. Zweig and Campbell (1993) warned that
although a diagnostic test can be highly accurate, “its cost or undesirability of false results
may be so high that there is no threshold for which the trade-off between sensitivity and
specificity is acceptable”. Cantor, Sun, Tortolero-Luna, Richards-Kortum, and Follen (1999)
recommended clinicians to weigh their decisions in different fields and provided reasonable
values for different applications.
The cost-minimizing approach provides point estimates for the threshold(s) in a given setting.
Confidence intervals can also be estimated to account for sampling variability, especially
in very overlapping distributions where threshold estimation becomes cumbersome and an
alternative management (e.g., further examination) may be required for those subjects with
marker values close to the estimated threshold (Skaltsa et al. 2012). Further methodological
issues related to sample size requirements have also been addressed for the classic two-state
setting (Skaltsa et al. 2010).
The statistical software currently available for optimum threshold estimation mainly deals
with accuracy. However, there are some programs addressing the costs involved in threshold
estimation, providing either an expected value for each possible threshold, which should be
maximized (e.g., MedRoc; StenStat 2017) or a cost function and its values for each threshold,
which should be minimized (e.g., Analyse-it; Analyse-it Software, Ltd 2017). ROCR (Sing,
Sander, Beerenwinkel, and Lengauer 2005) is a powerful R package (R Core Team 2017) for
ROC visualization that provides tools to plot the cost function when costs for false positives
and false negatives are defined. Another relevant R package in the field is pROC (Robin et al.
2011), which, among many other functions, provides confidence intervals of the sensitivity
and the specificity of a given set of thresholds. However, these packages do not estimate the
threshold confidence interval or address the sample size issue in this context.
Here, we present the R package ThresholdROC (Perez-Jaume, Pallarès, and Skaltsa 2017),
which implements a wide range of techniques for threshold estimation and sample size com-
putation. The package is available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=ThresholdROC. In this paper, we briefly present
the methodology behind the ThresholdROC functions and refer to Skaltsa et al. (2010) and
Skaltsa et al. (2012) for further details. We define the cost function and derive analytical
threshold estimators under the binormality/trinormality assumption. We also develop an-
alytical variance estimators and construct confidence intervals for the optimum diagnostic
threshold. Moreover, we address the empirical method, which is an alternative approach
when no distributional assumptions can be made. The optimal sample size ratio of diseased
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to non-diseased subjects may be of interest during study design and it can also be obtained
using a function in the package under the assumption of binormality. Thus, ThresholdROC
can perform a wide range of calculations when continuous measurements are involved and
the true state of the subjects known. The rest of the article is structured as follows. We de-
scribe the methodology for estimation and inference in Section 2. Then, we illustrate how the
package can be used to calculate optimum threshold estimates and their confidence intervals
in two- and three-state settings using randomly generated data in Section 3 and on two real
datasets in Section 4. Finally, a discussion and concluding remarks are given in Section 5.

2. Threshold estimation
In this section, we present the threshold estimation methods implemented by ThresholdROC
for two- and three-state settings, as well as the methodology for estimating sample size in a
binormal setting.

2.1. Optimum threshold estimation

First of all, we will focus on the two-state setting. Let S be a binary variable indicating
the true disease status of the subjects (gold standard). We use D to denote the diseased
population and D̄ for the non-diseased individuals. Similarly, let Y be a second binary
variable representing the result of the diagnostic test (1 for a positive test if X > T and 0
for a negative result if X < T , where T is a threshold value and X a continuous biomarker).
The sensitivity (Se) and specificity (Sp) of the test are defined as

Se = P (Y = 1|S = D) and Sp = P
(
Y = 0|S = D̄

)
.

