
JSS Journal of Statistical Software
January 2012, Volume 46, Issue 1. http://www.jstatsoft.org/

Interactive and Animated Scalable Vector Graphics

and R Data Displays

Deborah Nolan
University of California, Berkeley

Duncan Temple Lang
University of California,Davis

Abstract

We describe an approach to creating interactive and animated graphical displays us-
ing R’s graphics engine and Scalable Vector Graphics, an XML vocabulary for describing
two-dimensional graphical displays. We use the svg() graphics device inR and then post-
process the resulting XML documents. The post-processing identifies the elements in the
SVG that correspond to the different components of the graphical display, e.g., points,
axes, labels, lines. One can then annotate these elements to add interactivity and ani-
mation effects. One can also use JavaScript to provide dynamic interactive effects to the
plot, enabling rich user interactions and compelling visualizations. The resulting SVG
documents can be embedded within HTML documents and can involve JavaScript code
that integrates the SVG and HTML objects. The functionality is provided via the SV-
GAnnotation package and makes static plots generated viaR graphics functions available
as stand-alone, interactive and animated plots for the Web and other venues.

Keywords: R graphics, interactive, animation, vector graphics, JavaScript.

1. Introduction

The way we view graphical representations of data has significantly changed in recent years.
For example, viewers expect to interact with a graphic on the Web by clicking on it to get
more information, to produce a different view, or control an animation. These capabilities
are available in Scalable Vector Graphics (SVG, Eisenberg 2002), and in this article, we
describe an approach within R (R Development Core Team 2011) to creating stand-alone
interactive graphics and animations using SVG. SVG offers these capabilities through a rich
set of elements that allow the graphics objects to be grouped, styled, transformed, composed
with other rendered objects, clipped, masked, and filtered. SVG may not be the most ideal
approach to interactive graphics, but it has advantages that come from its simplicity and
increasing use on the Web and in publishing generally. The approach presented here uses

http://www.jstatsoft.org/

2 Interactive and Animated Scalable Vector Graphics and R Data Displays

R’s high-level plotting functions, R’s SVG graphics device engine and the third-party cairo
rendering engine (Cairo Graphics 2010) to create high-quality plots in SVG. Our tools allow
users to post-process SVG documents/plots to provide the additional annotations to make
the document interactive with, e.g., hyperlinks, tool tips, sliders, buttons, and animation to
create potentially rich, compelling graphics that can be viewed outside of the R environment.

The SVGAnnotation package (Nolan and Temple Lang 2011) contains a suite of tools to
facilitate the programmer in this process. The package provides “high-level” facilities for
augmenting the SVG output from the standard plotting functions in R, including lattice
(Sarkar 2011) and the traditional plotting functions. In addition to providing useful higher-
levels facilities for modifying the more common R plots, the SVGAnnotation package also
provides many utilities to handle other types of plots, e.g., maps and graphs. Of course,
it is possible to generate interactive graphics from “scratch” in SVG by taking charge of all
drawing, e.g., determining the coordinate system and drawing the axes, tick marks, labels, etc.
However for complex data plots, we are much better off using this post-processing approach
and leveraging R’s excellent existing graphics facilities.

We do not want to suggest that the approach presented here is the definitive or dominant
solution to the quest for general interactive graphics for R or statistics generally. Our focus
is on making graphical displays created in R available in new ways to different audiences
outside of R and within modern multi-media environments. This approach uses the XML
(van Vugt 2007) parsing and writing facilities in the XML package (Temple Lang 2011b),
and the availability of XML tools make it an alternative that we believe is worth exploring.
While the popularity or uptake of this approach may be debatable due to prospects of SVG
or implementations of the complete SVG specification in widely used browsers, what we
have implemented can be readily adapated to other formats such as Flash (Adobe Systems
Incorporated 2011) or the JavaScript canvas (Flanagan 2006). Hence this paper also provides
ideas for future work with other similar graphical formats such as Flash, Flex MXML (Kazoun
and Lott 2008), and the JavaScript canvas. The essential idea is to post-process regular R
graphics output and identify and combine the low-level graphical objects (e.g., lines and text)
into higher-level components within the plot (e.g., axes and labels). Given this association, we
can then annotate components to create interactive, dynamic and animated plots in various
formats.

The remainder of the paper is organized as follows. We start by explaining why SVG is a
valuable format. We then give a brief introduction to several examples that illustrate different
features of SVG and how they might be used for displaying statistical results. We move on
to explore general facilities that one may use to add to an SVG plot generated within R. The
examples serve as the context for the discussion of the functions in SVGAnnotation and the
general approach used in the package. The facilities include adding tool tips and hyperlinks
to elements of a display. Next, we introduce the common elements of SVG and examine the
typical SVG document produced when plotting in R. This lays the ground work for using
more advanced features in SVGAnnotation, such as how to handle non-standard R displays,
animation, GUI components in SVG, and HTML forms. Additionally, we illustrate aspects
of integrating JavaScript and SVG. We conclude the paper by discussing different directions
to explore in this general area of stand-alone, interactive, animated graphics that can be
displayed on the Web.

Several technologies in this paper (XML, SVG, and JavaScript) may be new to readers. For
this reason, we provide an introduction to XML and also to JavaScript as appendices. It may

Journal of Statistical Software 3

be useful for some readers to review these before reading the rest of this paper.

We also note that this paper and the figures can be viewed as an HTML document (provided
in the supplements and at http://www.omegahat.org/SVGAnnotation/). The SVG displays
within the HTML version are “live”, i.e., interactive and/or animated. The reader may choose
to switch to reading this version of the paper as it is a better medium for understanding the
material.

2. Why SVG?

Scalable Vector Graphics (SVG) is an XML format for describing two dimensional (2-D)
graphical displays that also supports interactivity, animation, and filters for special effects on
elements within the display. SVG is a vector-based system that describes an image as a series
of geometric shapes. This is in contrast to a raster representation that uses a rectangular
array of pixels (picture elements) to represent what appears at each location in the display.
An SVG document includes the commands to draw shapes at specific sets of coordinates.
These shapes are infinitely scalable because they are vector descriptions, i.e., the viewer
can adjust and change the display (for example, to zoom in and refocus) and maintain a
clear picture. SVG is a graphics format similar to PNG, JPEG, and PDF. Many commonly
used Web browsers directly support SVG (Firefox, Safari, Opera), and there is a plug-in for
Internet Explorer. For example, Firefox can act as a rendering engine that interprets the
vector description and draws the objects in the display within the page on the screen. There
are also other non-Web-browser viewers for SVG such as Inkscape (Bah 2007) and Squiggle
(Apache Software Foundation 2009), based on Apache’s batik (Apache Software Foundation
2008). Similar to JPEG and PNG files, SVG documents can be included in HTML documents
(they can also be in-lined within HTML content). However, quite differently from other image
formats, SVG graphics, and their sub-elements, remain interactive when displayed within an
HTML document and can participate as components in rich applications that interact with
other graphics and HTML components. SVG graphics can also be included in PDF documents
via an XML-based page description language named Formatting Objects (FO, Pawson 2002),
which is used for high-quality typesetting of XML documents. SVG is also capable of fine-
grained scaling. For these reasons, SVG is a rich and viable alternative to the ubiquitous
PNG and JPEG formats.

The size of SVG files can be both significantly smaller and larger than the corresponding raster
displays, e.g., PNG and JPEG. This is very similar to PDF and Postscript formats. For simple
displays with few elements, an SVG document will have entries for just those elements and
so be quite small. Bitmap formats however will have the same size regardless of the content
as it is the dimensions of the canvas that determines the content of the file. As a result,
for complex displays with many elements, an SVG file may be much larger than a bitmap
format. Furthermore, SVG is an XML vocabulary and so suffers from the verbosity of that
format. However, SVG is also a regular text format and so can be greatly compressed using
standard compression algorithms (e.g., GNU zip). This means we cannot simply compare
the size of compressed SVG files to uncompressed bitmap formats as we should compare sizes
when both formats are compressed. JPEG files, for example, are already compressed and so
direct comparisons are appropriate. Most importantly, we should compare the size of files
that are directly usable. SVG viewer applications (e.g., Web browsers, Inkscape) can read
compressed SVG (.svgz) files, but they typically do not read compressed bitmap formats. As

http://www.omegahat.org/SVGAnnotation/

4 Interactive and Animated Scalable Vector Graphics and R Data Displays

a result, compressed SVG files can be significantly smaller than comparable bitmap graphics,
and so utilize less bandwidth and are faster to download.

As just mentioned, an SVG file is a plain-text document. Since it is a grammar of XML, it is
also highly structured. Being plain text means that it is relatively easy to create, view and
edit, and the highly structured nature of SVG makes it easy to modify programmatically.
These features are essential to the approach described here: R is used to create the initial
plot; we then programmatically identify the elements in the SVG document that correspond
to the components of the plot, and augment the SVG document with additional information
to create the interactivity and/or animation.

As a grammar of XML, SVG separates content and structure from presentation, e.g., the
physical appearance of components in the presentation can be modified with a Cascading
StyleSheet (Meyer 2004) without the need to change or re-plot the graphic. For example,
someone who does not know R or even have the original data can change the contents of the
CSS file that the SVG document uses, or substitute a different CSS file in order to, for example,
change the color of points in the data region or the size of the line strokes for the axes labels.
While this is non-trivial, it is feasible and certain annotations on the SVG content added by
the SVGAnnotation package make this simpler. An additional feature of SVG is that elements
of a plot can be grouped together and operated on as a single object. This makes it relatively
easy to reuse visual objects and also to apply operations to them both programmatically and
interactively. This is quite different from the style of programming available in traditional R
graphics which draws on the canvas and does not work with graphical objects.

The SVG vocabulary provides support for adding interaction and animation declarations that
are used when the SVG is displayed. However, one of the powerful aspects of SVG is that
we can also combine SVG with JavaScript (also known as ECMAScript, Flanagan 2006). This
allows us to provide interaction and animation programmatically during the rendering of the
SVG rather than declaratively through SVG elements. Both approaches work well in different
circumstances. Several JavaScript functions are provided in the SVGAnnotation package to
handle common cases of interaction and animation. For more specialized graphical displays,
the creator of the annotated SVG document may also need to write JavaScript code, which
means working in a second language. For some users, this will be problematic, but this package
and the JRSONIO package do provide some facilities to aid in this step, e.g., making objects
in R available to the JavaScript code. (See addECMAScripts() and examples Example 7
and Example 8, amongst others.) While switching between languages can be difficult, we
should recognize that the SVG plots are being displayed in a very different medium and use
a language (JavaScript) that is very widely used for Web content.

The interactivity and animation described here are very different from what is available in
more commonly used statistical graphics systems such as GGobi (Swayne et al. 2010), iplots
(Urbanek and Wichtrey 2011), or Mondrian (Theus 2002). Each of these provide an interac-
tive environment for the purpose of exploratory visualization and are intended primarily for
use in the data analysis phase. While one could in theory build similar systems in SVG, this
would be quite unnatural. Instead, SVG is mostly used for creating presentation graphics
that typically come at the end of the data analysis stage. Rather than providing general in-
teractive features for data exploration, we use SVG to create application-specific interactivity,
including graphical interfaces for a display.

Journal of Statistical Software 5

3. Examples of interactivity with SVG

To get a sense of the possibilities for interactivity with SVG, we first present a relatively
comprehensive set of examples. Later sections give the details on how these are created. We
begin with very simple examples that use high-level facilities in the SVGAnnotation package
and proceed to more complex cases built using the utility functions also in the package.
Some of these more advanced displays require a deeper understanding of how particular plots
created in R are represented in SVG and an ability to write JavaScript.

The examples are intended to introduce the reader to the capabilities of SVG. They are
also arranged to gradually move from high-level facilities to more technical details, i.e., they
increase in complexity. The aim is to provide readers with sufficient concrete examples and
accompanying code to develop SVG-based interactive displays themselves. When readers have

Figure 1: This scatter plot was produced by a call to the plot() function in R. After the
plot was created, a hyperlink was added to the title of the plot using the addAxesLinks()

function in SVGAnnotation. When viewed in a browser, a mouse click on the title will make
the browser open up the url shown in the status bar of the screen shot. (This plot is adapted
from Sarkar 2008.)

6 Interactive and Animated Scalable Vector Graphics and R Data Displays

Figure 2: The hexagonal-bin plot shown here was generated by a call to the hexbin() func-
tion. After the plot was created, the SVG file was then post-processed with addToolTips()

to add a tool tip to each of the shaded hexagonal regions. When the mouse hovers over a
hexagon, the number of observations in that bin appears as a tool tip.

worked through these examples, they will hopefully have the facilities to create SVG and their
own customized displays. The code for these and other examples appear in subsequent sections
of the paper.

Tool tips and hyperlinks are very simple, but effective, forms of interactivity. With hyperlinks,
the user interacts with a plot by clicking on an active region, say an axis label or a point, and
in response, the browser opens the referenced Web page. An example of this is shown in the
scatter plot in Figure 1. When the mouse moves over the title of the plot, the status bar at
the bottom of the screen shows the URL of the USGS map of the South Pacific that will be
loaded once the mouse is clicked.

With tool tips, the user interacts with a plot by pausing the pointer over a portion of the
plot, say an axis label or a point. This “mouse-over” action causes a small window to pop up
with additional information. Figure 2 shows an example where the mouse has been placed on
an hexagonal bin in the plot and a tool tip has consequently appeared to provide a count of
the number of observations in that bin. Note that these forms of interactivity do not require
R or JavaScript within the browser; they merely require an SVG-compliant browser.

It is also possible to link observations across sub-plots. For example, Figure 3 shows the
mouse hovering over a point in one plot. This mouse-over action causes that point and the
corresponding point in a second plot to be colored red. When the mouse moves off the

Journal of Statistical Software 7

Figure 3: The points in the two scatter plots shown here are linked. When the mouse
covers a point in one plot, that point changes color as does the point in the other plot that
corresponds to the same observation. When the mouse moves off the point, then the linked
points return to their original color(s). The linkPlots() function in SVGAnnotation takes
care of embedding the necessary annotations and JavaScript code in the SVG file to change
the color of the points.

point, both points return to their original color(s). Another example found later in this paper
demonstrates how to link across conditional plots, where the mouse-over action on a plot
legend causes the corresponding group of points to be highlighted in the panels (Figure 11).
This linking of points across plots uses reasonably generic JavaScript code that is provided in
the SVGAnnotation package.

SVG provides basic animation capabilities that can be used to animate R graphics. For
example, it is possible to create animations similar in spirit to the well-known Gapminder
animation (Rosling 2008), where points move across a canvas according to a time variable. See
Figure 4 as an example. This animation is created by simply adding SVG elements/commands
to the SVG content generated by R. In other words, no JavaScript code is needed to create
the animation effects.

The Carto:Net project (Berger et al. 2010) has made available a graphical user interface (GUI)
library for SVG. For convenience, this library is distributed as part of the SVGAnnotation
package. It can be used to add controls such as sliders, radio boxes, and choice menus
to an SVG plot. These controls provide an interface for the viewer to have more complex
interactions with the graphic. For example, in Figure 5 the location of the slider thumb
specifies the bandwidth used to smooth data. When the viewer moves the slider thumb,
the corresponding smoothed curve is displayed in the left-hand plot, and the right-hand plot
is updated to display the residuals from the newly fitted curve. The interactivity of the
GUI controls are provided via JavaScript functionality in Carto:Net. Additional JavaScript
is required to perform the plot-specific functionality, i.e., to display the correct curve and

8 Interactive and Animated Scalable Vector Graphics and R Data Displays

Figure 4: This screen shot shows a scatter plot at the end of an animation. Each circle
represents one country. The location of the circle’s center corresponds to (income, life ex-
pectancy) and the area is proportional to the size of the population. Time is represented
through the movement of the circle center from the (x,y) value for one decade to the next.
The animate() function in SVGAnnotation provides the basic functionality to create this
scatter plot animation. Reloading the page will restart the animation. At the time of writing,
this animation is only visible in the Opera browser (Opera Software ASA 2011).

residuals in the figure. We note that R is not involved when the plot is being viewed and the
different curves are being displayed. This is done entirely via SVG and JavaScript because all
fitted values are precomputed within R and serialized to the JavaScript code.

An alternative to SVG GUI controls is to embed the SVG graphic in an (X)HTML page and
use controls provided by an HTML form to control the plot. Again, JavaScript is required
to respond to the user input via the HTML controls. The basic set of HTML UI controls is
quite limited, so the author must either use JavaScript to provide a slider (e.g., using the YUI
toolkit from Yahoo! Inc. 2011) or change the interface to use a simpler control.

A complication from embedding an SVG document within an (X)HTML document stems from

Journal of Statistical Software 9

Figure 5: This pair of plots were made in R. Hidden within the plot on the left are curves from
the fit for many different values of the smoothing parameter, and hidden in the right-hand
plot are the residuals for each of those fits. The slider displayed across the bottom of the
image is provided by Carto:Net (Berger et al. 2010). It is added to the SVG display using
addSlider() in SVGAnnotation. When the viewer changes the location of the slider thumb,
the corresponding curve and residuals are displayed and the previously displayed curve and
residuals are hidden. JavaScript added to the SVG document responds to the change in the
position of the slider thumb and takes care of hiding and showing the various parts of the two
plots.

the JavaScript code within the HTML code being separate from the code and objects within
the SVG document. In this case, a simple extra step is necessary to access the SVG elements
from the JavaScript code within the HTML document. An example is shown in Figure 6. The
map of the state-level outcome of the United States presidential election is embedded in an
HTML <div> tag. When the viewer clicks on a state in the map, JavaScript code located in
the HTML document pulls up the state’s summary information and dynamically places it in
a table in the region above the map.

These six figures show the variety of interactivity possible with SVG. In the following sec-
tions we introduce the functionality available within SVGAnnotation to create these and
other interactive graphics. The examples are chosen to demonstrate our philosophy behind

10 Interactive and Animated Scalable Vector Graphics and R Data Displays

Figure 6: This screen shot shows a canonical red-blue map of the results of US presidential
election embedded within a <div> tag in an HTML page. Interactivity within the map is
controlled via JavaScript located in the HTML page. When the viewer clicks on a state, the
table displaying the summary of votes in the state is rendered within the light-grey region
above the map. Also, the county-level results are available in another HTML table (not shown
in this screen shot).

creating interactivity with R and SVG. The package offers the R programmer a new mode
of displaying R graphics in an interactive, dynamic manner on the Web. Tables 1 and 2
contain a comprehensive list of the 14 examples in this paper. The table includes a brief
summary of the type of interactivity in the graphical display and the functions used to make
the SVG interactive. These examples can be found in the XMLExamples directory in SV-
GAnnotation, and they can be run with xmlSource(), a function in the XML package, e.g.,
xmlSource("exToolTipsAndLinks.xml").

Journal of Statistical Software 11

Ex. Interactive features

1 Tool tips on points are added to a scatter plot using the high-level function
addToolTips(). In addition, addToolTips() is used to add tool tips to the axis labels
of the scatter plot. Source: exToolTipsAndLinks.xml

2 A hyperlink is added to the title in a scatter plot using the high-level function
addAxesLinks(). Source: exToolTipsAndLinks.xml

3 Hyperlinks are added to regions in a map. This is accomplished by applying the
addLink() function to the return value of the intermediate-level helper function
getPlotPoints(). Source: exLinkMap.xml

4 Tool tips are added to the hexagonal bins in a hexbin plot. To do this, we use the helper
function getPlotPoints() to locate the bins in the SVG document and then apply
addToolTips() to the hexagonal bin elements in the SVG. Source: exHexbinToolTips.
xml

5 The high-level linkPlots() function joins points in multiple scatter plots. This activity
uses JavaScript to respond to the mouse-over action. The JavaScript code is supplied
by linkPlots(). Source: exLinkPlots.xml

6 Points in lattice panels are linked to a legend for the plot. This customized
plot is created using the getPlotRegionNodes() to access the panels in the plot,
getLatticeLegendNodes() to access the legend, addAttributes() to add JavaScript
calls in response to mouse-over events, and finally addECMAScripts() places the
JavaScript code in the SVG document. Source: exLegendLatticeLink.xml

7 This plot requires greater understanding of the internal workings of the SVG document.
It takes the approach of dynamically constructing and adding line segments to a scatter
plot at the time of viewing. All of the computations of nearest neighbors within a set of
observations are computed in R and stored as JavaScript variables in the SVG document
(using addECMAScripts()). These JavaScript functions respond to mouse-over events
at viewing time and create line segments connecting points in the scatter plot while the
image is being viewed. The points have been annotated with unique identifiers using
getPlotPoints() and addAttributes(). Source: exKNN.xml

8 In this example, a graph is annotated to respond to mouse-over events on the nodes of
the graph. The edges and connecting nodes are brought to the forefront by a change
in color when the mouse moves over the node. This interactivity is created in a similar
manner as the nearest neighbor display. Source: exGraphviz.xml

9 The high-level function animate() adds to a scatter plot the capability of moving a
point to different locations according to the change in the (x,y) values of the corre-
sponding observation over different time intervals. The animate() function uses the
animation features available in SVG, i.e., no JavaScript is needed to create the anima-
tion. Source: exWorldAnimation.xml

10 This example demonstrates how to use JavaScript facilities to animate a map. This
hands-on approach uses a JavaScript timer to change the colors at regular inter-
vals of states in a map of the US. Several helper functions are employed, includ-
ing getPlotPoints(), addECMAScripts(), addToolTips() and addAttributes().
Source: exJSAnimateElectionMapPaper.xml

Table 1: Examples of interactive SVG plots.

12 Interactive and Animated Scalable Vector Graphics and R Data Displays

Ex. Interactive features

11 A graphical user interface (GUI) control is added to the canvas. The GUI is a slider that
controls the bandwidth parameter for fitting a curve to the data. The slider is provided
by Carto:Net, and is easily added to the display with a call to addSlider(). The
connection between the slider and the plots is made via application specific JavaScript
functions. Source: exLinkedSmoother.xml

12 Similar to the smoother example, SVG checkboxes are added to a time series plot. These
checkboxes are also supplied by Carto:Net. The function radioShowHide() takes care
of the details, and display-specific JavaScript is used to show or hide a particular time
series curve in the plot. Source: exEUseries.xml

13 An earlier example (Example 6) is recreated using an HTML form to control the high-
lighting of points in panels of a lattice plot. The JavaScript functions that earlier
responded to mouse events on the lattice legend, now are called when the viewer
changes the selection in an HTML choice menu. The SVG image is embedded within
the HTML document along with the form to control it. The JavaScript sits within the
HTML document, rather than the SVG document as with the earlier example. Source:
exLatticeChoiceHTML.xml

14 This example continues the ideas from Example 13 and uses mouse events on
regions in a map (drawn in R) to display alternative HTML tables. Source:
exStateElectionTable.xml

Table 2: Examples of interactive SVG plots (continued).

4. Simple annotations

In this section, we turn our attention to how a user can create the simplest displays shown in
Section 3. We introduce several high-level functions from the SVGAnnotation package that
make it easy to add interactivity to SVG plots; these are briefly described in Table 3. We
also explain the basic approach we take to create these graphical displays.

