
JSS Journal of Statistical Software
September 2014, Volume 60, Issue 6. http://www.jstatsoft.org/

Continuous Global Optimization in R

Katharine M. Mullen
University of California, Los Angeles

Abstract

This article surveys currently available implementations in R for continuous global
optimization problems. A new R package globalOptTests is presented that provides a
set of standard test problems for continuous global optimization based on C functions by
Ali, Khompatraporn, and Zabinsky (2005). 48 of the objective functions contained in the
package are used in empirical comparison of 18 R implementations in terms of the quality
of the solutions found and speed.

Keywords: global optimization, constrained optimization, continuous optimization, R.

1. Introduction to global optimization

Global optimization is the process of finding the minimum of a function of n parameters, with
the allowed parameter values possibly subject to constraints. In the absence of constraints
(which are discussed in Section 1.1), the task may be formulated as

minimize
x

f(x) (1)

where f is an objective function and the vector x represents the n parameters. If f is a
function <n → <, so that elements xi of the input vector x and the output value are real
numbers, the global optimization problem is continuous.

Global optimization may be contrasted with local optimization. Local optimization finds local
optima, which represent the best solution in a subset of the parameter space, not necessarily
in the parameter space as a whole. A local optimum x∗ may be defined as a point for which
there exists some δ > 0 such that for all points x such that ‖x − x∗‖ ≤ δ; f(x∗) ≤ f(x); in
other words, a local optima x∗ is a point at which the objective function f(x∗) is less than or
equal to f(x) at all other points x in a certain neighborhood.

Convex optimization problems have as their solutions the optima of convex functions. Convex
functions are continuous functions whose value at the midpoint of every interval in the domain

http://www.jstatsoft.org/


2 Continuous Global Optimization in R

Figure 1: A contour plot of the two-dimensional Rastrigin function f(x). The global minimum
f(x) = 0 is at (0, 0) and is marked with an open white circle. Local optima (shown as darker
spots) are found throughout the parameter space at regularly spaced intervals.

does not exceed the mean of the values at the ends of the interval, i.e., f is convex in [a, b]
if for any two points x1 and x2 in [a, b] and any λ where 0 < λ < 1, f [λx1 + (1 − λ)x2] ≤
λf(x1) + (1− λ)f(x2) (Rudin 1976). Any local optimum of a convex function is also a global
optimum. Statisticians are familiar with the convex optimization problem of minimizing
the sum of the squared differences between a linear or nonlinear function and a vector of
data, i.e., regression. Regression problems are such that you can start at any point in the
parameter space, determine the gradient, take an appropriately-sized step in the direction that
minimizes this gradient, and repeat until the gradient is vanishing, in this way determining
a local (and global) solution (provided that the problem is well-conditioned). Such simple
and computationally efficient methods fail on non-convex problems, in which finding a local
optimum is no guarantee of finding a global solution.

Finding solutions to continuous global optimization problems is in some instances akin to
finding a needle in a haystack. For instance, define the objective function f : <n → < as
zero everywhere except at a unique vector x ∈ <n, where f(x) = −1. The problem has no
structure that provides clues to when a guess x′ is close to the solution x, and so no algorithm
can efficiently and consistently discover the optimum.

However, most global optimization problems encountered in practice have features that can
be exploited to render algorithms for their solution more efficient. For example, in many
applications the objective function f is continuous, meaning that small changes in x translate
to small changes in f(x). Another common property is differentiability, i.e., at every point
x ∈ <n the partial derivatives of f(x) exist. Functions f that are differentiable allow the
application of gradient-based algorithms, that is, methods that rely on forming the Jacobian
matrix which represents the partial derivatives of a candidate solution x with respect to f .
Note however, that continuity and differentiability make it easier to find local optima, but
there may be many such optima, and finding the global optimum may remain difficult.

As an example of a global optimization problem, consider the minimization of the Rastrigin



Journal of Statistical Software 3

function in x ∈ <D

f(x) =
D∑
j=1

(
x2j − 10 cos (2πxj) + 10

)
for D = 2, which is a common test for global optimization algorithms (Mullen, Ardia, Gil,
Windover, and Cline 2011). As shown in Figure 1, the function has a global minimum where
f(x) = 0 at the point (0, 0). The function also has many local minima, and solutions returned
by local optimization algorithms will not in general be globally optimal. However, the problem
is continuous and differentiable, and the global optimum is reliably returned by many of the
R implementations of global optimizers to be considered in this paper.

1.1. Constrained global optimization

The simplest and most common type of constraint on a global optimization is the box con-
straint, which sets a lower and upper bound on each element of the parameter vector. More
generally, constrained global optimization problems seek a solution x that minimizes an ob-
jective function f such that x satisfies a set of inequality or equality constraints, often stated
in the standard form

minimize
x

f(x)

subject to hi(x) = 0, i = 1, . . . , p

gj(x) ≤ 0, j = 1, . . . , q

(2)

where h and g are functions that may be nonlinear. Another important variety of constrained
optimization are quadratic programming problems, which may be expressed in canonical form
as

minimize
x

f(x) =
1

2
x>Qx+ cx

subject to Ax ≤ b
x ≥ 0

(3)

where Q is a symmetric n×n matrix, the vectors x and c have length n, and the constraints are
defined by an m×n matrix A and a vector b of length m containing right-hand-side coefficients.
If Q is zero, the quadratic programming problem is a linear programming problem, which can
be solved by efficient polynomial time methods. Q is positive definite and the problem has
a feasible solution, then the problem is convex, and there exists a unique global optimum,
which also can be found with a polynomial time algorithm. However, if Q is not positive
definite, all known algorithms for quadratic programming problems require in the worst case
exponential time to solve; such cases must be addressed via global optimization methods.
See, e.g., Nocedal and Wright (2006) and Jensen and Bard (2002) for elaboration.

None of the global optimization methods empirically compared in this paper allow explicit
input of constraints other than box constraints. Constraints may however be implicitly set
by use of penalty functions, so that the objective function returns a large or infinite value
whenever the parameters are outside of the feasible region.

1.2. Paper outline

This paper surveys currently available methods for general-purpose continuous global opti-
mization problems in the R language (R Core Team 2014) in Section 2. Section 3 presents the



4 Continuous Global Optimization in R

R package globalOptTests, available from the Comprehensive R Archive Network (CRAN) at
http://CRAN.R-project.org/package=globalOptTests, which collects 50 objective func-
tions useful for benchmarking implementations of continuous global optimization algorithms
(Ali et al. 2005). Studies to benchmark 18 R implementations in terms of the quality of
solution found and run-time given a set budget of function evaluations using these objective
functions are described in Section 4. Results are presented in Section 5. Section 6 contains
conclusions and discussion.

For further introduction to continuous global optimization, see e.g., Horst, Pardalos, and
Thoai (2000), Pardalos and Romeijn (2002), Neumaier (2013), Neumaier (2004), Floudas and
Gounaris (2009), and Weise (2009). For further pointers to optimization methods in R, see
the Optimization and Mathematical Programming task view on CRAN (Theussl 2014).

2. Implementations in R

The R language and environment provides an ever-increasing assortment of implementations of
algorithms for the solution of continuous global optimization problems. The implementations
may be roughly grouped into the following categories, though some implementations have the
properties of more than one category.

� Annealing methods:

– stats (R Core Team 2014): optim(method = "SANN").

– GenSA (Xiang, Gubian, Suomela, and Hoeng 2013).

� Evolutionary methods:

– rgenoud (Mebane and Sekhon 2013).

– DEoptim (Ardia, Mullen, Peterson, and Ulrich 2013), RcppDE (Eddelbuettel 2013).

– NMOF (Schumann 2013): DEopt and GAopt.

– soma (Clayden and based on the work of Ivan Zelinka 2011).

– Rmalschains (Bergmeir, Molina, and Beńıtez 2014).

– cmaes (Trautmann, Mersmann, and Arnu 2011).

– parma (Ghalanos 2014): cmaes.

– BurStMisc (Burns Statistics 2012): genopt function.

– GA (Scrucca 2014).

– mcga (Satman 2014).

– hydromad (Andrews and Guillaume 2013): SCEoptim.

� Particle swarm optimization methods:

– ppso (Francke 2012).

– pso (Bendtsen 2012).

– hydroPSO (Zambrano-Bigiarini 2013).

– NMOF: PSopt.

http://CRAN.R-project.org/package=globalOptTests


Journal of Statistical Software 5

� Branch and bound methods:

– nloptr (Ypma 2014): StoGo.

� Deterministic methods:

– nloptr: DIRECT.

� Other stochastic methods:

– nloptr: CRS,

– NMOF: TAopt and LSopt,

– nloptr: MLSL.

All of these methods are heuristic, meaning that there is some likelihood but no guarantee that
they find the optimal solution. Nonheuristic methods, in contrast, may maintain a provable
upper and lower bound on the globally optimal objective value, and systematically explore
the parameter space until a satisfactory value is found.

Note that we have excluded methods accessible by the package rneos (Pfaff 2012), which
enables the user to pass optimization problems to the NEOS server (University of Wisconsin-
Madison 2013; Czyzyk, Mesnier, and Moré 1998) and retrieve results within R; the linked-to
packages are often commercial, closed-source software.

Implementations that are only useful for local optimization are also not considered here; the
methods considered all are able to deal with test problems in which there are many (sub-
optimal) local optima.

2.1. Annealing methods

Simulated annealing is a stochastic, heuristic method that starts at a randomized point x in
the parameter space, and then evaluates a neighboring point x′, usually chosen at random
(Kirkpatrick, Gelatt, and Vecchi 1983). In its simplest form, if the value of the objective
function is lesser at the new point, the new point is accepted, and the process is repeated.
If the value at the new point is greater, however, the point is chosen with some acceptance
probability P less than unity; this allows the currently best point considered by the algorithm
to zero in on optima in f , but to escape local optima, since P < 1. P is reduced as the number
of evaluations of f increases according to an annealing schedule, so that the probability of
accepting a worse point x′ decreases as the algorithm zeros in on a good solution.

stats package, optim function, method = "SANN"

A simulated annealing algorithm is included in the base R distribution in the function optim

from the stats package; it is used by setting the optim argument method with method =

"SANN".