The overall cost function should be minimized (Metz 1978; Pepe 2003). For the two-state
setting, the expression for the cost function is

C = TP · CTP + FN · CFN + FP · CFP + TN · CTN,

where TP (true positive) is the fraction of correctly-identified diseased subjects, FP (false
positive) the fraction of individuals falsely identified as diseased, FN (false negative) the
fraction of subjects falsely identified as non-diseased, and TN (true negative) the fraction
of those correctly identified as non-diseased; CTP and CTN represent the costs of correct
classifications, and CFP and CFN the costs of incorrect classifications.
Following the approach of Skaltsa et al. (2010), the cost-minimizing threshold, T , is the value
such that

fD (T )
fD̄ (T ) = 1− ρ

ρ
· CTN − CFP
CTP − CFN

= R, (1)

where fD (T ) and fD̄ (T ) stand for the diseased and non-diseased probability density functions,
respectively, and ρ is the prevalence of the disease. It should be noted that R is the product
of the cost ratio and the non-diseased odds. Thus, the optimum threshold is such that the
ratio of densities equals R.
Assuming normal distributions for each population and under the hypothesis of either equal
or unequal variances, two analytical formulas for the optimum threshold can be obtained
for the two-state setting (Skaltsa et al. 2010). In a distribution-free setting, the optimum
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threshold can also be estimated on the basis of the empirical costs. In this case, each sample
value is used as a threshold and the overall cost calculated. Thus, the optimum threshold is
that with the lowest cost. Parametric estimation can also be applied when the distributions
for both diseased and non-diseased populations are known.
To generalize the approach used for the two-state setting we will follow Skaltsa et al. (2012).
Let k be the number of possible states, X a continuous marker and Tl the thresholds between
the k states, with l = 1, . . . , k − 1. If n is the sample size, ρi the prevalence of the ith state,
Cij the cost of classifying an individual of class i as class j and Fi the distribution function
of the population in the ith class, then the cost function is defined as

C = n
k∑
i=1

k∑
j=1

ρiCij (Fi (Tj)− Fi (Tj−1)) ,

where Fi (T0) = 0 and Fi(Tk) = 1.
This cost function, which depends on k−1 variables, has to be minimized to find the optimum
thresholds. For k = 3 states, Skaltsa et al. (2012) proposed to find the roots of the cost
function’s first derivatives, that is, to solve the following equations:

∂C
∂T1

= n
∑3
i=1 ρifi (T1) (Ci1 − Ci2) = 0,

∂C
∂T2

= n
∑3
i=1 ρifi (T2) (Ci2 − Ci3) = 0,

(2)

where fi represents the probability density function of measurements on individuals of state i.
Only parametric estimation is considered for the three-state setting. However, solutions can
also be obtained in this setting through numerical methods based on non-linear optimization
involving bisection and secant methods with inverse quadratic interpolation (Brent 1973).
Now we focus on the variance estimation, which is needed to calculate confidence intervals for
the optimum thresholds. In the two-state setting, the sample variance corresponding to the
estimated threshold can be approximated by the delta method when assuming binormality
using (Jund et al. 2005; Skaltsa et al. 2010):

VAR (T ) = dΣd>,

where d is the vector of derivatives of T with respect to θ = (µD, µD̄, σD, σD̄), where
µD, µD̄, σD and σD̄ stand for the means and standard deviations of the diseased and non-
diseased populations, respectively, and Σ is the variance-covariance matrix of θ.
In the three-state setting, variance can be estimated using parametric methods based on
non-linear equations (Skaltsa et al. 2012; Mak 1993) with the expression:

VAR (Ti) = Vii
A2
ii

,

where Vii = VAR
(
∂C
∂Ti

)
and Aii are the diagonal elements of the matrix A =

(
E
(
∂2C
∂T 2

∣∣∣
T̂

))>
,

T̂ being a root of ∂C∂T .
Bootstrapping can also be applied to calculate confidence intervals in both two- and three-
state settings (Efron and Tibshirani 1998). There are two ways in which bootstrapping
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can be used. In the first approach, the standard error of the threshold is estimated using
bootstrapping, with the corresponding confidence interval being obtained on the assumption
that the threshold estimators follow a normal distribution. In the second approach, the
bootstrap percentile confidence interval is calculated.