In order to produce SVG graphics in R (using the built-in graphics device), libcairo (Cairo
Graphics 2010) must be installed when R is built. You can determine whether an R installation
supports SVG with the expression capabilities()["cairo"]. If this yields TRUE, then the
libcairo-based SVG support is present. Assuming this is the case, we create/open an SVG
graphics device with a call to the svg() function and then issue R plotting commands to the
SVG device as with any other graphics device. We must remember to close the device with
a call to dev.off() when the commands to generate the display are complete. For example,

R> svg("foo.svg")

R> plot(density(rnorm(100)), type = "l")

R> abline(v = 0, lty = 2, col = "red")

R> curve(dnorm(x), -3, 3, add = TRUE, col = "blue")

R> dev.off()

creates the file named foo.svg, which contains the SVG that renders a smoothed density of
100 random normal observations.

The SVGAnnotation package provides a convenience layer to this process. The svgPlot()

function opens the device, evaluates the code to create the plot(s), and then closes the device,

Journal of Statistical Software 13

all in a single function call. For example,

R> svgPlot({

+ plot(density(rnorm(100)), type = "l")

+ abline(v = 0, lty = 2, col = "red")

+ curve(dnorm(x), -3, 3, add = TRUE, col = "blue")

+ }, "foo.svg")

performs the same function calls as in the above example. We recommend using svgPlot()

because it inserts the R code that generated the plot as meta-data into the SVG file and
provides provenance and reflection information. This can be convenient for the programmer
who is post-processing the resulting SVG. Also important is the information svgPlot() adds
to the SVG for lattice plots, such as the number of panels, strips, conditioning variables,
levels, and details about the legend. This extra information allow us to more easily and
reliably identify the SVG elements that correspond to the components of the R plot(s) we
want to annotate.

An additional reason for using the svgPlot() function is that it can hide the use of a file. As
shown below, often we want the SVG document generated by R’s graphics commands as an
XML tree and not written to a file. The return value of svgPlot() is a tree structure, if no
file name is specified by the caller, e.g.,

R> doc <- svgPlot({

+ plot(density(rnorm(100)), type = "l")

+ abline(v = 0, lty = 2, col = "red")

+ curve(dnorm(x), -3, 3, add = TRUE, col = "blue")

+ })

The higher-level facilities in SVGAnnotation make it quite easy to add simple forms of inter-
activity to an SVG display. To add this interactivity, we follow a three-step process.

i Plotting Stage: First, we create the base SVG document. That is, we create an SVG graph-
ics device and plot to it using R plotting tools. Again, we recommend using svgPlot()

because it adds the plotting commands and other information to the SVG document.

ii Annotation Stage: Here, the SVG file created in the Plotting Stage is modified. That is,
SVG content (and possibly JavaScript code) is added to the document to make the display
interactive or animated. Depending on the type of plot to be annotated and the kind
of annotations desired, the high-level functions described in this section may be able to
handle all aspects of these annotations. Some cases, however, may require the intermediate
functions in SVGAnnotation to, for example, add tool tips to a non-standard plot (see
Section 8). Also, the annotation stage may possibly require working directly with the
SVG document to, for example, add GUI controls to the plot (Section 12). All of these
approaches use the XML package to parse and manipulate the SVG document from within
R. We’ll see examples of how this is used in later sections when we directly manipulate
the SVG for more specialized annotations.

Once the annotation is completed, we save the SVG document to a file.

14 Interactive and Animated Scalable Vector Graphics and R Data Displays

iii Viewing Stage: Now the enhanced SVG document is loaded into an SVG viewer, such as
Opera, Firefox, Safari, or Squiggle, and the reader views and interacts with the image. In
this stage, R is not available. The interactivity is generated by SVG elements themselves
and/or JavaScript code that has been added in the annotation stage.

4.1. Simple interactivity: Tool tips and links

In this section we provide simple examples of how to use the high-level functions to add tool
tips (Example 1) and hyperlinks (Example 2) to scatter plots. The R user does not need to
understand much about SVG to add these simple features to plots.

Example 1. Adding tool tips to points and labels.

In this example, we demonstrate how to add tool tips to the SVG plot shown in Figure 7.
The screen shot shows one of the effects that we are attempting to create: when the mouse
is over a point, then a tool tip with additional information about that point appears.

Figure 7: This screen shot shows a scatter plot where each point has a tool tip on it. The
tool tips were added using the addToolTips() function in SVGAnnotation. When viewed in
a browser, as the mouse passes over the point, information about the values of each variable
for that observation is provided in a pop-up window. (Another screen shot of this plot is
shown in Figure 1.)

Journal of Statistical Software 15

The first step is to make the plot with the SVG graphics device.

R> depth.col <- gray.colors(100)[cut(quakes$depth, 100, label=FALSE)]

R> depth.ord <- rev(order(quakes$depth))

R> doc <- svgPlot(

+ plot(lat ~ long, data = quakes[depth.ord,], pch = 19,

+ col = depth.col[depth.ord], xlab = "Longitude", ylab = "Latitude",

+ main = "Fiji Region Earthquakes")

+)

As noted earlier, the function svgPlot() is a wrapper for R’s own svg() function. We did
not specify a value for the file parameter for svgPlot() and as a result, the function returns
the parsed XML/SVG tree, which we can then post-process and enhance. (The code for this
plot of quakes is adapted from Sarkar 2008.)

The default operation for addToolTips() is to add tool tips on each of the points in a
scatter plot. We simply pass the SVG document to addToolTips() along with the text to be
displayed. For example, adding the row names from the data frame as tool tips for the points
is as simple as

R> addToolTips(doc, rownames(quakes[depth.ord,]))

If we wanted the tool tip to provide information about the value of each of the variables for
that observation, we could do this with

R> addToolTips(doc, apply(quakes[depth.ord,], 1, function(x)

+ paste(names(quakes), x, sep = " = ", collapse = ", ")))

We can also use addToolTips() to provide tool tips on the axes labels. This time, since it
is not the default operation, we need to pass the particular axes label nodes to be annotated
rather than the entire SVG document. We find these axes label nodes using another function
in SVGAnnotation, getAxesLabelNodes(). This function locates the nodes in the SVG
document that correspond to the title and axes labels:

R> ax <- getAxesLabelNodes(doc)

The first element returned is the title. We discard the title node, e.g., ax[-1], and call
addToolTips() to place tool tips on just the axis nodes:

R> addToolTips(ax[-1], c("Degrees east of the prime meridean",

+ "Degrees south of the equator"), addArea = TRUE)

The addToolTips() function will operate on any SVG element passed to it via the function’s
first argument. The addArea parameter is set to TRUE to indicate that the rectangle sur-
rounding the characters in the label should be made active, i.e., when the mose moves into
this region the tool tip will pop up. When FALSE, only the characters in the label will be
responsive to the mouse movement.

The addCSS parameter of addToolTips() controls the addition to the document of a cascading
style sheet for controlling the appearance of the tooltip rectangle. If TRUE, then the default

16 Interactive and Animated Scalable Vector Graphics and R Data Displays

CSS is added. The default value for addCSS is NA, and in this case, the function determines
whether or not the CSS is needed, e.g., if a tool tip is to be placed on a rectangular area
surrounding the text in an axis label then a CSS is added. The code adds the specified
default CSS file to the document only once. However, a warning message is issued if there are
multiple requests to add the CSS to the document. The programmer also can add a specific
CSS file via a call to addCSS().

Now that the SVG has been annotated, we save the modified document:

R> saveXML(doc, "quakes_tips.svg")

This document can then be opened in an SVG viewer (e.g., a Web browser) and the user can
interact with it by mousing over the points and axes labels to read the tool tips that we have
provided.

Example 2. Adding hyperlinks to a plot title.

We sometimes want to click on a phrase or an individual point in a plot and have the browser
jump to a different view or a Web page. SVG supports hyperlinks on elements so we can
readily add this feature to R plots.

We continue with the plot that we annotated in Example 1 and add a hyper-link to the
title. We add a feature to the plot that will allow viewers to click on the phrase “Fiji Region
Earthquakes” and have their Web browser display the USGS web page containing a map of
recent earthquakes in the South Pacific. We have already seen that the title of the plot is in
the first element of the return value from the call to getAxesLabelNodes(), which was saved
in the R variable ax (see note below). We simply associate the target URL with this element
via a call to addAxesLinks() as follows:

R> usgs <- "http://earthquake.usgs.gov/eqcenter/recenteqsww/"

R> region <- "Maps/region/S_Pacific.php"

R> addAxesLinks(ax[[1]], paste(usgs, region, sep = ""))

Now, when the viewer clicks on the rectangular region that surrounds the title, the browser
will open the USGS website.

Note: The parsed SVG document is a C-level structure, and the return value from svgPlot()

is a reference to this structure. Further, the functions, such as getAxesLabelNodes(), return
pointers to the nodes in this C-level structure. The consequence of this is that when we assign
the return value from, say, getAxesLabelNodes() to an R object, we are not getting a new
copy of the nodes. Hence, any modification to the returned value modifies the original parsed
document. For example, in Example 2 an assignment to the R variable ax modifies the axes
label nodes in the C-level structure. This is an important distinction from the usual way R
handles assignments. The call to saveXML() will save the modified, parsed document as an
XML file.

Note: Currently, many, but not all, common plots in R are handled at the high level described
in this section. Some may require low-level manipulation of the XML in the same manner we
have illustrated and implemented within the examples in the later sections of this paper and
in the SVGAnnotation package.

Journal of Statistical Software 17

Example 3. Adding hyperlinks to polygons.

In this example, we create a popular map of the USA where we color the states red or blue
according to whether McCain or Obama, respectively, received the majority of votes cast in
that state in the 2008 presidential election (see Figure 8). These data were “scraped” from
the New York Times Web site http://elections.nytimes.com/2008/results/president/
map.html. The data are total vote counts at the county level for each presidential candidate.
We first aggregate the counts to the state level and determine the winner as follows:

R> stateO <- sapply(states, function(x) sum(x$Obama))

R> stateM <- sapply(states, function(x) sum(x$McCain))

R> winner <- 1 + (stateO > stateM)

We use map() in the maps package to draw the map, and match.map() to identify the polyg-
onal regions so that we can color them correctly.

R> regions <- gsub("-", " ", names(winner))

R> stateInd <- match.map("state", regions)

R> polyWinners <- winner[stateInd]

R> stateColors <- c("#E41A1C", "#377EB8")[polyWinners]

R> doc = svgPlot({

+ map('state', fill = TRUE, col = stateColors)

+ title("Election 2008")

+ })

Figure 8: The map shown here was produced by the map() function in the maps package
(Becker et al. 2011). The SVG file was then post-processed using the addLink() function
in SVGAnnotation to add hyperlinks to the state regions. When the user clicks on a state,
the browser links to the corresponding state’s Web page of election results on the New York
Times site, e.g., http://elections.nytimes.com/2008/results/states/california.

http://elections.nytimes.com/2008/results/president/map.html
http://elections.nytimes.com/2008/results/president/map.html
http://elections.nytimes.com/2008/results/states/california

18 Interactive and Animated Scalable Vector Graphics and R Data Displays

We then use getPlotPoints(), one of the facilities in the SVGAnnotation for handling SVG
elements, to find the polygons regions for the states:

R> polygonPaths <- getPlotPoints(doc)

R> length(polygonPaths)

[1] 63

R> length(stateInd)

[1] 63

Note that there are more than 50 polygons because some states are drawn using multiple
polygons, e.g., Long Island and Manhattan are drawn as separate polygons and belong to
New York. Notice that the number of regions found matches the length of stateInd.

Now that we have polygonPaths, we can easily add links to the polygons in the SVG with
addLink(). We simply provide a vector of target URLs to the function. These are created
by pasting the state names to the New York Times base URL, as follows:

R> urls <- paste("http://elections.nytimes.com/2008/results/states/",

+ names(winner)[stateInd], ".html", sep = "")

Then we add the links:

R> addLink(polygonPaths, urls, css = character())

Note that the order of the polygon paths in the SVG document corresponds to the order in
which the polygons were plotted in R.

When the saved document is viewed in a Web browser, or a dedicated SVG viewer such as
batik (Apache Software Foundation 2008), a mouse click on a state will display the state’s
page on the New York Times Website.

Finally, we should note that if we had not filled the polygons with color, then the interiors
would not be explicitly drawn and therefore, only the boundaries (i.e., the paths) would be
active. This means that the interiors of the states would not respond to a mouse click.

We next annotate another slightly non-standard plot, the hexagonal bin plot. As in the
previous example, getPlotPoints() finds the elements in the SVG document that correspond
to the “points” in the plot. In general, the functions in SVGAnnotation are intelligent enough
to handle many diverse types of plots and should be used in preference to low-level processing
of nodes with XPath and getNodeSet().

Example 4. Interactive hexagonal bin plots.

The goal of this example is to add tool tips to a hexagonal bin plot (Carr et al. 2009) such
that mouse movement over a shaded hexagonal region results in the display of information
about that bin, e.g., the number of points included in the bin (see Figure 2).

The data have been extracted from the Performance Measurement System (PeMS) Web site
http://pems.dot.ca.gov/. These data provide the occupancy (percent) and flow (count)

http://pems.dot.ca.gov/

Journal of Statistical Software 19

of vehicles (measured in 5 minute intervals for one week) over one loop detector embedded
beneath the surface of Interstate 80 in California. We begin by collapsing the measurements
for the three lanes of traffic into one set of measurements.

R> library("SVGAnnotation")

R> data("traffic")

R> Occupancy <- unlist(traffic[c("Occ1", "Occ2", "Occ3")])

R> Flow <- unlist(traffic[c("Flow1", "Flow2", "Flow3")])

We proceed to make the hexagonal bin plot and save the return value from the call to
hexbin(), which is an S4 object.

R> library("hexbin")

R> hbin <- hexbin(Occupancy, Flow)

R> doc = svgPlot(

+ plot(hbin, main = "Loop Detector #313111 on I-80E Sacramento"))

The count slot in the hbin object is of interest to us because it contains a vector of cell counts
for all of the bins, which we will use as the tool tips for the bins.

A call to getPlotPoints() locates the hexbins within the SVG.

R> ptz <- getPlotPoints(doc)

R> length(ptz)

[1] 276

R> length(hbin@count)

[1] 276

The length of hbin@count shows that there are 276 bins in the plot. This figure matches
the number of “points” found in the SVG, which confirms that the bins have been correctly
located by getPlotPoints().

Now we can easily add tool tips to these regions in the plot as follows:

R> tips <- paste("Count: ", hbin@count)

R> addToolTips(ptz, tips, addArea = TRUE)

Additional annotations that might be included in the tool tip are the xcm and ycm slots in
hbin, which hold the x and y coordinates (in data rather than SVG coordinates) for the center
of mass of the cell.

4.2. Mouse events that change the style of graphics elements

Our examples so far in this section have added SVG in the post-processing stage to create
interactive effects with tooltips and hyperlinks. Here, with the help of JavaScript, we create
plots with more complex interactivity. We us linkPlots() to add JavaScript code to an SVG

20 Interactive and Animated Scalable Vector Graphics and R Data Displays

display so that the style of an element can be programmatically changed while viewing it.
Specifically, points in a scatter plot change color in response to a mouse event. In general,
whether it is a point’s color, visibility, location, or size, mouse actions can initiate the changing
of SVG “on the fly” thus enabling a rich set of user interactions with the plot.

Example 5. Point-wise linking across plots.

In this example, we show how to use the high-level linkPlots() function to link points across
plots (see Figure 3). We start by creating the collection of plots. We might use a simple call to
the pairs() function to create a draftsman’s display of pairwise-scatter plots. Alternatively,
one can create the plots with individual R commands and arrange them in arbitrary layouts
with par() or layout(). We’ll use the latter approach to create two plots:

R> doc <- svgPlot({

+ par(mfrow = c(1,2))

+ plot(Murder ~ UrbanPop, USArrests, main="", cex = 1.4)

+ plot(Rape ~ UrbanPop, USArrests, main = "", cex = 1.4)

+ }, width = 14, height = 7)

The high-level function linkPlots() does the hard work for us:

R> linkPlots(doc)

R> saveXML(doc, "USArrests_linked.svg")

We can then view this and mouse over points in either plot to see the linking. The default
color to change a point is red; alternative colors can be specified with col.

5. Dependency on the svg() function and libcairo

One of the features of the approach we describe is that we can post-process the output of an
existing R graphics device to provide interactivity and animation. We do not have to replace
the device with our own to intercept R graphics operations and assemble the results within
the device. This is made possible and relatively easy because of the XML structure of the
generated SVG. It is not nearly as simple to provide interactivity with binary formats such
as PDF or rasterized formats such as PNG and JPEG.

The post-processing approach does however give rise to a potential problem. Since we post-
process the output from the svg() function and associated device, we are exploiting a format
and structure that may change. There are two layers of software, each of which may change.
The first is the implementation of the SVG device in R. The second is the third-party C-
level libcairo library on which the R graphics device is based. Since the generic R graphics
engine and also the device structure are well-defined and very stable, it is unlikely that there
will be significant changes to the format of the SVG generated by R-related code. Changes
to libcairo are more likely to cause changes to the SVG. Very old versions of libcairo (e.g.,
1.2.4) do yield SVG documents that are non-trivially different from more recent versions (e.g.,
version 1.10.0) and have caused errors in the SVGAnnotation package. Specifically, <rect>
elements are used for describing rectangles rather than the generic <path>. Future versions
of libcairo may introduce new changes to the format and cause issues for SVGAnnotation.
We do not however expect significant changes.

Journal of Statistical Software 21

The problem of relying on a particular format generated by libcairo is similar to interfacing
to a particular application programming interface (API) of a C/C++ library. Any changes
in that API will cause the interface to break. Ideally, the API is fixed. However, new major
versions can lead to such breaks. The potential for the interface to break across new versions
of the software do not make the interface useless. The situation here with libcairo is similar
although somewhat more complex. We have to identify a change in the format and this might
be subtle.

In many regards, the approach we have taken in designing SVGAnnotation is intended to
cause minimal disruption to the existing tool chain. We do not require the user to deploy a
different graphics device. We do not modify the code of the existing graphics device. Instead,
we work to make sense of the output (e.g., identify shapes) rather than knowing the graphical
operations, e.g., circle, polygon, rectangle, text. This introduces the perils of a change in
the output structure, but is a worthwhile goal of direct software reuse. It synchronizes the
annotation facilities to the primary SVG graphics device in use within R. The alternative is
to provide our own device and generate the SVG content ourselves and control its format.
This would protect us from changes in the format. However, we would not benefit from
passively incorporating enhancements to the R graphics device or libcairo. To address this
issue, we could use a “proxy” device that acts as a “front” for the regular SVG device. This
device would identify the different R-level components and then forward the device calls to
the existing SVG libcairo-based graphics device. This would help us to map the high-level
R components of the graphical displays to the lower-level SVG content. This would be of
marginal benefit and would require direct knowledge of the SVG graphics device C code. In
many regards this would be more of a problem than the problem we are trying to address,
i.e., potential changes to the SVG format.

This reliance on the format generated by the svg() function is an issue of which users should
be aware. Changes to this format might make functions in the SVGAnnotation package
either fail or create erroneous annotations. Such changes are likely to be firstly rare and
secondly, relatively minor. The required changes to the SVGAnnotation package should
be relatively easy to implement. Importantly, we are not expecting or claiming that the
SVGAnnotation package will work for all plots generated in R. Instead, we are reporting an
approach of post-processing the SVG content generated from R graphics commands. The
SVGAnnotation package provides high-level functions for many types of plots, but not all.
Users may have to deal with the SVG directly or be able to use some of the medium- and
low-level functions to manipulate the content. The contribution of this work is the approach
of post-processing arbitrary R plots and the scheme for mapping low-level graphical primitive
operations/elements to higher level graphical components such as axes, data points, legends,
etc.

6. The SVG grammar

In this section we provide a brief overview of the commonly used XML elements/nodes in
SVG and the basics of the drawing model. For more detailed information on SVG, readers
should consult (Eisenberg 2002), and readers unfamiliar with XML should read Appendix B
or Harold and Means (2004). We also explore the basic layout of an SVG document created
by the SVG device in R. In particular, we examine the SVG document produced from a simple
call to plot() with two numeric vectors. If we wish to annotate other types of plots, i.e.,

22 Interactive and Animated Scalable Vector Graphics and R Data Displays

one that is not covered by the high-level functions in SVGAnnotation, such as a ternary plot,
then we will need to understand the structure of documents produced by the SVG device.

We include here a sample SVG file that will make our description of the SVG elements more
concrete. This document was created manually (not with R) and is rendered in Figure 9.

<?xml version="1.0" encoding="UTF-8"?>

<svg xmlns = "http://www.w3.org/2000/svg"

xmlns:xlink = "http://www.w3.org/1999/xlink"

width = "300pt" height = "300pt"

viewBox = "0 0 300 300" version = "1.1">

<defs>

<g id="circles">

<circle id = "greencirc" cx = "15" cy="15" r = "15" fill = "lightgreen"/>

<circle id = "pinkcirc" cx= "50" cy="50" r = "15" fill = "pink"/>

</g>

<style type="text/css">

< ![CDATA[

.recs {fill: rgb(50%, 50%, 50%); fill-opacity: 1; stroke: red;}

]] >

</style>

</defs>

<g id = "main">

<rect x = "10" y = "20" width = "50" height = "100" class = "recs"/>

<use x = "100" y = "100" xlink:href = "#circles"/>

<use x = "200" y = "50" xlink:href = "#circles" />

<image xlink:href = "examples/pointer.jpg"

x = "70" y = "50" width = "10" height = "10"/>

<path style = "fill: rgb(100, 149, 237);

fill-opacity: 0.5;stroke-width: 0.75;

stroke-linecap: round; stroke-linejoin: round;

stroke: rgb(0%,0%,0%); stroke-opacity: 1;"

d = "M 102.8 174.6 L 102.8 174.6

L 106.1 178.0 L 100.9 189.3 L 102.8 191.2

L 102.1 195.1 L 102.1 209.9 L 53.9 209.9

L 51.5 210.0 L 50.0 206.0 L 49.3 202.9 L 52.0 191.5

L 52.7 185.0 L 52.9 184.1 L 53.4 179.0 L 53.3 173.0

L 54.5 173.1 L 55.1 173.1 L 56.0 172.8 L 60.5 174.0

L 61.4 177.2 L 63.5 178.4 L 67.7 177.5 L 72.5 177.7

L 88.5 174.6 L 102.8 174.6

Z"

id = "oregon"/>

<text x = "110" y = "200" fill = "navy" font-size = "15">

Oregon

</text>

</g>

</svg>

Journal of Statistical Software 23

Figure 9: This simple SVG image is composed of a gray rectangle with a red border, two
pairs of green and pink circles, a jpeg image of a pointer, a path that draws the perimeter of
Oregon and fills the resulting polygon with blue, and the text “Oregon”.

The image uses the most common SVG tags, which we describe below.

� SVG documents begin with the root tag <svg>. Possible elements it can have are: a
<title> tag that contains the text to be displayed in the title bar of the SVG viewer;
a <desc> tag, which holds a description of the document; and other tags for grouping
and drawing elements.

� Instructions to draw basic shapes are provided via the <line>, <rect>, <circle>,
<ellipse>, and <polygon> tags. In our sample document,

<rect x = "10" y = "20" width = "50" height = "100" class = "recs" />

is an instruction to draw a rectangle with upper left corner at (10, 20), a width of 50,
and height of 100. (The class attribute contains style information about the color of
the interior of the rectangle and its border.) These shape elements are specific families
of shapes that can also be rendered with the more general <path> element. Note the
size of the rectangle is relative to the size of the viewBox in the canvas, which in our
example is 300 by 300.

