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Abstract

This paper discusses the software D-STEM as a statistical tool for the analysis and
mapping of environmental space-time variables. The software is based on a flexible hi-
erarchical space-time model which is able to deal with multiple variables, heterogeneous
spatial supports, heterogeneous sampling networks and missing data. Model estimation
is based on the expectation maximization algorithm and it can be performed using a dis-
tributed computing environment to reduce computing time when dealing with large data
sets. The estimated model is eventually used to dynamically map the variables over the
geographic region of interest. Three examples of increasing complexity illustrate usage
and capabilities of D-STEM, both in terms of modeling and implementation, starting from
a univariate model and arriving at a multivariate data fusion with tapering.

Keywords: multivariate space-time models, data fusion, remote sensing, expectation maxi-
mization, MATLAB.

1. Introduction

The understanding of complex environmental phenomena usually requires the analysis of
multiple variables observed over space and time, resulting in possibly large and complex data
sets. When multivariate space-time data sets are considered, it is common to rely on statistical
spatio-temporal models able to exploit the correlation across variables and to provide space-
time predictions over the geographic region of interest (Cressie and Wikle 2011).

This paper introduces the D-STEM (distributed space time expectation maximization) soft-
ware as a statistical tool for the analysis of environmental space-time data sets and the
prediction, uncertainty included, of the observed variables.

D-STEM is developed in the MATLAB (The MathWorks, Inc. 2010) language and it is avail-
able at https://code.google.com/p/d-stem/. The modeling capabilities of D-STEM are
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detailed in this paper by introducing three case studies of increasing complexity. The reader
can download the D-STEM_v4.7.11_Full.zip archive — either from the journal web page
or from the link above — including source code and demo folders with replication materials.
Please follow the instructions given in the ReadMe.txt file of the demo folder to reproduce
the case studies. D-STEM requires the Statistics toolbox, the Optimization toolbox and the
Mapping toolbox (The MathWorks, Inc. 2010).

D-STEM is the evolution of the R (R Core Team 2014) package Stem (Cameletti 2012) which
provides space-time data modeling capabilities by means of hierarchical space-time models
within the frequentist paradigm. Excluding the many packages for spatial data, only few
R packages can handle space-time data and even fewer are suitable for multivariate space-
time data. The R package spTimer (Bakar and Sahu 2014b,a) implements space-time models
similar to those implemented by Stem but model estimation is performed within the Bayesian
setting. Compared to the packages Stem and spTimer, D-STEM allows to estimate a larger
class of univariate and multivariate hierarchical space-time models and it is optimized for
large data sets. The gstat package (Pebesma and Gaeler 2013) can deal with multivariate
space-time data but data interpolation is based on variogram modeling. When modeling
environmental space-time variables, D-STEM is an alternative to the R package INLA (Rue,
Martino, Lindgren, Simpson, Riebler, and Krainski 2014) which implements the integrated
nested Laplace approximation (INLA) and the stochastic partial differential equation (SPDE)
modeling approaches. Although D-STEM and the INLA package are based on hierarchical
models and latent variables, the space-time models they implement overlap only partially and
the user may benefit from using them both depending on the specific application (Cameletti,
Lindgren, Simpson, and Rue 2013).

D-STEM has been tested by the authors in various real-data applications. At the urban scale,
it has been used for assessing the space-time impact of traffic policies in Milan city (Fasso
2013). At the country scale, it has been used for evaluating multi-variable air quality indexes
and for assessing the airborne pollutant exposure distribution in Scotland (Finazzi, Scott, and
Fasso 2013). At the continental scale, considering a large data set of both ground level and
remote sensing data, it has been used for air quality dynamic mapping over Europe (Fasso
and Finazzi 2013).

The rest of the paper is organized as follows. Section 2 describes the capabilities of the
software in terms of data modeling and data handling in general terms. Section 3 introduces
the software classes at the basis of D-STEM. Sections 4, 5 and 6 illustrate software usage and
capabilities considering the three case studies implemented in the above mentioned demo,
which are based, respectively, on univariate, multivariate and data fusion models. Section
7 describes three options for handling large data sets and in particular tapering, distributed
computing and software configuration to reduce the computational burden. Conclusions are
given in Section 8.

2. Software description

2.1. Modeling capabilities

The parametric statistical model implemented in D-STEM is based on latent space-time
random variables and space-time varying coefficients. The varying coefficients can be either
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observed covariates or the loadings derived from some basis functions. The model, thus, can
reach a high level of flexibility and it is suitable for modeling variables over large geographic
regions.

The latent spatial random variables are modeled as Gaussian random fields with a Matérn
correlation function and, in the case of multiple variables, the spatial cross-correlation is mod-
eled through the linear coregionalization model (LCM). On the other hand, time is assumed
to be discrete and it is modeled through latent temporal random variables with Markovian
dynamics.

In many applications, the observations of a variable must be calibrated using the observations
of a second variable or a given variable is observed using more than one instrument and/or
technique. For instance, remote sensing data are often calibrated using ground level data.
D-STEM allows to jointly solve the calibration and the data fusion problems. In particular,
point data and pixel/block data can be handled in a multivariate setting.

Model parameters are estimated following the maximum likelihood approach by means of the
expectation maximization (EM) algorithm. When large data sets are considered, the tapering
approach can be used in order to obtain sparse variance-covariance matrices reducing the
computing time. If a computer cluster is available, model estimation can be performed in a
distributed manner exploiting all the available CPU as well as CPU cores.

Details on the mathematical structure of the model at the basis of D-STEM are given in the
following sections while model estimation formulas and their derivation can be found in Fasso
and Finazzi (2013) and references therein.

2.2. Data handling

Multivariate space-time data sets are challenging as, in general, each variable can be observed
at different spatial locations and missing data are the rule rather than the exception. D-STEM
is able to handle heterotopic data sets where each variable is observed at possibly different
sets of spatial locations. The sets of spatial locations or the grids of pixels are assumed to be
time invariant. As a consequence, the single observation is considered to be missing if it is
not observed at a given time step. Missing data, however, are automatically handled without
the need of data imputation or interpolation.

2.3. Model output

The result of model estimation consists of the values of the estimated parameters, their
variance-covariance matrix and the observed data log-likelihood. Moreover, cross-validation
mean squared error can be obtained for each variable following a 2-fold cross-validation ap-
proach. The estimated model is eventually used to dynamically map each variable at high
spatial resolution over the geographic region.