2.2. Sample size estimation in a binormal setting

To determine the optimal sample size in a two-state setting, we provide a function that
computes the optimal sample size ratio, ε = nD/nD̄, where nD and nD̄ stand for the number
of diseased and non-diseased subjects, respectively, needed to achieve a desired width 2L and
confidence level α in a binormal setting (i.e., when assuming normal distributions for both
diseased and non-diseased populations). When we assume equal variances for both groups,
the sample sizes for diseased and non-diseased samples are calculated using (Skaltsa et al.
2010):

nD̄ ≥
(
zα/2
L

)2
(
aσ2

D

ε
+ bσ2

D̄
+ 2cσ4

D

ε
+ 2dσ4

D̄

)
,

nD ≥
(
zα/2
L

)2 (
aσ2

D + bεσ2
D̄

+ 2cσ4
D + 2dεσ4

D̄

)
,

where

a =
(
∂T

∂µD

)2
, b =

(
∂T

∂µD̄

)2

, c =
(
∂T

∂σD

)2
, d =

(
∂T

∂σD̄

)2

,

zα/2 is the α/2th quantile of a standard normal distribution and µD, µD̄, σD and σD̄ represent
the means and standard deviations of the diseased and non-diseased populations, respectively.
Please see Skaltsa et al. (2010) for details on the formula used when the variances for the
diseased and non-diseased populations are different.

3. The R package ThresholdROC
The ThresholdROC package aims to provide functions that implement the methods intro-
duced in the previous section. It contains algorithms that calculate population-based thresh-
olds, point and confidence interval estimates for sample data, sample size estimates and
diagnostic accuracy measures. The package also generates plots to provide a better analysis
and understanding of the data and results obtained.

3.1. Two-state setting

The ThresholdROC functions for the two-state setting were developed on the assumption
that the non-diseased distribution takes lower values, although this is just convention. These
functions are: thresTH2(), which provides an algorithm to calculate the threshold when the
distributions of non-diseased and diseased populations are known; thres2(), which offers a
variety of options to compute point estimates and confidence intervals when sample mea-
surements are available; secondDer2(), which allows the assessment of the validity of the
threshold calculated; and SS() which calculates sample size. ThresholdROC also includes
functions providing plots related to the threshold estimation.
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Population-based threshold

The thresTH2() function solves the one-variable equation (1) of the density ratio, as detailed
in Section 2, given the population probability distribution functions, parameters and the cost
and prevalence values. The thresTH2() algorithm uses the uniroot() function of the stats
package, which searches a pre-specified interval for a root of a given function. The probability
distribution assumed for the populations (arguments dist1 and dist2, which indicate the
probability distribution assumed for the non-diseased and diseased populations, respectively,
and can be chosen from any two-parameter continuous distribution implemented in R) has
to be specified, as well as their parameters (four parameters in the function that the user
should use to specify the first and the second parameter of both distributions), the disease
prevalence (rho) and the classification costs (costs argument). Default values are specified
for further options available in the function. It should be noted that the classification costs
must be provided in an object of class ‘matrix’ as follows:(

CTP CTN
CFP CFN

)
.

If we consider an example in which the non-diseased population follows a standard normal
distribution with a mean of 0 and a standard deviation of 1 and the diseased population
follows a lognormal distribution with a mean of 1 and a standard deviation of 0.5 on the
log scale, with a disease prevalence of 0.3, the following code can be applied to calculate the
optimum threshold based on the distributions of the two populations:

R> thresTH2(dist1 = "norm", dist2 = "lnorm", par1.1 = 0, par1.2 = 1,
+ par2.1 = 1, par2.2 = 0.5, rho = 0.3)

Threshold: 1.235043

Parameters used
Disease prevalence: 0.3
Costs (Ctp, Cfp, Ctn, Cfn): 0 1 0 2.333333
R: 1

We should remark that we used the default cost matrix here, that is, a combination of costs
that leads to R = 1, which is equivalent to using the Youden index method to obtain the
optimum threshold (Skaltsa et al. 2010). As we can see in the output provided by thresTH2(),
the optimum threshold for the example was 1.24. Disease prevalence, costs and R values used
in the thresTH2() computations are also reported.

Point estimation and confidence intervals

To analyze sample measurements from both non-diseased and diseased populations, Threshold-
ROC contains the point estimation function thres2(), which uses as main arguments a vector
containing the non-diseased sample values (k1), a second vector containing the diseased sam-
ple measurements (k2), the disease prevalence (rho) and the cost matrix (costs), which must
be passed to thres2() as explained before for function thresTH2(). Through the method
argument the user can choose the estimation method. The options currently available include:
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• method = "equal": Assumes binormality and equal variances for non-diseased and
diseased populations. This is the default value.

• method = "unequal": Assumes binormality with unequal variances.