GenSA package

GenSA implements a generalized simulated annealing algorithm described in Xiang et al.
(2013).



6 Continuous Global Optimization in R

2.2. Evolutionary methods

Evolutionary methods are stochastic, heuristic optimization methods that have an analogue
with the process of natural selection: the most fit members of a population survive into the
next generation. Early examples of evolutionary methods include genetic algorithms (Holland
1975), which start with a population composed of candidate solutions (usually bit strings),
and then apply logical operations of crossover and mutation to generate a new population.
The objective function is evaluated for each string of the new population, and only the strings
associated with the best objective function values survive to repeat the process.

rgenoud package

rgenoud (Mebane and Sekhon 2013) implements an algorithm that combines evolutionary
search algorithms with derivative-based (Newton or quasi-Newton) methods. It may also be
used for problems for which derivatives do not exist. Sekhon and Mebane (1998) describe
the algorithm; the implementation is detailed in Mebane and Sekhon (2011). The package
supports the use of multiple CPUs to perform parallel computations.

DEoptim package

DEoptim (Ardia et al. 2013) implements differential evolution (Price, Storn, and Lampinen
2006), a strategy similar to a genetic algorithm but designed for continuous optimization (i.e.,
optimization of real vectors). The package sees much use in quantitative finance applications
(Ardia, Arango, and Gomez 2011a; Ardia, Boudt, Carl, Mullen, and Peterson 2011b). Mullen
et al. (2011) describe the package, though in later versions parallelization options, options for
mixed-integer problems, and the adaptive mutation strategy JADE (Zhang and Sanderson
2009) have been added. An implementation of DEoptim that uses C++ instead of C for
computations has been implemented in the package RcppDE (Eddelbuettel 2013).

NMOF package: DEopt and GAopt

NMOF (Schumann 2013), a package associated with the book by Gilli, Maringer, and Schu-
mann (2011), contains several implementations of global optimization algorithms, including
the DEopt function for differential evolution and the GAopt function for optimization with
genetic algorithms.

soma package

soma (Clayden and based on the work of Ivan Zelinka 2011) provides an R implementation
of the self-organizing migrating algorithm (Zelinka 2004), which moves a set of individuals
towards the best candidate solution x over the course of successive generations.

Rmalschains package

Rmalschains (Bergmeir et al. 2014) implements an algorithm for continuous optimization using
local search chains (MA-LS-Chains) in R. Rmalschains attempts to obtain better performance
(in terms of the precision of the solution and the number of evaluations required to reach it)
by strategically applying local search (Molina, Lozano, Garćıa-Mart́ınez, and Herrera 2010).
The algorithm is an example of a memetic algorithm, which combines an evolutionary strategy



Journal of Statistical Software 7

with a local optimization algorithm (often performed from the starting points represented by
individual population members).

cmaes package

A covariance matrix adapting evolutionary strategy (CMA-ES, Hansen and Ostermeier 1996)
is implemented in the package cmaes (Trautmann et al. 2011). Instead of picking new search
points from a spherical normal distribution in the n-dimensional search space, an approx-
imation for the covariance matrix of parameters informs the sampling used in generating
successive generations.

parma package

An implementation of CMA-ES is also found in the package parma (Ghalanos 2014).

genopt function from BurStMisc

The genopt function was originally published as a part of the book by Burns (1998); it is
available via the BurStMisc package (Burns Statistics 2012). It is a simple function which
works on real-valued parameter vectors and is one of the older global optimization methods
developed for R.

GA package

GA (Scrucca 2014) allows optimization using genetic algorithms for both the real and integer
parameter spaces.

mcga package

mcga (Satman 2014) is a package for optimization of real-valued functions via genetic algo-
rithms.

nloptr package: ISRES

nloptr (see Section 2.4) provides an implementation of an evolutionary algorithm termed an
improved stochastic ranking evolution strategy (ISRES, Runarsson and Yao 2005).

hydromad package: SCEoptim

The hydromad (Andrews and Guillaume 2013) contains an implementation of shuffled complex
evolution in the function SCEoptim.

2.3. Particle swarm optimization methods

Particle swarm optimization is a stochastic, heuristic method introduced by Kennedy and
Eberhart (1995). A set (swarm) of candidate solutions (particles) is moved through search
space using formulas for position and velocity that depend on the state of the rest of the
swarm.



8 Continuous Global Optimization in R

pso package

pso (Bendtsen 2012) implements a particle swarm optimization algorithm.

ppso package

ppso (Francke 2012) implements particle swarm optimization along with dynamically dimen-
sioned search algorithms (Tolson and Shoemaker 2007). Options are available for paralleliza-
tion.

hydroPSO package

hydroPSO (Zambrano-Bigiarini 2013) implements a particle swarm optimization algorithm;
its development was motivated by the need to fit environmental models, though it is a general-
purpose optimizer.

NMOF package: PSopt

The NMOF package also contains a particle swarm optimization implementation.

2.4. Branch and bound methods

Branch and bound (Scholz 2012) is a systematic, nonheuristic method for solving optimization
problems. It is the most widely used type of algorithm for solving difficult combinatorial
optimization problems, though it is also often applied to continuous optimization. It often
leads to exponential time complexities in the worst case. Most algorithms in this category
apply a breadth-first search for the optimal solution, but not all nodes get expanded; a
selection criterion determines which node to expand and when, and another criterion tells the
algorithm when an optimal solution has been found. The search terminates when there are
no unexplored parts of the parameter space remaining.

nloptr package: StoGo

nloptr (Ypma 2014) is an R interface to NLopt (Johnson 2013), a collection of open-
source/freely available implementations for optimization. All methods in nloptr are possi-
ble to use via the package nloptwrap package (Borchers 2014), which was created to make
the solvers easier to use.

The StoGo algorithm (Madsen, Zertchaninov, and Zilinskas 1998; Zertchaninov and Madsen
1998) accessible with NLopt divides the search space into smaller hyper-rectangles via a
branch-and-bound technique, and searches these subspaces using a gradient-based local-search
algorithm, optionally including some randomness. The method requires a gradient. When
called via the stogo function from nloptwrap, a numeric gradient is used.

2.5. Deterministic methods

nloptr package: DIRECT

The DIRECT algorithm (Jones, Perttunen, and Stuckman 1993; Gablonsky and Kelley 2001)
in NLopt for global optimization is a deterministic method based on division of the search



Journal of Statistical Software 9

domain into smaller and smaller hyperrectangles. The nloptr package makes several different
varieties of the algorithm available; the DIRECT L method employs some randomization.

2.6. Other stochastic methods

This section collects stochastic algorithms that do not fall into the preceding categories.

nloptr package: CRS

nloptr (see Section 2.4) makes available an implementation of a controlled random search
(CRS) algorithm (Kaelo and Ali 2006).

NMOF package: TAopt and LSopt

NMOF (see Section 2.2) contains an implementation of a threshold acceptance algorithm
(Dueck and Scheuer 1990). It is similar in some ways to simulated annealing but requires the
definition of a neighborhood function that generates new guesses for the optimal parameter
vector from a currently accepted parameter vector. The function LSopt is similar.

nloptr package: MLSL

nloptr (see Section 2.4) makes available an implementation of a multi-level single-linkage
(MLSL) algorithm (Kan and Timmer 1987), which performs a sequence of local searches from
randomly chosen points.

3. Test problems

Given the many options currently available in R for the solution of continuous global optimiza-
tion problems, which methods perform best? This question is difficult to answer in general,
since the performance of any implementation is problem-dependent. An implementation may
do well on a certain type of problem (e.g., problems with a parameter space of fewer than
four dimensions, or problems in which there are only a handful of local optima) and fail mis-
erably in others. Some insight into performance can be obtained by testing implementations
on a wide variety of objective functions. Previous comparisons of the performance of imple-
mentations in R for solving continuous global optimization problems have been limited to a
comparison of a very small number of implementations, as in Xiang et al. (2013), or on a very
limited number of problems, as in Burns (2012a) and Burns (2012b).

A new package globalOptTests was created in order to collect an assortment of objective
functions useful for testing implementations for continuous global optimization in R. The
package makes accessible 50 objective functions first presented by Ali et al. (2005) as standard
test problems for continuous global optimization written in C. The collection of C functions
also appear on (and were downloaded from) a web page maintained by GAMS Development
Corporation and GAMS Software GmbH (2013). The underlying C functions were changed
in the R package to use a factor in Ackley’s function that more commonly appears in the
literature (0.2 instead of 0.02, thanks to a suggestion from Hans Werner Borchers). Also,
Storn’s Tchebychev problem in 9 and 17 dimensions was not included, since the global minima
of the implementation of these functions does not appear to correspond to the value reported
in Ali et al. (2005), the only function definition reference.