� The <path> tag provides the information needed to draw a “curve”. It contains instruc-
tions for the placement of a pen on a canvas and the movement of the pen from one
point to the next in a connect-the-dot manner. The instructions for drawing the path
are specified via a character string that is provided in the d attribute of <path>. For
example, the path for the Oregon border in Figure 9 is as follows

d = "M 102.8 174.6 L 102.8 174.6

L 106.1 178.0 L 100.9 189.3 L 102.8 191.2 L 102.1 195.1

L 102.1 209.9 L 53.9 209.9 L 51.5 210.0 L 50.0 206.0

24 Interactive and Animated Scalable Vector Graphics and R Data Displays

L 49.3 202.9 L 52.0 191.5 L 52.7 185.0 L 52.9 184.1

L 53.4 179.0 L 53.3 173.0 L 54.5 173.1 L 55.1 173.1

L 56.0 172.8 L 60.5 174.0 L 61.4 177.2 L 63.5 178.4

L 67.7 177.5 L 72.5 177.7 L 88.5 174.6 L 102.8 174.6

Z"

The drawing of the Oregon border begins by picking up the pen and moving it to the
starting position (102.8, 174.6). This position is given either as an absolute position,
i.e., “M x,y”, or a relative position, i.e., “m x,y”. Note that the capitalization of the
letter determines whether the position is relative (m) or absolute (M). Either a comma
or blank space can be used to separate the x and y coordinates. From the starting
point, the pen draws line segments from one point to the next. The segment may be
a straight line (L or l) or a quadratic (Q or q) or cubic (C or c) Bezier curve. The Z
command closes a path by drawing a line segment from the pen’s current position back
to the starting point. These paths provide very succinct notation for drawing curves.

The libcairo rendering engine (and hence the svg() device in R) uses <path> for ren-
dering all shapes including characters and text. One benefit to this approach of using
a <path> command to draw each letter is that there is no reliance on fonts when the
SVG document is viewed. It also means that scaling the SVG preserves the shape of
the letters with very high accuracy. However, when you add text and shapes to an SVG
document, you may want to use the simpler higher-level short-cut tags, e.g., <text>
and <ellipse>.

� Elements can be grouped using the <g> tag. This is helpful when for example, you
want to treat the collection of objects as a single object in order to transform it as
a unit, or place the same appearance characteristics on a collection of elements. The
style placed on <g> will apply to all of its sub-elements. Grouped elements can also
be defined and then inserted multiple times in the document (see the description of
the <defs> element below). It is also possible to nest other <svg> elements within a
<g> element. This allows us to create compositions reusing previously and separately
created displays.

� The <defs> node is a container for SVG elements that are defined and given a label, but
not immediately put in the SVG display. These definitions can be augmented, displayed
and reused within the SVG display through a reference to the element’s unique identifier.
The <defs> element acts as a dictionary of template elements.

For example, in the sample SVG code we defined a pair of circles, one green and the
other pink. These are grouped together into a single unit and identified by the id of
“circles” as shown here:

<g id="circles">

<circle id = "greencirc" cx = "15" cy="15" r = "15"

fill = "lightgreen"/>

<circle id = "pinkcirc" cx= "50" cy="50" r = "15" fill = "pink"/>

</g>

This pair of circles is defined in the <defs> element, and rendered via the <use> tag.
The pair is rendered twice, at two different locations on the canvas as follows,

Journal of Statistical Software 25

<use x = "100" y = "100" xlink:href = "#circles"/>

<use x = "200" y = "50" xlink:href = "#circles" />

As with HTML, we specify the reference to an internal element (or“anchor”) by prefixing
the name/id of the desired element with a ‘#’, i.e., “#circles”. This suggests that we
can link to elements in other files, and indeed we can. In fact, we have the full power
of another XML technology, named XLink (Simpson 2002), available in SVG.

� Many times, we want to create style definitions to be used by multiple SVG elements.
The style of an element can be specified in four ways:

1. In-line styles. One approach is to place the style information directly in the element
(e.g., <circle>, <path>) by setting the value of a style attribute. For example,
the style of the Oregon polygon,

<path style = "fill: rgb(100, 149, 237);

fill-opacity: 0.5;stroke-width: 0.75;

stroke-linecap: round; stroke-linejoin: round;

stroke: rgb(0%,0%,0%); stroke-opacity: 1;"

...

/>

provides the color (cornflower blue) and opacity for filling the polygon, the color
of the border (black), and details about the border, such as the thickness of the
line. With this approach, the style attribute value holds a string of Cascading
Style Sheet (CSS) properties. Note that, colors in SVG can be represented by text
name, e.g., “cornflowerblue”, the red-green-blue triple rgb(100, 149, 237), or the
hexadecimal representation of the triple, e.g., “#6495ED”.

2. Internal stylesheet. The style information can be placed in a stylesheet that is
stored within the file in the <defs> node of the document. As an example, the
rectangle in our Figure 9 uses the “recs” class within the internal stylesheet. This
connection is specified via the class attribute on the <rect> element:

<rect x = "10" y = "20" width = "50" height = "100" class = "recs"/>

The CSS style sheet and its classes are found within the <defs> portion of the file,
in the <style> node:

<style type="text/css">

< ![CDATA[

.recs {fill: rgb(50%,50%,50%); fill-opacity: 1; stroke: red;}

]]>

</style>

For more information about Cascading StyleSheets see Meyer (2004).

3. External stylesheet. The stylesheets may also be located in an external file. It can
be included via the xml-stylesheet processing instruction such as

<?xml-stylesheet type="text/css" href="RSVGPlot.css" ?>

4. Presentation attributes. An alternative to using a stylesheet, whether in-line, in-
ternal, or external, is to provide individual presentation attributes directly in the
SVG element. As an example, the pink circle’s color in Figure 9 is specified through
a fill attribute in the <circle> tag as follows,

26 Interactive and Animated Scalable Vector Graphics and R Data Displays

<circle id = "pinkcirc" cx= "50" cy="50" r = "15" fill = "pink"/>

The presentation attributes are very straightforward and easy to use. We can just add
a simple attribute, e.g., fill, on an element and avoid the extra layer of indirectness.
This approach allows us to easily modify the presentation of an element in response to a
user action. However, the downside of this approach is that presentation is mixed with
content. For this reason, the in-line, internal and external cascading style sheets are
preferable to presentation attributes. These various approaches can be mixed; that is,
style information can be provided from a combination of in-line, internal, and external
stylesheets, as well as presentation attributes.

7. The SVG display for an R plot

We next examine a typical document produced from the SVG graphics device in R. The SVG
produced in R is highly structured, and we use this structure to locate particular elements
and enhance them with additional attributes, parent them with new elements, and insert
sibling elements in order to create various forms of interactivity and animation. We examine
the SVG generated for the following call to plot() that was used to make the scatter plot in
Example 1.

R> depth.col <- gray.colors(100)[cut(quakes$depth, 100, label = FALSE)]

R> depth.ord <- rev(order(quakes$depth))

R> doc <- svgPlot(

+ plot(lat ~ long, data = quakes[depth.ord,], pch = 19,

+ col = depth.col[depth.ord], xlab = "Longitude", ylab = "Latitude",

+ main = "Fiji Region Earthquakes")

+)

We can explore the contents of the resulting XML/SVG document programmatically by using
the tools available in the XML package. The tree in Figure 10 provides a conceptual image
of the hierarchy of the SVG nodes for the plot and its annotations.

The XML package provides several tools that aid us in examining the structure and content of
an SVG document. We demonstrate some of these as we explore the resulting SVG document
in doc. We begin by retrieving the top node and assigning it to root,

R> root <- xmlRoot(doc)

We can use other functions such as xmlName(), xmlSize(), and xmlValue() to query the
name, number of children, and the text content of an element, respectively. With them, we
determine that the root has three children, the first contains the R code that is in the call
to svgPlot(), and the following two are the <defs> and the main <g> tag that contains the
plotting elements.

R> xmlSize(root)

[1] 3

Journal of Statistical Software 27

Figure 10: This tree provides a visual representation of the organization and structure of
the SVG document produced by the call to plot() in Example 1. SVG elements are shown
as nodes in the tree. The style-sheet and the <display> element on the left of the tree are
added by svgPlot(). The <CDATA> child of <display> contains the R code passed in the
call to svgPlot(). The nodes with dotted lines are those that have been added to the SVG
document by the addLink() and addToolTips() functions. For readability, not all nodes are
displayed, and in some cases the number of nodes is provided to make it clear to which part
of the plot these elements correspond. For example, the “1000 children” refers to the elements
that plot the points in the scatter plot in Figure 7; they correspond to the 1000 observations
in the quakes data frame.

R> xmlApply(root, xmlName)

$display

[1] "display"

$defs

[1] "defs"

$g

[1] "g"

or more simply

R> names(root)

display defs g

"display" "defs" "g"

28 Interactive and Animated Scalable Vector Graphics and R Data Displays

R> xmlValue(root[[1]])

[1] "plot(lat ~ long, data = quakes[depth.ord,], pch = 19,

col = depth.col[depth.ord], \n xlab = \"Longitude\",

ylab = \"Latitude\", main = \"Fiji Region Earthquakes\")"

To examine the <rect> element, we can also use either of the following approaches,

R> root[[3]][[1]]

<rect x="0" y="0" width="504" height="504"

style="fill:rgb(100%,100%,100%); fill-opacity: 1;

stroke: none;"/>

R> root[["g"]][["rect"]]

<rect x="0" y="0" width="504" height="504"

style="fill:rgb(100%,100%,100%); fill-opacity: 1;

stroke: none;"/>

Also, we can use the xmlChildren() function to extract each child node into a list of regular
XML nodes, which can make it easier to explore and manipulate them.

R> kids <- xmlChildren(root[[3]])

R> length(kids)

[1] 4

R> kids[[1]]

<rect x="0" y="0" width="504" height="504"

style="fill:rgb(100%,100%,100%); fill-opacity: 1;

stroke: none;"/>

Alternatively, the function getNodeSet() extracts elements from the XML tree, doc, and is
a very general mechanism for querying the entire tree or sub-trees. It requires an XPath
expression that specifies how to locate nodes. XPath (Simpson 2002) is an extraction tool for
locating content in an XML document. It uses the hierarchy of a well-formed XML document
to specify the desired elements to extract. XPath is not an XML vocabulary; it has a syntax
that is similar to the way files are located in a hierarchy of directories in a computer file
system, but it is much more flexible and general. Rather than locating a single node in a
tree, XPath extracts node-sets, which are collections of nodes that meet the criteria in the
XPath expression. The node-set may be empty when no nodes satisfy the XPath expression.
Likewise, when multiple nodes match the expression, a collection of nodes make up the node-
set. For example,

"/x:svg/x:g/*"

Journal of Statistical Software 29

locates all grandchildren of the root <svg> that have a <g> parent. Note that we must specify
the name space for the <svg> tag. Since the SVG elements use the default name space in this
document, getNodeSet() allows us to use any name space abbreviation without defining it
or matching it to the name space prefix in the document. In this case we simply chose “x”.
We use getNodeSet() to extract these elements, and then request their names via a call to
sapply(),

R> kids <- getNodeSet(doc, "/x:svg/x:g/*", "x")

R> sapply(kids, xmlName)

[1] "rect" "g" "g" "g"

For more details on how to use XPath to retrieve nodes from an XML document see Simpson
(2002). The return value from getNodeSet() is a list, and we access the first element by the
standard indexing methods for a list:

R> kids[[1]]

<rect x="0" y="0" width="504" height="504"

style="fill: rgb(100%,100%,100%); fill-opacity: 1;

stroke: none;"/>

Of the following three approaches,

R> root[[3]][[1]]

R> root[["g"]][["rect"]]

R> getNodeSet(doc, "/x:svg/x:g/x:rect", "x")

the first two return an object of class XMLInternalNode, whereas the call to getNodeSet()

returns a list where each element is an ‘XMLInternalNode’. R’s plotting functions are very
regular and predictable so we can determine which nodes corresponds to which graphics
objects quite easily. The approach we use here capitalizes on understanding the default
operation of the plotting functions. To see how, notice that the first <g> sibling of <rect>
has 1000 children.

R> sapply(kids, xmlSize)

[1] 0 1000 25 3

This number exactly matches the number of points plotted.

R> dim(quakes)

[1] 1000 5

30 Interactive and Animated Scalable Vector Graphics and R Data Displays

The element with 25 children corresponds to the axes of the data region of the plot and their
tick marks. The element with just 3 children contains the title and the two axes labels.

The high-level functions described in Section 4 make use of these default locations in the SVG
output for the most common plots. If you need to annotate less common plots, then you may
need to use the other functions in SVGAnnotation, or directly handle the XML nodes yourself
with the functionality available in the XML package.

Next, let’s examine the first of these 1000 nodes. We see that it is a <path> element.

R> kids[[2]][[1]]

<path style="fill-rule: nonzero;

fill: rgb(90.196078%,90.196078%,90.196078%);

fill-opacity: 1;stroke-width: 0.75; stroke-linecap: round;

stroke-linejoin: round;

stroke: rgb(90.196078%,90.196078%,90.196078%);

stroke-opacity: 1;stroke-miterlimit: 10; "

d="M 337.144531 191.292969 C 337.144531 194.894531

331.746094 194.894531 ... " />

Although the symbol used to represent a point in the plot is a circle, the SVG graphics device
in R (via libcairo) does not use the <circle> element to draw it. Instead, the <path> node
provides instructions for drawing the circle using Bezier curves to connect the points supplied
in the d attribute. (The letter C between the (x,y) pairs means the points are to be connected
by a cubic Bezier).

The x, y coordinates used to specify the path are in the coordinate system of the SVG canvas,
not the coordinate system of the data. This system places the smallest values at the upper
left corner of the canvas and the maximum values for x and y at the lower right corner, i.e.,
y increases as you move down the canvas and x increases as you move right. As a result, we
cannot directly use the values in our data to directly identify SVG elements in the document;
the data values first need to be converted into this alternative coordinate system. The SVG
coordinate system supports various units of measurement, but the device in R uses only points
(abbreviated as ‘pt’ or ‘pts’). A point is approximately 1/72 of an inch. The size of the canvas
is provided via the width and height attributes on the <svg> root node of the document.

The libcairo engine used by R generates all shapes exclusively with the <path> tag. This
holds true as well for the text in axes and plot labels; that is, the cairo rendering engine in R
creates the text by explicitly drawing the letters via SVG paths. The resulting letters scale
extremely well and do not rely on special fonts which may not be available at the time of
rendering. More specifically, the path for the glyphs that correspond to the text are created
and placed in a <defs> element, and a <use> element brings in the glyph at the proper
location in the plot. This representation introduces some difficulties for us because the text
for legends and axes labels do not appear as plain text in the SVG document and so are not
easily located for post-processing. The placement of the glyphs in the <defs> means that
there is one additional level of indirection that needs to be handled when annotating text.

To make this concrete, let’s consider our scatter plot example again. The last child of the
main graphing node contains the information for drawing the title and axes labels. It has
three children, one each for the title, y axis, and x axis, respectively. We identify the x axis
with the following XPath expression,

Journal of Statistical Software 31

R> getNodeSet(doc, "/x:svg/x:g/x:g[3]/*[last()]", "x")

[[1]]

<g style="fill: rgb(0%,0%,0%); fill-opacity: 1;" type="axis-label">

<use xlink:href="#glyph1-7" x="14.398438" y="266.152344"/>

<use xlink:href="#glyph1-8" x="14.398438" y="259.478516"/>

<use xlink:href="#glyph1-9" x="14.398438" y="252.804688"/>

<use xlink:href="#glyph1-10" x="14.398438" y="249.470703"/>

<use xlink:href="#glyph1-9" x="14.398438" y="246.804688"/>

<use xlink:href="#glyph1-11" x="14.398438" y="243.470703"/>

<use xlink:href="#glyph1-12" x="14.398438" y="236.796875"/>

<use xlink:href="#glyph1-13" x="14.398438" y="230.123047"/>

</g>

attr(,"class")

[1] "XMLNodeSet"

This XPath expression starts at the root node, proceeds down one step to the root’s <g> child,
then down another level in the tree to select the third <g> element, and finally, one more level
to the last child of the third <g>. Notice that we use the XPath predicate [3] to select the
third <g> and the XPath function last() to get the last child element. This particular <g>

element contains the instructions for drawing the axes label “Latitude”. It references eight
glyphs that are located in the <defs> node of the document. The references are via the href

attribute. Note that there is one glyph per letter so, for example, the letter ‘a’ appears in the
document as “glyph1-8”.

R> getNodeSet(doc, "/x:svg/x:defs/x:g/x:symbol[@id ='glyph1-8']", "x")

[[1]]

<symbol overflow="visible" id="glyph1-8">

<path style="stroke: none;" d="M -1.671875 -1.578125

C -1.367188 -1.578125 -1.128906 -1.6875 -0.953125 -1.90625

C -0.773438 -2.132812 -0.6875 -2.398438 -0.6875 -2.703125

...

Z M -6.421875 -3.265625 "/>

</symbol>

attr(,"class")

[1] "XMLNodeSet"

The high-level functions in SVGAnnotation add elements and/or attributes to the SVG pro-
duced by the graphics device. For example, addToolTips() adds a type attribute with value
of “plot-point” so the <path> element can be more easily identified as instructions to draw a
point in a plot. This addition makes it easier for the programmer to extract and annotate
elements.

R> addToolTips(doc, apply(quakes[depth.ord,], 1, function(x)

+ paste(names(quakes), x, sep = " = ", collapse = ", ")), addArea = TRUE)

32 Interactive and Animated Scalable Vector Graphics and R Data Displays

R> kids[[2]][[1]]

<path style="fill-rule: nonzero;

fill: rgb(90.196078%,90.196078%,90.196078%);

fill-opacity: 1;stroke-width: 0.75;

stroke-linecap: round;

stroke-linejoin: round; stroke:

rgb(90.196078%,90.196078%,90.196078%);

stroke-opacity: 1;stroke-miterlimit: 10; "

d="M 337.144531 191.292969 C 337.144531 194.894531

331.746094 194.894531 ... "

type="plot-point"

xlink:title="lat = -20.32, long = 180.88, depth = 680,

mag = 4.2, stations = 22">

<title>lat = -20.32, long = 180.88, depth = 680, mag = 4.2,

stations = 22

</title>

</path>

In the call to addToolTips(), the child element, <title>, was added to <path>; it contains
the information that will be displayed when the mouse hovers the point. Similarly, adding
tool tips to the axes and a hyperlink to the plot title further modifies the SVG. The addition
of the hyperlink results in the insertion of an <a> tag as the parent of the <g> element that
contains the title information and a <rect> element as a sibling to this <g>. All elements
added after the creation of the SVG are denoted by dashed lines in Figure 10.

8. Tools for customizing interactivity

We have seen that SVGAnnotation provides facilities for identifying elements of the SVG
document that correspond to particular parts of plots, e.g., in the Example 4 the function
getPlotPoints() locates the SVG elements that correspond to the hexagonal bins in the R
display. These functions can assist developers in creating new high-level functions for anno-
tating the output from“non-standard”plotting functions in R. In this section, we demonstrate
the lower-level details of how a developer might post-process SVG to add annotations and
JavaScript in order to enable interactivity. Table 4 lists additional functions available for
working with various parts of the SVG document.

To begin, we explain how linkPlots(), which was demonstrated in Example 5, modifies the
SVG to perform the linking action. The key idea is that the SVG is annotated to add a unique
identifier to each SVG element that represents a point in a plot. This identifier includes
information as to which plot region and observation the point belongs. The linkPlots()

function retrieves the plot regions by using getPlotRegionNodes(). Whether we use pairs()
or par(mfrow = ...), the points within each plotting region appear in a regular order; that
is, the first element in each plotting region corresponds to the first row in the data frame, the
second element to the second row, and so on. Thus elements across plots can be matched by
simply using the order in which they appear in their respective plotting regions, assuming that
they come from the same data frame or have a correspondence by row. The identifiers added

Journal of Statistical Software 33

to the points are of the form “plotI-J” where “I” is the plot index and “J” is the observation
index within the plot. This unique identifier is added as an id attribute on each of the SVG
elements, which makes it easy for the JavaScript function to find the elements to be linked.

In addition, the linkPlots() function in SVGAnnotation adds onmouseover and onmouseout

attributes to each point element in the SVG document. The value of each of these attributes
is a JavaScript function call to perform the linking and unlinking action, e.g., to change the
color of the linked points. Below is the augmented SVG node that corresponds to the 10th
point in the first plot. This is the point colored red in the left-hand plot in the screen shot in
Figure 3.

<path style="stroke-width:0.75; ... "

d="M 260.417969 72.800781 C 260.417969 77.839844 252.855 ..."

id="plot1-10"

onmouseover="color_point(evt, 10 , 2 , 'red')"

onmouseout="reset_color(evt, 10 , 2)"

fill="none" originalFill="none"/>

The linkPlots() function adds to the SVG document the JavaScript code for the two func-
tions color_point() and reset_color(). The code appears in a <script> node within
the SVG document. Note that these JavaScript functions are relatively general and available
in the package for making customized plots. (For more information about JavaScript, see
Appendix D.)

The principles we established for annotating the SVG to link points across plots carry over to
more general settings. The basic ideas used in linkPlots() are to: post-process the document
so that elements in the SVG are easily identified and changed at the time of viewing; create
JavaScript functions, which are not dependent on a particular set of data to respond to mouse
events and make the requested changes to the display. This approach can be summarized by
the following set of tasks performed in the annotation stage:

� Within R, add unique identifiers to the relevant graphics elements in the SVG docu-
ment so they can be retrieved easily in the viewing stage (via the JavaScript function
getElementById()).

� Create special attributes to store the default values for settings that are subject to
change, e.g., original-style. These attribute names are made up by the developer,
and should not conflict with SVG attribute names.

� For the “action”, set up event attributes, such as onmouseover and onmouseout, on the
appropriate elements. The attribute values are JavaScript function calls. Our philosophy
is to pass all element-specific information needed to respond to a request/mouse-event
in the call. This way, the JavaScript functions can be used in other situations, e.g., with
other data and other types of plots, and not rely on auxiliary global variables.

� Embed in the document the JavaScript functions that modify and reset the element
attributes.

We demonstrate how to use the basic approach just outlined to create a customized event
handler for lattice plots. The interactivity in this example extends the notion of linked plots

34 Interactive and Animated Scalable Vector Graphics and R Data Displays

Figure 11: The scatter plots show the relationship between horsepower and miles per gallon
for automatic and manual transmission cars. The points within each panel are colored accord-
ing to the number of cylinders the engine has (4 cyan, 6 pink, and 8 green). The legend above
the plots lists the possible number of gears, 3, 4, and 5. When for example, the mouse hovers
over the 4-gear group, the points belonging to that group are highlighted. This interactivity is
accomplished by changing the style attribute of the points via JavaScript. When the mouse
moves off the legend, the original styles for these points are restored.

to lattice plots where points are linked via an interactive legend.

Example 6. Linking across lattice plots.

In this example, we follow the steps listed above to customize a JavaScript event handler. In
particular, we show how you might extend the linking type of interactivity in Example 5 to
lattice plots. The data used are the familar mtcars, and the lattice plot is constructed with
the formula mpg ~ disp | am with cyl as the groups argument. We add a legend to a lattice
plot for a fifth variable (gear). A mouse-over event on the legend results in the highlighting
of the observations in each panel that belong to the corresponding level of gear. In this way,
information from an additional variable is added to the lattice plot.