3. Software structure

D-STEM is based on the object oriented paradigm. Data handling and analysis are thus per-
formed by creating objects from the D-STEM classes and by calling the appropriate methods.
The following list describes the classes that the end user should manage.
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¢ Data handling
— ‘stem_varset’ — the class contains the observed data of all the variables and the
loading coeflicients;

— ‘stem_grid’ — the class contains all the information related to the sampling loca-
tions of a single variable;

— ‘stem_gridlist’ — the class is the collector of the stem_grid objects for all the
variables;

— ‘stem_datestamp’ — the class contains the information related to the date and time
of the observations;

— ‘stem_data’ — the class is the collector of the ‘stem_varset’, ‘stem_gridlist’ and
‘stem_datestamp’ objects and it provides methods for preliminary data manipu-
lation.

e Model and model estimation
— ‘stem_par’ — the class contains the structure and the values of the model parame-

ters;

— ‘stem_model’ — the class is the collector of the ‘stem_data’ and the ‘stem_par’
objects and it provides methods for model estimation;

— ‘stem_EM_options’ — the class includes the options of the EM algorithm used for
model estimation;

— ‘stem_crossval’ — the class contains the information needed for cross-validation
and the cross-validation result;

— ‘stem_sim’ — the class is used to simulate a data set from a given model.
e Model estimation result

— ‘stem_EM_result’ — the class contains the result of the EM estimation;
— ‘stem_kalmansmoother_result’ — the class contains the output of the Kalman
smoother implemented within the EM algorithm.
o Kriging
— ‘stem_krig’ — the class includes all the information needed for mapping a variable
over space and time using a dynamic kriging technique;

— ‘stem_krig_result’ — the class contains the result of kriging.
o Auxiliary

— ‘stem_misc’ — the class provides miscellaneous methods used by the mother classes.
All the methods of the class ‘stem_misc’ are static which implies that they can be
called without creating an object of class ‘stem_misc’.

Details on all class constructors, properties and input/output arguments can be displayed
using the command doc <class_name> in the MATLAB environment.
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4. Univariate model

The first case study concerns mapping the concentration of daily average nitrogen dioxide
(NOg) over Northern Italy for 2009, which is measured by n; = 194 ground level monitoring
stations irregularly located over the geographic region. Three covariates are considered: wind
speed, Tyind(s,t), which is a space-time covariate, land elevation, xj4,4(s), which is a purely
spatial covariate and the dummy 24, (t) for Sunday, which is purely temporal.

The following model for the response variable yno,(s,t) observed at spatial location s and
time ¢ is considered:

YNO, (S, t) = xwind(sa t)ﬁl + $lcmd(s)52(sa t) + CCsun(t)Bi% + Z(t) + 5(Sa t)7 (1)

where f3;,j = 1,...,3 are coefficients to be estimated, while z(t) is a stochastic time trend.
Note that, z;4,4(s) has a stochastic varying coefficient 53(s,t) = 2 + aw(s,t) where 35 is the
global effect of land elevation on NOy while aw(s,t) is the random “variation” of S specific
to location s and time ¢. Since w(s,t) has unit variance, « is a scale parameter that can be
tested to assess whether [a(s, t) is constant or not. Finally, z(¢) is a scalar Markovian process
modeling the temporal persistence of the pollutant while £(s, t) is the measurement error.

4.1. Model description

The model in Equation 1 is a special case of the following general univariate model imple-
mented in D-STEM:
y(s,t) = pu(s,t) +wis, t) + (s, 1), (2)

where y(s,t) is the scalar observation at time ¢ € {1,...,T} and spatial location s € D.
Depending on the coordinate system of the data, two options are available, namely D C R2
or D C S?, where S? is the sphere in 3.

In Equation 2, pu(s,t) represents the following fixed effect model:
,U,(S, t) =Xg (S7 t)lav (3)

where xg(s,t) is a 1 x b dimensional vector of known coefficients and 3 is to be estimated.
Moreover w(s,t) represents the following random effect model:

ws,t) =Y ogaj(s, t)w;(s,t) + Xq(s, t)z(t), (4)

j=1
where x(s,t),j = 1,...,c, and x,(s,t) are scalars and a 1 x p dimensional vector of known
coefficients, respectively, while aj, 7 = 1,..., ¢, are to be estimated.

The p-dimensional latent component z(¢) has the following Markovian dynamics:
z(t) = Gz(t — 1) + n(t)

with transition matrix G assumed to have eigenvalues smaller than 1 in absolute value and
innovations n(t) ~ Np(0,X,). Eventually the variables w;j(s,t) are zero-mean and unit-
variance independent Gaussian processes uncorrelated over time but correlated over space
with Matérn spatial covariance function

plls = 15650) = s (VL) i (var B =l (5)
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where ||s — s'|| is the distance between two generic spatial locations, §; > 0 and v > 0 are
parameters, I' is the gamma function and K, is the modified Bessel function of the second
kind. Finally, (s, t) is a zero-mean Gaussian process uncorrelated over space and time with
variance o2. For this model setup, the parameter set to be estimated is

’(p = {/67027 a7 07 G7V7]}7

where o = {av1,...,ac},0 = {01,...,0.} and vy, is the p(p+1)/2 dimensional vector of unique
elements of ;. Note that, for each Matérn correlation function used, only the parameter 0,
is estimated while the smoothing parameter v is fixed and can be chosen as 1/2, 3/2 or 5/2.

The model in Equation 2 extends the model developed in Fasso and Finazzi (2011) by allowing
the interaction between the latent spatial variables w;(s,t) and the loading coefficients x(s, t)
and by allowing y(s,¢) to be missing. The structure of the model in Equation 2 is quite
general and special cases thereof have already been used. For instance, Katzfuss and Cressie
(2011) consider a similar model that includes both covariates and loading coefficients from
basis functions. Although the software considers space-time varying z;(s,t), and allows to
implement space-time varying coefficients such as the (§3(s, ) in our case study, the simpler
setup given by z;(s,t) = 1 is quite common to model a spatial trend, see for example Fasso
(2013) where spatial correlation is considered a nuisance parameter. In general, we suggest to
use coefficients x(s,t) which are fixed in space and/or time. This is because w;j(s, ) is itself
space-time variant and identifiability issues may occur.

In our case study, the vector xg(s, t) includes all the covariates in Equation 1, x,(s,t) = 1 while
x1(s) is equal to the land elevation. Moreover, v = 1/2, namely the exponential correlation
function is considered.

4.2. Software implementation

This paragraph describes the relevant lines of code of the demo_section4.m script related to
the case study previously introduced. The script can be executed choosing option number
one from the dstem_demo.m script.

It is assumed that observations and covariates are stored in MATLAB format files. In general,
the user has to take care of loading the data from external sources and formatting them as
requested by the class constructors.

Although not mandatory, the temporary data structure ground will be used to pass the data to
the class constructors. In the following lines of code, data related to the NO2 concentration are
loaded into the structure ground along with the variable name. Note that the term “ground”,
referring to the monitoring network data, is used to contrast them with “remote” sensing data
of Section 6.

>> load ../Data/no2_ground.mat

>> ground.Y{1} = no2_ground.data;
>> ground.Y_name{1} = 'no2 ground'’;
>> n1 = size(ground.Y{1}, 1);

>> T = size(ground.Y{1}, 2);

The no2_ground.data variable is a n; X 1" matrix, which is allowed to include NaN values
for the missing data, where n; is the total number of sampling locations and T is the total
number of time steps.
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Similarly, the loading coefficients are loaded into the same ground structure. Note that all
the loading coefficients are supposed to be observed without error and/or missing data for
each day and each spatial location. The loading coefficients related to 3 are directly obtained
from the covariates as detailed below.