10 Continuous Global Optimization in R

Name in package Full name Dimension Global minimum
Ackleys Ackley’s problem 10 0
AluffiPentini Aluffi-Pentini’s problem 2 −0.3523
BeckerLago Becker and Lago problem 2 0
Bohachevsky1 Bohachevsky 1 problem 2 0
Bohachevsky2 Bohachevsky 2 problem 2 0
Branin Branin problem 2 0.3979
Camel3 Camel back three hump problem 2 0
Camel6 Camel back six hump problem 2 −1.0316
CosMix2 Cosine mixture problem 2 −0.2
CosMix4 Cosine mixture problem, n = 4 4 −0.4
DekkersAarts Dekkers and Aarts problem 2 −24776.5183
Easom Easom problem 2 −1
EMichalewicz Epistatic Michalewicz problem 5 −4.6877
Expo Exponential problem 10 −1
GoldPrice Goldstein and Price problem 2 3
Griewank Griewank problem 10 0
Gulf Gulf research problem 3 0
Hartman3 Hartman 3 problem 3 −3.8628
Hartman6 Hartman 6 problem 6 −3.3224
Hosaki Hosaki problem 2 −2.3458
Kowalik Kowalik problem 4 0.0003
LM1 Levy and Montalvo 1 problem 3 0
LM2n5 Levy and Montalvo 2 problem 5 0
LM2n10 Levy and Montalvo 2 problem, n = 10 10 0
McCormic McCormick problem 2 −1.9133
MeyerRoth Meyer and Roth problem 3 4.355 ×10−5
MieleCantrell Miele and Cantrell problem 4 0
Modlangerman Modified Langerman problem 10 −0.965
ModRosenbrock Modified Rosenbrock problem 2 0
MultiGauss Multi-Gaussian problem 2 −1.297
Neumaier2 Neumaier 2 problem 4 0
Neumaier3 Neumaier 3 problem 10 −210
Paviani Paviani’s problem 10 −45.7784
Periodic Periodic problem 2 0.9
Powell Powell’s quadratic problem 4 0
PriceTransistor Price’s transistor modelling problem 9 0
Rastrigin Rastrigin problem 10 0
Rosenbrock Rosenbrock problem 10 0
Salomon Salomon problem 5 0
Schaffer1 Schaffer 1 problem 2 0
Schaffer2 Schaffer 2 problem 2 0.0012
Schubert Shubert problem 2 −186.7309
Schwefel Schwefel problem 10 −4189.8289
Shekel5 Shekel 5 problem 4 −10.1532
Shekel7 Shekel 7 problem 4 −10.4029
Shekel10 Shekel 10 problem 4 −10.5364
Shekelfox5 Shekel’s foxholes problem 5 −10.4056
Shekelfox10 Shekel’s foxholes problem, n = 10 10 −10.2087
Wood Wood’s problem 4 0
Zeldasine10 Sinusoidal problem 10 −3.5
Zeldasine20 Sinusoidal problem, n = 20 20 −3.5

Table 1: Functions included in globalOptTests and first collected in Ali et al. (2005).



Journal of Statistical Software 11

The 50 objective functions in globalOptTests have parameter spaces between between 2 and
20 dimensions. All are relatively fast to evaluate (requiring less than one second using any
common modern CPU) and are noise-free.

The objective functions are called via the function goTest. For example, to call the
"ModRosenbrock" function, first the package is loaded with:

R> library("globalOptTests")

Then "ModRosenbrock" is evaluated at a given parameter vector, e.g., c(0.4, 0.7), via the
call:

R> goTest(par = c(0.4, 0.7), fnName = "ModRosenbrock")

To use the objective function in a call to an implementation of a given global optimization
algorithm, for example the optim function with the "SANN" method, a call such as the following
is made:

R> out <- optim(par = c(0.4, 0.7), fn = goTest, method = "SANN",

+ control = list(maxit = 10000), fnName = "ModRosenbrock")

For more complete information regarding the package’s functionality, see the help pages of
the package with the call:

R> help(package = "globalOptTests")

4. Empirical comparison

Eighteen R functions for continuous global optimization (given in Table 2) were applied to
48 objective functions from the package globalOptTests. The control settings of each imple-
mentation were adjusted to allow for a set number of function evaluations. Eleven of the 18
algorithms allowed explicit setting of the maximum number of function evaluations. Some
of the 7 remaining implementations (e.g., DEoptim) allowed for setting the precise number of
allowed evaluations indirectly; others, (e.g., soma and cma_es) stop according to convergence
criteria automatically, and so may not use the total allotted budget of evaluations. The con-
trol settings of each implementation were not adjusted beyond tuning to control the number
of function evaluations; undoubtedly, some of the implementations can be made to perform
better by tuning additional control parameters.

The implementations chosen for comparison work “out-of-the-box”, that is, using only a base
R installation and R packages. Only functions that allow passing additional arguments to the
objective function via a ... argument or an environment argument were included (meaning
that ppso was not considered). Packages which require tuning (e.g., to set a population size as
in mcga) were not included. The implementation of the CMA-ES method found in the cmaes
package was included, and not the implementation from parma; at the time of writing, the
latter is often faster but also more likely to converge on values far from the solution, though
the implementation in the cmaes package is more likely to terminate in an error.

Lower and upper bounds on parameter values were given as the vectors specified in the C code
developed in Ali et al. (2005). These default bounds are possible to see using the package
globalOptTests via calls such as



12 Continuous Global Optimization in R

Function/method Package Stochastic? Type
GenSA GenSA Yes Annealing
optim/method="SANN" stats Yes Annealing
ga GA Yes Evolutionary
genoud genoud Yes Evolutionary
DEoptim DEoptim Yes Evolutionary
soma soma Yes Evolutionary
cma_es cmaes Yes Evolutionary
malschains Rmalschains Yes Evolutionary
SCEoptim hydromad Yes Evolutionary
DEopt NMOF Yes Evolutionary
nloptr/algorithm="NLOPT_GN_ISRES" nloptr Yes Evolutionary
nloptr/algorithm="NLOPT_GN_DIRECT_L" nloptr No Other stochastic
nloptr/algorithm="NLOPT_GN_CRS2_LM" nloptr Yes Other stochastic
nloptr/algorithm="NLOPT_GD_STOGO_RAND" nloptr Yes Branch and bound
nloptr/algorithm="NLOPT_GN_DIRECT" nloptr No Deterministic
PSopt NMOF Yes Particle swarm
hydroPSO hydroPSO Yes Particle swarm
psoptim pso Yes Particle swarm

Table 2: Implementations for continuous global optimization compared here.

R> getDefaultBounds("ModRosenbrock")

Note that these bounds have been set to be asymmetric about the solution (e.g., if the global
optimum is zero, the upper and lower bound associated with a given parameter might be
set to −5 and 10, but not −5 and 5). If asymmetry in the bounds is not applied, certain
algorithms have an advantage (e.g., the DIRECT method from nloptr). If required, a starting
parameter vector was given by choosing values uniformly at random between these default
lower and upper bounds before each call.

Comparison of implementations for continuous global optimization requires making choices
regarding how to quantify performance. Criteria that may be interesting to examine include:

� whether the solution is ever found, even given unlimited time or function evaluations;

� number of function evaluations required to find the global optimum;

� time required to find the global optimum;

� time required to return a solution given a budget of evaluations of the objective function;

� quality of the solution found after a set number of function evaluations.

Here, both the nearness of solutions found to the global optimum (‘accuracy’) and the time
required to return results given a set budget of function evaluations were examined.

For the 18 implementations, the solutions returned after a maximum of 10,000 function eval-
uations were collected. For each of the 48 objective functions examined, 100 calls to perform
the optimization were made, using, if required by the implementation, different values for
the starting parameter vector for each call. The budget of 10,000 function evaluations typ-
ically allowed each implementation tested to return a solution within a few seconds for the



Journal of Statistical Software 13

nl
op

tr
_s

to
go

G
en

S
A

ge
no

ud

ps
op

tim

D
E

op
t

nl
op

tr
_c

rs

hy
dr

oP
S

O

D
E

op
tim

S
C

E
op

tim

nl
op

tr
_d

nl
op

tr
_d

_l

P
S

op
t

cm
a_

es ga

nl
op

tr
_i

m
al

sc
ha

in
s

so
m

a

op
tim

‘S
uc

ce
ss

fu
l' 

ru
ns

0

1000

2000

3000

4000

Figure 2: Tally of successes over all 100 runs for each of 48 objective functions (4800 total
runs). A ‘success’ was defined as a solution less than 0.005 more than the minimum of the
objective function between the default bounds. Implementations that returned an error as
described in Table 3 are marked in red.

fast-to-evaluate objective functions contained in globalOptTests. Use of a budget of function
evaluations as opposed to system time has the disadvantage of obscuring any inefficiencies
in the implementations other than function evaluations, but has the important advantage of
being independent of the particular system on which testing is performed. It also renders the
study relatively fast to perform (compared, e.g., to giving each implementation an unlimited
budget of evaluations with which to attempt to find the solution).

The methods were then compared using the time required to return a solution within a given
budget of function evaluations. Timing on the 2-parameter BeckerLago, 4-parameter Kowa-
lik, 10-parameter Rastrigin, and 20-parameter Zeldasine20 functions was measured using the
elapsed time returned by the system.time function in R version 3.0.0 (running on a dedicated
purpose 64-bit Linux distribution with a Intel Pentium Core 2 Duo 2133 MHz CPU). For each
of the 18 implementations, 100 calls to perform the optimization were again made. However,
in these tests each function was allowed a maximum of approximately 50,000 function evalua-
tions. Options were used to eliminate printing to the screen or file, but otherwise the default
settings were again applied.

For the 10-parameter Rastrigin function, the accuracy of the solutions obtained within the
budget of 50,000 function evaluations was also examined.

5. Results

In the study that examined the accuracy of solutions found within 10,000 function evaluations,
several implementations terminated with errors and did not return results for some runs. The
malschains function in two cases returned zero as the objective function value along with a
parameter vector associated with a non-zero objective function value; this did not result in



14 Continuous Global Optimization in R

Function Objective function Runs affected Summary of error/message

cma_es EMichalewicz 2/100 Inf returned
cma_es Hartman3 8/100 Inf returned
cma_es Hartman6 25/100 Inf returned
cma_es Zeldasine10 6/100 Inf returned
cma_es Zeldasine20 26/100 Inf returned
DEopt Gulf 100/100 NA’s not allowed
DEopt Paviani 100/100 NA’s not allowed
genoud DekkersArts 40/100 NA/NaN/Inf in foreign call
genoud Schwefel 4/100 NA/NaN/Inf in foreign call
malschains Branin 1/100 Erroneous fitness of 0
malschains GoldPrice 1/100 Erroneous fitness of 0
PSopt Gulf 98/100 NA’s not allowed
PSopt Paviani 100/100 NA’s not allowed

Table 3: Problems encountered during selected runs of the accuracy study.

an explicit error but is clearly incorrect. These problems are summarized in Table 3.