We begin by making the plot. We convert cyl and am into factors with more meaningful
labels for the plot, and we use simpleKey() to add a legend to the lattice plot:

Journal of Statistical Software 35

R> library("lattice")

R> mtcars$cyl <- factor(mtcars$cyl,

+ labels = paste(c("four", "six", "eight"), "cylinder"))

R> mtcars$am <- factor(mtcars$am, labels = c("automatic", "manual"))

R> gearGroups <- sort(unique(mtcars$gear))

R> gearLabels <- paste(gearGroups, "gears", sep = " ")

R> colors <- trellis.par.get("superpose.symbol")$col[

+ seq(along = levels(mtcars$cyl))]

R> topArgs <- list(fun = draw.key, args = list(key = list(

+ text = list(gearLabels), columns = 3)))

R> botArgs <- list(fun = draw.key, args = list(

+ key = list(text = list(levels(mtcars$cyl)),

+ points = list(pch = 21, col = colors), columns = 3)))

R> doc <- svgPlot(xyplot(mpg ~ disp| am, groups = cyl, data = mtcars,

+ legend = list(top = topArgs, bottom = botArgs)))

There are 2 plotting regions in the SVG document, one for each panel. Each plotting-region
element contains its points as child elements and we locate the entire collection of the corre-
sponding SVG elements with

R> panels <- getPlotRegionNodes(doc)

R> points <- unlist(lapply(panels, xmlChildren), recursive = FALSE)

Now that we have the point elements, we can proceed with the first step in creating our own
event handler, and augment these elements with unique identifiers. We construct identifiers
based on the point’s index within its gear-group and panel, e.g., id="2-4-1" is the identifier
for the first observation in the four-gear group in the second panel (the manual transmission
panel). We use addAttributes(), a function in the XML package, to add the id attribute
to the point elements as follows:

R> ids = by(mtcars, list(mtcars$gear, mtcars$am), function(x)

+ paste(as.numeric(x$am), x$gear, 1:nrow(x), sep = "-"))

R> uids = unlist(ids)

R> mapply(function(node, id) addAttributes(node, id = id), points, uids)

We are ready for the third step in the process: augmentation of the legend labels with
JavaScript calls for mouse events. We skipped the second step, that of preserving the default
style values, because we will take care of it at viewing time with our JavaScript function
highlight(). That is, highlight() will highlight or un-highlight the relevant points, and
it will save and restore the default styles of the points. highlight() is called with 3 ar-
guments: the first argument indicates the gear-group; the second is an array giving the
number of elements within that group in each panel; and, the third indicates whether the
event is a mouse over (true) or a mouse out (false). Thus for the third step, we need to
add onmouseover and onmouseout attributes that have JavaScript function calls such as
highlight(4, [4, 8], true). Notice that JavaScript uses square brackets to delimit arrays
(e.g., [1, 2]). We construct these simple arrays with direct calls to paste(). For more
complex R objects, we would be advised to use the RJSONIO package to serialize R objects
to JavaScript object notation (JSON).

36 Interactive and Animated Scalable Vector Graphics and R Data Displays

To generate the values for these arrays, we need to know how many points are in each group
within each panel. We get a frequency table with this information via

R> counts = table(mtcars$am, mtcars$gear)

R> counts

3 4 5

automatic 15 4 0

manual 0 8 5

We use these counts to construct the JavaScript calls as follows:

R> nodes <- getLatticeLegendNodes(doc, panels, 1)

R> sapply(seq(along = 1:length(gearGroups)), function(i) {

+ cts <- paste("[", paste(counts[,i], collapse = ", "), "]", sep = "")

+ addAttributes(nodes[[i]],

+ onmouseover = paste("highlight(", gearGroups[i], ",", cts, ", true)"),

+ onmouseout = paste("highlight(", gearGroups[i], ",", cts, ", false)"))

+ })

Note that getLatticeLegendNodes() locates the elements corresponding to the legend in the
SVG.

For the fourth and last step, we add to the SVG document the JavaScript function definition for
highlight() and its helper function highlightPoint(). The addECMAScripts() function
takes care of this for us:

R> jscript = list.files(system.file("examples", "Javascript",

+ package = "SVGAnnotation"), full.names = TRUE, pattern = "multiLegend")

R> addECMAScripts(doc, jscript)

R> saveXML(doc, "mt_lattice.svg")

For completeness, we examine the JavaScript functions highlight() and highlightPoint()

to see how they handle the interactivity. Recall that highlight() is called with the index of
the group to be highlighted/un-highlighted and the array holding the counts of the number
of points in that group within each panel. The function, shown below, iterates over each
panel and each point within the desired group in that panel and constructs the corresponding
id value for the affected points. It then retrieves the SVG element by identifier, using the
Javascript method getElementById(). This method is very convenient because it retrieves
a node in the SVG document by specifying the value of its id attribute. Our highlight()

function is defined as

function highlight(group, pointCounts, status)

{

var el;

var i, numPanels = pointCounts.length;

/* we want the group */

for(panel = 1; panel <= numPanels; panel++) {

Journal of Statistical Software 37

for(i = 1; i <= pointCounts[panel-1]; i++) {

var id = panel + "-"+ group + "-" + i;

el = document.getElementById(id);

if(el == null) {

alert("can't find element " + id)

return(1);

}

highlightPoint(el, status);

}

}

}

Once an element is retrieved, highlightPoint() is called to change its appearance.

The highlightPoint() function modifies the value of the style attribute for an element.
We could have handled the style change by adding a specific presentation attribute to the
element, e.g., adding a fill attribute to change the fill color. Here we use regular expres-
sions (in Perl format) to process the value of the style attribute. We break the character
string into individual components, change the fill component, and create the new in-line style
string. At the same time, we make sure to save the original style information in order to
restore it as needed. It is saved in an attribute we made especially for this purpose, dubbed
original-style. The highlightPoint() function is defined as follows.

function highlightPoint(el, status)

{

var old = el.getAttribute('original-style');

if(status && old == null)

el.setAttribute('original-style', el.getAttribute('style'));

if(status) {

/* Have to set the attribute within the style attribute,

i.e. a sub-attribute which makes things more complex. */

var cur = el.getAttribute('style');

var tmp = cur.replace(/fill: [^;]+/, "fill: black");

var tmp = tmp.replace(/stroke-width: [^;]+/,

"stroke-width: 2");

el.setAttribute('style', tmp);

}

else

el.setAttribute('style', old);

}

We conclude the example, with a brief discussion as to how we determined the ordering of the
points in the SVG for xyplot(). We programmatically changed the color of a point in the
SVG, and viewed the modified document to determine that the points for each group appear
sequentially within the document. Further exploration of the document confirmed that all of
the elements of the plot’s legend are sibling nodes of the plotting region. A simple XPath
expression was used to locate them:

38 Interactive and Animated Scalable Vector Graphics and R Data Displays

R> other <- getNodeSet(panels[[length(panels)]], "./following-sibling::*")

R> nodesAlt <- other[-(1:(length(other) - length(gearGroups)))]

This basic approach was then incorporated into getLatticeLegendNodes(), which does this
more robustly by matching against the type of node. (svgPlot() uses the plotting calls to
annotate the SVG elements with this additional information.)

9. Complex/non-standard examples

In this section, we use a different approach to creating interactivity with JavaScript. In
Section 4.2, we used JavaScript to simply alter the attributes of existing elements. That is,
all of the computations on the data were done in advance, in R, in either the plotting stage or
the annotation stage, and the JavaScript functions simply changed and reset attributes. Here,
in the annotation stage, we place R objects in the SVG document as JavaScript variables,
and in the viewing stage, we use JavaScript and these variables to create new shapes in the
display. We provide two examples. In the first, we draw line segments on a scatter plot to
connect a point to its nearest neighbors. The information as to which points are nearest
others is calculated in R and placed in the SVG document as JavaScript variables. These
examples demonstrate that drawing can be done in two places: in R via the plotting routines
and in JavaScript at the time the document is viewed (and R is no longer available). If we
had made this plot using the earlier approach in Section 8, we would have drawn all possible
line segments in R, hidden them within the plot, and the JavaScript code would respond to
mouse-over and mouse-out events by modifying element attributes in order to show and hide
the line segments. In the approach here, we draw new lines in response to a mouse-over event,
and then we discard them when the mouse moves off the element.

In Section 6, we determined the structure of an SVG document generated via libcairo. To do
this, we used information about the data being plotted. For example, knowing the number
of observations helped us find the SVG nodes corresponding to the points. We matched the
number of rows in the data frame against the number of elements in various parts of the
SVG document. The examples in this section continue this approach of determining which
elements in the SVG document correspond to particular components of a plot. In one case,
in order to uncover the structure in the SVG image, we compare the graphics object returned
from the call to the R plotting function with the graph object returned from randomGraph().
This is a deterministic process that need only be done once because the SVG output for a
particular type of plot has a very regular structure. Although regular, the structure is not
a formal one that allows us to immediately identify the SVG elements corresponding to R
components. The SVGAnnotation package does most of this automatically. We describe it
here to illustrate the underlying mechanism and approach so it is clearly understood and can
be adapted for new types of plots.

Example 7. Interactive nearest neighbors.

In this example, we use JavaScript to dynamically (i.e., at viewing time) augment a scatter
plot so that it displays the four nearest-neighbors to a point. That is, when the mouse moves
over a point, new line segments are drawn from that point to its four nearest neighbors (see
Figure 12). Also, when the mouse moves off the point, the lines are removed from the display.
To do this, we use JavaScript to lookup the elements in the SVG display that correspond to

Journal of Statistical Software 39

Figure 12: This interactive scatter plot can display the four-closest neighbors of any point.
When the mouse moves over a point, a JavaScript function is called to determine the coordi-
nates of the 4 nearest neighbors and draw line segments from the active point to its neighbors.
The SVG document contains JavaScript variables that hold the indices of the neighbors for
each point, in order, from closest to farthest. The nearest neighbors are defined by Euclidean
distance in the mpg and wt dimensions. Notice that the scales on the two axes are not the
same and so the aspect ratio for the plot is not 1. This can yield a somewhat misleading
display of the nearest neighbors.

the nearest points, and we add new <line> elements from the active point to its neighbors.
Note that we are not adding XML content to the original SVG document, but rather adding
line objects to the JavaScript rendering of the SVG display.

We begin by creating the basic scatter plot:

R> doc <- svgPlot(plot(mpg ~ wt, mtcars, main = "Motor Trend Car Road Tests",

+ pch = 19, col = c("green", "blue")[(am + 1)]))

In the annotation stage, we add unique identifiers to the points in the plot. Specifically, we
add an id attribute to each point that simply has the index of the observation in the data
frame. Since JavaScript uses 0-based indexing, we find it easier to start the indexing at 0, e.g.,

R> ptz = getPlotPoints(doc, simplify = FALSE)[[1]]

R> sapply(seq(along = ptz), function(i) addAttributes(ptz[[i]], id = i - 1))

We also add calls to the JavaScript functions (showNeighbors() and hideLines()) to handle
the mouse-over and mouse-out events on each point:

40 Interactive and Animated Scalable Vector Graphics and R Data Displays

R> sapply(seq(along = ptz), function(i) {

+ addAttributes(ptz[[i]],

+ onmouseover = "showNeighbors(evt, k, neighbors)",

+ onmouseout = "hideLines(evt)")

+ })

Also in the annotation stage, we calculate the distances between points, and use these dis-
tances to identify the nearest neighbors as follows:

R> DD <- as.matrix(dist(mtcars[, c("mpg", "wt")]))

R> D <- t(apply(DD, 1, order)) - 1

Notice that we use the order of the observation in the data frame so that it will match the
identifier that we added to the point in the plot.

We make this information about a point’s neighbors available to the JavaScript code as a
two-dimensional JavaScript array, serialized from R. The following call to addECMAScripts()

illustrates how we serialize the R matrix D to JavaScript as the variable neighbors, in addition
to adding the JavaScript code from several files:

R> dimnames(D) <- list(NULL, NULL)

R> jscript <- list.files(path = system.file("examples", "Javascript",

+ package = "SVGAnnotation"), full.names = TRUE, pattern = "knn")

R> addECMAScripts(doc, jscript, TRUE, neighbors = D)

The addECMAScripts() function has a ... argument that accepts R objects in the form
name = value. These objects are added to the SVG document as JavaScript variables with
the argument name used as the name for the JavaScript variable. The TRUE value for the third
argument indicates that we want the contents of the JavaScript file to be copied into the SVG
rather than supplied via a link. We choose to copy the contents to make the resulting SVG
file independent of auxiliary files.

The JavaScript function showNeighbors() has three arguments: the event object, the number
of neighbors of interest (k), and a two-dimensional array identifying the nearest neighbors for
all points (neighbors). The array is a JavaScript variable that contains the contents of the
R matrix D. Notice that the data are separated from the function and explicitly passed as
arguments in the function call so that the function can be used with other data in other
contexts. With its helper functions, showNeighbors() retrieves the index of each of the k

neighboring points from the neighbors array; extracts the corresponding JavaScript SVG
object and gets its coordinates in the SVG canvas; and then creates a new line segment
between the neighboring point and the active point. The line segments run from the center of
the active point’s symbol to the center of each of its neighbors. The function puts these line
segments inside a new group element (corresponding to a <g> node); this facilitates removing
the set of lines when the mouse moves off the point.

We provide here the complete code for one of the helper functions, addLines(). We include
it to show how JavaScript methods are used to construct new elements in the display:

function addLines(obj, neighbors, numNeighbors)

{

var x, y, x1, y1;

var tmp = obj.getBBox();

Journal of Statistical Software 41

x = tmp.x + tmp.width/2;

y = tmp.y + tmp.height/2;

lineGroup = document.createElementNS(svgNS, "g");

obj.parentNode.appendChild(lineGroup);

var ids = obj.getAttribute('id') + ": ";

for(var i = 1; i <= numNeighbors ; i++) {

var target;

target = document.getElementById(neighbors[i]);

ids = ids + " " + neighbors[i];

tmp = target.getBBox();

x1 = tmp.x + tmp.width/2;

y1 = tmp.y + tmp.height/2;

var line = document.createElementNS(svgNS, "line");

line.setAttribute('x1', x);

line.setAttribute('y1', y);

line.setAttribute('x2', x1);

line.setAttribute('y2', y1);

line.setAttribute('style', "fill: red; stroke: red;");

line.setAttribute('class', "neighborLine");

lineGroup.appendChild(line);

}

window.status = ids;

}

Note that although libcairo uses only <path> elements to draw objects, we can use higher-
level elements such as <line> in our JavaScript drawing. Also note that when we create the
new nodes, we must include the name space or otherwise the node is not recognized as SVG.
The line segments are put into a group that is stored as a global variable in JavaScript. This
makes it easy to remove the lines in one operation when the mouse moves off the point. This
is illustrated by the definition of the hideLines() function which simply checks the value of
the variable lineGroup and removes its children if it is an existing node:

function hideLines()

{

if(typeof lineGroup != "undefined") {

lineGroup.parentNode.removeChild(lineGroup);

lineGroup = document.createElementNS(svgNS, "g");

}

}

This example has demonstrated how to use JavaScript to dynamically manipulate an SVG
display using data created in R when the plot was originally created. Again, in the viewing
stage, when the JavaScript is running, the original data in R are not available. The matrix

42 Interactive and Animated Scalable Vector Graphics and R Data Displays

of ordered neighbors for each point that was computed in R is available within the JavaScript
code. If the script needs any of the additional data, then they must be placed in the document
in the annotation stage.

An alternative approach to the above example is to add, in the annotation stage, all of the
nearest neighbor lines for all of the points. We would set the visibility style attribute
to “hidden” so these line segments would not be displayed when the document is loaded
by the viewer. Then, a point’s onmouseover function call would identify the appropriate
line segments emanating from the point to its nearest neighbors and change their visibility
attribute to “visible”. Similarly, the onmouseout event would change them back to “hidden”.
This alternative approach is similar in spirit to those examples in Section 4.2, i.e., JavaScript
functions do little other than change attribute values on nodes in the document. There are
run-time benefits to this approach because we do not have to create the lines each time the
user moves over a point. However, there are many more lines in the display, and the loading
of the SVG file may be slower. This trade-off involves the issue of where the computations
are performed. The approach that leaves the line creation to JavaScript also generalizes to
allow dynamic specification of the number of nearest neighbors, e.g., with a slider or HTML
spin box.

Example 8. Highlighting nodes and edges in a graph.

In this example, we explore how to annotate an SVG document created via Rgraphviz (Gentry
et al. 2011) to make the graph interactive. Specifically, when the mouse moves over a node
in the graph, the node and its connections to other nodes are highlighted. In addition, the
other connections between nodes in the graph recede in appearance (see Figure 13).

This example is adapted from Gentry et al. (2010). We follow their example and make a
simple graph with 10 nodes using the graph package.

R> library("Rgraphviz")

R> library("RJSONIO")

R> set.seed(123)

R> V <- letters[1:10]

R> M <- 1:4

R> g1 <- randomGraph(V, M, 0.8)

We use a circular "twopi" layout of the nodes with

R> doc <- svgPlot(plot(g1, "twopi",

+ attrs = list(node = list(fillcolor = "white"))))

We then examine the resulting SVG content

R> top <- xmlRoot(doc)[["g"]][["g"]]

R> table(names(top))

g path

10 55

Journal of Statistical Software 43

Figure 13: This graph is made using the Rgraphviz (Gentry et al. 2011) package. The graph
has been annotated to make it interactive, where a mouse-over event on a node brings that
node and its edges to the forefront, and the remaining edges recede into the background. This
interactivity relies on JavaScript. The mouse-over event triggers a call to a JavaScript function
that finds the edges and nodes that need to be modified and changes their color by modifying
the corresponding SVG elements. The information identifying the connections between nodes
is supplied via JavaScript variables whose values were computed in R and stored in the SVG
document as JavaScript variables. This particular graph is not of great interest, being a
simple random graph. However, the ideas apply to more interesting data such as package
dependencies and call graphs illustrating which functions call which other functions.

We see that we have 65 nodes; 10 are <g> nodes and the remainder are <path> elements.
In this layout, the first 10 SVG elements in the graph specify the text labels for the graph’s
nodes. The remaining 55 correspond to the 10 circles, one for each node, and the 45 edges
corresponding to the 10 choose 2 undirected connections.

We can find out more about the structure of the graph with agopen().

R> layout2pi <- agopen(g1, layoutType = "twopi", name = "bob")

The layout2pi variable contains all the information about the positions of the nodes and
edges. renderGraph() uses this to draw the graph using R’s graphics primitives (circle,
line, text, etc.). So rather than using R’s graphics and post-processing the resulting SVG
document, we might consider creating the SVG directly from the layout information returned
by agopen(). We wouldn’t have to identify the node and edge elements in the SVG tree
as we would explicitly create them. We could give them meaningful id attributes to make
annotating the SVG content easier. This is a reasonable approach, but it requires that we
permit the R user to specify the color, font family and size, line types and widths, etc. for

44 Interactive and Animated Scalable Vector Graphics and R Data Displays

the nodes and edges. Furthermore, the R user would not be able to place additional elements
on the plot with regular R graphics functions so it is best to work with the SVG document
that R creates.

We can however make use of the ‘Ragraph’ object (returned by agopen()) to identify the
elements in the SVG. For example, we can look at the edges in the AgEdge slot of the layout.
This is a list with 45 elements. The order of the elements in the top-level SVG <g> element
corresponds to the order of the edges in this list.

Now that we have some understanding of the structure of the SVG document and how to
identify the nodes and edges, we can proceed with our goal of making the display interactive.
We add code to the document that allows the user to mouse-over/click on a node and highlight
the associated edges. The action is done via JavaScript. We start by identifying each node by
a number, its index in the list of nodes. To highlight the node and edge, we call the function
highlightEdges(), passing it that index. The highlightEdges() function determines the
ids of the edges associated with that node and uses these to retrieve the corresponding element
in the display. It then sets their color attribute to, e.g., chartreuse. The function also changes
the color of the other edges and nodes to make them less visible. When the mouse leaves the
node, we set the color of the edges back to their original colors.

The first step is to add an id attribute on each of the SVG elements corresponding to the
nodes and edges. The function addGraphIds() does this for us, e.g.,

R> ids <- addGraphIds(doc, layout2pi)

This uses the node labels as the node ids. The edge ids are of the form, “edge:sourceId-
destinationId”, e.g., “edge:a-b”, identifying the two end points with their ids and indicating
the direction of the edge.

To implement highlightEdges(), we need information for each node giving the ids of the
associated edges. It is natural to represent this in R as a list with each element being a
character vector giving the edge identifiers corresponding to the node. This is relatively
straightforward to create in R using getEdgeInfo() (in SVGAnnotation). However, we need
it in JavaScript. The addECMAScripts() function will take care of serializing this R object
in a suitable form so that it can be used directly in JavaScript code. It uses the toJSON()

function in the RJSONIO package (Temple Lang 2011a) to do this. The following illustrates
the form in which it will appear in the JavaScript code:

R> cat(toJSON(getEdgeInfo(g1)))

{

"a": ["edge:a-c", "edge:a-d", "edge:a-e", "edge:a-g", "edge:a-h",

"edge:a-i", "edge:a-j", "edge:a-b", "edge:a-f"],

"b": ["edge:b-c", "edge:b-d", "edge:b-e", "edge:b-f", "edge:b-g",

"edge:b-h", "edge:b-i", "edge:b-j", "edge:a-b"],

...

"j": ["edge:a-j", "edge:c-j", "edge:d-j", "edge:e-j", "edge:g-j",

"edge:h-j", "edge:i-j", "edge:b-j", "edge:f-j"]

}

Now that we have arranged for the node-edge information to be available to the
highlightEdges() function, the JavaScript code to manipulate this is, at its very basic,
like the following:

Journal of Statistical Software 45

function highlightEdges(evt, row, color)

{

var labels = edgeTable[row];

var reset = false;

var el;

/* If no color was specified, we reset the original values. */

if(typeof color == 'undefined') {

reset = true;

color=black;

} else {

currentStyle = evt.target.getAttribute('style');

}

/* Loop over the edges associated with this node */

for(var i = 0; i < labels.length; i++) {

el = document.getElementById(labels[i]);

setEdgeStyle(el, "stroke: " + color);

}

labels = edgeDiff[row];

var stroke = "lightgray";

if(reset) stroke = "black";

/* hide the other edges */

for(var i = 0 ; i < labels.length; i++) {

el = document.getElementById(labels[i]);

setEdgeStyle(el, 'stroke: ' + stroke);

}

/* Restore or set the style for the target node. */

if(reset) evt.target.setAttribute('style', currentStyle);

else evt.target.setAttribute('style', 'fill: ' + color);

}

Given this JavaScript function, we are ready to put all the pieces together to annotate the SVG
document. The steps are: (i) put mouse event handlers on the SVG elements corresponding to
the nodes in the graph, (ii) compute the information about the edges for each node, (iii) add
the code and this edge information data to the SVG document. We do this as

R> ids <- addGraphIds(doc, layout2pi)

R> els <- getNodeElements(doc)

R> sapply(seq(along = els), function(i) addAttributes(els[[i]],

+ onmouseover = paste("highlightEdges(evt, ", i- 1, ", "chartreuse");"),

+ onmouseout = paste("highlightEdges(evt, ", i-1, ");")))

R> info <- getEdgeInfo(g1)

R> names(info) <- seq(from = 0, length = length(info))

46 Interactive and Animated Scalable Vector Graphics and R Data Displays

R> otherEdges <- lapply(info, function(x) setdiff(ids$edgeIds, x))

R> mapply(addLink, els, ids$nodeIds, MoreArgs = list(silent = TRUE))

R> jscript <- c(system.file("examples", "Javascript", "highlightEdges.js",

+ package = "SVGAnnotation"), system.file("examples", "Javascript",

+ "setEdgeStyle.js", package = "SVGAnnotation"))

R> addECMAScripts(doc, jscript, TRUE, edgeTable = info,

+ edgeDiff = otherEdges)

R> saveXML(doc, "graphviz.svg")

Note we pass the edge information to JavaScript via addECMAScripts() and create JavaScript
variables named edgeTable and edgeDiff.