>> load ../Data/no2_ground_covariates.mat
>> ground.X_beta{l} = X;
>> ground.X_beta_name{1} = {'wind speed', 'elevation', 'sunday'};

The variable X is a n; x b x T array, with b = 3 the number of loading coefficients. Note
that, since wind speed is time-variant, the other covariates are replicated 1" times in order to
fill the third array dimension. If all the loading coefficients are time-invariant, however, X is
simply a n; X b matrix.

The loading coefficients related to z(t) are constant and equal to 1 and they are defined in
the following way.

>> ground.X_z{1} = ones(nl, 1);
>> ground.X_z_name{1} = {'constant'};

Finally, the loading coefficients x1(s,t) for the latent spatial variable wi(s,t) are extracted
from ground.X_beta{1} as it corresponds to the land elevation covariate.

>> ground.X_p{1} = ground.X_beta{1}(:, 2, 1);
>> ground.X_p_name{1} = {'elevation'};

The suffix “_p” in X_p and X_p_name refers to ground data, which are assumed to be point
data, and it is necessary to differentiate them from the remote data of Section 6, which are
assumed to be block or pixel data. In general, X_p is a ny x 1 X T' X ¢ array. Since, in this
case study, ¢ = 1 and land elevation is time invariant, then X_p is simply a n; x 1 vector.

At this point, the obj_stem_varset_p object of class ‘stem_varset’ can be created using the
class constructor as follows.

>> obj_stem_varset_p = stem_varset(ground.Y, ground.Y_name, [], [],
ground.X_beta, ground.X_beta_name, ground.X_z, ground.X_z_name,
ground.X_p, ground.X_p_name);

The empty input arguments relate to the pixel data which, in this case study, are not consid-
ered.

The next step is to create an object of class ‘stem_grid’ and to add it in the following way
to the obj_stem_gridlist_p object of class ‘stem_gridlist’.

>> obj_stem_gridlist_p = stem_gridlist();

>> ground.coordinates{1} = [no2_ground.lat, no2_ground.lon];

>> obj_stem_grid = stem_grid(ground.coordinates{1}, 'deg', 'sparse’,
'point');

>> obj_stem_gridlist_p.add(obj_stem_grid);
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The constructor of the class ‘stem_grid’ requires to specify some information about the grid
and in particular the unit of measure (degrees, kilometers or meters), the configuration of the
spatial locations (sparse or regular) and the grid type (points or pixels).

The temporal information of the observed data is provided as follows and it is used when
model output is displayed.

>> obj_stem_datestamp = stem_datestamp('01-01-2009 00:00',
'31-12-2009 00:00', T);

Note that both date and time must be provided regardless of the temporal granularity of the
data (hourly, daily, etc.).

The objects so far created are necessary for the constructor of the class ‘stem_data’ to produce
the obj_stem_data object as follows.

>> shape = shaperead('../Maps/worldmap');
>> obj_stem_data = stem_data(obj_stem_varset_p, obj_stem_gridlist_p, [],
[], obj_stem_datestamp, shape);

The third and fourth input arguments are empty as they are not required for this case study
and will be discussed in Section 6. A custom map of the geographic region can be loaded from
a shape file and passed as input argument to the constructor. A map of the world country
boundaries is provided along with the case study data.

Along with the information about the type of the spatial correlation function (exponential in
this case), the obj_stem_data object is needed to create the obj_stem_par object of class
‘stem_par’.

>> obj_stem_par = stem_par (obj_stem_data, 'exponential');

Finally, the obj_stem_data and obj_stem_par objects are used to create the obj_stem_model
object of class ‘stem_model’.

>> obj_stem_model = stem_model (obj_stem_data, obj_stem_par);

In order to improve the numerical stability of the model estimation algorithm, observa-
tions and loading coefficients are standardized using the standardize method of the class
‘stem_data’ as follows.

>> obj_stem_model.stem_data.log_transform;
>> obj_stem_model.stem_data.standardize;

The log_transform method only acts on the response variable y(s,t) and it is used here to
reduce the distribution asymmetry.

The EM algorithm requires the model parameters to be initialized to some starting values. The
estimation result may depend on the starting values and they must be chosen carefully. In its
current version, D-STEM can automatically provide starting values only for the 3 parameter
vector. The following lines of code describe the initialization of the model parameters.
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>> obj_stem_par.beta = obj_stem_model.get_betal();

>> obj_stem_par.alpha_p = 0.6;
>> obj_stem_par.theta_p = 100;
>> obj_stem_par.v_p = 1;

>> obj_stem_par.sigma_eta = 0.2;
>> obj_stem_par.G = 0.8;

>> obj_stem_par.sigma_eps = 0.3;

>> obj_stem_model.set_initial_values (obj_stem_par) ;

Note that the theta_p parameter must be provided in kilometers regardless of the unit of
measure of the grid. The matrix v_p describes the cross-correlation between multiple variables
and it is equal to 1 for the univariate case.

At this point, model estimation can be performed by calling the method EM_estimate of the
class ‘stem_model’ which requires as input argument an object of class ‘stem_EM_options’.

>> exit_toll = 0.001;

>> max_iterations = 100;

>> obj_stem_EM_options = stem_EM _options(exit_toll, max_iterations);
>> obj_stem_model.EM_estimate (obj_stem_EM_options);

>> obj_stem_model.set_varcov;

>> obj_stem_model.set_logL;

The variance-covariance matrix of the estimated model parameters and the observed data log-
likelihood are evaluated after model estimation using the methods set_varcov and set_logL
of the class stem_model. All the relevant information about model estimation can be found in
the internal object stem_EM_result which can be accessed as a property of the obj_stem_model
object. After model estimation, the obj_stem_model object is saved in the subfolder Output
of the Demo folder.

Using the print method of class ‘stem_model’, the following output is obtained.

sk sk ok sk ok ok s ok ok sk ok ok sk ok sk ok ok sk ok ok sk ok ok ok ok ok ok sk ok ok
* Model estimation results *

stk ok sk ok sk sk ok ok sk ks ok sk kb sk ok sk sk sk sk ok
* Tapering is not enabled

* Observed data log-likelihood: -13889.064

* Beta coefficients related to the point variable no2 ground

'Loading coefficient' 'Value' 'Std’

'wind speed' '-0.175" '0.004"
'elevation' '-0.284" '0.008'
'sunday' '-0.102' '0.007"

* Sigma_eps diagonal elements (Variance)
'Variable' 'Value' 'std!
'no2 ground' '0.392' '0.002'
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* 1 fine-scale coregionalization components w_p

* alpha_p elements:
(] 'elevation'
'no2 ground' '+0.590 (Std 0.005)'

* theta_p elements:
'Coreg. component' 'Value [km]' 'std [km]'
'1st’ '31.42" '0.83"

* v_p matrix for the 1st coreg. component:
(] 'no2 ground'
'no2 ground' '+1.00'

* Transition matrix G:

(1 'no2 ground - constant'
'no2 ground - constant' '+0.95 (Std 0.02)'
* Sigma_eta matrix:
(1 'no2 ground - constant'
'no2 ground - constant' '+0.03 (Std 0.01)"'

The standard deviations related to each estimated model parameter are directly obtained
from the diagonal elements of the variance-covariance matrix.