• method = "empirical": Excludes any distributional assumptions. In this case, each
sample value is used as a threshold and the overall cost calculated. The optimum
threshold is then chosen as the value that leads to the lowest cost.

• method = "parametric": This estimation method is based on the probability distribu-
tions assumed for the two populations. These distributions must be specified through
the arguments dist1 (non-diseased population) and dist2 (diseased population). As
mentioned before, any two-parameter distribution implemented in R can be chosen.
Their parameters are estimated from the samples in k1 and k2 using the fitdistr()
function in the MASS package (Venables and Ripley 2002) and the threshold estimation
is then provided by thresTH2().

The user can also choose the method for calculating the confidence interval corresponding to
the threshold estimate using the argument ci.method. The choices currently available are:

• ci.method = "delta": Delta method is used to estimate the threshold standard error
assuming an underlying binormal model. Thus, this option can only be used when
method is "equal" or "unequal". This is the default value.

• ci.method = "boot": The confidence interval is computed by bootstrapping according
to the method selected. When method = "parametric", parametric bootstrapping is
used (Efron and Tibshirani 1998). Otherwise, non-parametric bootstrapping is applied.
The parameter B, whose default value is 1000, allows the user to change the number of
bootstrap replications to be used.

For further details on these methods please see Skaltsa et al. (2010).
Package ThresholdROC also includes a function that evaluates the second derivative of the
cost function at the estimated threshold (secondDer2()), enabling the assessment of whether
the estimated threshold leads to a minimum in the cost function. A value close to zero would
imply that the minimum of the cost function is found in a plateau of the cost function and it
would be advisable to revise the cost assignments.
To illustrate how thres2() works, we will use two random samples of size 100 from two
different normal distributions. Data from the non-diseased sample are stored in the vector
k1, whereas those from the diseased population are stored in k2.

R> set.seed(1234)
R> n <- 100
R> k1 <- rnorm(n, 0, 1)
R> k2 <- rnorm(n, 2, 1)

If we assume the disease prevalence to be 0.2 and a binormal setting with equal variances,
the optimum threshold and its corresponding confidence interval can be calculated as follows:

R> (thr2 <- thres2(k1, k2, 0.2))
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Figure 1: Estimates of the probability density functions for non-diseased and diseased popu-
lations, respectively. Also the threshold estimate and its 95% confidence interval are depicted.

Estimate:
Threshold: 0.9422407

Confidence interval (delta method):
Lower Limit: 0.8011015
Upper Limit: 1.08338

Parameters used:
Disease prevalence: 0.2
Costs (Ctp, Cfp, Ctn, Cfn): 0 1 0 4
R: 1
Method: equal
Significance Level: 0.05

The threshold estimate and its confidence interval (and the method used to compute it be-
tween brackets) are provided in the output as are the disease prevalence, costs, the R term,
estimation method and significance level. Moreover, we can apply the plot() method to
the ‘thres2’ object returned. This method produces a plot that allows visual examination
of the problem: estimates of the probability density functions for both samples, as well as
vertical lines representing the threshold and its confidence interval. The plot() method calls
the density() function of the stats package to compute the density curves, and its default
options can be modified with further arguments in the plot() function (Figure 1).

R> plot(thr2, col = c(1, 2, 4), lwd = c(2, 2, 1), leg.pos = "topright")

Now we can check whether the threshold estimate is a minimum of the cost function:



Journal of Statistical Software 9

−2 0 2 4 6

60
80

10
0

12
0

14
0

16
0

t

co
st

(t
)

Specificity

S
en

si
tiv

ity

0.
0

0.
5

1.
0

1.0 0.8 0.6 0.4 0.2 0.0

Figure 2: Cost function and ROC curve for the two-state example data.

R> round(secondDer2(thr2), 2)

[1] 74.24

The value of the second derivative at the threshold estimate is positive and quite far from zero.
Therefore, we can conclude that the threshold estimate is a reliable optimum. The validity
of the estimate can be confirmed by plotting the cost function using the plotCostROC()
function. Notice that we additionally obtain the corresponding ROC curve (Figure 2).