10. Animation

SVG supports two types of animation: declarative, which solely uses SVG facilities; and
scripted, which relies on JavaScript. In this section, the focus is on the declarative approach,
however, we present examples of both. The SVG animation facilities make it quite easy to
produce animations similar to GapMinder, by simply annotating a scatter plot display with
animation elements.

The basic concept of a “pure” SVG animation is that animation elements provide direc-
tions on how to move an object, or group of objects, and how to change the shape or ap-
pearance/style of an object. These animation elements are added as children of the ob-
ject that is being animated. The animation tag names are <animate>, <animateMotion>,
<animateTransform>, <animateColor>, and <set>. These tags act on a particular attribute
of the parent object. For example, the <animateTransform> tag can be used to change the
width attribute of its parent, which causes the parent object to grow or shrink. As another
example, <animateTransform> can change the visibility attribute in order to make an
object become hidden or visible. Furthermore, with <animateMotion>, we can specify a new
location for the object, which causes the object to move to this new position.

To get an idea as to how this works, the following SVG animation takes two seconds to move
a circle from its original location at the time of loading to a new location and simultaneously
shrink the circle from a radius of 5.4 to 3. This mini-animation is the building-block for
the scatter-plot animation shown in Figure 4. There, each point represents a country, and
the x and y locations correspond to the country’s average life expectancy and income for
a particular decade. As the points move, they grow or shrink according to the change in
population size from one decade to the next. The animation is described in more detail in
Example 9.

<circle x="95.1" y="369.8" r="5.4"

style="fill-rule: nonzero; fill: rgb(100%,0%,0%); ...">

<animateMotion id="move1" from="95.1, 369.8" to="66.7, 412.7"

fill="freeze" dur="2s" begin="0s"/>

<animateTransform attributeName="transform" type="scale"

fill="freeze" to="3" dur="2s" begin="0s"/>

</circle>

Journal of Statistical Software 47

The <animateMotion> tag provides the details for moving the circle across the canvas, and the
<animateTransform> tag provides information to resize the circle. The attributes from and
to on <animateMotion> provide the beginning and ending location for the circle. Whereas
to on <animateTransform> indicates the final size of the circle. The type attribute of “scale”
indicates that the circle is to be scaled; other possible values for this attribute are rotate,
skewX, skewY, and translate. The fill attribute is not to be confused with the fill attribute
of the circle. It refers to what is to happen at the end of the animation. The value of “freeze”
indicates that the final value should be kept. Without it, the attribute being animated would
return to its original value, i.e., the circle would return to its starting position or it would
return to its original size. The attributes begin and dur, indicate that the movement of the
circle and its change in size are to both start at “0s”, i.e., when the page is loaded, and last
for 2 seconds.

The movement of the circle and the changing of its size are coordinated by specifying that
both animations are to begin at the same time (begin is at 0 seconds) and take the same
amount of time (2 seconds). With <animateMotion>, it is also possible to specify the path the
circle would take in traveling from one location to the other. Any animation element requires
a dur attribute to specify its duration. The value can be provided in seconds, e.g., dur="10s",
or minutes, e.g., dur="2min". It is also possible to use clock values, e.g., dur="2:10" for 2
minutes and 10 seconds. The SVG clock starts ticking when the document has completed
loading.

In addition to specifying the duration of an animation, it is also possible to specify when
the animation is to begin or end. The values of these attributes can be absolute values, as
with dur, or they can be relative to the start or end of another animation. For example, if
we change the begin value in our <animateTransform> to “move1.end+3s”, then the circle
would start shrinking 3 seconds after it finished moving to its new location, i.e., 3 seconds
after the animation with an id attribute value of “move1” ends. This can be useful when
synchronizing parts of an animation.

The <set> element behaves somewhat differently in that it is used to change attribute values
such as fill. For example, the color of the circle could be changed when it reaches its new
location by embedding the following element as a child of <circle>:

<set attributeName="fill" fill = "freeze"

attributeType = "CSS" to = "#FFDB00FF"

begin = "move1.end"/>

The attribute called attributeName specifies which attribute of the parent node is to be
“animated”. (Note that attributeName in <animateTransform> is “transform”, which is not
an explicit attribute on the circle.) The to attribute indicates the new color of the circle.
The change of color begins when the circle has finished moving because begin has a value
of “move1.end”. As mentioned already, fill refers to what is to happen at the end of the
animation; the value of “freeze” indicates that the final color should remain.

One additional point to note is that the attributeType attribute in the <set> element is
used to indicate where the attribute being changed can be found. A value of “CSS” means
that the fill color is located in the style attribute of <circle>. If the circle had specified the
value of its fill color in a presentation attribute, then we would have given attributeType a
value of “XML”.

48 Interactive and Animated Scalable Vector Graphics and R Data Displays

10.1. Scatter plot animation

The animate() function in the SVGAnnotation package takes a scatter plot and moves the
points around the canvas through a sequence of steps. In each step, a point moves continuously
from one position to another; then in the next step, the point moves from there to yet another
location. We implement it by adding <animateMotion> elements to each of the SVG elements
corresponding to points in the plot. Each “point” in the SVG document will have as many
<animateMotion> elements as there are time steps. In addition, if we want the size of the
points to represent the value of an additional variable, which also changes in time, then we
can specify the radii of the circles in each stage. In this case, the animate() function will add
<animateTransform> elements to the display to change the circle sizes. Also, if the point is
to change color, <set> elements are also added. These various options are specified in the
function call.

The animate() function takes as an argument the SVG display of the initial scatter plot. It
could in fact create the plot itself based on the data for the first time step, but the caller will
most likely want to create the plot in advance in order to customize its appearance (e.g., title,
axes labels, lines, etc.). A second argument provides the data to be animated. The data are
provided as a data frame giving the locations of the points in the scatter plot for the different
steps. It is structured as a column of x values and a column of y values for each step stacked
on top of each other. In addition, the which parameter indicates to which step the points
belong. We can provide radii for the circles via the radii parameter, if we want to change the
size of the circles. In addition, we can supply colors for each stage via the colors parameter.
We demonstrate some of these features and some implementation issues in the next example,
Example 9.

Example 9. Animating scatter plots through snapshots in time.

In this example, we display 11 decades of United Nations data via a scatter plot animation
shown in Figure 4. The following is a snippet of the data we use,

R> head(gapM)

longevity income population yr country

1 39.70 4708.2323 6584000 1900 Argentina

2 63.22 6740.9394 4278000 1900 Australia

3 42.00 5163.9268 6550000 1900 Austria

4 22.00 794.8383 31786000 1900 Bangladesh

5 51.11 4746.9662 7478000 1900 Belgium

6 32.90 705.4758 21754000 1900 Brazil

R> tail(gapM)

longevity income population yr country

391 80.550 48264.67 4610820 2000 Norway

392 69.906 6875.51 28302603 2000 Peru

393 70.303 3030.88 89468677 2000 Philippines

394 78.920 20149.08 10605870 2000 Portugal

395 78.471 32334.53 60609153 2000 United Kingdom

396 77.890 42445.70 298444215 2000 United States

Journal of Statistical Software 49

We want to plot the variable income along the x axis and longevity along the y axis; we use
yr to indicate the time/step; and population determines the radius of the circle.

These data have many missing values, and most of the work for us is in cleaning up that data
and formatting it for animate(). Below is a snippet of the data preparation that we need to
do. Here we are computing the radii for the circles. When the data are missing, we set the
radii to a small value.

R> rad <- 1 + 10 * sqrt(gapM$population)/max(sqrt(gapM$population))

R> disappear <- is.na(gapM$longevity) | is.na(gapM$income) |

+ is.na(gapM$population)

R> rad[disappear] <- 0.00001

R> radL <- lapply(ctry, function(i) rad[gapM$country == i])

R> names(radL) <- ctry

Here ctry is a vector of the names of the countries to be included in the animation.

Once the data are prepared, we plot the points for the first decade, which creates the starting
frame of the animation. We control much of the layout, placing the tick marks, grid lines,
and labels ourselves, as shown here.

R> doc = svgPlot({

+ plot(longevity ~ income, subset(gapM, yr == 1900 & country %in% ctry),

+ pch = 21, col = colsB, bg = colsI, xlab = "Income",

+ ylab = "Life Expectancy", axes = FALSE, xlim = c(-400, 50000),

+ ylim = c(20, 85))

+ box()

+ y.at <- seq(20, 85, by = 5)

+ x.at <- c(200, 400, 1000, 2000, 4000, 10000, 20000, 40000)

+ axis(1, at = x.at, labels = formatC(x.at, big.mark = ",", format = "d"))

+ axis(2, at = y.at, labels = formatC(y.at))

+ abline(h = y.at, col = "gray", lty = 3)

+ abline(v = x.at, col = "gray", lty = 3)

+ legend(35000, 40, longCont, col = colB, fill = colB, bty = "n",

+ cex = 0.75)

+ })

Here colB holds the colors for each circle border, colI has the colors for the interior of the
circles, and longCont has that names of the continents. We would also like to provide tooltips
for each of the points that display the particular country’s name. We annotate the plot using
addToolTips() as follows

R> addToolTips(doc,

+ as.character(gapM$country[gapM$yr == 1900 & gapM$country %in% ctry]))

The initial view or starting point of the animation is now in the variable doc. We provide this
to animate(), along with the subsequent slices of the data for each decade. We specify the
duration of the animation via the interval parameters (the total duration of the animation
can also be specified via dur), and the radii of the circle at each time period (e.g., decade) is
provided in radii. The call to animate() is

50 Interactive and Animated Scalable Vector Graphics and R Data Displays

R> animate(doc,

+ gapM[gapM$country %in% ctry, c("income", "longevity")],

+ gapM$yr[gapM$country %in% ctry],

+ dropFirst = TRUE, labels = seq(1900, length = 11, by = 10),

+ begin = 0, interval = 3, radii = radL[ctry])

The animate() function also needs to know the range of the horizontal and vertical data used
to create the initial plot. If this is not the range of the entire data, the caller must specify
these explicitly. Furthermore, background labels and point colors can be changed at each
time period; these can be specified via labels and colors, respectively.

The animate() function handles the complication that arises from the coordinate system of
the data being different from the SVG coordinate system. The data values must be trans-
formed into the SVG coordinate system before we add an <animateMotion> node to move
the points to new locations. Below is a snippet of the code in the animate() function that
does this.

R> rect <- getBoundingBox(plotRegion)

R> transformX <- function(vals, xlim, rect) {

+ (vals - xlim[1]) * (rect[2, 1] - rect[1, 1])/(xlim[2] - xlim[1]) +

+ rect[1, 1]

+ }

The getBoundingBox() function returns the limits of the plotting region in the SVG coor-
dinate system, and these are used to transform the data values (in vals). If the data are to
be plotted on a log scale, then the data must be transformed as well. That is, the parameter
log in plot() will create a mismatch between the scale of the data and the plotting region.
Instead, the caller will need to take logs of the data and handle the specification of the tick
mark labels if they are to appear in unlogged units.

A second complication arises due to the SVG element for drawing the plotting symbol being
a <path> rather than a <circle>. The animate() function examines the path to determine
whether or not the plotting symbol is a circle. If the radii parameter is provided and the
plotting symbol is a circle, then the <path> is replaced by a circle so that it can easily grow
and shrink as it moves through the stages of the animation. Currently, all other symbols will
move around the canvas and radii will be ignored, but a scaling transformation is possible.

11. Controlling animation with JavaScript

In this section, we examine how to animate plots using JavaScript explicitly via programmatic
changes to the display at viewing time. There are some kinds of animations that are difficult
to achieve with the declarative approach of the SVG model; for example, to change a path
dynamically (i.e., at run/viewing-time) requires scripting. We provide a simple example to
illustrate a few of the ideas in the JavaScript approach.

The setInterval() function is key to using JavaScript for animation. This function sets a
timer to go off at repeated intervals. When it does, previously specified JavaScript code is
evaluated. For example, in the code

Journal of Statistical Software 51

animationHandle = setInterval("animationStep(polyIds,

stateResultsByYear,

yearLabels,

polyStateNames)",

Interval);

the setInterval() function is called with the values ”animationStep(polyIds, stateResults-
ByYear, yearLabels, polyStateNames)” and Interval. This means that every Interval mil-
liseconds, the specified call to animationStep() will be made. The return value from the
setInterval() function is a reference to the timer just established. We assign this to the
global variable animationHandle. To stop the animation, we can call the JavaScript function
clearInterval with animationHandle as its argument, and the timer will be removed.

Previously, we encountered the use of scripts to interact with an SVG graphic in Section 4.2.
There, a command was called as the result of a mouse event, such as a mouse-over and
mouse-out. In addition, there are the click, mouse-down, and mouse-up events associated
with the mouse button. Another event that can be used to trigger a function call is “load”,
which occurs when the SVG document has been loaded and rendered in the viewer. Each
of these events has a corresponding attribute, e.g., onmouseover, onclick, and onload, and
the value of the attribute is one or more JavaScript statements to be executed when the event
occurs (see Example 7 and Example 5). Any of these events can also be used to initiate an
animation. Below, we place setInterval() within an init() function, and have it called at
the time the SVG document is loaded, i.e., the top of the document appears as

<svg xmlns="http://www.w3.org/2000/svg"

xmlns:xlink="http://www.w3.org/1999/xlink"

width="504pt" height="504pt" viewBox="0 0 504 504"

version="1.1" onload="init(evt)">

The key attribute is onload. The corresponding JavaScript code is

var animationHandle;

function init(evt) {

...

animationHandle = setInterval("animationStep(polyIds,

stateResultsByYear,

yearLabels,

polyStateNames)",

Interval);

}

The following example demonstrates how to use the timer to create an animation.

Example 10. Animation with JavaScript and SVG.

In this example, we animate a political map of the states within the USA. Each state is
painted according to the party of the winning presidential candidate, with Republican red,
Democrat blue, and Independent green. For any given year, this gives us a visualization of the
geographical voting patterns. We obtained this information for 1900 to 2008 from onwards
http://electionatlas.org/.

http://electionatlas.org/

52 Interactive and Animated Scalable Vector Graphics and R Data Displays

Figure 14: This screen shot was captured in the midst of an animation where the colors
of the states (red for Republican, blue for Democrat, and green for Independent) change to
reflect the party of the presidential candidate who received the most votes in the state. The
animation is initiated with a mouse-click on the term “Start”, and once it starts, it can be
paused with a mouse-click on “Pause”. The animation is controlled by a JavaScript timer,
where at regular intervals the SVG is modified. In particular, the state polygons are filled
with color for the next election year and the map title is changed to the next date.

The data are in electionHistory, a named list with an element for each of the presidential
elections. Each such element is a character vector giving the colors for each of the states. The
names on this character vector identify each state. The names of the electionHistory list
identify the election year, e.g., 1900, 1904, ..., 2008.

We start by plotting a grey state map of the US. Also, since we do not want the animation
to start when the page is loaded, we add a label titled “Start” which we will have respond to
a mouse click to start the animation.

R> library("SVGAnnotation")

R> library("maps")

R> data("electionHistory")

R> doc <- svgPlot({

+ m <- map("state", fill = TRUE, col = "grey66")

+ title("Presidential Election Results by State 1900-2008")

+ text(m$range[1] + 3, m$range[3] + 1, "Start", col = "green")

+ })

At regular intervals, e.g., 1 second, we will update the title to the next election year and
change the color of the polygon(s) for each state. The title element is reasonably easy to find
using the function getAxesLabelNodes():

R> labels <- getAxesLabelNodes(doc)

Journal of Statistical Software 53

However, we change the nature of this title node to be a regular text element rather than a
path element. The reason for this is that it is significantly simpler to modify the value of the
text node than that of a path which represents text:

R> title <- asTextNode(labels[[1]][[1]],

+ "Presidential Election Results by State 1900-2008")

We put an id attribute on the new title element, which is the first element of the labels list,
so that we more easily can retrieve it with JavaScript code at viewing time.

R> xmlAttrs(title) <- c(id = "title")

We add an id attribute to the“Start” label, and make it respond to onclick events. A mouse-
click will causes the state of the animation to change from stopped to running, running to
paused, or from paused to running, and to also change the text of this label appropriately.
We do this with the JavaScript function toggleAnimation() and add the call to the label
with

R> start <- asTextNode(labels[[2]][[1]], "Start")

R> xmlAttrs(start) <- c(id = "Start", onclick = "toggleAnimation(evt)")

We’ll also add a tooltip to this label which will both provide information to the viewer but
also make the entire label (and not just the path) active. So we add this and the CSS file
which takes care of the appearance of the underlying rectangle:

R> addToolTips(labels[[2]], "Start or pause the animation")

The next step is to add an identifier to each polygon on the map. The map contains 63
polygons, as some states such as Washington are drawn using multiple polygons. Each polygon
has a unique name, which we add as ids to the elements:

R> pts <- getPlotPoints(doc)

R> mapply(function(node, id) xmlAttrs(node) <- c(id = id), pts, m$names)

We also put a tooltip on each polygon to identify the state:

R> addToolTips(pts, m$names)

Finally, we add the necessary variables to the JavaScript code in the SVG document along
with the JavaScript code for handling the animation. We will assume the JavaScript code is in
a file named animateElectionMap.js, and add the code and variables to the SVG document
using

R> polyStateNames = gsub(":.*$", "", m$names)

R> polyStateNames[polyStateNames =="district of columbia"] = "d. c."

R> addECMAScripts(doc, system.file("examples", "Javascript",

+ "animateElectionMap.js", package = "SVGAnnotation"),

+ stateResultsByYear = electionHistory,

+ yearLabels = names(electionHistory),

+ polyIds = m$names, polyStateNames = polyStateNames,

+ insertJS = TRUE)

54 Interactive and Animated Scalable Vector Graphics and R Data Displays

Note that we are adding 4 variables: stateResultsByYear, which holds the colors for the
states; yearLabels, the years of the elections; polyIds, the unique names for the polygons;
and polyStateNames, the state names for each of the polygons (so Washington appears
multiple times, once for each polygon).

The JavaScript code will update the value of fill for each polygon. It is easiest to override
the value for fill whene all the style information are in separate attributes on the element. To
this end, we will change the way the SVG style attributes are stored for each of the polygon
nodes. We use convertCSSStylesToSVG() for this:

R> convertCSSStylesToSVG(pts)

That is all we need to do to our SVG document at this point so we can save it to a file:

R> saveXML(doc, "exJSAnimateElectionMap.svg")

All that remains in our example is to write the relevant JavaScript code. We need the
toggleAnimation() function and the code that does the actual changing of the color of
each state/polygon. This code also checks to see if the animation is complete and, if so,
changes the label from “Pause” to “Start”.

We begin by defining some global variables for controlling the animation. These are the
identifier for the interval, the current year being displayed and the amount of time between
updates in the animation:

var animationHandle = null;

var currentYear = 0;

var Interval = 1000;

Next we define the function that updates the display. This function increments the value of
currentYear and checks to see if the animation is done. If the animation has completed,
we reset the variables and the display. If not, we update the display with the values for this
election year by calling displayYear(). The entire animationStep() appears here.

function animationStep(ids, colors, yearLabels, stateNames)

{

currentYear++;

if(currentYear >= yearLabels.length) {

var el = document.getElementById("Start");

setTextValue(el, "Start");

clearInterval(animationHandle);

animationHandle = null;

for(var i = 0; i < ids.length; i++) {

var el = document.getElementById(ids[i]);

if(el)

el.setAttribute('style', 'fill: ' + '#A8A8A8');

}

var title = document.getElementById('title');

Journal of Statistical Software 55

setTextValue(title,

'Presidential Election Results by State 1900-2008');

return;

}

displayYear(currentYear, ids, colors, yearLabels, stateNames);

}

The function displayYear() updates the colors of the polygons and and changes the year
displayed in the title node. The simple <style> attribute contains fill information only
because the other style details have been provided as indiviual attributes and so will remain
in effect. It is defined as,

function displayYear(year, ids, colors, yearLabels, stateNames)

{

for(var i = 0; i < ids.length; i++) {

var el = document.getElementById(ids[i]);

/* Lookup the year by name. Then within the year, look up

the state, using the actual name not the polygon id. */

var col = colors[yearLabels[year]][stateNames[i]] ;

if(el && col)

el.setAttribute('style', 'fill: ' + col);

}

var title = document.getElementById('title');

setTextValue(title, yearLabels[year]);

}

The toggleAnimation() function is in charge of starting and pausing the animation. It is
called when there is a mouse-click on the Start/Pause “button”. The function examines the
value of the animation handle and if this is non-null, terminates the animation. Otherwise,
it starts the animation and shows the first year. It also updates the value displayed on the
“Start” button as shown below.

function toggleAnimation(evt)

{

var label;

if(animationHandle) {

clearInterval(animationHandle);

animationHandle = null;

label = currentYear > 0 ? "Restart" : "Start";

} else {

animationHandle= setInterval("animationStep(polyIds,

stateResultsByYear,

yearLabels, polyStateNames)",

Interval);

if(currentYear >= yearLabels.length) currentYear = 0;

56 Interactive and Animated Scalable Vector Graphics and R Data Displays

displayYear(currentYear, polyIds, stateResultsByYear,

yearLabels, polyStateNames);

label = "Pause";

}

var start = document.getElementById('Start');

setTextValue(start, label);

}

The utility function which changes the value/label of a <text> node is given by

function setTextValue(node, val)

{

node.firstChild.data = val;

}

12. Creating GUIs

In Example 10, we added a rectangle, containing the text “Start”, to act as a button, where
clicking on this region in the plot started an animation. In this section, we extend this idea
and demonstrate how to provide interactivity through user controls, such as buttons, check
boxes, and sliders that are drawn on the display using SVG & JavaScript rather than R.
The Carto:Net community (Berger et al. 2010) has developed an open source library of SVG
graphical user interface (GUI) controls to facilitate interactivity in SVG documents. The
library consists of JavaScript functions to build the controls as SVG elements and respond to
user interaction. This library is available from http://carto.net/, and is also distributed
with the SVGAnnotation package, for convenience. It includes controls such as a check box,
radio button, button, slider, text box, and selection menu, which are rendered using native
SVG elements and are quite different from their JavaScript equivalents.