Boxplots of the solutions found for the 48 test problems examined are presented in Ap-
pendix A. The global minimum of each objective function within the default bounds is shown
in these plots as a red horizontal line. Study of these plots reveals that the performance in
terms of the quality of the solution is quite heterogeneous among the 48 various objective
functions; clear winners on some problems do very poorly on others.

Figure 2 is one way to summarize these results. Each implementation was considered to
succeed if it returned a solution less than 0.005 more than the minimum of the objective
function between the default bounds. This criterion of success was arbitrary but useful for
illuminating the differences in the quality of the solutions found. The number of successes
of each implementation was summed over all 100 runs taken on each of the 48 objective
functions; the maximum possible number of successes was thus 4800.

Note however that the summary plot given in Figure 2 obscures interesting heterogeneity in
performance, which can be studied in the plots in Appendix A. To take just one example, all
implementations except SCEoptim and PSopt failed to consistently find the global minimum
for the 2-parameter Easom problem.

For all of the 48 objective functions included in the study, at least one of the 18 implementa-
tions tested found the global minimum within the budget of 10,000 function evaluations during
at least one run. However, more of the implementations would find the global optimum on
many of the 48 test problems given a larger budget of function evaluations. To illustrate this,
the solutions found for the 10-dimension Rastrigin problem were examined after increasing
the budget of function evaluations to 50,000, from 10,000. Given a budget of 10,000 function
evaluations, only the stogo method from nloptr (called via the package nloptwrap) found
the global optimum for the Rastrigin problem, as shown in Appendix A. Given a budget of
50,000 function evaluations, however, GenSA also consistently finds the global minimum for
this problem, as shown in Figure 3.

The good performance of stogo in terms of the quality of the solution found given 10,000
function evaluations is a bit misleading, since time tests show it to be the slowest implemen-



Journal of Statistical Software 15

●
● ●●●●●●● ●● ●●●● ●●●●●●● ● ● ●●

●
●
●

●
●●

●●●●
●

●●

●

●●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

0

500

1000

1500

2000

10−parameter Rastrigin problem

O
bj

. f
un

. v
al

ue

●

●

●●●●

●

●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

0

2

4

6

8

10

10−parameter Rastrigin problem (alternative axis limits)

O
bj

. f
un

. v
al

ue

Figure 3: Boxplots of solutions returned for the 10-parameter Rastrigin problem, given a
budget of 50,000 function evaluations. The global optimum of the function is marked with a
horizontal red line. The axis limits chosen in the left plot include all results, whereas the axis
limits in the right plot allow display of only the more accurate solutions.

tation tested by a factor of 10 on many problems. This is at least partially due to the fact
that a numerical gradient is calculated (via the nl.grad function) when StoGo is called via
nloptwrap and no analytic gradient is provided. If the user is able to supply an analytic
gradient, results will be obtained faster. Else, the quality of the solutions stogo returns can
often be matched (and in less time) by other implementations by increasing the number of
function evaluations allowed.

Timing results for the four objective functions examined for speed are given in Appendix B.
As is obvious from the comparison of these plots to the plots of the solutions returned by the
various implementations in Appendix A, the implementations which return the most accurate
estimates for the global minima of the objective functions tested are not the fastest. The stogo
method is by a large factor the slowest implementation. The variability of the time required
for most of the methods to return results is low (less than a second) for all methods except



16 Continuous Global Optimization in R

nl
op

tr
_c

rs
hy

dr
oP

S
O

m
al

sc
ha

in
s

so
m

a
nl

op
tr

_i
cm

a_
es

ge
no

ud
op

tim
nl

op
tr

_d
D

E
op

tim
nl

op
tr

_d
_l

G
en

S
A

D
E

op
t

P
S

op
t

S
C

E
op

tim ga
ps

op
tim

nl
op

tr
_s

to
go

se
co

nd
s

0

20

40

60

80

100

nl
op

tr
_c

rs

hy
dr

oP
S

O

m
al

sc
ha

in
s

so
m

a

nl
op

tr
_i

cm
a_

es

ge
no

ud

op
tim

nl
op

tr
_d

D
E

op
tim

nl
op

tr
_d

_l

G
en

S
A

D
E

op
t

P
S

op
t

se
co

nd
s

0

1

2

3

4

5

Figure 4: Summary of timing results given as the mean time calculated over all 100 runs and
all four problems for which times were measured. The lower plot leaves out the four slowest
methods, allowing closer inspection of the differences between the faster implementations.

stogo, SCEoptim, ga and genoud. The malschains, nloptr_crs, hydroPSO are among the
faster implementations; soma is among the fastest methods for the higher dimensional (10 and
20 dimensions) objective functions tested. Interestingly, most of the implementations tested
(with the exception of stogo) require approximately the same amount of time to return results
for the 2-parameter problem as for the 20-parameter problem. A plot that summarizes the
results in terms of the mean time calculated over all 100 runs and all four problems for
which times were measured is given in Figure 4. Note that this summary plot obscures some
important differences between performance on the individual problems, which can be seen in
the plots in Appendix B.



Journal of Statistical Software 17

6. Discussion, conclusions, and future work

This paper surveyed the wide variety of general-purpose methods for continuous global opti-
mization that are currently available in R. Eighteen implementations were benchmarked on 48
objective functions collected in the new R package globalOptTests. The only implementation
included in base R, the simulated annealing method in the optim function, had poor overall
performance in terms of the solution quality; the user of global optimization methods in R
should turn to contributed packages for better implementations.

In terms of accuracy of solutions found within 10,000 function evaluations, stogo (from pack-
age nloptr using nloptwrap), genoud from the rgenoud package and GenSA from the GenSA
package were most capable of consistently returning a solution near the global minimum of
each test function (where ‘near’ is taken to be within 0.005 of the global minimum). In terms
of speed, genoud was the fastest of these three most accurate methods (though it did termi-
nate in an error on a small number of problem instances, as described in Table 3). GenSA

was slower than genoud, but not by a large factor, while stogo was comparatively very slow
indeed, taking a factor of ten longer to return results. Note however that there was signifi-
cant heterogeneity in results for both accuracy and speed among the 48 problems tested, as
is evident in the plots in Appendices A and B. The reader can consult these plots for clues
regarding which implementations may be promising for a given application. For instance, if
only an approximate solution is needed and the objective function is very time-consuming to
compute, a faster but less consistently accurate implementation may be a good choice.

Almost all of the 18 implementations tested have a host of control settings, the tuning of which
may dramatically alter performance. The tests here represent how the implementations work
without any such tuning; users should consult the help pages of each implementation for tips
on how to optimally adjust control settings.

While the test objective functions included in globalOptTests have variety in certain senses,
they are also all fast to evaluate and noise-free. The comparison studies here used a relatively
generous budget of function evaluations; for problems that are time-consuming to evaluate,
performance after fewer than 10,000 function evaluations may be of interest. The effects of
noise in the objective function may also drastically alter the performance of the implementa-
tions, and should be examined in future studies.

An obvious way to extend this comparison would be to investigate how accurately and quickly
the various implementations return estimates of the global optima in higher-dimensional pa-
rameter spaces. Many of the functions in globalOptTests can be evaluated in an arbitrary
dimension (though note that the global optimum obtained via the function getGlobalOpt

may not be correct if the dimension of the parameter vector is other than than given by
getProblemDimen). The Rastrigin function, for instance, has a global optimum (at zero)
that is independent of problem dimension; it can be evaluated in the 50-dimensional case as
follows:

R> goTest(par = rep(1, 50), fnName = "Rastrigin", checkDim = FALSE)

For the 50-dimensional Rastrigin problem, at least the GenSA function consistently finds the
global optimum when given a budget of 150,000 function evaluations.

An extension to consider the parallelization options which are available in some of the im-
plementations considered here would also be of interest. Parallelization becomes especially
critical when the objective function is expensive to evaluate.



18 Continuous Global Optimization in R

The interested user or developer can easily extend these benchmarking studies; the glob-
alOptTests package containing the objective functions is on CRAN, and the scripts used
herein for empirical studies and plotting are available as supplementary information to this
article.

Acknowledgments

Hans Werner Borchers provided many helpful comments on this work. Sincere thanks go to
the two anonymous reviewers for their suggestions.

References

Ali MM, Khompatraporn C, Zabinsky ZB (2005). “A Numerical Evaluation of Several Stochas-
tic Algorithms on Selected Continuous Global Optimization Test Problems.” Journal of
Global Optimization, 31, 635–672.

Andrews F, Guillaume J (2013). hydromad: Hydrological Model Assessment and Develop-
ment. R package version 0.9-18, URL http://hydromad.catchment.org/.

Ardia D, Arango JO, Gomez NG (2011a). “Jump-Diffusion Calibration Using Differential
Evolution.” Wilmott Magazine, 55, 76–79.

Ardia D, Boudt K, Carl P, Mullen KM, Peterson BG (2011b). “Differential Evolution
with DEoptim: An Application to Non-Convex Portfolio Optimization.” The R Journal,
3(1), 27–34. URL http://journal.R-project.org/archive/2011-1/RJournal_2011-1_

Ardia~et~al.pdf.

Ardia D, Mullen KM, Peterson BG, Ulrich J (2013). DEoptim: Differential Evolution in R.
R package version 2.2-2, URL http://CRAN.R-project.org/package=DEoptim.