R> par(mfrow = c(1, 2))
R> plotCostROC(thr2)

Sample size

Package ThresholdROC contains the SS() function to estimate the optimum sample size
ratio (diseased to non-diseased) and the sample size required to achieve a specified confidence
interval width and confidence level, assuming a binormal model with either equal or unequal
variances. To demonstrate how SS() works, we will use the following example in which
the non-diseased population follows a normal distribution with a mean of 0 and a standard
deviation of 1 and the diseased population follows a normal distribution with a mean of 2 and
the same standard deviation, with the disease prevalence being 0.3. Default costs are used.
The following code calculates the sample size needed to achieve a desired confidence interval
width of 0.5 and a 95% confidence level (default option):

R> par1.1 <- 0
R> par1.2 <- 1
R> par2.1 <- 2
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R> par2.2 <- 1
R> rho <- 0.3
R> width <- 0.5
R> SS(par1.1, par1.2, par2.1, par2.2, rho, width, var.equal = TRUE)

Optimum SS Ratio: 1

Sample size for
Diseased: 30.73167
Non-diseased: 30.73167

Parameters used
Significance Level: 0.05
CI width: 0.5
Disease prevalence: 0.3
Costs (Ctp, Cfp, Ctn, Cfn): 0 1 0 2.333333
R: 1

The output shows that the optimum ratio is 1:1, i.e., an equal number of diseased and non-
diseased subjects are needed. The minimum sample size required to achieve the desired width
of the confidence interval is 31 diseased and 31 non-diseased subjects.
Consider now that the standard deviation of the diseased population is set at 3:

R> par2.2 <- 3
R> SS(par1.1, par1.2, par2.1, par2.2, rho, width, var.equal = FALSE)

Optimum SS Ratio: 0.4099684

Sample size for
Diseased: 44.12022
Non-diseased: 107.6186

Parameters used
Significance Level: 0.05
CI width: 0.5
Disease prevalence: 0.3
Costs (Ctp, Cfp, Ctn, Cfn): 0 1 0 2.333333
R: 1

The optimum ratio is now around 0.41; thus, 41 diseased individuals are needed for every 100
non-diseased subjects. Hence, the optimum sample size is 153 subjects, 45 diseased and 108
non-diseased individuals.

3.2. Three-state setting
In a three-state setting, it is assumed that the first population takes lower values and the
third population shows the highest values. However, if the populations are labeled in a dif-
ferent way when using the package, they are automatically reordered. The functions related



Journal of Statistical Software 11

to this setting are: thresTH3(), which computes the optimum thresholds based on the dis-
tributions assumed for the three states; thres3(), which calculates threshold estimates and
their confidence intervals when sample measurements for each population are available; and
secondDer3(), which computes the second derivative of the cost function to validate the
estimates. Functions providing plots related to the thresholds and their confidence intervals
are also included in package ThresholdROC.

Population-based threshold

Similar to thresTH2(), thresTH3() estimates the theoretical optimum thresholds for specific
distribution parameters, decision costs and prevalences in a three-state setting. The equations
to be solved to find the optimum thresholds in this setting are given in (2). As before, this
is done using the function uniroot(). The arguments in this function are similar to those in
thresTH2(), although here rho must be a 3-dimensional vector of prevalences (indicating the
prevalence of each underlying state) and costs should be a 3× 3 matrix object as follows: C11 C12 C13

C21 C22 C23
C31 C32 C33

 ,
where Cij is the cost of classifying an individual of class i as class j, for i, j = 1, 2, 3. The
arguments dist1, dist2 and dist3 are used to specify the distribution assumed for each
population.
To give an example of how this function works, we will consider the following three popu-
lations: a standard normal distribution; a lognormal distribution with a mean of 1 and a
standard deviation of 0.5 on the log scale; and a lognormal distribution with a mean of 2
and a standard deviation of 0.5 on the log scale. The prevalence of each state is assumed to
be 1/3 and the default costs, which lead to the same results as the Youden’s method for the
three-state setting (Skaltsa et al. 2012), will be used.