By using these SVG GUI components, we can create applications that have rich user interfaces.
An alternative approach is to embed the SVG graphic in an HTML document and control
it through buttons and boxes in an HTML form. We show how to do this in Section 13.
With SVG, there is the potential to design unique, sophisticated GUI elements, such as
sliders, dial knobs, and color choosers. Another potentially useful feature of SVG-based GUI
components is that they can be rendered with SVG filters and transformations, e.g., at an
angle, with different filters (e.g., Gaussian blurring), or even animated. The main disadvantage
is complexity. SVG GUI elements are somewhat more complex to use in programs than the
“built-in” HTML form elements. Fortunately, the Carto:Net library offers a variety of GUI
elements that can be easily embedded in the document.

In this section, we provide examples of how to use two of these GUI controls, a slider and
check box. The first example adds a slider to a display in order to give the viewer control of
a smoothing parameter. The second example uses check boxes to add and remove groups of
data (time series) from a plot.

Although the GUI control is being drawn with JavaScript commands, the basic approach
to annotating the SVG remains essentially the same. The annotation stage now typically
requires the following additional tasks:

http://carto.net/

Journal of Statistical Software 57

� Enlarge the viewing area so that there is room for the GUI control (i.e., change the
viewBox attribute on the root element).

� Add an initialization script to the document in order to create the GUI object when
the document is loaded (i.e., add a call to a JavaScript initialization function via the
onload attribute on the <svg> element). This script needs to call the JavaScript function
provided by Carto:Net that creates the GUI object.

� Populate the <defs> node with elements which contain the generic drawing instructions
for the control that are provided by Carto:Net. Plus, locate the GUI in the display by
adding an empty <g> tag that Carto:Net scripts use to draw the graphical representation
of the control.

� Add the Carto:Net scripts to the document along with the application specific JavaScript
functions that connect GUI events to changes in the display, e.g., a change in the location
of the slider’s thumb calls a function that reveals a new curve on a plot and hides from
view the old curve.

12.1. Slider widget

In this section, we consider an example of how to embed a Carto:Net slider in an SVG
document. The SVGAnnotation package provides a generic addSlider() function to add a
slider to an SVG document. The addSlider() function takes care of setting up the SVG
content according to the Carto:Net requirements. It enlarges the “viewBox” to make room
for the slider, adds the initialization script to the <onload> attribute of the root node, adds
the required <g> parent node for the slider, and inserts the required JavaScript. In addition,
it places the slider thumb drawing instructions in the <defs> portion of the document. The
declaration of the function is shown below.

addSlider <- function(doc, onload, javascript, id = "slider", svg = NULL,

defaultJavascripts = c("mapApp.js", "helper_functions.js", "slider.js"),

side = "bottom", ...) {}

The onload argument gives the JavaScript code that will be invoked when the document is
loaded. Also, javascript and defaultJavascripts take the file names for the JavaScript
code (file names or text content) that contain, respectively, application specific functions and
the required Carto:Net code. Finally, any JavaScript variables needed in the document are
supplied via the . . . argument.

The JavaScript slider can be queried at various times to find the location of the slider
thumb, to set its value, to move the slider thumb, and to remove the slider from the dis-
play. This functionality is provided via the JavaScript slider object’s methods getValue(),
setValue(), moveTo(), and removeSlider(), respectively. These methods are invoked as,
e.g., slider.getValue(). The next example, demonstrates how to use the Carto:Net slider.

Example 11. Controlling smoothness with a slider.

In this example, we build a slider to interactively control the bandwidth of a kernel smoother
(see Figure 5). When the viewer moves the slider thumb to a new position, the corresponding

58 Interactive and Animated Scalable Vector Graphics and R Data Displays

fitted curve is overlaid on the scatter plot on the left-hand side of the display, and a scatter
plot of the residuals for that curve is rendered in the plot on the right-hand side.

Similar to the approach of many of the previous examples, the computations for fitting the
curve to the data are performed in R in advance for every possible selectable value of the
smoothing parameter. The resulting curves and residuals are plotted in the SVG document.
Then in the annotation stage, the SVG elements corresponding to each curve are given unique
ids so that they can be identified. In this case, we use the identifier, “curve-lambda-N”, where
N is the parameter value associated with the curve. These nodes are also annotated with
a visibility attribute so the curves can be exposed or hidden according to the value of
the smoothing parameter selected by the viewer via the slider. The residuals are similarly
annotated. To do this, we group together the residuals from the fit for a particular smoothing
parameter, and place them within a <g> node that has a unique id, namely “residual-group-
N”. We also add a visibility attribute of “hidden” to each <g>.

The final annotation task is to add the slider to the document. A call to addSlider() does
this for us. The value of the onload argument is a call to the init() function that creates
the slider. When the document is loaded, this function will be called with the number of
smoothing parameter values, which is also the number of fitted curves, and the number of
positions on the slider. This extra information is used to coordinate the slider value with the
curve and residual points to be displayed. We add this onload attribute and the supporting
JavaScript code to the SVG document with

R> svgRoot <- xmlRoot(doc)

R> enlargeSVGViewBox(doc, y = 100, svg = svgRoot)

R> onl <- sprintf("init(evt, %d);", max(lambdas))

R> jscript <- list.files(

+ path = system.file("examples", "Javascript", package = "SVGAnnotation"),

+ full.names = TRUE, pattern = "linkedSmoother")

R> addSlider(doc, onload = onl, svg = svgRoot, javascript = jscript,

+ id = "slider-lambda")

R> saveXML(doc, "linkedSmoother.svg")

The id parameter identifies the id of the SVG element in the SVG document that corresponds
to the slider, i.e., the identifier on the <g> element that is added to support the slider.

The init() function simply instantiates the slider. It is defined as

var myMapApp = new mapApp(false,undefined);

var cur_lambda = 2;

var numPoints;

/* Create the slider. */

function init(evt, maxLambda, n) {

var sliderStyles = {"stroke" : "blue", "stroke-width" : 3};

var invisSliderWidth = 15;

new slider("lambda", "slider-lambda", 100, 510, 2, 475, 510,

maxLambda, 2, sliderStyles, invisSliderWidth,

"sliderSymbol", setLambda, false);

numPoints = n;

}

Journal of Statistical Software 59

A call to init() creates the slider via the JavaScript constructor function,

var slider = new slider(id, parentNode, x1, y1, value1, x2, y2,

value2, startVal, sliderStyles,

invisSliderWidth, sliderSymb,

functionToCall, mouseMoveBool);

In our example, the id of “lambda” specifies a unique identifier for the slider that is used
internally within Carto:Net; the parentNode, “slider-lambda”, gives the id for the <g> element
that will contain the slider; the triple x1, y1, value1 provides the (x,y) coordinates for the
location of the start of the slider and the starting value of the slider; similarly, x2, y2,
value2 provide this information for the end of the slider; and startVal provides the initial
value of the slider. We further customize the slider by specifying presentation attributes
via CSS. In our example, we set the sliderStyles so the slider will be drawn with a thick
blue line. Finally, the events on the slider are handled by the JavaScript callback function,
setLambda(), which we provide via the functionToCall argument, and the final argument,
mouseMoveBool is “false”, indicating not to trigger updates as the mouse drags the slider,
i.e., only call setLambda() when the mouse is released and the action of dragging the slider
thumb has stopped.

The setLambda() function has a helper function setVisibility(). Both are shown below.
They are similar in spirit to JavaScript functions we have used in other examples in that
they simply reset the visibility attribute for the appropriate group of points and curve (e.g.,
Example 6). They are defined as

function setLambda(evType, group, val)

{

/* If it is the same value, do not do anything*/

if(Math.floor(val) == cur_lambda) return(0);

setVisibility(cur_lambda, 'hidden', numPoints);

cur_lambda = Math.floor(val);

setVisibility(cur_lambda, 'visible', numPoints);

}

function setVisibility(lambda, state, numPoints)

{

var el;

lambda = Math.floor(lambda);

el = document.getElementById("curve-lambda-" + lambda);

el.setAttribute('visibility', state);

el = document.getElementById("residual-group-" + lambda);

if(el) {

el.setAttribute('visibility', state);

return(0);

}

for(i = 0 ; i < numPoints; i++) {

60 Interactive and Animated Scalable Vector Graphics and R Data Displays

el = document.getElementById("residual-" + lambda +

"-" + (i+1));

el.setAttribute('visibility', state);

}

}

We have put this code in the linkedSmootherSet.js file and so have already included it in
the SVG document.

12.2. Check boxes for toggling elements in a plot

We can use a similar approach to create interactivity with other SVG GUI controls offered
in Carto:Net. For users unfamiliar with event handling, we provide one additional example
involving check boxes. The check boxes in Carto:Net support toggle events, i.e., when a
box is checked or unchecked then a user-supplied function is called to perform some action.
For example, in Example 12, several time series are overlaid on a plot and made visible or
invisible according to whether or not a corresponding box is checked. That is, when a check
box is toggled, this event then triggers a function call to change the visibility attribute of the
associated times series.

The SVG document needs to be modified in the same way we did for the slider so as to include
the check box GUI controls. In particular, the document should have an empty group <g>

that will hold the elements for the check boxes and their labels. This needs to be added with
a unique id to the appropriate place in the document; the checkBox JavaScript object needs
to be initialized via JavaScript in the onload attribute on the root element; and JavaScript
helper functions need to be included in the document.

The radioShowHide() function in R sets up a group of check boxes for toggling on and off
curves in a plot. Once the initial SVG plot has been made, radioShowHide() post-processes
the SVG in the annotation stage. This function handles all of the setup. Similar to the slider,
radioShowHide() expands the viewing area to make room for drawing the check boxes; sets
up the drawing areas for the check boxes; adds to the document the initialization script that
creates the JavaScript check box objects when the document is loaded in the browser; and
includes the JavaScript functions provided by Carto:Net that respond to the viewer actions
and the application specific JavaScript functions that change the graphical display in response
to viewers actions.

The function signature/declaration for the radioShowHide() function provides the informa-
tion needed to perform these tasks:

radioShowHide <- function(doc, insertScripts = TRUE, within = FALSE,

group = FALSE, labels = paste("Series", seq(length = numSeries)),

extraWidth = 15 * (max(nchar(labels)) + 1),

save = !is(doc, "XMLInternalDocument"),

id.prefix = "series",

checkboxCallback = if(is.na(within)) "togglePanel" else "toggle",

jscripts = c("helper_functions.js", "timer.js",

"checkbox_and_radiobutton.js", "hideSVGElements.js"),

numPanels = 1) {}

Journal of Statistical Software 61

Briefly, doc specifies the SVG document to be annotated; within indicates whether a regular
plot (FALSE) or matplot (TRUE) call was used to create the plot, which helps in finding the
series; group allows the series to be matched up across lattice panels so that a series can
be toggled on and off in all panels; labels contains the text labels for the check boxes; and
checkboxCallback holds the JavaScript for the call back function.

Example 12. Showing and hiding currency exchange series with check boxes.

In this example, we create an interactive time series plot, where several times series curves
are super-imposed on the same plot and check boxes along side the plot are used to toggle the
display of the series on and off (see Figure 15). The check boxes are ordered according to the
median value of the time series to make it easier to visually connect the check box with its
time series. The text labels could also have their colors coordinated with the series to make
this connection clearer. We create the SVG plot with the command

R> svgPlot({

+ matplot(eu$Date, as.data.frame(lapply(eu[,-1], log)),

+ type = "l", xlab = "Year", xaxt = "n", ylab = "log(exchange rate)",

+ main = "European Exchange Rate")

+ startYr <- min(eu$Date)

+ endYr <- max(eu$Date)

+ axis.POSIXct(1, at = seq(startYr, endYr, by = "year"), format ="%y")

+ abline(h = 1, col = "gray")

+ }, "euSeries.svg")

Note that in this case we are explicitly writing the SVG to a file rather than returning the
SVG tree.

A simple call to radioShowHide() will do all the post-processing of the SVG document created
in the matplot() call:

R> doc <- radioShowHide("euSeries.svg", within = TRUE,

+ labels = currency.names[match(names(eu)[-1], names(currency.names))])

We can also extend this functionality to plots with multiple panels. For example, we might
draw the daily time series for the different currencies for each year in a separate panel by
conditioning on year. Then toggling the currency check box would show/hide the correspond-
ing curves in each of the panels. Again, the reader should view the example by visiting the
package’s Web site and viewing it there.

13. Interfacing with (X)HTML

The interactivity for the examples considered so far have been entirely contained within the
SVG document. That is, the SVG or JavaScript code that responds to user interaction has
been located in the SVG file. In this section, we demonstrate that it is also possible to control
SVG using JavaScript that is placed within an HTML document, where the SVG display is
also embedded in the HTML.

62 Interactive and Animated Scalable Vector Graphics and R Data Displays

Figure 15: This screen shot shows a time series plot (via matplot()) of exchange rates
against the Euro for 24 different currencies. The SVG is post processed to add check boxes to
the right of the plot. These check boxes are interactive and allow the viewer to toggle on/off
the display of the corresponding currency’s time series. The SVG GUI controls shown here
are provided by Carto:Net.

There are several benefits to this approach. For example, HTML forms can be used to control
the interactivity, and these controls can be easily visually arranged using layout facilities in
HTML, e.g., lists, and tables. Other advantages are that embedding the SVG document in
HTML allows us to control the width and height of the area in which it is displayed; multiple
SVG documents can be embedded in one HTML document; and SVG documents can be linked
together via JavaScript in the HTML document. There can be separate JavaScript code in the
different components, i.e., in the HTML document and in each SVG document. This increased
locality and flexibility can also be slightly more complicated.

In this section, we provide two examples of this approach. The first revisits a previous
example and creates interactivity through HTML forms rather than with onmouseover calls
to JavaScript functions. It serves as a comparison between these two approaches. In the
second example, we move the process of annotating the SVG entirely into the viewing stage,
specifically at the point where the document is loaded into the browser. As such, JavaScript,
rather than R, is used to augment the SVG elements with the necessary annotations for
interactivity, e.g., adding onmouseclick attributes to plot elements.

14. (X)HTML forms

HTML forms (Kennedy and Musciano 2006) provide built-in controls, such as a choice menu,
check box, radio button, textbox, and button, that receive input from the user. The controls

Journal of Statistical Software 63

may not be as rich as those available in Carto:Net, e.g., a slider is only available via JavaScript
rather than a built-in HTML form element, however they are simple to deploy in an HTML
page and make available to readers.

With forms, we can mix controls in HTML with a plot in SVG. We embed the SVG display
in an HTML document using the HTML element <object> such as

<object id="PlotID" data="plot.svg"

type="image/svg+xml" width="960" height="800"/>

which specifies the name of the SVG file via the data attribute, its MIME type, and di-
mensions. When we want to operate on pieces of the SVG document (e.g., when the viewer
clicks on an HTML button), we use JavaScript to retrieve the resulting SVG object. Once we
have the SVG object, we can operate on it with JavaScript, just as we have done when we
placed the scripts in the SVG document. The JavaScript code below shows how to retrieve
the embedded object and treat it as an SVG document.

doc = document.getElementById('PlotID');

doc = doc.getSVGDocument();

We can then deploy JavaScript callback functions that respond to viewer input via the controls
in an HTML form where these functions interact with an SVG document embedded in the
HTML document. For example, when a viewer selects an option from a choice menu, a
JavaScript function can be called to modify an SVG display in the document. We illustrate
this approach in the next example.

Example 13. Using forms to highlight points in a lattice plot.

This example re-implements Example 6. In that example, we have a legend on a lattice plot.
The legend displays the levels of the variable gear, which is not contained in the display. The
display shows mpg, disp, am, and cyl via points, color, or location in a panel. When the
viewer mouses over an entry in the legend, the observations corresponding to this value of
gear are highlighted in the different panels of the lattice plot. In contrast, the example here
removes the legend from the plot, and controls the highlighting action through a choice menu
in an HTML form. See Figure 16. That is, the SVG is embedded in an HTML document and
this document also contains an HTML form with a choice menu for selecting a gear value.

The HTML document rendered in Figure 16 contains the SVG plot by including it using the
following <object> tag:

<object id="latticePlot" data="mt_lattice_Choice.svg"

type="text/svg+xml" width="960" height="768" />

The SVG document is the same as the one created in the earlier example with two important
differences. Firstly, it no longer contains any JavaScript code. Secondly, the legend has
been removed from the lattice plot as the HTML form is replacing the mouse-over capability.
However, all of the plotting elements still have their appropriate identifier attributes (i.e., the
id attributes indicate to which group they belong). We show the code here:

R> mtcars$cyl <- factor(mtcars$cyl,

+ labels = c("four cyl", "six cyl", "eight cyl"))

64 Interactive and Animated Scalable Vector Graphics and R Data Displays

Figure 16: This HTML page contains a form and an SVG lattice plot. The SVG is controlled
by the choice menu in the form. It offers the same functionality as the SVG document in
Figure 11. However, when the viewer changes the choice in the HTML form, a JavaScript
function in the HTML document is called to respond to this event, i.e., to highlight the
appropriate set of points.

R> mtcars$am <- factor(mtcars$am, labels = c("automatic", "manual"))

R> doc <- svgPlot(xyplot(mpg ~ hp | am, groups = cyl, data = mtcars))

R> panels <- getPlotRegionNodes(doc)

R> points <- unlist(lapply(panels, xmlChildren), recursive = FALSE)

R> ids <- by(mtcars, list(mtcars$gear, mtcars$am), function(x)

+ paste(as.integer(x$am), x$gear - 2, 1:nrow(x), sep = "-"))

R> uids <- unlist(ids)

R> mapply(function(node, id) addAttributes(node, id = id), points, uids)

R> saveXML(doc, "mt_lattice_Choice.svg")

Along with the SVG display of the scatter plot, the HTML document also contains a <form>

with a <select> menu that has four options as shown below.

Journal of Statistical Software 65

<form>

Choose number of gears:

<select name="gear" onchange="showChoice(this)">

<option value="0" default="true">Select</option>

<option value="1">three</option>

<option value="2">four</option>

<option value="3">five</option>

</select>

</form>

Notice that when the selection is changed, the showChoice() function is called.

The showChoice() function is passed the JavaScript object corresponding to the choice
menu, and the function uses this object to query the value the viewer has selected. The
showChoice() function then calls highlight(), passing it the information it needs to high-
light the new group of points. showChoice() is

var oldgroup = 0;

var group = 0;

var doc;

function showChoice(obj)

{

doc = document.getElementById('latticePlot');

doc = doc.getSVGDocument();

group = Math.floor(obj.value);

if (group > 0) {

highlight(group, pointCounts[(group - 1)], true);

}

if (oldgroup > 0) {

highlight(oldgroup, pointCounts[(oldgroup - 1)], false);

}

oldgroup = group;

}

The highlight() function called from showChoice() and its helper function highlightPoint()

are identical to the functions by the same name that were placed in the <script> tag within
the SVG document in Example 6. They extract the elements in the SVG document corre-
sponding to the points that belong to the selected group, and change their style attributes.
These functions rely on the plotting elements having unique ids that indicate to which group
the points belong. Note that the embedded SVG document is in the global variable doc,
which must be extracted from the HTML for highlight().

function highlight(group, pointCts, status)

{

var el;

var i, numPanels = pointCts.length;

66 Interactive and Animated Scalable Vector Graphics and R Data Displays

/* we want the group */

for(panel = 1; panel <= numPanels; panel++) {

for(i = 1; i <= pointCts[panel-1]; i++) {

var id = panel + "-"+ group + "-" + i;

el = doc.getElementById(id);

if(el == null) {

alert("can't find element " + id)

return(1);

}

highlightPoint(el, status);

}

}

}

highlight() and highlightPoint() now appear in the <head> of the HTML document
rather than in the SVG. We can programmatically add them to the HTML document in much
the same way we did for the SVG document using addECMAScripts().

Note that the SVG document created for this example had no JavaScript in it and no calls
to JavaScript functions. The interactive functionality relies on the plot elements in the SVG
having unique identifiers. In general, provided the plot elements have appropriate ids, “plain”
SVG can be made interactive via JavaScript embedded in HTML rather than in the SVG. The
advantage of this approach is that plots made for some general purpose can be made to have
interactive capabilities.

15. Adding interactivity to SVG embedded in HTML

There is yet another approach to providing interactivity for SVG documents that are em-
bedded within HTML. The idea is that we use JavaScript code in the HTML document to
programmatically modify elements in the SVG document at the time it is loaded in the
browser. This approach can be useful when the plots have been produced in SVG but the
creator has no motivation to add any interactivity. If the JavaScript code can identify the
appropriate elements in the SVG document, either by contextual knowledge or using known
id attribute values, it can add onmouseover, onmouseout and onclick event attributes to
these elements and so dynamically (i.e., at viewing time) add the interactivity.

As an example of this approach, we consider the case where we place mouse capabilities on a
map so that a mouse click triggers the display of an HTML table.

Example 14. Communication between SVG and an HTML page.

In this example, we create an HTML page that displays the canonical red-blue map of the
United States, where the states are colored red or blue according to whether the majority of
votes in the 2008 presidential election were Republican or Democrat, respectively. The viewer
interacts with the map by clicking on a state in the map, and as a result, summary statistics
for the selected state are loaded into the web page.

We layout the HTML page using nested <div> tags as follows

<body onload="loaded()">

Journal of Statistical Software 67

<center>

<h3>Presidential Election 2008</h3>

<p>

The map is interactive in that you can click on

anywhere within a state to see more detailed

results about the voting in that state.

</p>

</center>

<div id="main">

<div id="summaryMap">

<div id="stateSummary"></div>

<div id="map">

<object id="svgMap" data="stateMap.svg"

type="image/svg+xml" width="700" height="700">

</object>

</div>

</div>

<div id="countySummary">

<a id="toggleCounty"

onclick="toggleCountyView()">+ Click to see county results

<div id="countySummaryContent" class="hidden">

Click on a state to see more detailed information about the

election results for that state.

</div>

</div>

</div>

Each of these <div>s has an associated style which we place in the <head>.

The SVG map is embedded in the <div> that has an id of“map”. The plot was created with R
using the maps package. We add id attributes to the polygon elements that correspond to the
polygon name used in map(). (See Example 3 for an example of how to do this.) Although
we place unique identifiers on each polygon, we do not add any JavaScript interactivity in
the annotation stage of the plot creation. Recall that the first stage is when we create the
graphical display in R; the second stage, the annotation stage, is when we use R to modify
the resulting SVG document to add tags, attributes, and JavaScript to support interactivity;
and the third stage is the viewing stage, when we are in the browser, R is no longer available,
and JavaScript functions respond to events. In this example, we use JavaScript that is located
in the HTML page to annotate the SVG with onclick attributes on each of the polygon
elements. This annotation occurs at the time the page is loaded into the browser. We do this
with the following JavaScript code:

<script type="text/javascript">

function loaded() {

show("national");

68 Interactive and Animated Scalable Vector Graphics and R Data Displays

var doc;

doc = document.getElementById('svgMap');

doc = doc.getSVGDocument();

for(var i = 0; i < polyIds.length ; i++) {

var el = doc.getElementById(polyIds[i]);

var txt = "parent.show('" + polyStates[i] + "')";

el.setAttribute("onclick", txt);

}

}

</script>

The mouse clicks occur on elements in the SVG document, and since the JavaScript to handle
these events are in the HTML document, not the SVG, we need to call the show() method
of the parent document using parent.show. Notice that the mouse click function call passes
the state name, not the polygon name. The JavaScript variables polyIds and polyStates

contain the unique names of the polygons in the map and the names of the states that the
polygons belong to, respectively. (Recall that there are 63 polygons in the map because some
states are drawn with multiple polygons, e.g., Manhattan in New York).