Bendtsen C (2012). pso: Particle Swarm Optimization. R package version 1.0.3, URL http:

//CRAN.R-project.org/package=pso.

Bergmeir C, Molina D, Beńıtez JM (2014). Continuous Optimization Using Memetic Al-
gorithms with Local Search Chains (MA-LS-Chains) in R. R package version 0.2-2, URL
http://CRAN.R-project.org/package=Rmalschains.

Borchers HW (2014). nloptwrap: Wrapper for Package nloptr. R package version 0.5-7,
URL http://CRAN.R-project.org/package=nloptwrap.

Burns P (1998). S Poetry. Burns Statistics. URL http://www.burns-stat.com/pages/

Spoetry/Spoetry.pdf.

Burns P (2012a). “Another Comparison of Heuristic Optimizers.” Published: 2012-
08-20. Accessed: 2013-09-01, URL http://www.portfolioprobe.com/2012/08/20/

another-comparison-of-heuristic-optimizers/.

http://hydromad.catchment.org/
http://journal.R-project.org/archive/2011-1/RJournal_2011-1_Ardia~et~al.pdf
http://journal.R-project.org/archive/2011-1/RJournal_2011-1_Ardia~et~al.pdf
http://CRAN.R-project.org/package=DEoptim
http://CRAN.R-project.org/package=pso
http://CRAN.R-project.org/package=pso
http://CRAN.R-project.org/package=Rmalschains
http://CRAN.R-project.org/package=nloptwrap
http://www.burns-stat.com/pages/Spoetry/Spoetry.pdf
http://www.burns-stat.com/pages/Spoetry/Spoetry.pdf
http://www.portfolioprobe.com/2012/08/20/another-comparison-of-heuristic-optimizers/
http://www.portfolioprobe.com/2012/08/20/another-comparison-of-heuristic-optimizers/


Journal of Statistical Software 19

Burns P (2012b). “A Comparison of Some Heuristic Optimization Methods.” Published:
2012-07-23. Accessed: 2013-09-01, URL http://www.portfolioprobe.com/2012/07/23/

a-comparison-of-some-heuristic-optimization-methods/.

Burns Statistics (2012). BurStMisc: Burns Statistics Miscellaneous. R package version 1.00,
URL http://CRAN.R-project.org/package=BurStMisc.

Clayden J, based on the work of Ivan Zelinka (2011). soma: General-Purpose Optimisation
with the Self-Organising Migrating Algorithm. R package version 1.1.0, URL http://CRAN.

R-project.org/package=soma.

Czyzyk J, Mesnier MP, Moré JJ (1998). “The NEOS Server.” IEEE Computational Science
Engineering, 5(3), 68 –75.

Dueck G, Scheuer T (1990). “Threshold Accepting: A General Purpose Optimization Al-
gorithm Appearing Superior to Simulated Annealing.” Journal of Computational Physics,
90(1), 161 – 175.

Eddelbuettel D (2013). RcppDE: Global Optimization by Differential Evolution in C++. R
package version 0.1.2, URL http://CRAN.R-project.org/package=RcppDE.

Floudas CA, Gounaris CE (2009). “A Review of Recent Advances in Global Optimization.”
Journal of Global Optimization, 45(1), 3–38.

Francke T (2012). ppso: Particle Swarm Optimization and Dynamically Dimensioned Search,
Optionally Using Parallel Computing Based on Rmpi. R package version 0.9-952, URL
http://www.RForge.net/ppso/.

Gablonsky JM, Kelley CT (2001). “A Locally-Biased Form of the DIRECT Algorithm.”
Journal of Global Optimization, 21, 27–37.

GAMS Development Corporation and GAMS Software GmbH (2013). “Selected Continuous
Global Optimization Test Problems.” Accessed: 2013-09-01, URL http://www.gamsworld.

org/performance/selconglobal/selcongloballib.htm.

Ghalanos A (2014). parma: Portfolio Allocation and Risk Management Applications. R
package version 1.5-1, URL http://CRAN.R-project.org/package=parma.

Gilli M, Maringer D, Schumann E (2011). Numerical Methods and Optimization in Finance.
Academic Press. URL http://nmof.net/.

Hansen N, Ostermeier A (1996). “Adapting Arbitrary Normal Mutation Distributions in
Evolution Strategies: The Covariance Matrix Adaptation.” In Proceedings of the IEEE
International Conference on Evolutionary Computation, pp. 312–317.

Holland JH (1975). Adaptation in Natural and Artificial Systems. The University of Michigan
Press.

Horst R, Pardalos PM, Thoai NV (2000). Introduction to Global Optimization. Springer-
Verlag.

Jensen PA, Bard JF (2002). Operations Research Models and Methods. John Wiley & Sons.

http://www.portfolioprobe.com/2012/07/23/a-comparison-of-some-heuristic-optimization-methods/
http://www.portfolioprobe.com/2012/07/23/a-comparison-of-some-heuristic-optimization-methods/
http://CRAN.R-project.org/package=BurStMisc
http://CRAN.R-project.org/package=soma
http://CRAN.R-project.org/package=soma
http://CRAN.R-project.org/package=RcppDE
http://www.RForge.net/ppso/
http://www.gamsworld.org/performance/selconglobal/selcongloballib.htm
http://www.gamsworld.org/performance/selconglobal/selcongloballib.htm
http://CRAN.R-project.org/package=parma
http://nmof.net/


20 Continuous Global Optimization in R

Johnson SG (2013). The NLopt Nonlinear-Optimization Package, Version 2-3. URL http:

//ab-initio.mit.edu/nlopt.

Jones DR, Perttunen CD, Stuckman BE (1993). “Lipschitzian Optimization without the
Lipschitz Constant.” Journal of Optimization Theory and Applications, 79(1), 157–181.

Kaelo P, Ali M (2006). “Some Variants of the Controlled Random Search Algorithm for Global
Optimization.” Journal of Optimization Theory and Applications, 130, 253–264.

Kan AR, Timmer G (1987). “Stochastic Global Optimization Methods Part I: Clustering
Methods.” Mathematical Programming, 39, 27–56.

Kennedy J, Eberhart R (1995). “Particle Swarm Optimization.” In Proceedings of the IEEE
International Conference on Neural Networks, volume 4, pp. 1942–1948.

Kirkpatrick S, Gelatt CD, Vecchi MP (1983). “Optimization by Simulated Annealing.” Sci-
ence, 220, 671–680.

Madsen K, Zertchaninov S, Zilinskas A (1998). Global Optimization Using Branch-and-Bound.
Report in the stogo subdirectory of the NLopt source code, URL http://ab-initio.mit.

edu/nlopt/nlopt-2.3.tar.gz.

Mebane WR, Sekhon JS (2011). “Genetic Optimization Using Derivatives: The rgenoud
Package for R.” Journal of Statistical Software, 42(11), 1–26.

Mebane WR, Sekhon JS (2013). rgenoud: R version of GENetic Optimization Using Deriva-
tives. R package version 5.7-12, URL http://CRAN.R-project.org/package=rgenoud.

Molina D, Lozano M, Garćıa-Mart́ınez C, Herrera F (2010). “Memetic Algorithms for Con-
tinuous Optimisation based on Local Search Chains.” Evolutionary Computation, 18(1),
27–63.

Mullen K, Ardia D, Gil D, Windover D, Cline J (2011). “DEoptim: An R Package for Global
Optimization by Differential Evolution.” Journal of Statistical Software, 40(6), 1–26. URL
http://www.jstatsoft.org/v40/i06/.

Neumaier A (2004). “Complete Search in Continuous Global Optimization and Constraint
Satisfaction.” In A Iserles (ed.), Acta Numerica 2004. Cambridge University Press. URL
http://www.mat.univie.ac.at/~neum/ms/glopt03.pdf.

Neumaier A (2013). “Global Optimization.” Accessed: 2013-04-07, URL http://www.mat.

univie.ac.at/~neum/glopt.html.

Nocedal J, Wright SJ (2006). Numerical Optimization. 2nd edition. Springer-Verlag.

Pardalos PM, Romeijn HE (2002). Handbook of Global Optimization Volume 2. Springer-
Verlag.

Pfaff B (2012). rneos: XML-RPC Interface to NEOS. R package version 0.2-7, URL
http://CRAN.R-project.org/package=rneos.

Price KV, Storn RM, Lampinen JA (2006). Differential Evolution – A Practical Approach to
Global Optimization. Natural Computing. Springer-Verlag.

http://ab-initio.mit.edu/nlopt
http://ab-initio.mit.edu/nlopt
http://ab-initio.mit.edu/nlopt/nlopt-2.3.tar.gz
http://ab-initio.mit.edu/nlopt/nlopt-2.3.tar.gz
http://CRAN.R-project.org/package=rgenoud
http://www.jstatsoft.org/v40/i06/
http://www.mat.univie.ac.at/~neum/ms/glopt03.pdf
http://www.mat.univie.ac.at/~neum/glopt.html
http://www.mat.univie.ac.at/~neum/glopt.html
http://CRAN.R-project.org/package=rneos


Journal of Statistical Software 21

R Core Team (2014). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Rudin W (1976). Principles of Mathematical Analysis. International Series in Pure and
Applied Mathematics, 3rd edition. McGraw-Hill International.

Runarsson TP, Yao X (2005). “Search Biases in Constrained Evolutionary Optimization.”
IEEE Transactions on Systems, Man, and Cybernetics C, 35(2), 233 –243.

Satman MH (2014). mcga: Machine Coded Genetic Algorithms for Real-Valued Optimization
Problems. R package version 2.0.9, URL http://CRAN.R-project.org/package=mcga.

Scholz D (2012). Deterministic Global Optimization: Geometric Branch-and-Bound Methods
and Their Applications. 1st edition. Springer-Verlag.

Schumann E (2013). NMOF: Numerical Methods and Optimization in Finance. R package
version 0.28-2, URL http://CRAN.R-project.org/package=NMOF.