The estimate of the latent temporal variable z(t) is stored in the stem_kalmansmoother_result
object which is a property of the stem_EM_result object. The graph of Figure 1 shows
the estimated temporal variable and it has been obtained calling the method plot of class
‘stem_kalmansmoother_result’.

The estimated model is eventually used to map the NO2 concentration over the geographic
region following the kriging approach. Since the loading coefficients of this case study consist
of a set of covariates, the same covariates must be available for the entire region as a regular
grid with the proper spatial resolution.

The first step toward mapping is to create the obj_stem_krig object of class ‘stem_krig’ in
the following way.

>> obj_stem_krig = stem_krig(obj_stem_model) ;

Since the kriging output is evaluated over a regular grid, the obj_stem_krig_grid object of
class ‘stem_grid’ is created as follows.

>> load ../Data/kriging/krig_elevation_005;

>> krig_coordinates = [krig_elevation.lat(:), krig elevation.lon(:)];

>> obj_stem_krig_grid = stem_grid(krig_coordinates, 'deg', 'regular’,
'pixel’, [80, 170], 'square', 0.05, 0.05);

As the grid is regular, the dimension of the grid must also be provided (80 rows and 170
columns) as well as the shape of the pixels (square) and their dimension (0.05 x 0.05 degrees).
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Figure 1: Estimated latent variable z(t) and 95% confidence interval for the univariate model.

At this point, two important aspects must be considered. The first one is related to the grid
pixels. If the variable should not be predicted over some areas of the geographic region, then
it is possible to provide a mask of the pixels that must be excluded. This allows to reduce
computing time.

The second aspect is related to the dimension of the grid and memory usage. If the grid is large
and/or very dense, the number of pixels can be high and the loading coefficients may require
a lot of memory when loaded. In order to avoid memory problems, the loading coefficients
(related to the non-masked pixels) can be saved on disk within different blocks. Kriging is then
executed block by block without the need of loading the entire data set of loading coefficients.
On the other hand, when pixels are low in number, the user can implement kriging providing
all the coefficients at once. All the details about the two approaches are found within the
help of the class ‘stem_krig’. In this paper, the first approach is considered as more complex
in terms of data structure.

Kriging is executed by calling the method kriging of the class ‘stem_krig’ as it follows.

>> krig mask = krig _elevation.data_mask(:);
>> back_transform = 1;

>> no_varcov = 0;

>> block_size = 1000;

>> X_krig = '../Data/kriging/blocks';

>> obj_stem_krig_result = obj_stem_krig.kriging('no2 ground’,
obj_stem_krig grid, block_size, krig_mask,

X_krig, back_transform, no_varcov) ;

If the observations have been log-transformed and/or standardized, the back_transform ar-
gument allows to produce the kriging output in the original unit of measure. If it is not
necessary to estimate the variance of the prediction, the no_varcov argument can be set to

11
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1 saving computing time. Finally, note that the directory where the blocks are stored is
provided as well as the size (number of grid pixels) of each block.

The kriging result is saved in the obj_stem_krig_result object and the plot method can
be used to display the result on a map. For example, the estimated NOs concentration and
the respective standard deviation for April 10, 2009 are depicted in Figure 2. Note that,
since w(s,t) and x,,4(s) are interacted, the spatial pattern of the standard deviation does
not reflect the monitoring network, that is, the standard deviation is not necessarily lower
near the monitoring stations.

5. Multivariate model

In order to demonstrate the multivariate capabilities of D-STEM, a simple bivariate case is
introduced. A more complex case study with three variables can be found in Finazzi et al.
(2013).

In addition to the NO2 data of the previous section, measurements of particulate matters
concentration PMs 5 coming from ng = 44 monitoring stations over the same geographic
region are considered. Note that only a subset of the PMy 5 measurements are co-located to
the NO2 measurements. D-STEM, however, allows for fully or partially heterotopic networks.
In this way, the spatial information of the more dense NOy monitoring network may be used
to improve PMy 5 mapping.

The response variable is now y(s,t) = (yn0,(s,t), ypas s (s,t)) T and the model in Equation 1
is extended by introducing a bivariate temporal component z(¢) and a bivariate space-time

component w(s,t) modeled through an LCM. The same covariates of the previous section are
considered for both NOy and PMs 5.

5.1. Model description

Multivariate models are tackled considering the following straightforward extension of the
model in Equation 2:

v(s,t) = p(s,t) + w(s,t) + (s, 1), (6)
which unifies the modeling approaches developed in Zhang (2007), Fasso and Finazzi (2011)
and Finazzi et al. (2013).

In particular, extending fixed and random effect models of Equations 3 and 4, we have
u(s,t) = X,B(Svt)/@ and

w(s,t) =Y a; Ox;(s,1) ©w(s, 1) + Xy(s, )z(t), (7)
Jj=1

where the symbol ® represents the element by element or Hadamard product; moreover
y(s,t), aj, xj(s,t), wj(s,t), j=1,...,c and e(s, t) are ¢ x 1 vectors, while

Xg(s,t) = blockdiag(xgi(s,t),...,Xg4(s,1)),
X, (s,t) = blockdiag(x,1(s,t),...,Xzp(s,1)),
where blockdiag is the block diagonal building operator. The vectors of loading coefficients

Xg,i(s,t) have dimensions 1 x b; for ¢ = 1,..., ¢ while the vectors x;, j(s,t) have dimensions
1xagfork=1,...,p.
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Figure 2: Estimated NOg concentration [ug - m~3] below 800 m of elevation (top) and stan-
dard deviation (bottom) for April 10, 2009 over Northern Italy using the univariate model.
Monitoring stations are depicted by the ‘+’ symbol.

In Equation 7, each multivariate spatial latent variable w;(s,t), for each fixed t, is modeled
as a LCM with the following spatial variance-covariance matrix functions

Lj(lls = 'll) = Vip(lls = s'l]; 65, v), (8)

where V; is a valid ¢ X g correlation matrix and j = 1,...,c. On the other hand, the elements
of e(s, t) are independent and normally distributed with variances 012, 1=1,...,q. It follows
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that the parameter set for the model in Equation 6 is

¢ = {B) 0-27 Oé, 07 \Z Ga V’n}7
2 2)T

where o2 = (02,.. ., o), ais the cg X 1 dimensional vector obtained by stacking ..., a.
and v is the ¢g(q — 1)/2 x 1 dimensional vector obtained by stacking the unique and non
diagonal elements of V1,..., V.

5.2. Software implementation

This paragraph describes the relevant lines of code of the demo_section5.m script. The
script can be executed choosing option number two from the dstem_demo.m script. Since
demo_section4.m of Section 4 and demo_sectionb.m are similar, only the differences induced
by the multivariate setting are detailed here.

The additional data related to the PMs 5 variable are loaded into the temporary structure
ground in the following way.

>> load ../Data/pm25_ground.mat

>> ground.Y{2} = pm25_ground.data;
>> ground.Y_name{2} = 'pm2.5 ground’;
>> n2 = size(ground.Y{2}, 1);

Note that the second cell of the cell arrays Y and Y_name is used. The same strategy is followed
for X_beta, X_beta_name and so further. The coordinates of each variable must be provided
separately and added to the obj_stem_gridlist_p object as follows.