R> thresTH3(dist1 = "norm", dist2 = "lnorm", dist3 = "lnorm",
+ par1.1 = 0, par1.2 = 1, par2.1 = 1, par2.2 = 0.5,
+ par3.1 = 2, par3.2 = 0.5, rho = rep(1/3, 3))

Threshold 1: 1.235043
Threshold 2: 4.481689

Parameters used
Prevalences: 0.3333333 0.3333333 0.3333333
Costs

C11,C12,C13: 0 1 1
C21,C22,C23: 1 0 1
C31,C32,C33: 1 1 0

As we can see from the results, the threshold estimates are 1.24 and 4.48. The object returned
by the function is of class ‘thresTH3’, which, in addition to the threshold estimates, also
contains information on the parameters used.
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Point estimation and confidence intervals
The thres3() function calculates threshold estimates and their confidence intervals when
sample measurements for each population are available. Similar to thres2(), thres3()
receives as main arguments the samples of the three distributions (namely, k1, k2 and k3),
the vector of prevalences and the cost matrix (with the same structure as in thresTH3()).
It is also necessary to specify the distributions assumed for the three populations through
the arguments dist1, dist2 and dist3. The start parameter gives starting values for the
thresholds if all the distributions are "norm" (that is, when assuming trinormality). If this is
not the case, this argument is not required.
The argument ci.method can be used for calculating the confidence intervals corresponding
to the threshold point estimates. The options available are:

• ci.method = "param": This provides parametric confidence intervals based on methods
on non-linear equations. This option can only be used when all the populations are
assumed to follow normal distributions.

• ci.method = "boot": This provides confidence intervals computed by bootstrapping.
The confidence intervals for each threshold can be calculated in two ways. The first one
involves bootstrapping to compute the standard error and then the confidence limits
are calculated using a standard normal distribution. The second option is the com-
mon percentile approach based on calculating the empirical percentiles of the bootstrap
threshold estimates. Parametric bootstrapping is used if any one of the population is
not assumed to follow a normal distribution. The number of bootstrap resamples can
be chosen through argument B, whose default value is 1000.

The object returned by function thres3() is of class ‘thres3’ and contains the results about
the threshold estimates, their confidence intervals and further information.
In this setting, as in the two-state setting, package ThresholdROC also contains the function
secondDer3(), which calculates the second partial derivatives of the cost function to assess
if the threshold estimates lead to a minimum in the cost function (when the derivatives are
positive) or if such a minimum does not exist (when the derivatives are close to zero).
To illustrate the usage of function thres3(), we will use three random samples of size 100:
a lognormal distribution with a mean of 0 and a standard deviation of 1 on the log scale,
and two normal distributions with means of 3 and 5, respectively, and both with a standard
deviation of 1. Prevalences are assumed to be 1

3 and default costs are used.

R> set.seed(1234)
R> n <- 100
R> k1 <- rlnorm(n)
R> k2 <- rnorm(n, 3, 1)
R> k3 <- rnorm(n, 5, 1)
R> rho <- c(1/3, 1/3, 1/3)
R> (thr3 <- thres3(k1, k2, k3, rho, dist1 = "lnorm", dist2 = "norm",
+ dist3 = "norm", ci.method = "boot"))

Estimate:
Threshold 1: 1.750509
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Threshold 2: 4.102581

Confidence intervals (parametric bootstrap):
CI based on normal distribution for Threshold 1: 1.61558 - 1.885438
CI based on percentiles for Threshold 1: 1.626109 - 1.893765
CI based on normal distribution for Threshold 2: 3.964265 - 4.240896
CI based on percentiles for Threshold 2: 3.973393 - 4.241973
Bootstrap resamples: 1000

Parameters used:
Prevalences: 0.3333333 0.3333333 0.3333333
Costs

C11,C12,C13: 0 1 1
C21,C22,C23: 1 0 1
C31,C32,C33: 1 1 0

Confidence Level: 0.05
Distribution assumed for the first sample: lnorm(-0.16, 1)
Distribution assumed for the second sample: norm(3.04, 1.03)
Distribution assumed for the third sample: norm(5.15, 0.96)

The threshold estimates and their confidence intervals are provided in the output. As boot-
strapping was used, two confidence intervals for each threshold are generated, one based on
the normal distribution and the other on percentiles. The output of this function also displays
information about the other parameters used. Applying the method plot() to the object
returned by this function, we obtain a graph showing the estimations of the three probability
density functions and vertical lines representing the threshold estimates and their confidence
intervals (Figure 3).