The show() function appears in a <script> tag in the <head> of the HTML file. We also
place the JavaScript variables polyIds and polyStates there. show() is defined as

<script type="text/javascript">

function show(stateName)

{

var val;

var div;

val = stateSummaryTables[stateName];

div = document.getElementById("stateSummary");

div.innerHTML = val;

val = countyTables[stateName];

if(val) {

div = document.getElementById("countySummaryContent");

div.innerHTML = val;

}

}

</script>

When show() is called, it retrieves a reference to the embedded element in the HTML doc-
ument named “stateSummary”, which is where it will place the table of statistics for the
selected state. We modify the contents of this <div> element, adding the new HTML table.
In addition, the county level information is retrieved and placed in the <div> called “coun-
tySummaryContent”. Finally, additional JavaScript variables are loaded into the document
with

<script type="text/javascript" src="stateHTMLTables.js"></script>

Journal of Statistical Software 69

These variables were created in R and contain the HTML table content for the states and
counties information.

The main difference between the approach presented here and that found in the earlier ex-
amples is that some of the post-plotting annotations have been lifted into the viewing stage.
One result of this approach is that the code that responds to user interaction will be more
indirect as it is no longer within the SVG document. Also, the post-processing occurs outside
of the R environment, at the time the document is loaded. Thus, we can take SVG documents
not made for interactivity and modify them with JavaScript. A downside to this approach is
that the interactivity may require access from the browser to the data and statistical routines
used to generate the plot.

16. Related approaches

The SVGAnnotation package allows R users to leverage the sophisticated and flexible static
graphics frameworks in R to create views of data and models and then display them in new
and interesting ways in new emerging media. With SVGAnnotation, we can add interactivity
and animation to the displays. The mechanism relies on post-processing the output from the
R graphics engine and associating elements within the SVG output with the high-level com-
ponents of the display. This is entirely deterministic based on the nature of the R plot, but is
slightly different for each type of plot since there is no simple format or model for representing
all plots. The purpose of SVGAnnotation is to find the SVG elements corresponding to the
high-level graphical elements and allow the R user to easily augment these.

The package provides high-level facilities for “standard” plots in which we can readily identify
the R elements. It also allows an R programmer to use intermediate-level facilities to operate
on axes, legends, etc. There are also low-level facilities for identifying the shape of visual
elements, e.g., polygon, line, vertical line, text. The functions in the package can also add
high-level type identifiers to nodes in the SVG document such as identifying data points,
axes, labels, titles, frames. These facilities allow us to handle cases from regular R graphics,
lattice (Sarkar 2011), ggplot2 (Wickham 2009) and grid (Murrell 2006). By leveraging the
XML facilities in R, SVGAnnotation offers capabilities for creating rich new plots. Most
importantly, the approach and the concept it implements is readily extended to other contexts
and types of plots. The abstract idea and approach is the main contribution of the paper and
package.

Our approach in the SVGAnnotation package is to use the high-quality rendering engine
provided by libcairo from within R. There are two other SVG graphics devices available for use
within R. These are found in the RSvgDevice (Luciani 2009) and the derived RSVGTipsDevice
(Plate 2011) packages. The former generates an SVG document that contains SVG elements
corresponding to the graphical primitives the R graphics engine emits, e.g., lines, rectangles,
circles, text. However, the libcairo system is more widely used and more robust. It also deals
with text in more advanced and sophisticated ways (specifically drawing letters as infinitely
scalabe shapes/paths rather than using font sets). This is the primary reason we use the
libcairo approach even though the format of the SVG documents that RSvgDevice produces
is simpler and more direct.

The RSVGTipsDevice package builds on the code from RSvgDevice. It allows R programmers
to add SVG annotations and does so when the SVG is being created, rather than via post-

70 Interactive and Animated Scalable Vector Graphics and R Data Displays

processing additions. R users can set text for tooltips and URLs for hyperlinks that are
applied to the next graphical primitive that the R graphics engine emits. This works well
when the R programmer is creating directly in their own code all graphical elements of a
display. However, it does not work when calling existing plotting functions that create many
graphical elements. The computational model does not provide the appropriate resolution
for associating an annotation with a particular element, but just the next one that will be
created. As a result, we cannot annotate just the vertical axis label when calling a function
that creates an entire plot.

Our post-processing approach is not limited to using libcairo. We could also use RSVGTips-
Device to generate the SVG content and then programmatically manipulate that. The doc-
uments generated by the two different devices will be somewhat different (e.g., the use of
groups of characters for strings, in-line CSS styles versus separate classes, SVG primitives
for circles rather than paths). However, because the elements of the graphical display were
generated by the R graphics engine with the same R expressions, the order of the primitive
elements and the general structure will be very similar.

The package gridSVG (Murrell 2011) is an earlier and quite different approach to taking
advantage of SVG. As the name suggests, it is focused on R’s grid graphics system. For
this reason, it cannot work with displays created with the traditional and original graphics
model, but it does handle anything based on grid such as all of the plot types in lattice and
ggplot2. The package gridSVG takes advantage of the structured self-describing information
contained in grid’s graphical objects. As one creates the grid display, the information about
the locations and shapes are stored as objects in R. These can then be translated to SVG
without using the R graphics device system. New graphics primitives have been added to the
grid system to add hyperlinks, animations, etc. corresponding to the facilities provided in
SVG.

The approach provided by gridSVG is quite rich. It removes the need to post-process the
graphics that we presented here. Instead, one proactively and explicitly specifies graphical
concepts. One limitation that is similar to that of RSVGTipsDevice is that we still run
into problems with interleaving SVG annotations. While a user can issue grid commands
that add SVG facilities to the output, higher-level functions that create plots produce entire
sequences/hierarchies of grid objects in a single operation. If these do not add the desired
annotations, we have to post-process the grid hierarchy to add them. This post-processing
would be very similar to what we are doing in SVGAnnotation, however it would be done on
R objects.

Of course, gridSVG is restricted to the grid graphics system, and higher-level graphics facilities
based on grid such as ggplot2 and lattice. Our approach however works with any R graphical
output, although it needs to be “trained” to understand the content. The combination of the
two approaches: gridSVG and SVGAnnotation appear to give a great deal of flexibility that
allows both pre-processing and post-processing. If all graphics were grid-based, gridSVG may
well be the most appropriate approach. Since many widely used graphics functionality in R
are based on the traditional graphics system, SVGAnnotation is necessary.

The animation package (Xie 2011) provides functionality to create movies (e.g., animated GIF
files or MPEG movies) entirely within R, using some additional external software. The idea
is that one draws a sequence of plots in R. These are combined and then displayed at regular
intervals as frames of the movie to give the appearance of motion. R users can draw each frame

Journal of Statistical Software 71

using R code and without regard for particular graphics device or formats. This simplifies the
process for many users. The approach does, however, involve redrawing each frame rather
than animating individual objects. It also provides no interactive facilities within the plot. It
involves a different programming model where we redraw entire displays rather than working
on individual graphical elements. In different circumstances, each model has advantages. So
while animated displays are common to both the animation and SVGAnnotation packages,
the goals and infrastructure are very different. Being able to work at the level of graphical
objects within the plot is richer and more efficient for many applications.

Finally, the imagemap package (Rowlingson 2004) offers another approach to creating inter-
activity within R graphical displays. The basic concept is that a plot is created in R in the
usual manner. Then, the creator specifies different regions within the plot that correspond to
areas of interest to viewers, e.g., the axes labels, points in a scatter plot, bars in a histogram.
These regions are specified using the coordinate system of the data. These regions define an
image map that can be displayed within an HTML document. The creator specifies actions
in the form of JavaScript code that are triggered as the viewer moves the mouse over the
different regions or clicks within a region. This approach does not map the elements of the
plot, such as a title, hexagonal bin, or state polygon, to mouse events. It instead creates
an overlay for the image from separately identified regions. In addition, the elements in the
image cannot be programmatically changed at viewing time. For example, we cannot change
the color of a line, or the size of a point or rectangle in response to a viewer’s actions. We
also cannot move elements to achieve animation effects.

17. Future directions

The motivation behind the SVGAnnotation package is the ability to exploit and harness new
media such as interactive Web pages. The aim is to enable statisticians to readily create
new graphical displays of data and models using existing tools that can be displayed in
rich, interactive and animated venues such as Web browsers, Google Earth, Google Maps,
GIS applications. The SVGAnnotation package focuses on facilitating R users in leveraging
existing R graphical functionality by post-processing the output to make it interactive and/or
animated. It is a complete computational model in that it enables the author of a display (or
a third-party) to modify all elements in that display. This approach can be used for other
modern formats.

Another format for graphical displays and applications is Adobe’s Flash & Flex (http://
www.adobe.com/products/flash). This is an alternative to SVG that is a very widely used
framework (the ActionScript programming language, collection of run-time libraries, and
compiler suite) for creating interactive, animated general interfaces and displays. The range
of applications include rich graphical user interfaces and interactive, animated business charts.
Flash and Flex are freely available, but not open source. The format and tools are mostly
controlled by Adobe. The Adobe chart libraries for Flash are only available in commercial
distributions.

There are publicly available open source libraries for creating certain types of common plots,
e.g., flare (http://flare.prefuse.org/). Alternatively, we can use R to create statistical
graphical displays by generating ActionScript code to render the different elements in the
display. We have developed a prototype R graphics device (in the FlashMXML package) that
creates Flash plots within R using the regular graphics framework. We can then post-process

http://www.adobe.com/products/flash
http://www.adobe.com/products/flash
http://flare.prefuse.org/

72 Interactive and Animated Scalable Vector Graphics and R Data Displays

the generated content in much the same way we do with the SVGAnnotation package in order
to provide interaction and animation, connect the plot to GUI components, etc.,

Rather than considering Flash and JavaScript as competitors to SVG, we think that each
has its own strengths. SVG is more straightforward and direct than Flash and JavaScript
for creating graphical displays. For one, we have an excellent R graphics device that creates
the initial SVG content. We can add GUI components, but Flash is better for this as it
provides a much richer collection of GUI components such as a data grid. Drawing displays
with JavaScript avoids depending on the presence of support for either SVG or Flash and so
can be deployed in more environments.

Another approach is to use the HTML5 canvas element that has been recently introduced in
several browsers. We can create JavaScript objects for drawing, e.g., circles, lines, text on a
canvas. Again, we have developed a prototype R graphics device that generates such code
for an R plot. We can also annotate this to add animation and interaction. We also men-
tion the Vector Markup Language (VML, http://msdn.microsoft.com/en-us/library/

bb263898(VS.85).aspx) which is quite similar to SVG. It is used within Microsoft prod-
ucts such as Word, Excel and PowerPoint. However, it is not widely supported by other
applications.

A fundamental aspect of what we have described with respect to the SVGAnnotation package
is that R is used to create the display but is not available at viewing time when the SVG
document is rendered. If R were available for the SVG viewer, then the JavaScript/ECMAScript
code within an SVG or HTML document could make use of R at run-time. It could invoke R
functions and access data to update the display in response to user interaction and animation.
Additionally, we could use R code to manipulate the SVG and HTML content and so enable
programming in both ECMAScript and R. One approach is to have R available on the server
side of a client-server setup via, e.g., RApache. Alternatively, R could be plugged into the
HTML viewer and perform R computations on the client side. We are developing such an
extension for Firefox which embeds R within a user’s browser. This modernizes previous
work in 2000 on the SNetscape package that embedded R and R graphics devices within the
Netscape browser. We believe the combination of SVG (or Flash or the HTML5 canvas) with
R at viewing-time will prove to be a very rich and flexible environment for creating new types
of dynamic, interactive and animated graphics and also allow Google Earth and Google Maps
displays to be combined with R plots and computations.

In conclusion, the increasing importance of Web based presentations is a space where statis-
ticians need to be engaged. To accomplish this, we need more tools for creating these pre-
sentations. SVGAnnotation offers one approach; we are working on others. We ask that the
reader think of the package as a rich starting point that enables a new mode of displaying R
graphics in an interactive, dynamic manner on the Web. It establishes a foundation on which
we and others can build even higher-level facilities for annotating SVG content and providing
rich plots in several different media (i.e., SVG, HTML, JavaScript).

Acknowledgments

We thank the referees for their detailed comments, which led to an improved version of this
article. We also thank Gabe Becker for assistance with the examples. This material is based
in part upon work supported by the National Science Foundation under Grant Number DUE-
0618865.

http://msdn.microsoft.com/en-us/library/bb263898(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb263898(VS.85).aspx

Journal of Statistical Software 73

References

Adobe Systems Incorporated (2011). “Flash Player Software, Version 10.3.” URL http:

//get.adobe.com/flashplayer/.

Apache Software Foundation (2008). “batik: Java SVG Toolkit, Version 1.7.” URL http:

//xmlgraphics.apache.org/batik/.

Apache Software Foundation (2009). “Squiggle, the SVG Browswer.” URL http://

xmlgraphics.apache.org/batik/tools/browser.html.

Bah T (2007). Inkscape: Guide to a Vector Drawing Program. Prentice Hall Press, Upper
Saddle River.

Becker R, Wilks A, Brownrigg R, Minka T (2011). maps: Draw Geographical Maps. R package
version 2.1, URL http://CRAN.R-project.org/package=maps.

Berger A, Pucher A, Medwedeff A, Neumann A, Winter A, Furpass C, Resch C, Chuffart
F, Jurgeit F, Held G, Sepesi G, Fibinger I, Forster K, Galanda M, Rogers N, Ueberschar
N, Sykora P, Reddy Maddirala SK, Mailander T, Voswinckel T, Bruehlmeier T, Ullrich T,
Barth Y (2010). “Carto:Net Software.” URL http://www.carto.net/.

Cairo Graphics (2010). “Cairo Software, Version 1.1.” URL http://www.cairographics.

org/.

Carr D, Lewin-Koh N, Maechler M (2009). hexbin: Hexagonal Binning Routines. R pack-
age version 1.22, URL http://www.bioconductor.org/packages/release/bioc/html/

hexbin.html.

Eisenberg J (2002). SVG Essentials. O’Reilly Media, Sebastopol.

Flanagan D (2006). JavaScript: The Definitive Guide. O’Reilly Media, Sebastopol.

Gentry J, Gentleman R, Huber W (2010). “How to Plot a Graph Using Rgraphviz.”
URL http://www.bioconductor.org/packages/release/bioc/vignettes/Rgraphviz/

inst/doc/Rgraphviz.pdf.

Gentry J, Long L, Gentleman R, Falcon S, Hahne F, Sarkar D, Hansen K (2011). Rgraphviz:
Provides Plotting Capabilities for R Graph Objects. R package version 1.30, URL http:

//www.bioconductor.org/packages/release/bioc/html/Rgraphviz.html.

Harold ER, Means WS (2004). XML in a Nutshell. O’Reilly Media, Sebastopol.

Kazoun C, Lott J (2008). Programming Flex 3: The Comprehensive Guide to Creating Rich
Internet Applications with Adobe Flex. O’Reilly Media, Sebastopol.

Kennedy B, Musciano C (2006). HTML and XHTML: The Definitive Guide. O’Reilly Media,
Sebastopol.

Luciani J (2009). RSvgDevice: An R SVG Graphics Device. R package version 0.6.4.1, URL
http://CRAN.R-project.org/package=RSvgDevice.

http://get.adobe.com/flashplayer/
http://get.adobe.com/flashplayer/
http://xmlgraphics.apache.org/batik/
http://xmlgraphics.apache.org/batik/
http://xmlgraphics.apache.org/batik/tools/browser.html
http://xmlgraphics.apache.org/batik/tools/browser.html
http://CRAN.R-project.org/package=maps
http://www.carto.net/
http://www.cairographics.org/
http://www.cairographics.org/
http://www.bioconductor.org/packages/release/bioc/html/hexbin.html
http://www.bioconductor.org/packages/release/bioc/html/hexbin.html
http://www.bioconductor.org/packages/release/bioc/vignettes/Rgraphviz/inst/doc/Rgraphviz.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/Rgraphviz/inst/doc/Rgraphviz.pdf
http://www.bioconductor.org/packages/release/bioc/html/Rgraphviz.html
http://www.bioconductor.org/packages/release/bioc/html/Rgraphviz.html
http://CRAN.R-project.org/package=RSvgDevice

74 Interactive and Animated Scalable Vector Graphics and R Data Displays

Meyer E (2004). CSS Pocket Reference. O’Reilly Media, Sebastopol.

Murrell P (2006). gridBase: Integration of base and grid Graphics. R package version 0.4-3,
URL http://CRAN.R-project.org/package=gridBase.

Murrell P (2011). gridSVG: Export grid Graphics as SVG. R package version 0.8-1, URL
http://CRAN.R-project.org/package=gridSVG.

Nolan D, Temple Lang D (2011). SVGAnnotation: Tools for Post-Processing SVG Plots
Created in R. R package version 0.9, URL http://www.omegahat.org/SVGAnnotation.

Opera Software ASA (2011). “Opera Software, Version 11.51.” URL http://www.opera.

com/browser/.

Pawson D (2002). XSL FO: Making XML Look Good in Print. O’Reilly Media, Sebastopol.

Plate T (2011). RSVGTipsDevice: An R SVG graphics device with dynamic tips
and hyperlink. R package version 1.0-4, URL http://CRAN.R-project.org/package=

RSVGTipsDevice.

R Development Core Team (2011). R: A Language and Environment for Statistical Computing.
Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.

Rosling H (2008). “Gapminder: World.” URL http://www.gapminder.org/world.

Rowlingson B (2004). imagemap: Create HTML Imagemaps. R package version 0.9, URL
http://www.maths.lancs.ac.uk/Software/Imagemap/.

Sarkar D (2008). lattice: Multivariate Data Visualization with R. Springer-Verlag, New York.

Sarkar D (2011). lattice: Lattice Graphics. R package version 0.19, URL http://CRAN.

R-project.org/package=lattice.

Simpson J (2002). XPath and XPointer: Locating Content in XML Documents. O’Reilly
Media, Sebastopol.

Swayne D, Cook D, Temple Lang D, Buja A (2010). “GGobi Software, Version 2.1.” URL
http://www.ggobi.org/.

Temple Lang D (2011a). RJSONIO: Serialize R Objects to JSON, JavaScript Object Notation.
R package version 0.95, URL http://www.omegahat.org/RJSONIO.

Temple Lang D (2011b). XML: Tools for Parsing and Generating XML within R and S-PLUS.
R package version 3.4, URL http://www.omegahat.org/RSXML.

Theus M (2002). “Interactive Data Visualization Using Mondrian.” Journal of Statistical
Software, 7(11), 1–9. URL http://www.jstatsoft.org/v07/i11/.

Urbanek S, Wichtrey T (2011). iplots: Interactive Graphics for R. R package version 1.1-4,
URL http://CRAN.R-project.org/package=iplots.

van Vugt W (2007). “Open XML: The Markup Explained.” URL http://openxmldeveloper.

org/attachment/1970.ashx.

http://CRAN.R-project.org/package=gridBase
http://CRAN.R-project.org/package=gridSVG
http://www.omegahat.org/SVGAnnotation
http://www.opera.com/browser/
http://www.opera.com/browser/
http://CRAN.R-project.org/package=RSVGTipsDevice
http://CRAN.R-project.org/package=RSVGTipsDevice
http://www.R-project.org/
http://www.gapminder.org/world
http://www.maths.lancs.ac.uk/Software/Imagemap/
http://CRAN.R-project.org/package=lattice
http://CRAN.R-project.org/package=lattice
http://www.ggobi.org/
http://www.omegahat.org/RJSONIO
http://www.omegahat.org/RSXML
http://www.jstatsoft.org/v07/i11/
http://CRAN.R-project.org/package=iplots
http://openxmldeveloper.org/attachment/1970.ashx
http://openxmldeveloper.org/attachment/1970.ashx

Journal of Statistical Software 75

Wickham H (2009). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New
York.

Xie Y (2011). animation: A Gallery of Animations in Statistics and Utilities to Cre-
ate Animations. R package version 2.0-6, URL http://CRAN.R-project.org/package=

animation.

Yahoo! Inc (2011). “YUI Library.” URL http://developer.yahoo.com/yui/.

http://CRAN.R-project.org/package=animation
http://CRAN.R-project.org/package=animation
http://developer.yahoo.com/yui/

76 Interactive and Animated Scalable Vector Graphics and R Data Displays

A. Functions in SVGAnnotation

There are approximately 60 functions available in SVGAnnotation for annotating plots.
Among these are high-level functions that add interactivity through a single function call.
These functions are listed in Table 3. Other intermediate level functions are described in
Table 4. These roughly fall into two types of functions: those that find nodes in the SVG that
correspond to particular parts of a plot e.g., points, legend, panel; and those that annotate
or add a node. The functions that locate the nodes begin with the prefix “get” and those that
annotate a node or add a node begin with “add”.

We recommend creating the SVG plot with the function svgPlot() in SVGAnnotation. It
opens the SVG device, evaluates the commands to generate the plot, and closes the device.
It also adds the R plotting commands to the SVG document and can either return the parsed
XML document as a tree-like structure or write it to a file.

There are many more “get” functions available in SVGAnnotation. These can make it easier
for the developer to build other high-level functions for annotation. Here is a list of all the
get functions currently in the package:

R> objects(2)[substr(objects(2), 1, 3) == "get"]

[1] "getAxesLabelNodes" "getAxesLabelNodes.mosaic"

[3] "getBoundingBox" "getCategoryLabelNodes.mosaic"

[5] "getCSS" "getECMAScript"

[7] "getEdgeElements" "getEdgeInfo"

[9] "getGeneralPath" "getJavaScript"

[11] "getLatticeLegendNodes" "getLatticeObject"

[13] "getMatplotSeries" "getNodeElements"

[15] "getPanelCoordinates" "getPanelDataNodes"

[17] "getPlotPoints" "getPlotRegion"

[19] "getPlotRegionNodes" "getRCommand"

[21] "getRect" "getShape"

[23] "getStripNodes" "getStyle"

[25] "getSVGNodeTypes" "getTextPoints"

[27] "getTopContainer" "getTopG"

[29] "getUSR" "getViewBox"

B. Basics of XML

The basic unit in an XML document is an element, also known as a node or chunk. An
element can contain textual content and/or additional XML elements. By content, we mean
the simple text, such as the word “Oregon” that appears in the simple SVG document shown
in Figure 9. An element begins with a start-tag, which has the format <tagname>, and the
element ends with </tagname>. The end-tag, where the tag name matches the start tag’s
name. Those readers who have read or composed HTML (HyperText Markup Language)
will recognize this format. For more in-depth information about XML see Harold and Means
(2004). SVG, like HTML or WordProcessingML, is an example of a specific grammar of XML.

Journal of Statistical Software 77

Function Brief Description

addAxesLinks() Associates target URLs with axes labels and plot titles so that a mouse
click on an axis label or title jumps to the specified URL in the viewer’s
Web browser.

addToolTips() Associates text with elements of the SVG document so that the text
can be viewed in a tool tip when the mouse is placed over that ob-
ject/element in the display. The default action of this function is to add
tool tips to points in a scatter plot.

linkPlots() Implements a simple linking mechanism of points within an R plot con-
sisting of multiple sub-panels/plots. When the mouse is moved over
a point in a sub-plot, the color of all corresponding points in other
plots/panels also changes. The sub-plots can be created by, for ex-
ample, arranging plots via the mfrow parameter in par(), or via the
functions pairs() or splom() in the lattice package.

animate() Creates an animated scatter plot where points in the scatter plot move
at different points in time, possibly changing size and color as they move.