>> ground.coordinates{1} = [no2_ground.lat, no2_ground.lon];

>> ground.coordinates{2} = [pm25_ground.lat, pm25_ground.lon];

>> obj_stem_gridl = stem_grid(ground.coordinates{1}, 'deg', 'sparse',
'point’');

>> obj_stem_grid2 = stem_grid(ground.coordinates{2}, 'deg', 'sparse’,
'point’');

>> obj_stem_gridlist_p.add(obj_stem_gridl);

>> obj_stem_gridlist_p.add(obj_stem_grid2);

As in Section 4.2, the suffix “_p” refers to ground data because it is necessary to differentiate
then from the remote data of Section 6. Now, the obj_stem_par object is created in the
following way.

>> flag_time_diagonal = O;
>> obj_stem_par = stem_par(obj_stem_data, 'exponential', [],
flag_time_diagonal) ;

Here, z(t) is bivariate (p = 2) and the flag_time_diagonal flag is introduced and used to
specify if the matrices G and X,, are diagonal or not. The following lines of code describe
the initialization of the model parameters for the bivariate case.

>> obj_stem_par.beta = obj_stem_model.get_betal();
>> obj_stem_par.alpha_p = [0.6 0.6]';
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obj_stem_par.theta_p = 100;

obj_stem_par.v_p = [1 0.6; 0.6 1];

>> obj_stem_par.sigma_eta = diag([0.2 0.2]);
>> obj_stem_par.G = diag([0.8 0.8]);
>> obj_stem_par.sigma_eps = diag([0.3 0.3]);

>>

obj_stem_model.set_initial_values(obj_stem_par);

Model estimation is thus obtained as in the previous section and it gives the following results.

>k 5k >k 3k 5k >k 5k >k 3k 5k >k 5k >k 3k 5k %k 5k >k 3k 5k >k 5k >k >k >k %k 5k %k >k %k %k k

*

Model estimation results *

>k 5k >k 3k 3k >k 5k >k 3k 5k >k 5k >k 3k 5k 3k 5k >k 5k >k %k 5k >k >k >k %k 5k %k >k %k %k k

* Tapering is not enabled

Observed data log-likelihood: -14468.064

Beta coefficients related to the point

variable no2 ground

'Loading coefficient' 'Value' 'Std!

'wind speed' '-0.174" '0.004'
'elevation' '-0.285" '0.008"
'sunday’ '-0.103" '0.007"

Beta coefficients related to the point

variable pm2.5 ground

'Loading coefficient' 'Value' 'Std!

'wind speed' '-0.150' '0.007"
'elevation' '-0.203" '0.009"
'sunday' '-0.012" '0.013"

Sigma_eps diagonal elements (Variance)

'Variable' 'Value' 'Std'
'no2 ground' '0.394"' '0.002'
'pm2.5 ground' '0.322" '0.004'

1 fine-scale coregionalization components w_p

alpha_p elements:
(] 'elevation'

'no2 ground'

(] 'elevation'

'pm2.5 ground'

theta_p elements:
'Coreg. component'
'1st!

'Value [km]'
'37.08"'

'+0.603 (Std 0.005)'

'+0.341 (Std 0.009)'

'Std [km]'
'0.95'

v_p matrix for the 1st coreg. component:
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(] 'no2 ground' 'pm2.5 ground'
'no2 ground' '+1.00" '+0.70 (Std 0.02)"'
'pm2.5 ground' '+0.70 (Std 0.02)' '+1.00"

* Transition matrix G:

(] 'no2 ground' 'pm2.5 ground'
'no2 ground' '+1.00 (Std 0.03)' '-0.05 (Std 0.02)'
'pm2.5 ground ' '+0.29 (Std 0.07)' '+0.72 (Std 0.05)'

* Sigma_eta matrix:

(] 'no2 ground' 'pm2.5 ground'
'no2 ground' '+0.03 (Std 0.01)' '+0.03 (Std 0.01)'
'pm2.5 ground' '+0.03 (Std 0.01)' '+0.10 (Std 0.01)'

Figure 3 shows the components of the estimated z(t) related to both the variables. The graphs
are obtained by calling the method plot of the class ‘stem_kalmansmoother_result’. Daily
concentration maps of both variables can be obtained as in the previous section.

6. Data fusion model

In order to demonstrate the data fusion capability of D-STEM, the case study of the previous
section is extended by introducing remote sensing observations covering the same geographic
region. In particular, the tropospheric column density of NOy (see Fasso and Finazzi 2013)
and the so called aerosol optical thickness (AOT), which is known to be related to the ground
level concentration of PMs 5 (Wang and Christopher 2003), are considered. The data are
provided as daily block averages over a regular grid with spatial resolution 1/4° that covers
the entire globe.

Remote sensing data may represent a valuable data source for estimating the ground level
variables after statistical calibration based on the available ground level data. In doing this, a
change of support problem (COSP) must be solved (Gotway and Young 2002). Depending on
the aim of the data analysis, the COSP can also be considered as a data fusion or downscaling
problem. Applications are not restricted to air quality remote sensing but include the case of
physical model outputs and the case of environmental areal data in general.

The next paragraph discusses a general data fusion model suitable to jointly model ground
level and remote sensing data solving the COSP.

6.1. Model description

The above remote sensing data can be considered a special case of block or pixel data which
are denoted here by yB(B,t), where B C D is the generic grid pixel. With this notation, the
model of Equation 6 is extended by introducing a new equation for remote sensing data and
a downscaling link term into the ground data equation as follows:

yB(th):uB(th)+wB(Bat)+€B(th) (9)
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Figure 3: Estimated latent variable z(¢) and 95% confidence interval: NOg component (top)
and PMy 5 component (bottom).

and

y(s,t) = p(s,t) + w(s,t) + @w(s,t) + (s, t). (10)

In Equation 9, the fixed and random effects have a structure similar to Equation 6 with ¢ = 1,
namely
nB(B,t) = X5(B,1)3°

and
wB(B,t) = a® 0 xB(B,t) o wB(B,t) + X5 (B, 1)z (). (11)
The resolution change between point and block data is defined by
B L[
wo(B,t) = — [ W(s,t)ds, (12)
1Bl J5

where W(s,t) is a zero-mean Gaussian process with variance-covariance matrix function as
defined in Equation 8 with parameters VB and 8. Similarly to point data, the measurement
error vector eB(B, 1) is assumed to be uncorrelated over space and time and across variables

with variance vector 03 = (03 {,...,0%3 q)T.

In Equation 10, the additional remote-ground link term is given by

w(s,t) = aBP o xBP(s, 1) © w(s, 1), (13)

17
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where, the parameter vector aB” gives the intensity of the correlation between pixel and point
variables, which can be modeled by the ¢ x 1 vector of loading coefficients xBP (s, ¢).

Note that zB(t) is an additional Markovian component as the temporal dynamics may differ
beween remote and ground data.

The parameter set for the data fusion model is
w = {B? BB7 0-27 0‘%7 a? aBP? aB? 97 V’ 087 VB’ G7 VT]}’

where vB is the q(¢—1)/2x1 dimensional vector obtained by stacking the unique, non-diagonal
elements of VB.