R> plot(thr3, col = 1:4, lwd = c(2, 2, 2, 1), leg.pos = "topright")

Through secondDer3(), we can assess the validity of the estimate:

R> round(secondDer3(thr3), 2)

Value for thres1 Value for thres2
0.13 0.16

The values obtained are positive but quite close to zero. We can also plot the contribution of
each threshold to the cost function (Figure 4).

R> par(mfrow = c(1, 2))
R> plotCostROC(thr3)

As we can see in Figure 4, both thresholds lead to a minimum in the cost function. Further-
more, the cost functions do not show any plateau, indicating that these minimums can be
considered reliable optima.
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Figure 3: Estimates of the probability density functions of the three populations. Also the
threshold estimates and their confidence intervals are depicted.
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Figure 4: Cost function with respect to both thresholds in the three-state example.

4. Case examples

In order to illustrate the techniques described in the previous sections and the use of the
respective R functions, we applied package ThresholdROC to two real datasets, one for each
diagnostic setting. The datasets were both analyzed in Skaltsa et al. (2010, 2012), and we
present them here for illustration purposes. Both datasets are available in the ThresholdROC
package.
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4.1. Two-state setting

For the two-state setting, we used a dataset from Kapaki, Paraskevas, Zalonis, and Zournas
(2003), which contains measurements of tau protein levels in the cerebrospinal fluid of 49
control subjects and 49 patients with Alzheimer’s disease (AD). The authors reported that
the cut-off of 317 led to an optimal combination of sensitivity (0.88) and specificity (0.96),
producing R = 1. We calculated an alternative threshold for this dataset using the functions in
ThresholdROC. This approach accounts for specific characteristics of the problem by choosing
a reasonable combination of costs based on clinical criteria.
We set the costs corresponding to correct classification at zero (that is, CTP = CTN = 0) given
that there are no consequences when correct decisions are made. The costs corresponding
to false classifications were set at 1 (i.e., CFP = CFN = 1), placing the same weight on
false positives and false negatives. The value for AD prevalence was set at 0.2 based on the
literature (Tsolaki, Fountoulakis, Pavlopoulos, Chatzi, and Kazis 1999; Ferri et al. 2005).
To determine if the measurements from both the control and diseased groups could be assumed
to follow a normal distribution in deciding the method to use for threshold estimation, we
applied Shapiro-Wilk’s test to the measurements, obtaining p < 0.01 in both cases. Since the
data failed the normality tests, the empirical method was used. Thus, using thres2(), the
threshold that minimizes the cost function for these cost and prevalence values was estimated
to be 384.45, corresponding to a sensitivity of 0.76 and a specificity of 1. Using a confidence
level of 95% and applying the bootstrap methodology with 1000 resamples, the confidence
intervals of the threshold were (304.40, 464.51) for the bootstrap method based on the normal
distribution and (295.37, 444.03) for the percentile technique. It should be noted that this
approach leads to R = 4. Figure 5, obtained through the plot method for ‘thres2’ objects,
shows the estimates for the probability density function of each group, as well as the estimated
threshold and its confidence intervals determined by bootstrapping. We also plotted the
empirical cost function for this application, and the empirical ROC curve (Figure 6, obtained
with plotCostROC()). Using the empirical cost function graph, we can conclude that the
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Figure 5: Alzheimer’s disease data: Estimates of the probability density functions for tau
protein measurements in non-diseased and diseased groups. Also the threshold estimate and
its confidence intervals calculated by bootstrapping are depicted.
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Figure 6: Alzheimer’s disease data: Empirical cost function and ROC curve.

threshold estimate (shown as a red dot on the plot) leads to a minimum in the cost function.
However, the function is noticeably flat around this point, implying that any value around the
estimate, of 384.45, can be considered a plausible threshold. Regarding the empirical ROC
curve, we must point out that our threshold estimate did not lead to an optimal combination
of specificity and sensitivity because the choice of costs did not lead to the same results as
those obtained with Youden’s method.