Scrucca L (2014). GA: Genetic Algorithms. R package version 2.1, URL http://CRAN.

R-project.org/package=GA.

Sekhon JS, Mebane WR (1998). “Genetic Optimization Using Derivatives: Theory and Ap-
plication to Nonlinear Models.” Political Analysis, 7, 189–213.

Theussl S (2014). CRAN Task View: Optimization and Mathematical Programming. Ver-
sion 2014-08-08, URL http://CRAN.R-project.org/view=Optimization.

Tolson BA, Shoemaker CA (2007). “Dynamically Dimensioned Search Algorithm for Com-
putationally Efficient Watershed Model Calibration.” Water Resources Research, 43(1),
W01413.

Trautmann H, Mersmann O, Arnu D (2011). cmaes: Covariance Matrix Adapting Evolu-
tionary Strategy. R package version 1.0-11, URL http://CRAN.R-project.org/package=

cmaes.

University of Wisconsin-Madison (2013). The NEOS Server. Accessed: 2013-09-01, URL
http://neos-guide.org/.

Weise T (2009). Global Optimization Algorithms – Theory and Application. Thomas Weise.
URL http://www.it-weise.de/projects/book.pdf.

Xiang Y, Gubian S, Suomela B, Hoeng J (2013). “Generalized Simulated Annealing for
Efficient Global Optimization: The GenSA Package for R.” The R Journal, 5(1), 13–28.
URL http://journal.R-project.org/archive/2013-1/xiang-gubian-suomela-etal.

pdf.

Ypma J (2014). nloptr: R Interface to NLopt. R package version 1.04, URL http://CRAN.

R-project.org/package=nloptr.

Zambrano-Bigiarini M (2013). hydroPSO: Particle Swarm Optimisation, with Focus on Envi-
ronmental Models. R package version 0.3-3, URL http://CRAN.R-project.org/package=

hydroPSO.

http://www.R-project.org/
http://CRAN.R-project.org/package=mcga
http://CRAN.R-project.org/package=NMOF
http://CRAN.R-project.org/package=GA
http://CRAN.R-project.org/package=GA
http://CRAN.R-project.org/view=Optimization
http://CRAN.R-project.org/package=cmaes
http://CRAN.R-project.org/package=cmaes
http://neos-guide.org/
http://www.it-weise.de/projects/book.pdf
http://journal.R-project.org/archive/2013-1/xiang-gubian-suomela-etal.pdf
http://journal.R-project.org/archive/2013-1/xiang-gubian-suomela-etal.pdf
http://CRAN.R-project.org/package=nloptr
http://CRAN.R-project.org/package=nloptr
http://CRAN.R-project.org/package=hydroPSO
http://CRAN.R-project.org/package=hydroPSO


22 Continuous Global Optimization in R

Zelinka I (2004). “SOMA – Self Organizing Migrating Algorithm.” In G Onwubolu, BV Babu
(eds.), New Optimization Techniques in Engineering. Springer-Verlag.

Zertchaninov S, Madsen K (1998). “A C++ Programme for Global Optimization.” Technical
Report IMM-REP-1998-04, Department of Mathematical Modelling, Technical University
of Denmark. Report in the stogo subdirectory of the NLopt source code, URL http:

//ab-initio.mit.edu/nlopt/nlopt-2.3.tar.gz.

Zhang J, Sanderson AC (2009). “JADE: Adaptive Differential Evolution With Optional Ex-
ternal Archive.” Evolutionary Computation, IEEE Transactions on, 13(5), 945 –958.

http://ab-initio.mit.edu/nlopt/nlopt-2.3.tar.gz
http://ab-initio.mit.edu/nlopt/nlopt-2.3.tar.gz


Journal of Statistical Software 23

A. Boxplots of solutions

This appendix contains boxplots of solutions returned by the 18 implementations for 48 ob-
jective functions. The global optimum of the functions (within the parameter bounds) is
demarcated with a horizontal red line in all plots. The lower and upper bounds on param-
eter values do not appear to have had an effect in the DEopt technique, in that parameter
vectors outside of the bounds were sometimes returned by this function (e.g., see results for
the Schwefel function).

For the purposes of presentation, the y-limits of some plots do not encompass all solutions
returned. The outlying values not shown are as follows: For the LM2n5 problem, 2 values >
10 returned by optim; for the PriceTransistor problem, 2 values > 1000 returned by optim.
The erroneous values of zero returned by malschains in one case each for the Branin and
GoldPrice functions were also not shown.

The data described in these plots (along with scripts to generate and plot the results) is
included as supplementary information to this paper.

●●●●●●●●●●

●

●● ●●●●●●

●

●

●

●●

●●●
●

●●●●

●

●●●●●●●
●
●●

● ●● ●●●●●●●●●●

●●●● ●●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

0

5

10

15

20

10−parameter Ackleys problem

O
bj

. f
un

. v
al

ue

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●●

●

●●●●●●

●

●●●

●

●

●●

●●●

●●●●●●●●

●
●

●●●● ●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●

●

●●●●●●

●

●●●●●● ●●●●●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

−0.35
−0.30
−0.25
−0.20
−0.15
−0.10
−0.05

0.00

2−parameter AluffiPentini problem

O
bj

. f
un

. v
al

ue



24 Continuous Global Optimization in R

●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●

●

●●●●●●
●
●

●

●●●●●●

●

●●

●●
●●● ●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●

●

●●●●●● ●●●●●●●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

0.00

0.02

0.04

0.06

0.08

2−parameter BeckerLago problem
O

bj
. f

un
. v

al
ue

●●●●●● ●●●●●●●●●●●●●●●●●● ●
●
●

●
●●
●

●
●
●● ●

●

●

●

●
●
●

●

●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●

●

● ●●●●●●●●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

0

1

2

3

4

5

2−parameter Bohachevsky1 problem

O
bj

. f
un

. v
al

ue

●●●●●●●●●●●● ●●●●●●●●●●●●●●●
●
●●●●●● ●●●●●●●

●

●

●

●
●● ●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●

●
●●●● ●●●●●●●●●●●●●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

0

2

4

6

2−parameter Bohachevsky2 problem

O
bj

. f
un

. v
al

ue



Journal of Statistical Software 25

●●●●●●●●●●●●● ● ●● ●●●●●●●●●●●●●●●●●● ●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

● ●●●●●●●●●●●●● ●●

●

●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

0.5

1.0

1.5

2.0

2.5

3.0

3.5

2−parameter Branin problem
O

bj
. f

un
. v

al
ue

●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●

●

● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●● ●●●●●●●●● ●●●●●●●●●●●● ●●

●

●●●●

●

●

●

●●●●● ●●●●●●●●●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

2−parameter Camel3 problem

O
bj

. f
un

. v
al

ue

●●●●●●●●● ● ●●●●●
●
●●●●●●●●●●●●●●

●●●

●●●● ●●●●●●●●●●●
●

●

●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

2−parameter Camel6 problem

O
bj

. f
un

. v
al

ue



26 Continuous Global Optimization in R

●●●●● ●●●●●●●●●●●●●●●●●●●

●

●

●

●

● ●

●

●

●●●●●●●●●●●●●●
●●●
●

●●
●

●●●●●●●●●

●

●●●●●●●●●●●●●●● ●●●●●●●●●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

−0.20

−0.15

−0.10

−0.05

0.00

2−parameter CosMix2 problem
O

bj
. f

un
. v

al
ue

●●●●●●●●●●●●● ●

●

●●●●●●●●●●●●●●●●●●●

●●●

●
●

●

●●●

●

●●●

●

●

●●●●●●●●●

●

●

●●●●●●●●●●●●●●●

●●●●

●

●●●

●● ●●●●●●●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

−0.4

−0.3

−0.2

−0.1

0.0

4−parameter CosMix4 problem

O
bj

. f
un

. v
al

ue

●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●● ●●

●

● ●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

−25000

−20000

−15000

−10000

−5000

0

2−parameter DekkersAarts problem

O
bj

. f
un

. v
al

ue



Journal of Statistical Software 27

●●●●●●●●●●●●●●●●

●●●●●●●

●●●●●

●

●
●
●

●
●●
●●
●

●●

●
●●●●

●

●
●
●

●●
●
●●●●
●
●
●

●●●
●
●

●

●●
●●
●

●

●●
●
●

●●●●

●

●●● ●●●●●●●●●●●●●●●●●
●

●

●●

●

●

●

●●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●●
●●
●

●

●

●

●
●●●●

●

●●●●
●●●●●●●●
●
●●
●●

●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

2−parameter Easom problem
O

bj
. f

un
. v

al
ue

●

●●●
●

●●

●
●●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●
●
●

●

●●

●

●

●●●●

●

●●

●

●

●

●
●●
●

●●

●
●
●
●
●
●●

●

●

●●

●

●

●

●

●

●●●●●●●●●●●●●●●

●

●

●
●●
●●●

●

●
●
●
●
●

●

●
●
●

●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

−5

−4

−3

−2

−1

0

5−parameter EMichalewicz problem

O
bj

. f
un

. v
al

ue

●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●● ●

●●●

●●●●●●●●●●●●

●

●●●

●

●●

●●●●●●●

●●●●●●

●
●●●●●●

●

●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●

●●●●●● ●●●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

10−parameter Expo problem

O
bj

. f
un

. v
al

ue



28 Continuous Global Optimization in R

●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●

●
●

●

●
●
●

●

●

●●
●
●
●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●●●●

●

●●●●●●● ●●●●●●●●●

●

●●●●

●

●

●

●●●●● ●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●
●

●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

0

20

40

60

80

2−parameter GoldPrice problem
O

bj
. f

un
. v

al
ue

●●●●●● ●●●●●●●● ● ●●●●● ●●●●●●●● ●
●

● ● ●●●●● ●●●●●●●●●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

0

100

200

300

10−parameter Griewank problem

O
bj

. f
un

. v
al

ue

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

0.0

0.1

0.2

0.3

0.4

0.5

10−parameter Griewank problem (alternative axis limits)