In many environmental applications, the grid of pixels is regular (all the pixels have the same
shape and dimension), the pixels are small compared to the geographic region and the process
W (s, t) is smooth. In this case the approximations wB(B,t) ~ w(s*,t) and w(s, ) ~ W(s*, 1),
where s* is the center of B, are reasonable. D-STEM implements these approximations
avoiding the time-consuming computation of the integral in Equation 12 for each pixel B
and each iteration of the EM algorithm. Possible errors induced by this approximation are
covered by €B(B,t).

The model in Equations 9 and 10 is similar to the Gaussian Markov random field smoothed
downscaler developed in Berrocal, Gelfand, and Holland (2012), with the main difference that
D-STEM handles multivariate data and use Gaussian processes instead of Gaussian Markov
random fields. In fact Gaussian processes, thanks to the EM algorithm, are more suitable for
handling extensive missing data which often arise in remote sensing.

6.2. Software implementation

This paragraph describes the demo_section6.m script which can be executed choosing option
number three from the dstem_demo.m script. Only the code related to the pixel variables and
the downscaler are discussed here, the reader being referred to the previous Section 5.2.

A simple version of the model in Equation 9 is considered here. In particular, remote sensing
data are described by the equation

yB(B,t) = o® © wB(B,t) + €B(B, 1), (14)

and, similarly, x3P (s, ) = 1 is used in Equation 13. Hence a constant vector is added to the
temporary data structure ground of Section 5.2 as follows.

>> ground.X_bp{1} = ones(nl, 1);
>> ground.X_bp_name{1} = {'constant'};
>> ground.X_bp{2} = ones(n2, 1);
>> ground.X_bp_name{2} = {'constant'};

The observations related to the pixel variables are loaded from disk as detailed in the following
lines of code.

>> load ../Data/no2_remote_025.mat
>> remote.Y{1} = no2_remote.data;
>> remote.Y_name{1} = 'no2 remote';
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>> ml = size(remote.Y{1}, 1);

>> load ../Data/aot_remote_025.mat
>> remote.Y{2} = aot_remote.data;
>> remote.Y_name{2} = 'aot remote’;
>> m2 = size(remote.Y{2}, 1);

Note that an additional temporary data structure remote is used. Since the model in Equa-
tion 14 does not consider loading coefficients for the pixel variables, the constant vector
xB(B,t) = 1 is provided in the following way.

>> remote.X_bp{1} = ones(ml, 1);
>> remote.X_bp_name{1} = {'constant'};
>> remote.X_bp{2} = ones(m2, 1);
>> remote.X_bp_name{2} = {'constant'};

A second object of class ‘stem_varset’ is then created.

>> obj_stem_varset_b = stem_varset(remote.Y, remote.Y_name, remote.X_bp,
remote.X_bp_name) ;

Following the same strategy, a second object of class ‘stem_gridlist’ is created and it is
used as a collector for the objects of class ‘stem_grid’ related to the pixel variables.

>> obj_stem_gridlist_b = stem_gridlist();

>> remote.coordinates{1} = [no2 remote.lat(:), no2_remote.lon(:)];

>> remote.coordinates{2} [aot_remote.lat(:), aot_remote.lon(:)];

>> obj_stem_gridl = stem_grid(remote.coordinates{1}, 'deg', 'regular',
'pixel’, size(no2_remote.lat), 'square', 0.25, 0.25);

>> obj_stem_grid2 = stem_grid(remote.coordinates{2}, 'deg', 'regular’,
'pixel’, size(aot_remote.lat), 'square', 0.25, 0.25);

>> obj_stem_gridlist_b.add(obj_stem_gridl);

>> obj_stem_gridlist_b.add(obj_stem_grid2);

When multiple pixel variables are considered, it is possible to decide whether wB (B, t) is cross-
correlated or not. If not, then the spatial correlation function of each variable is parametrized
by its own parameter vector 9:3, i=1,...,q. The additional flag_pixel_correlated flag is
thus introduced and it is used as input argument in the creation of the obj_stem_data and
obj_stem_par objects.

>> flag_pixel_correlated = 0;

>> flag_time_diagonal = 0;

>> obj_stem_data = stem_data(obj_stem_varset_p, obj_stem_gridlist_p,
obj_stem_varset_b, obj_stem_gridlist_b, obj_stem_datestamp,
[1, [1, [1, flag_pixel_correlated);

>> obj_stem_par = stem_par(obj_stem_data, 'exponential',
flag_time_diagonal);

>> obj_stem_model = stem_model (obj_stem_data,obj_stem_par);

The model parameters related to the pixel variables are initialized in the following way.

19
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>> obj_stem_par.alpha_bp = [0.4 0.4 0.8 0.8]"';
>> if flag_pixel_correlated
obj_stem_par.theta_b = 100;
obj_stem_par.v_b = [1 0.6; 0.6 1];
else
obj_stem_par.theta_b = [100 100]';
obj_stem_par.v_b = eye(2);
end
>> obj_stem_par.sigma_eps = diag([0.3 0.3 0.3 0.3]);
>> obj_stem_model.set_initial_values(obj_stem_par);

Note that, depending on the value of flag_pixel_correlated, the parameter structure is
different. Moreover, alpha_bp is a 2¢ x 1 vector that includes both aB” and of while
sigma_eps is a 2¢ X 2¢q diagonal matrix, where 2q is the total number of variables.

Model estimation and kriging are performed using the same lines of code detailed in the
previous sections and the estimation result is the following.

sk sk ok ok ok ok ok ok ok ok ok ok sk ok sk ok ok sk sk ok sk ok ok s ok ok sk ok ok sk ok ok
* Model estimation results *

stk sk ok skeokook sk ok skl sk ok skl sk ok ok skok ok sk ok ok okok
* Tapering is not enabled

* Observed data log-likelihood: 7572.506

* Beta coefficients related to the point variable no2 ground

'Loading coefficient' 'Value' 'Std’

'wind speed' '-0.169' '0.004"
'elevation' '-0.252" '0.006"
'sunday' '-0.092" '0.007"

* Beta coefficients related to the point variable pm2.5 ground

'Loading coefficient' 'Value' 'Std!

'wind speed' '-0.142" '0.008"
'elevation' '-0.229' '0.008'
'sunday’ '-0.018" '0.014"

* Sigma_eps diagonal elements (Variance)

'Variable' 'Value' 'Std’
'no2 ground' '0.383" '0.002'
'pm2.5 ground' '0.272" '0.004"
'no2 remote' '0.024" '0.001"
'aot remote' '0.065" '0.003'
* alpha_bp elements
'Variable' 'Value' 'Std!
'no2 ground' '+0.121" '0.004"

'pm2.5 ground' '+0.314" '0.009"
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'no2 remote' '+0.891" '0.008!
'aot remote' '+0.999! '0.015"

* Pixel data are NOT cross-correlated.