4.2. Three-state setting

For the three-state setting, we used a dataset from a study on chemotherapy response in breast
cancer patients (Duch et al. 2009). Positron emission tomography (PET) was performed just
before the beginning of chemotherapy and after the second cycle to decide whether treatment
should be discontinued or modified. Uptake in PET studies was quantified by the difference
in the standardized uptake value (SUV), which was our continuous diagnostic measurement.
After surgery, response to chemotherapy was evaluated using the pathology results from the
surgical specimen which was taken as gold standard by assigning one of the following three
states: stable disease, partial remission and complete remission. The aim of that study was
to estimate the optimum thresholds of the SUV variable between the three states of the
response variable. Out of 50 subjects, 12 remained stable, 29 presented partial response and
9 showed complete remission. Radiologists were asked to assign plausible cost values (see
Table 1; prevalence values are also shown) on a scale ranging from 0 to 5. Null costs were
assigned for correct classifications. The cost of classifying a patient with a stable tumor who
had responded partially was C12 = 2, whereas the inverse error was penalized with a cost
of C21 = 1, given that the latter situation is less serious than the first one. Classifying an
individual with a complete response as having a partial response and the inverse situation
were both assigned a cost of C23 = C32 = 1. Classifying a patient with a stable tumor as
having shown a complete response was considered to be the most serious error because of its
medical implications and was penalized with a cost of C13 = 5. The inverse error was also
considered important and its cost set at C31 = 4.
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Costs
Prevalences Correct classification Incorrect classification
ρ1 = 0.24 C11 = 0 C12 = 2 C13 = 5 C23 = 1
ρ2 = 0.58 C22 = 0 C21 = 1 C31 = 4 C32 = 1
ρ3 = 0.18 C33 = 0

Table 1: The prevalence and cost values for the chemotherapy response dataset. 1 denotes
stable subjects, 2 the partial responders and 3 the complete responders.
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Figure 7: Chemotherapy response data: SUV difference densities for patients who remained
stable, partially responded or completely responded to treatment. Also the threshold esti-
mates and their confidence intervals are depicted.
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We applied Shapiro-Wilk’s test to the measurements from each population to assess the
normality of the data, obtaining p = 0.82 for the group with stable tumor, p = 0.49 for
the partial responders, and p = 0.24 for the complete responders. Thus, we could assume a
situation of trinormality. Under this assumption, using thres3(), the threshold estimates and
their 95% confidence intervals were 49.41 (43.95, 54.87) and 88.80 (76.47, 101.13). Confidence
intervals were estimated based on the parametric method. A representation of the results is
shown in Figure 7 (obtained with the plot method for ‘thres3’ objects). Evaluating the
second derivatives of the cost function in the threshold estimates through secondDer3() we
obtained positive values (0.044 and 0.017), confirming that the estimates lead to a minimum
in the cost function. The cost function corresponding to both estimates was plotted with
plotCostROC() (Figure 8) graphically confirming that they lead to a minimum.
Using VUS() from DiagTest3Grp package (Luo and Xiong 2012), we calculated the volume
under surface (VUS) for the biomarker SUV to be 0.72 (95% confidence interval, [0.57, 0.88]),
thus, underlining the highly discriminatory capacity of the SUV.

5. Conclusions
The ThresholdROC package, which is publicly available from CRAN at https://CRAN.
R-project.org/package=ThresholdROC, contains a set of functions intended to provide di-
rect calculations of the optimum thresholds for continuous diagnostic tests using the methods
described briefly in this article and more extensively in Skaltsa et al. (2010, 2012). Here,
we illustrate the capabilities of package ThresholdROC in estimating optimum thresholds
based on minimizing an overall cost function in a two- and three-state settings. Package
ThresholdROC can also be used to calculate population-based thresholds, point estimates
and confidence intervals for both two- and three-state settings. Moreover, it provides graphi-
cal tools related to the threshold estimates, allowing a deeper understanding of both the data
and the results obtained. Package ThresholdROC also contains a function that estimates
optimal sample sizes.
In addition to estimating optimum thresholds and sample sizes, package ThresholdROC also
includes the function diagnostic(), which calculates common measures of the accuracy
of diagnostic tests involving 2 × 2 contingency tables of classification results (usually, test
outcome versus status tables). Specifically, it calculates the following statistical measures:
sensitivity, specificity, positive and negative predictive value, positive and negative likelihood
ratio, odds ratio, Youden’s index, accuracy, error rate and appropriate confidence intervals
for each index (Zhou, Obuchowski, and McClish 2002). This can be useful in a two-state
setting when assessing the validity of a dichotomic test based on categorizing a continuous
marker using a threshold estimate.
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