O
bj

. f
un

. v
al

ue



Journal of Statistical Software 29

●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●
●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●

●

●●

●

●

●

●

●

●●●● ●●●●●●●●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

0

5

10

15

20

25

30

3−parameter Gulf problem
O

bj
. f

un
. v

al
ue

●●●●●●●●●●● ●●●●●●●●●●●●

●

●●●●● ●● ●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●

●
●

●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

−4

−3

−2

−1

0

3−parameter Hartman3 problem

O
bj

. f
un

. v
al

ue

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●
●●●

●
●
●
●●
●●●●●●●●●●●● ●●●●●●●●●

●●
●
●
●●
●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

−3.0
−2.5
−2.0
−1.5
−1.0
−0.5

0.0

6−parameter Hartman6 problem

O
bj

. f
un

. v
al

ue



30 Continuous Global Optimization in R

●● ●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●● ●●●● ●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●

●
●●

●

●

●

●●● ●●●●●●●●●●●●●●●●● ●●●●●
●●●●●●●●● ●●●●●●●●●●●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

0.00

0.01

0.02

0.03

0.04

0.05

0.06

4−parameter Kowalik problem
O

bj
. f

un
. v

al
ue

●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●
●
●●●●●●●

●

●

●

●●●●●●●●●●●● ●●●●
●
●●●●●●●●●● ●●●●●●●●●●

●●

●
●
●
●
●●●●
●
●

●

●

●
●

●

●●●●●●●● ●●●●●● ●●●●●
●
●●●
●

●●●●●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

0
5

10
15
20
25
30
35

3−parameter LM1 problem

O
bj

. f
un

. v
al

ue

●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●

●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●● ●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●●●●● ●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

0

10

20

30

40

50

60

10−parameter LM2n10 problem

O
bj

. f
un

. v
al

ue



Journal of Statistical Software 31

●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●

●

●●●●● ●●●●●●●●●●● ●●●●●●● ●●●●●●●●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

0

2

4

6

8

10

5−parameter LM2n5 problem
O

bj
. f

un
. v

al
ue

●

●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●
●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●● ●

●

●●●●●●

●●

●

●

●●●●●●

●

●●●●●●●●●●●●●●● ●●
●
●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●

●●●
●●●●●●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

0.00

0.02

0.04

0.06

0.08

0.10

3−parameter MeyerRoth problem

O
bj

. f
un

. v
al

ue

●●●●●● ●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●

●

●●●

●

●

●●

●

●
●●●

●●

●

● ●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●
●
●●● ●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

0

2

4

6

8

10

12

4−parameter MieleCantrell problem

O
bj

. f
un

. v
al

ue



32 Continuous Global Optimization in R

●
●●

●●●

●

●●●●●●●●●●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●
●
●

●●

●●

● ●

●

●

●●

●

●

●

●

●

●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●●●●●●●●●●●●●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

10−parameter Modlangerman problem
O

bj
. f

un
. v

al
ue

●
●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●
●
●

●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

2−parameter ModRosenbrock problem

O
bj

. f
un

. v
al

ue

●

●

●

●●●●●●●

●

●●●●● ●

●●●

●

●●

●

●

●●

●●● ●●●●●

●

●●●
●
●

●

●●●

●

●●

●●
●●●● ●

●

●
●
●
●●●
●●

●

●●●

●

●●●
●●
●●●●
●
●
●
●

●

●
●
●●●●●●●

●

●●

●

●
●
●

●

●●

●

●●

●

●●●

●●●●●●●
●
●
●●●●●
●
●●
● ●

●

●●

●●

●●●

●

●

●

●●●

●●

●●

●

●

●●●●●●●●●●● ●●●●●●●●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

−1.2
−1.0
−0.8
−0.6
−0.4
−0.2

0.0

2−parameter MultiGauss problem

O
bj

. f
un

. v
al

ue



Journal of Statistical Software 33

●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●● ●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●● ●●●● ●●●●●●●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

0

1000

2000

3000

4000

4−parameter Neumaier2 problem
O

bj
. f

un
. v

al
ue

●●
●

●●●●●●●●●●●●●●●
●●●●●

●●

●●● ●●●●●●●●●● ●●●●●● ●●●●●●●●●●● ●●●●●●● ●●●●●●

●●●●●●●●●

●●●●●●● ●●●●●●●●●●●●●

●

●

●

●●

●●
●

●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

0

500

1000

1500

2000

2500

10−parameter Neumaier3 problem

O
bj

. f
un

. v
al

ue

●●

●

●●

●

●●●

●

● ●●●●●●●●●●●●● ●●●●●●●●●●●●●

●●●

●
●

●●●●●●●●●●●●

●

●
●

●

●

●●●

●
●
●●●●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

−40

−30

−20

−10

10−parameter Paviani problem

O
bj

. f
un

. v
al

ue



34 Continuous Global Optimization in R

●●●●●●●●●●●●

●

●●●●●●●

●

●●● ●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●

●●

●

●●●●●

●

●
●
●●●●●●
●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●●●

● ●

●

●●●

●

●●●

●

●●●●

●

●●●●●●●●

●

●●●

●●

●

●●

●●

●

●

●●●●●●●●●

●

●●●●●

● ●●●●●●●

●

●●●●●●●●●●

●

●

●

●
●●
●●

●

●

●
●
●
●
●

●●

●

●●●●●●

●

●

●●

●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

1.0

1.2

1.4

1.6

1.8

2−parameter Periodic problem
O

bj
. f

un
. v

al
ue

●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●● ●●●●●●● ●●● ●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

0
20
40
60
80

100
120
140

4−parameter PowellQ problem

O
bj

. f
un

. v
al

ue

●

●●

●

●

●
●

●●●●●●●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●
●
●●●●
●
● ●●●●

●●
●
●

●
●
●
●●
●●●
●●
●

●

●

●

●●
●
●

●●

●●
●
●

●

●

●

●
●
●●
●
●
●

●

●●
●●
●
●
●

●●●●●

●

●
●●

●●

●
●

●
●

●
●
● ●

●
●●●●●●●●●●●● ●

●

●

●
●●
●●●●
●●
●
●●●
●
●●
●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

0

500

1000

1500

9−parameter PriceTransistor problem

O
bj

. f
un

. v
al

ue



Journal of Statistical Software 35

●●●●●● ●●●●●●● ●●●●●●●●●● ●●● ●● ●

●

●

● ●●●● ●●● ●●●●●●●●●●●●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

0e+00
1e+05
2e+05
3e+05
4e+05
5e+05
6e+05
7e+05

10−parameter Rastrigin problem
O

bj
. f

un
. v

al
ue

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

0

2

4

6

8

10

10−parameter Rastrigin problem (alternative axis limits)

O
bj

. f
un

. v
al

ue

●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●

●●●
●●●●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●● ●●●●●●●●●●

●
●

●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

0e+00

2e+05

4e+05

6e+05

8e+05

10−parameter Rosenbrock problem

O
bj

. f
un

. v
al

ue



36 Continuous Global Optimization in R

●●●●●●●●● ●●●●●

●

●●●●●● ●

●

●

●

●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

0.0

0.1

0.2

0.3

0.4

0.5

10−parameter Rosenbrock problem (alternative axis limits)
O

bj
. f

un
. v

al
ue

●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●

●

●●●●●● ●●●●●●●●

●

●

●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●

●●●●
●●●●●

●●●●●●●●●●●●●●●●●●●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

0

5

10

15

20

5−parameter Salomon problem

O
bj

. f
un

. v
al

ue

●●●●●●●●●●●●●●●●●●●●● ●●

●

●●●●●
●●

●●

●
●
●
●●●●●●●
●●

●●

●●●

●

●

●

●

●

●

●●

●

●●

●●●●●●●●●●●●●●●●●●●●●● ●●●
●●
●

●

●●●●

●

●●

●

●

●

●●●●●●●●●●●

●

●

●

●●●● ●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●
●●●●●●●●●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