* Theta_b elements:

'Variable' 'Value [km]' 'Std [km]'
'no2 remote' '118.896" '2.610'
'aot remote' '156.490' '5.348'"

* 1 fine-scale coregionalization components w_p

* alpha_p elements:

(] 'elevation'

'no2 ground' '+0.555 (Std 0.005)"
(] 'elevation'

'pm2.5 ground' '+0.302 (Std 0.008)"

* theta_p elements:
'Coreg. component' 'Value [km]' 'Std [km]'
'1st! '21.97" '0.62'

* v_p matrix for the 1st coreg. component:

(] 'no2 ground' 'pm2.5 ground'
'no2 ground' '+1.00' '+0.71 (Std 0.03)'
'pm2.5 ground' '+0.71 (Std 0.03)' '+1.00"

* Transition matrix G:

(] 'no2 ground' 'pm2.5 ground'
'no2 ground' '+0.95 (Std 0.04)' '-0.01 (Std 0.03)'
'pm2.5 ground' '+0.37 (Std 0.08)' '+0.63 (Std 0.06)'

* Sigma_eta matrix:

(] 'no2 ground' 'pm2.5 ground'
'no2 ground' '+0.03 (Std 0.01)' '+0.03 (Std 0.01)'
'pm2.5 ground' '+0.03 (Std 0.01)' '+0.10 (Std 0.01)'

The first g elements of the vector alpha_bp express how well the latent variable WB(B,t),
which describes the pixel observations, is also able to describe the respective point observations
(net of the other model terms). When observations and loading coefficients are standardized, a
value close to zero implies poor correlation while a value close to one implies high correlation.
In this case study the values are 0.121 and 0.314 for NOy and PMsy 5, respectively, which
correspond to low/mild correlations.

Pixel variables are considered as secondary information useful to improve the mapping of the
point variables. For this reason, kriging is not provided for pixel variables. Nevertheless,
the estimated pixel variables, namely W?(B,t), are obtained over the original grid as a by-

21



22 D-STEM: Analysis and Mapping of Environmental Space-Time Variables

product of model estimation. The following lines of code are used to plot the observed pixel
variable NOy and the estimated WB(B,t) which is stored in the property E_wb_y1 of the
stem_EM_result object.

>> obj_stem_model.stem_data.plot('no2 remote', 'pixel', 25);

>> gize = obj_stem_model.stem_data.stem_gridlist_b.grid{l}.grid_size;

>> E_wb_yl = obj_stem_model.stem_EM_result.E_wb_y1(1l:size(1) * size(2), 25);

>> coordinate = obj_stem_model.stem_data.stem_gridlist_b.grid{1}.coordinate;

>> lat = coordinate(:, 1);

>> lon = coordinate(:, 2);

>> lat = reshape(lat,size);

>> lon = reshape(lon,size);

>> E_wb_yl = reshape(E_wb_yl, size);

>> stem_misc.plot_map(lat, lon, E_wb_yl, obj_stem_model.stem_data.shape,
'no2 remote estimated on 25-Jan-2009', 'Longitude', 'Latitude');

The resulting maps are displayed in Figure 4. The observed pixel data are characterized by
large areas of missing data but the latent variable w®(B,t) allows to reconstruct the missing
data and to filter the observed data corrupted by noise. Moreover, since w8 (B, t) is used to
model both point data and pixel data, the reconstruction of the missing pixel data benefits
from the observed point data.

7. Large data sets handling

The statistical models that D-STEM implements are separable with respect to space and
time. If N is the total number of spatial locations where all the point variables are observed
and T is the total number of time steps, then the largest variance-covariance matrix that
D-STEM handles is only N x N. If pixel variables are also considered and the total number
of pixels where all the variables are observed is M, then the largest variance-covariance matrix
is D x D, where D = max(N, M). In many applications, however, N and D can be large and
both computing time and memory usage can increase drastically. In the following paragraphs,
three strategies that D-STEM provides for reducing computing time are discussed. Even if
these strategies are intended for large data sets, in order to keep the computing time feasible,
the same case studies of the previous sections are considered.

7.1. Tapering

The tapering approach consists of adopting a sparse variance-covariance matrix characterized
by a high percentage of zero elements (possibly higher than 90%). The idea behind tapering is
that spatial locations at great distance should not exhibit spatial correlation. Hence, tapering
forces to zero the covariances of observations at distances higher than a threshold in such a
way that the positive definiteness of the variance-covariance matrix is preserved.

When the generic variance-covariance matrix A is used to solve matrix equations in the
form Ax = b, the computing time is greatly reduced if A is sparse. The higher the matrix
sparseness the lower the computing time. In order to model spatial correlation, however,
the above mentioned threshold cannot be too low and there exists a trade-off between low
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Figure 4: Observed remote sensing NOy data (top) and reconstructed data (bottom).

computing time and good approximation of the latent Gaussian processes used to describe
the spatial correlation.
In order to implement tapering, D-STEM applies the so called one-taper tapering of Kaufman,

Schervish, and Nychka (2008) to each LCM component w;(s,t). To do this, in the spatial
correlation matrix function of Equation 8, the Matérn correlation function p is substituted by

e - 0z0-0 (12551

where ® (W) is the compactly supported radial Wendland function (Wendland and Math-
ematik 1995), with ¢ the width of the radial function.

Although the asymptotic theory of Kaufman et al. (2008) is proven for the purely spatial
univariate case, T =1 and ¢ = 1, in light of the results of Ruiz-Medina and Porcu (2014),
we conjecture here that it holds true also for the purely spatial multivariate case, T'= 1 and
q > 1, and, a fortiori, for the space-time case with large 7. Note that, unlike the so called
two-tapers tapering of Kaufman et al. (2008), the one-taper may give a biased estimate of # in
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case the tapering range ¢ is small compared to the data correlation range. However, according
to Kaufman et al. (2008), the two-tapers approach has a substantially heavier computational
burden while the one-taper approach gives better kriging performance, which is an important
aim of D-STEM.

The demo_section7_1.m script, which can be executed by choosing option number four from
the dstem_demo.m script, implements the same case study of Section 6 with tapering enabled.
In particular, tapering can be enabled by providing the width ¢ (expressed in kilometers) of
the Wendland function to the constructor of the class ‘stem_gridlist’ as follows.

>> phi_p = 50;
>> obj_stem_gridlist_p = stem_gridlist(phi_p);
>> phi_b = 200;
>> obj_stem_gridlist_b = stem_gridlist(phi_b);

The width ¢ is a property of the grids as all the variance-covariance matrices are directly
derived from the distance matrices which, in order to reduce memory usage, are also created
as sparse matrices. Also note that ¢ can be different for point and pixel data.

The output of model estimation is similar to the output reported in Section 6 and only the
relevant part is reported hereafter.