Table 3: High-level functions for adding interactivity to SVG plots.

With SVG, the focus is on describing graphical displays. The SVG document rendered in
Figure 9 includes element/tag names such as <circle> and <rect> for drawing circles and
rectangles respectively. Notice that some of the elements in the sample SVG document are
nested within other start and end tags. This hierarchical structure gives us great flexibility
in describing complex, nested data with arbitrary depth.

For more details about the specific tags and how to create SVG graphics, see Section 6.

An XML element can have attributes associated with it. These are supplied in the tag itself as
name-value pairs as follows: <tagname attributeName="value">. For example, the <text>

tag,

<text x = "110" y = "200" fill = "navy" font-size = "15">

Oregon

</text>

has an attribute, x, which specifies the horizontal position of the text on the SVG canvas.
The value for x in this example is “110”, indicating position 110 along the x-axis of the canvas
(which in our example is 300 by 300 points). The syntax rules for elements and their tags are
provided below in Section C.

We should note one important short cut for start and end tags. If an XML element contains
no text content or elements within it, i.e., there are no text or sub-elements contained between
the start and end tags of the element, then it can be written as <tagname/> rather than the
longer <tagname></tagname>. For example, notice that the <rect> element:

<rect x = "10" y = "20" width = "50" height = "100" class = "recs"/>

is empty. All of the relevant information for drawing the rectangle is contained in the at-
tributes, i.e., its width, height, location on the canvas, and color. Hence the end tag is omitted
and the start tag also acts as a closing tag.

78 Interactive and Animated Scalable Vector Graphics and R Data Displays

Function Brief description

addLink() Associates target URLs with any SVG element so that a mouse
click on an axis label, title, point or some other plot component
displays the specified URL in the viewer’s Web browser. Set
the addArea parameter to TRUE if you want the link to be
associated with a bounding rectangle around the SVG element
and not just the pixels along the path of the SVG element.

addECMAScripts() and
addCSS()

Add JavaScript/ECMAScript and CSS code to an SVG docu-
ment. These function either directly insert the content or put
a reference (href attribute) to the file/URL in the document.

addSlider() Add an interactive slider to the SVG document. Uses the
Carto.Net GUIlibrary.

radioShowHide() Add radio buttons to the SVG document. Uses the Carto.Net
GUI library.

getPlotPoints() Examines the SVG document and returns the SVG ele-
ments/nodes which represent the“points”within the R graphic.
These may be in multiple plots or panels, and they may be,
e.g., the polygonal regions in a map or hexagons in a hexbin
plot.

getAxesLabelNodes() Examines the SVG document and returns the SVG ele-
ments/nodes which represent the text of the main title and
the X and Y axes for each sub-plot within the R graphic.

getPlotRegion() Retrieve the SVG elements which correspond to the plotting
regions, i.e., the high-level frames or panels, within the display.
This returns multiple elements as appropriate for traditional
and lattice plots.

getPlotRegionNodes() Retrieve the SVG elements which house the contents of the
data regions of the sub-plots within the display. This works
for traditional and lattice plots, and also for histograms and
bar plots.

getStyle(),
setStyle(),
modifyStyle()

These functions query, set, and reorganize the value of a style
attribute of an SVG node, respectively. Use these functions to
determine and set the vector of CSS-based style settings.

getLatticeLegendNodes() Retrieve the legend in a lattice plot.
enlargeSVGViewBox() Change the dimensions of the viewing box so that extra ele-

ments can be added to the document and displayed within its
viewing area, e.g., a slider below a plot or check boxes alongside
a plot.

convertCSSStylesToSVG() Converts a CSS style attribute into presentation attributes.
The purpose is to make it easier to change a single attribute
in response to a user event. See Section 6 for a description of
these types of style specifications.

asTextNode() Replaces a <g> element (that contains directions for drawing
text with <path> tags) with a <text> node. This makes it
easier to modify text in a display. Although it does not have the
benefit of scalability and the variety of fonts, it is much simpler
for creating interactivity. (See Section 6 for more details on the
text created by R’s graphics system(s) and libcairo).

Table 4: Intermediate-level functions for working with SVG elements.

Journal of Statistical Software 79

C. Well-formed XML

For XML to be properly processed it must obey some basic syntax rules, and we say the
document is well-formed when it satisfies these rules. The following list is a subset of the
most important syntax rules. This list covers the vast majority of XML documents. Notice
that they are very general and do not pertain to a specific grammar of XML. XML documents
that are not well-formed typically produce fatal errors when processed.

� An XML document must have a single root element that completely contains all other
elements. In our example, <svg> is the root element.

� XML tags are case sensitive so start and end tag names must match exactly. For example,

<text>

Oregon

</Text>

is not well-formed because the start-tag begins with a lower-case“t” that does not match
the capital “T” in the end-tag.

� All start tags must have a closing tag, unless the tag is empty and so can be contracted
to a single tag of the form <tagname />.

� Elements must nest properly. That is, when one element contains another element then
both the start and end tags of the inner element must be between the start and end
tags of the outer element. For example, the following XML content is three nodes deep:

<defs>

<g id="circles">

<circle id = "pinkcirc" cx= "50" cy="50" r = "15"

fill = "pink"/>

</g>

</defs>

Note the use of indentation is optional, but it makes it easier to see the nesting of
elements. (The white space is part of the XML document and is typically preserved
during processing.)

� All attribute values must appear in quotes in a name="value" format in the start tag.
For example the following <g> element has a value of main for the identifier attribute
id: <g id = "main"> It is common to omit the quotes around attributes within HTML
documents, but this is an error for XML.

C.1. Tree structure

The conceptual model of the XML document as a tree can be very helpful when processing and
navigating it. The SVG shown in Section 6 uses indentation to make the nesting of elements
clear, and demonstrates that the elements are logically structured into a hierarchical tree.
Each element can be thought of as a node in the tree where branches emanate from the node

80 Interactive and Animated Scalable Vector Graphics and R Data Displays

Figure 17: This tree provides a conceptual model for the organization of the SVG document
rendered in Figure 9. Each element is represented by a node in the tree and the branches
from one node to another show the connections between the nodes that are one layer apart
from each other in the nesting of nodes. For example, there are two <circle> nodes and
both are nested directly as children of (i.e., within) the <g> node; the branch between these
nodes indicates this connection. That particular <g> node is a child of the <defs> element.
Text content nodes are actually elements but without a tag name and are included in the
tree. They are displayed via rectangles rather than ovals to distinguish them from regular
tags, e.g., “Oregon” is a text node in this tree.

to those elements that it immediately contains. Figure 17 shows the tree representation of
this SVG document.

The root of the tree is also referred to as the document node, which in this case is the <svg>

element. As mentioned earlier, there is only one root node per document. Notice that the
root node of this tree has two children, a <defs> node and a <g> node. The <g> has six
children - a <rect> node, two <use> nodes, and one each of <image>, <path> and <text>.

The relative position of these nodes in the tree are described using family tree terminology.
For example, the <defs> element is the parent of a <g> node, and <circle> is the child of
<g>. The <rect> element is a sibling to <image>, and <defs> and <svg> are both ancestors
of each of the <circle> nodes. Also, note that <path> can be referred to as a “following
sibling” to <image> because it comes after (to the right in the image and below in the actual
document) of <image>.

The character content of an element is placed in a “text” node. That is, text content is also
represented as a node in the tree. In our example, the text Oregon is a child node of <text>.
The terminal nodes in a tree are those that have no children and are known as leaf nodes. By
design, text content will always be in a leaf node.

C.2. Additional markup

In addition to elements, XML markup includes the XML declaration, processing instructions,
comments, and CDATA section delimiters.

Declaration An XML document must start with the XML declaration that identifies it as
an XML document and provides the XML version number,

<?xml version="1.0" encoding="UTF-8"?>

The declaration appears outside of the root element.

Journal of Statistical Software 81

Processing instructions Similar to the XML declaration, processing instructions must
begin with <? and end with ?>. Immediately following the <? is the target of the instruction,
i.e., the agent/application for which the instruction is intended. The following processing
instruction is for an xml-stylesheet, which is a standard name that means the parameters
in this processing instruction are intended for an XML viewer, e.g., a Web browser or XML
editor, that can apply a style sheet to the document.

<?xml-stylesheet type="text/css"

href= '~/Rpackages/SVGAnnotation/CSS/RSVGPlot.css'?>

Notice that the processing instructions for the xml-stylesheet are provided via name-value
pairs in a format that imitates the syntax for attributes, e.g., type="text/css". This format
is optional, and other applications could expect the processing instructions to be in some other
format. Different applications support different processing instructions. Most applications
simply ignore any processing instruction whose target they do not recognize.

(Technically, the XML declaration is not a processing instruction). The XML-Stylesheet pro-
cessing instructions are always placed in the document prolog between the XML declaration
and the root element start tag. Other processing instructions may also be placed in the prolog
or at almost any other location in the XML document, i.e., within sub-nodes.

Comments A comment must appear between <!-- and -->, and it can contain < and >

because all text between these two delimiters is ignored by the XML processor and so is neither
rendered nor read. For example,

<!-- This is a comment which is so long that

it appears on three lines of

the document before it ends with -- followed by >.

-->

Comments can appear anywhere after the XML declaration, e.g., they can appear outside the
root element of the document.

Entities Because XML uses the < character to start or end an XML element, we need an
alternative way to include the literal character < as text within an XML node. We use XML
entities for this. An entity is a named symbol within XML that corresponds to some fixed
content. We refer to them by prefixing the name of the entity with & and adding the suffix
;. There are numerous built-in entities to which we can refer, e.g., the < character can be
written as < and > is expressed as > and & as &.

CDATA Entities are convenient for escaping content from XML processing, especially in-
dividual characters. There are occasions, however, where we have a significant amount of
content that we want to escape from XML processing and to be treated as literal or verbatim
content. For example, when we insert the R code used to generate an SVG plot into the
SVG document, we want to avoid having to worry about characters an XML processor will
interpret. We do this by enclosing the content between between <![CDATA[and]]> markers.
For example,

82 Interactive and Animated Scalable Vector Graphics and R Data Displays

<![CDATA[

plot(y ~ x, myData[(myData$var1 < 10 | myData$var1 > 20) \&

myData$var2 %in% c("A", "B", "\&")])

]]>

This is then treated as a verbatim block of characters and not parsed by the XML processor
for XML elements.

D. Basics of JavaScript

We provide here a brief introduction to JavaScript for programmers who are familiar with
the S language. JavaScript (the official name is ECMAScript) is an interpreted scripting
language that is widely used within HTML documents and also within SVG displays and
Flash applications (using a slight variant named ActionScript). JavaScript can be used within
HTML to respond to user actions on buttons, menus, checkboxes, etc. in HTML forms, or to
dynamically validate the content of a form before submitting it to a remote server. JavaScript
can also be used to dynamically and programmatically construct the content of an HTML
document. Within SVG, we use JavaScript to respond to user events on elements of the
display (e.g., circles, lines, rectangles, ...) and to provide animation. Similar to HTML,
JavaScript can be used to dynamically create SVG elements within the display.

As with R, one does not need to compile JavaScript code since it is interpreted. However,
JavaScript is more like C++, Python and Java in its computational model. Much of the use
of the language will focus on classes and instances (objects) of these classes. We frequently
invoke an object’s methods rather than call top-level functions, although, like R, we can have
regular functions unattached to objects. JavaScript is not a vectorized language like R, i.e.,
it does not operate on vectors element-wise unless explicitly programmed to do so using loop
constructs. JavaScript requires variables to be declared within the scope in which they are
used. Unlike C++ or Java, one does not need to declare the type of a variable and a variable
can take on values of different types during its lifetime.

To make use of JavaScript within an HTML or SVG document, we must connect that code
with the document. We can do this by either inserting the code as content in the document
or alternatively adding a reference to the file containing the JavaScript code. That code file
may be located locally or on a remote server, subject to certain security restrictions. Both
approaches use the <script> node within the HTML or SVG document. We can insert the
code content between the start and end tag of the <script> node. Alternatively, we can
use an attribute in the <script> element to refer to the JavaScript file. For SVG, we use an
attribute named href and for HTML, we use src. The value in both cases is a local file name
or a URL. The following illustrates the mechanism for SVG:

<script xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns="http://www.w3.org/2000/svg"

type="text/ecmascript"

xlink:href="SVGAnnotation/tests/multiLegend.js"/>

For HTML, we refer to a JavaScript file as

<script type="text/javascript" src="alert.js"/>

Journal of Statistical Software 83

To in-line the JavaScript content, we use

<script type="text/ecmascript">

var neighbors = [[0, 1, 31, 20, 3, 29], [2, 8, 9, 24]];

var k = 4;

function showNeighbors(evt, k, neighbors)

{

var idx = 1 * evt.target.getAttribute('id');

window.status = "Showing " + idx;

addLines(evt.target, neighbors[idx], k);

}

</script>

Note that we have to specify the type attribute but can use either JavaScript or ECMAScript
in most HTML browsers and SVG viewers.

Often, JavaScript code that defines functions that will be used in event handler attributes on
HTML or SVG elements are placed in a script element near the top of the HTML or SVG
document. For HTML, these function definitions and global variables often appear in the
<head> element. JavaScript code can also appear within the <body> of an HTML document
and is evaluated when it is processed and so can access previously created elements in the
document.

We provide here a brief summary of many of the basic syntax features of the language. For
more detailed information about JavaScript see Flanagan (2006)

� Executable statements typically end with a semicolon. Although it is not strictly re-
quired, it is good practice to use the semicolon.

� Like R, curly braces group statements together into executable blocks and are used for
defining the body of a function or a multi-expression if, while or for clause.

� Variables are declared within a specific scope via the var prefix, e.g.,

var global = 1;

var debug = false;

function foo(N) {

var i;

for(i = 0; i < N; i++) {

...

}

}

The declaration can assign an initial value to the variable as in the first two expressions
immediately above. These are global variables; the variable i is local to the function
calls for foo(). Note that the values for boolean variables are true and false, not TRUE
and FALSE as in R.

84 Interactive and Animated Scalable Vector Graphics and R Data Displays

� JavaScript supports arrays, including multi-dimensional arrays which can be “ragged”,
i.e., the sub-arrays can have different length/dimensions. In the JavaScript code above,
the variable neighbors contains two arrays, one of length 6 and the other of length 4.
JavaScript uses 0-based indexing for arrays. For example, in the two-dimensional array
neighbors, neighbors[0] returns the first element of the top-level array and this is
itself an array of six integer values. The expression neighbors[1][0] returns the first
element in the second array, and the value is the scalar 2.

� Multi-line comments are delimited by /* and */ and single line comments begin with
//, e.g.,

/* This is a multi-line

comment.

*/

// This is a comment

var debug = false; // display debug info with alert().

� The equal sign (=) is the assignment operator. In addition, x += y is equivalent to the
assignment x = x + y, and -=, *=, and /= are similarly defined. Also, the operator
++ increments the referenced variable in-place by 1 and -- decrements by 1, i.e., ++x is
equivalent to x = x + 1,

� Adding two character variables, pastes the two strings together. If a number and string
are “added”, the result will be a string, e.g., "K is " + k results in the character string
“K is 4”.

� Comparison operators are the same as in R, e.g.,

x == 1

abc < 10

str != "this is a string"

The logical operators are \&\&, ||, and !; they correspond to and, or, and not, respec-
tively.

� The control flow syntax is similar to that in R:

if (x < 2) {

...

} else if(x > 2 && x < 10) {

...

} else

...

JavaScript provides an if-else construct for conditional evaluation. We cannot assign the
value of an if-else statement to a variable as we can in R.

x = if(y > 2) 3 else 10;

is a syntax error and will terminate the processing of the JavaScript code. JavaScript
does provide the ternary operator for these simple situations:

Journal of Statistical Software 85

varname = (condition) ? value1 : value2

� JavaScript supports for and do...while loops. In the code below, the JavaScript within
the curly braces will be executed N + 1 times, as i takes on the values 0, 1, ..., N.

for(var i = 0; i <= N ; i++) {

var target;

target = document.getElementById(neighbors[i]);

ids = ids + " " + neighbors[i];

...

}

Again, note that JavaScript is not vectorized, as R is.

� JavaScript code can be used in-line within <script> elements within a document or as
the value of attributes of HTML or SVG elements, e.g., event handlers such as onclick,
onmouseover, onmouseout. The JavaScript code is one or more JavaScript expressions
separated by ‘;’ or new lines.

Typically these expressions call JavaScript functions. This is especially true of event
handler code that invokes a function with specific arguments to respond to the event in
a particular way. For example, the SVG attribute onmouseover = "showNeighbors(

evt, k, neighbors)" results in a call to the JavaScript function showNeighbors()

when the mouse moves over the corresponding element in the SVG display (see Exam-
ple 7 for more details). The call passes three arguments: the event object and the global
variables k and neighbors.

Unlike R, JavaScript functions are not defined and assigned to a variable. Instead,
functions are defined using the keyword function as a prefix to the definition as in

function functionName(var1, var2, ..., varN)

{

body-code

}

Like R, the parameters correspond to local variables within each call to the function.
Since (non-primitive) variables in JavaScript are passed by reference, changes to these
objects are made to the objects in the calling frame and are accessible after the specific
function call is completed, i.e., back in the calling frame.

In addition to the syntactic rules for JavaScript above, we spend a great deal of time focused on
objects and their methods. JavaScript provides a large library of classes and we either explic-
itly create instances of these via the new operator, e.g., rx = new Regexp("^[ACGT]+$") or
work with existing objects provided to us. We operate on these objects via their meth-
ods. We invoke these methods as if they were functions belonging to the object, e.g.,
rx.exec("my string") or node.removeChildren(). Objects also have properties or fields
and we can query and set these, e.g., button.value = "My Label" and document.links.

There are many classes and each has many methods. This is what makes JavaScript useful,
but also difficult to learn because you need to find the classes and methods of use for your
task. There are a few classes and methods, however, that arise very commonly in JavaScript

86 Interactive and Animated Scalable Vector Graphics and R Data Displays

code for SVG and HTML documents. One of these is the Document that provides access to
the contents of the document being displayed. Another is the general concept of a document
element represented by the Node and Element classes and the more specific SVGElement
and HTMLElement classes and their sub-classes (e.g., SVGCircleElement, HTMLHeadin-
gElement). These classes allow us to not only query the contents of the document, but also to
programmatically modify this content, adding new elements or changing the characteristics
of existing elements.

When JavaScript code is evaluated as part of an HTML or SVG document, there is an implicit
global variable named document. This is the top-level Document object and we can refer
to it without any declarations or additional code. Perhaps the most important method this
object provides for our use is getElementById() which searches the entire SVG/HTML tree
and finds the element which has an id attribute with the specified value. Another method,
getElementsByTagName(), allows us to find SVG/HTML elements based on the name of the
element/tag, e.g., “h1” or “path”.

Once we have an element in the document, we can use its methods to operate on it. We can re-
trieve the values of the element’s attributes via getAttribute(), e.g.,
circle.getAttribute("r"). Similarly, we can set the value of an existing or new attribute
using setAttribute(). We can query the child nodes of a Node/Element via its childNodes
field, and the parent node via parentNode field. We can add nodes via the appendChild()

and insertBefore() methods, and we can remove nodes via removeChild().

D.1. Debugging and display messages

As with any programming language, the JavaScript code we write often contains bugs, espe-
cially when we are learning the language. Since the code is being run within a Web browser
or specialized SVG viewer, it is being run asynchronously (i.e., when an event occurs such as
the document is loaded or the viewer clicks on a shape in the plot) rather than explicitly by
our direct commands. As a result, debugging JavaScript can seem somewhat difficult. There
are several tools to aid us, however. It is essential to look at the error console within the Web
browser, e.g., the error cosole is selected in Firefox via the menu Tools -> Error Console, and
in Opera under Tools -> Advanced -> Error Console.

While the “print” approach to debugging is not generally a good one, it is a common approach
in asynchronous JavaScript programming. The idea is that we display the values of variables
or computations as we evaluate the code and display it for the viewer or programmer to see
in order to understand how the code is behaving. We can display the message in the viewer’s
status bar or in a pop-up window. In addition to helping the programmer debug code, this
same approach can be used to provide information to the viewer. The alert() function is
the primary one used to display information in a pop-up window. We construct the text of
the message to display and pass this as the sole argument in the call to alert(). The viewer
must click on the “Okay” button to dismiss the window and continue with the calculations.

In an HTML browser, we can display text in the status bar by merely assigning a string
containing the desired text to the variable status. For example, we can display the number
of links in a document with

status = "# of links " + document.links.length

Journal of Statistical Software 87

A more sophisticated approach to debugging is to use a browser extension such as Fire-
bug (http://getfirebug.com) for Firefox, or Firebug Lite (http://getfirebug.com/lite.
html) for various browsers (including Firefox). Firebug is an extension that the programmer
has to install. Firebug lite is a JavaScript file that one can include by reference in an HTML
document, e.g.,

<script type='text/javascript'

src='http://getfirebug.com/releases/lite/1.2/

firebug-lite-compressed.js'>

</script>

These provide a separate panel within the browser’s tab and show many aspects of the
JavaScript code and HTML document. We can write messages to the console part of this
panel via

console.log("a string")

and use this to track how code is running.

We have seen how we can display information to the viewer via either a pop-up window or the
status bar. There are also facilities for getting feedback from the viewer via pop-up windows.
The confirm() function displays a message and allows the viewer to proceed or cancel an
operation. For example,

function doConfirm()

{

var con = confirm("Do you really want to do this?");

if (con == true)

{ ... }

else

{ ... }

}

We can also get information via HTML forms and other active elements of the document
rather than via separate (pop-up) windows.

For more information on debugging and programming in JavaScript, see Flanagan (2006)

Affiliation:

Deborah Nolan
University of California, Berkeley
367 Evans Hall MC:3860
Berkeley CA 94720-3860, United States of America
E-mail: nolan@stat.berkeley.edu

http://getfirebug.com
http://getfirebug.com/lite.html
http://getfirebug.com/lite.html
mailto:nolan@stat.berkeley.edu

88 Interactive and Animated Scalable Vector Graphics and R Data Displays

Duncan Temple Lang
University of California, Davis
4210 Mathematical Sciences Building
One Shields Avenue
Davis CA 95316, United States of America
E-mail: duncan@wald.ucdavis.edu

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 46, Issue 1 Submitted: 2010-01-06
January 2012 Accepted: 2011-09-19

mailto:duncan@wald.ucdavis.edu
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Why SVG?
	Examples of interactivity with SVG
	Simple annotations
	Simple interactivity: Tool tips and links
	Mouse events that change the style of graphics elements

	Dependency on the svg() function and libcairo
	The SVG grammar
	The SVG display for an R plot
	Tools for customizing interactivity
	Complex/non-standard examples
	Animation
	Scatter plot animation

	Controlling animation with JavaScript
	Creating GUIs
	Slider widget
	Check boxes for toggling elements in a plot

	Interfacing with (X)HTML
	(X)HTML forms
	Adding interactivity to SVG embedded in HTML
	Related approaches
	Future directions
	Functions in SVGAnnotation
	Basics of XML
	Well-formed XML
	Tree structure
	Additional markup

	Basics of JavaScript
	Debugging and display messages