0.0

0.1

0.2

0.3

0.4

0.5

2−parameter Schaffer1 problem

O
bj

. f
un

. v
al

ue



Journal of Statistical Software 37

●●●●
●
●●●●●●●●●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●●●
●●●●

●

●●

●

●●●
●

●

●●

●

● ●●●●●● ●

●●●●●
●
●●●

●

●●●●●

●

●●

●

●

●

●●●●

●

●

●●

●●●
●

●●

●

●

●●●

●

●

●

●●●● ●
●

●

●

●●

●

●

●

●

●●●●

●

●

●
●

●

●

●

●

●

●●●●●

●

●●●●●

●

●

●●●●●●
●●●●●●●
●

●
●

●

●●

●

●●●●
ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

0
1
2
3
4
5
6

2−parameter Schaffer2 problem
O

bj
. f

un
. v

al
ue

●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●● ●●
●●●●

●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●

●

●

●●

●●●●●●●●●●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

−150

−100

−50

2−parameter Schubert problem

O
bj

. f
un

. v
al

ue

● ● ● ● ●●●● ●●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

−4e+05

−3e+05

−2e+05

−1e+05

0e+00

10−parameter Schwefel problem

O
bj

. f
un

. v
al

ue



38 Continuous Global Optimization in R

●

●●

●●

●●●●●●●●●●

●

●

●●●●●

●●●●●●●

●

●●●●●

●

●●●●●●●●●

●●●
●●
●

●●

●

●●

●●●

●

●

●
●

●●

●

●●

●

●●●●

●
●
●●●
●

●

●
●●

●

●●

●
●●
●

●

●

●

●

●

●

●
●●●
●

●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●

●

●●
●

●
●
●

●

●

●

●

●●

●●

●

●●

●

●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

−10

−8

−6

−4

−2

0

4−parameter Shekel10 problem
O

bj
. f

un
. v

al
ue

●●●●●
●
●●●

●

●●

●●●

●

●

●●

●

●●

●●

●

●
●●
●●●● ●

●

●

●●●

●
●

●●

●

●●●●●●●●●●

●●●●●

●
●

●

●●

●

●

●●●

●

●

●

●

●●

●

●●

●●

●●

●

●

●●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

−10

−8

−6

−4

−2

0

4−parameter Shekel5 problem

O
bj

. f
un

. v
al

ue

●●●●●●●●

●

●●●●

●

●●●●

●

●●●

●

●
●●●●●

●●●●●●●●●●●●●●●●●●●

●●

●●

●

●

●

●

●

●

●●

●

●●●

●●●

●

●

●

●●

●

●

●
●
●

●

●

●

●●●●●●●●●●●●●●●●●●

●

●●

●
●●

●

●●

●

●

●●

●

●●

●

●

●

●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

−10

−8

−6

−4

−2

0

4−parameter Shekel7 problem

O
bj

. f
un

. v
al

ue



Journal of Statistical Software 39

●● ●●●●●●●●●●

●

●
●
●
●●
●
●

●

●●
●
●

●

●●

●●●

● ●●●●●● ● ●●

●●●
●

●

●

●●●●●●
●
●●

●

●●●●●

●●●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●●

●●

●●
●

●

●●

●
●

●

●

●

●

●●●

●●●●
●

●

●

●

●●

●

●

●
●●
●
●●
●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●●
●

●

●

●
●●

●
●●

● ●●●

●●

●

●

●

●●

●

●●

●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

−10

−8

−6

−4

−2

0

5−parameter Shekelfox5 problem
O

bj
. f

un
. v

al
ue

●●●●●●●●●●●● ●●●●●●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●● ●●●● ●●●●
●●●●●●●●●●●●●●●●●● ●●●●●●●

●●●●● ●●●●●●●●●
●●●●●●●●●●●●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

0

50

100

150

4−parameter Wood problem

O
bj

. f
un

. v
al

ue

●●●

● ●●●●●

●
●
●●
●●
●
●●

●
●

●●●●●●●●●●●●●●●●●●●●● ●●●●●

●

●●●●●●●●●

● ●

●●●●

●●

●●●●●●●●●

●

●

●●●●●●●●●● ●●●●●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

−3.5
−3.0
−2.5
−2.0
−1.5
−1.0
−0.5

0.0

10−parameter Zeldasine10 problem

O
bj

. f
un

. v
al

ue



40 Continuous Global Optimization in R

●
●

●

●

●

●●

●

●

●

●●

●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●● ●●●●●●●●● ●●●●●●●●●●

●●
●

●
●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

−3.50

−3.45

−3.40

−3.35

−3.30

−3.25

10−parameter Zeldasine10 problem (alternative axis limits)
O

bj
. f

un
. v

al
ue

●●

●

●●●●●●●●●●●

●●●●

●

●

●

●●●●●●

●●

●●●●●●

●

●●●● ●●●

●●●

●●
●●●●●●

●

●

●

●
●

●

●

●

●

●●●●●●●

●●●●●●●●●●●●●●●

●

●●
●
●

●
●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

−3.5
−3.0
−2.5
−2.0
−1.5
−1.0
−0.5

0.0

20−parameter Zeldasine20 problem

O
bj

. f
un

. v
al

ue

●● ●●●● ●●● ●●●●●●●●●●●●●●●

ga

ge
no

ud

D
E

op
tim

so
m

a

cm
a_

es

G
en

S
A

ps
op

tim

nl
op

tr
_c

rs

nl
op

tr
_s

to
go

nl
op

tr
_d

nl
op

tr
_d

_l

nl
op

tr
_i

op
tim

D
E

op
t

m
al

sc
ha

in
s

hy
dr

oP
S

O

S
C

E
op

tim

P
S

op
t

−3.50

−3.45

−3.40

−3.35

−3.30

−3.25

20−parameter Zeldasine20 problem (alternative axis limits)

O
bj

. f
un

. v
al

ue



Journal of Statistical Software 41

B. Timing results

This appendix contains boxplots of time required to return a solution within a given budget
of function evaluations as described in Section 4. The data described in these plots (along
with scripts to generate and plot the results) is included as supplementary information to this
paper.

●●●●

●●●●●●●

●●●

●

●●●

●

●

●

●●

●

●●●

●●●●●●● ●●● ●●●● ● ●●●●

malschains
nloptr_crs
hydroPSO

nloptr_i
cma_es

SCEoptim
genoud

optim
nloptr_d
GenSA

soma
DEoptim

nloptr_d_l
DEopt
PSopt

ga
psoptim

nloptr_stogo

0 10 20 30 40 50 60

2−parameter BeckerLago problem

seconds

●●●●

●●●●●●●

● ●●

●

● ●●

●

●

●

●●

●

malschains
nloptr_crs
hydroPSO

nloptr_i
cma_es

SCEoptim
genoud

optim
nloptr_d
GenSA

soma
DEoptim

nloptr_d_l
DEopt
PSopt

ga
psoptim

nloptr_stogo

0 1 2 3 4 5 6 7

2−parameter BeckerLago problem (alternative axis limits)

seconds



42 Continuous Global Optimization in R

●

●●●●●●●● ●●● ●●●●●●●●●●●●

●● ●●

●●●

●●

●●●

●●●●●●●●

●●●●●●●●

nloptr_crs
hydroPSO

genoud
cma_es
nloptr_i

optim
nloptr_d
GenSA

DEoptim
soma

malschains
nloptr_d_l

DEopt
PSopt

SCEoptim
ga

psoptim
nloptr_stogo

0 20 40 60 80 100

4−parameter Kowalik problem

seconds

●

● ●●● ●●● ● ●●● ●●●● ●● ●●● ●●●

●● ●●

●●●

●●

●●●

nloptr_crs
hydroPSO

genoud
cma_es
nloptr_i

optim
nloptr_d
GenSA

DEoptim
soma

malschains
nloptr_d_l

DEopt
PSopt

SCEoptim
ga

psoptim
nloptr_stogo

0 1 2 3 4 5 6 7

4−parameter Kowalik problem (alternative axis limits)

seconds



Journal of Statistical Software 43

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●

●●●●●●●●●●●●●●●●

●

●●

●●

●●

●●●●●●●●●●●●●●●●●

●

●●●●●

●●●

●●

●●

malschains
soma

nloptr_crs
hydroPSO

genoud
optim

nloptr_d_l
nloptr_d
nloptr_i

DEoptim
GenSA
PSopt
DEopt

SCEoptim
cma_es

ga
psoptim

nloptr_stogo

0 20 40 60 80 100

10−parameter Rastrigin problem

seconds

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●

●● ●● ●●● ●●● ●● ●● ●●

●

●●

● ●

●●

● ●●●●●●●●●●●●●●●●

malschains
soma

nloptr_crs
hydroPSO

genoud
optim

nloptr_d_l
nloptr_d
nloptr_i

DEoptim
GenSA
PSopt
DEopt

SCEoptim
cma_es

ga
psoptim

nloptr_stogo

0 1 2 3 4 5 6 7

10−parameter Rastrigin problem (alternative axis limits)

seconds



44 Continuous Global Optimization in R

●

● ●

●

●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●

●●●●●●●●●

●

●●●●

●● ●● ● ●●● ● ●●●

●●● ●●● ● ● ●● ●●●●● ●

malschains
soma

cma_es
nloptr_crs
hydroPSO

optim
genoud

DEoptim
nloptr_i

nloptr_d
nloptr_d_l

PSopt
DEopt

GenSA
ga

psoptim
SCEoptim

nloptr_stogo

0 100 200 300 400

20−parameter Zeldasine20 problem

seconds

●

●

●

●●●●●●●●●●

●● ●●●● ●● ●●●●

●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●● ●

●●

●●●●●●●●●●●

●●●●●●●●●

●●●●

malschains
soma

cma_es
nloptr_crs
hydroPSO

optim
genoud

DEoptim
nloptr_i

nloptr_d
nloptr_d_l

PSopt
DEopt

GenSA
ga

psoptim
SCEoptim

nloptr_stogo

0 1 2 3 4 5 6 7

20−parameter Zeldasine20 problem (alternative axis limits)

seconds



Journal of Statistical Software 45

Affiliation:

Katharine M. Mullen
Department of Statistics
University of California, Los Angeles
8125 Math Sciences Bldg.
Los Angeles, CA 90095-1554, United States of America
E-mail: katharine.mullen@stat.ucla.edu
URL: http://www.stat.ucla.edu/~katharine.mullen/

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 60, Issue 6 Submitted: 2012-12-26
September 2014 Accepted: 2014-08-05

mailto:katharine.mullen@stat.ucla.edu
http://www.stat.ucla.edu/~katharine.mullen/
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction to global optimization
	Constrained global optimization
	Paper outline

	Implementations in R
	Annealing methods
	stats package, optim function, method = "SANN"
	GenSA package

	Evolutionary methods
	rgenoud package
	DEoptim package
	NMOF package: DEopt and GAopt
	soma package
	Rmalschains package
	cmaes package
	parma package
	genopt function from BurStMisc
	GA package
	mcga package
	nloptr package: ISRES
	hydromad package: SCEoptim

	Particle swarm optimization methods
	pso package
	ppso package
	hydroPSO package
	NMOF package: PSopt

	Branch and bound methods
	nloptr package: StoGo

	Deterministic methods
	nloptr package: DIRECT

	Other stochastic methods
	nloptr package: CRS
	NMOF package: LSopt
	nloptr package: MLSL


	Test problems
	Empirical comparison
	Results
	Discussion, conclusions, and future work
	Boxplots of solutions
	Timing results