>k 5k >k 3k 5k >k 5k >k 3k 5k >k 5k >k 3k 5k 3k 5k >k 5k >k %k 5k >k >k >k %k 5k %k >k %k %k *k

* Model estimation results *
sk sk ok sk ok ok ok ok ok ok ok ok sk ok sk sk ok sk sk ok sk ok ok sk ok ok sk ok ok sk ok ok

* Tapering is enabled.
Point data tapering: 50 km
Pixel data tapering: 200 km

* Observed data log-likelihood: 6182.198

* Theta_b elements:

'Variable' 'Value [km]' 'Std [km]'
'no2 remote' '242.369' ' 8.250"
'aot remote' '365.052' '34.033"

* 1 fine-scale coregionalization components w_p

* theta_p elements:
'Coreg. component' 'Value [km]' 'Std [km]'
'1st! '198.22" '80.21"

Looking at the estimation result, it can be noted that the estimated 6 parameters, as well
as their standard deviations, are higher compared to those reported in Section 6. Moreover,
the observed data log-likelihood is lower. The tapering approach, thus, reduces computing
time but may produce biased estimates of the 6 parameters and/or estimates with a larger
uncertainty. Finally, note that tapering is intended for large data sets. The case studies
discussed in this paper are based on medium-size data sets so that the actual computing time
may be higher when tapering is enabled. The same consideration applies to the two following
strategies.
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7.2. Computing load distribution

Thanks to the separability between space and time, most of the matrix algebra operations
at the basis of the EM algorithm only involve the data of a single time step. Moreover, each
time step is independent from the previous and the next time steps. The Kalman filter itself
is implemented in such a way that some operations executed at time ¢ are independent from
the result of the operations at time ¢ — 1.

If a cluster of computing nodes is available, then model estimation can be performed in a
distributed manner. In particular, if n nodes are available and T" > n, then the data set
is split into n temporal frames and distributed to the nodes on the basis of the node speed
(evaluated at each EM iteration) and the number of missing data in each time frame. Indeed,
time steps characterized by a high missing data rate imply faster computing.

The computing nodes can be any number of heterogeneous machines connected through a
local area network (LAN) and no additional parallel and/or distributed software libraries are
required. All the nodes must be able to read and write to a common shared folder and each
node must run at least one MATLAB process. One node, usually the fastest or the one with
the highest quantity of RAM, is designated to be the master while all the other nodes are
considered slaves. The number of slaves can change during model estimation but the master
node must always run.

In order to estimate the model in a distributed manner, a script that calls the daemon.m
function must first be executed on each slave node possibly in batch mode. The function
requires as input argument the path of the shared folder to use. The master runs the usual
main script but the name of the shared folder, as well as additional parameters, must be given
as properties of the obj_stem_EM_options object.

Choosing option number five from the dstem_demo.m script, the case study of Section 6 is
reproduced and model estimation is carried out in distributed manner. To avoid the com-
plication of setting up a distributed environment, the dstem_demo.m script starts a second
MATLAB process in which the demo_runslave script is executed and that, in turn, executes
the daemon.m script. The original MATLAB process executes the demo_section7_2.m script
which differs from the demo_section6.m script with respect to the following lines of code.

>> exit_toll = 0.001;

>> max_iterations = 100;

>> path_distributed_computing = '../Distributed/';

>> timeout = 5;

>> obj_stem_EM_options = stem_EM_options(exit_toll, max_iterations, [], [],
[J, [], path_distributed_computing, [], timeout);

>> obj_stem_model.EM_estimate (obj_stem_EM_options);

The timeout input argument is the time in seconds that the master waits when listening
for the slave nodes. It is worth knowing that the content of NFS shared folders on UNIX
distributed environments is not always updated in real time. If the user cannot change the
updating time of NF'S folders, then the timeout input argument must be increased in order
to ensure that master and slaves can always read the files written in the shared folder.

The output of model estimation is equal to the output already reported and discussed in
Section 6.
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7.3. Observed data log-likelihood evaluation

By default, D-STEM compares the estimated parameters and the observed data log-likelihood
between two consecutive EM iterations. If the relative norm of the difference between the
parameter vectors or between the log-likelihoods is lower than the tolerance specified by the
property exit_toll of class ‘stem_EM_options’ (see Section 4.2), the EM algorithm stops.
In the case of large data sets, computing the log-likelihood at each EM iteration is time
consuming. In order to speed up model estimation, the evaluation of the log-likelihood can
be avoided and the exit condition is only based on the model parameters.

The demo_section7_3.m script, which can be executed choosing option number six from the
dstem_demo.m script, implements the same case study as in Section 4 but model estimation
is carried out without computing the observed data log-likelihood at each iteration.

The following lines of code describe how the obj_stem_EM_options object is created in order
to avoid the evaluation of the log-likelihood at each iteration.

>> exit_toll = 0.001;

>> max_iterations = 100;

>> compute_log = 0;

>> obj_stem_EM_options = stem_EM_options(exit_toll, max_iterations,
[1, [1, compute_log);

>> obj_stem_model.EM_estimate (obj_stem_EM_options);

The output of the model estimation is similar to the output reported in Section 4 and only
the relevant part is reported hereafter.

stk ok ok ok ok o ok ook o ok o ok ook ook ook ook ook ook ok ok ok
* Model estimation results *
sk ok ok ok o ok o ok ook o ok o ok ook ook ook ook ook ok ok ok ok

* Tapering is not enabled
* Observed data log-likelihood: -13797.357
* 1 fine-scale coregionalization components w_p

* theta_p elements:
'Coreg. component' 'Value [km]' 'Std [km]'
'1st’ '22.45" '0.63"

Due to the different exit condition, the model parameters estimated without computing the
log-likelihood at each iteration differ from those estimated in Section 4. In particular, the 6
parameter decreased from 31.42 to 22.45 km. Nonetheless, the observed data log-likelihood,
evaluated after model estimation, is only slightly higher (—13797.357 vs. —13889.064). This
is due to the fact that, using a non-large data set as in this case study, the 8 parameter of
Equation 5 is poorly identifiable and it monotonically changes from one iteration to the next
even if the observed data log-likelihood does not change significantly.

Although the computing time of each iteration is reduced, thus, a possible drawback is that
the total number of iterations required to estimate the model might be higher. The user
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should be careful when adopting this strategy as, if poor identifiability of 6 is not detected,
the EM algorithm might not converge or it might take more iterations than necessary. In
the above example, the EM algorithm takes 78 iterations to converge with respect to the 32
iterations required when the log-likelihood is evaluated at each iteration. Again, this strategy
to reduce computing time is intended for large data sets.

8. Conclusions

In this paper, the use of D-STEM has been illustrated for three different case studies involving
a univariate model, a bivariate model and a data fusion model. The model at the basis of
D-STEM is general enough to accommodate many environmental data sets, nonetheless, both
model and software can be extended with respect to many aspects. From the modeling point
of view, additional spatial correlation functions could be introduced as well as more flexible
“coregionalization models” (Apanasovich and Genton 2010; Gneiting, Kleiber, and Schlather
2010). Moreover, Markov random fields could be introduced in order to model pixel data.
Indeed, Gaussian random fields easily handle data sets with extensive missing data but they
are more computationally expensive even under tapering. Finally, it could be useful to extend
the model to accommodate for time-varying grids and irregularly spaced sampling times.

Regardint the software side, some time consuming procedures such as the estimation of the
variance-covariance matrix of the model parameters and kriging could also be implemented in
a distributed manner. Furthermore, the handling of the model parameters could be improved
by introducing constraints on the parameter vectors and matrices, widening the range of
models that can be estimated.

D-STEM is constantly updated and improved and new versions are released on https://
code.google.com/p/d-stem/. Google Code runs a project hosting service that provides
revision control and an issue tracker. The users of D-STEM are welcome to notify bugs and
to submit extensions or improvements of the code.
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