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Abstract

The wgaim (whole genome average interval mapping) package developed in the R
system for statistical computing (R Development Core Team 2011) builds on linear mixed
modelling techniques by incorporating a whole genome approach to detecting significant
quantitative trait loci (QTL) in bi-parental populations. Much of the sophistication is
inherited through the well established linear mixed modelling package ASReml-R (Butler
et al. 2009). As wgaim uses an extension of interval mapping to incorporate the whole
genome into the analysis, functions are provided which allow conversion of genetic data
objects created with the qtl package of Broman and Wu (2010) available in R. Results
of QTL analyses are available using summary and print methods as well as diagnostic
summaries of the selection method. In addition, the package features a flexible linkage
map plotting function that can be easily manipulated to provide an aesthetic viewable
genetic map. As a visual summary, QTL obtained from one or more models can also be
added to the linkage map.
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1. Introduction

Whole genome analysis is receiving wide attention in the statistical genetics community. In
the context of plant breeding experiments the focus is on quantitative trait loci (QTL) which
attempt to explain the link between a trait of interest and the underlying genetics of the plant.
Many approaches of QTL analysis are available such as marker regression methods (Hayley
and Knott 1992; Martinez and Curnow 1992) and interval mapping (Zeng 1994; Whittaker
et al. 1996). These methods are common place in QTL software and are available for use
in R packages such as the qtl package of Broman and Wu (2010). This particular suite of
software is also complemented with a book (Broman and Sen 2009) which has been favourably
reviewed (Zhou 2010).


http://www.jstatsoft.org/

2 wgaim: QTL Analysis Using Linear Mixed Models in R

There has also been some focus on the use of numerical integration techniques for the analysis
of QTL. Xu (2003) and Zhang et al. (2008) suggest the use of Bayesian variable shrinkage and
utilise Markov chain Monte Carlo (MCMC) to perform the analysis. An MCMC approach is
also adopted in the R package qtlbim (Yandell et al. 2005). The package builds on the qtl
package and the Bayesian paradigm allows an extensible list of trait types to be analysed.
The package also makes use of the new model selection technique, the Deviance Information
Criterion (Shriner and Yi 2009), to aid in identifying the correct QTL model. Similarly, a
non-MCMC approach is adopted in the BayesQTLBIC package (Ball 2010) where the QTL
analysis involves the use of the Bayesian Information Criterion (Schwarz 1978) as a QTL
model selection tool.

Unfortunately many of the aformentioned methods and their software lack the ability to ac-
count for complex extraneous variation usually associated with plant or animal based QTL
studies. Limited covariate additions are possible in R package qtlbim and through the in-
ventive online GridQTL software which uses the ideas of Seaton et al. (2002). Kang et al.
(2008) uses linear mixed models in the R package EMMA but it does not allow for ex-
traneous random effects and possible complex variance structures that may be needed to
capture environmental processes, such as spatial layouts, existing in the experiment. In this
paper we discuss the R package wgaim which implements the genetic and inferential deriva-
tions of the whole genome average interval mapping (WGAIM) approach of Verbyla et al.
(2007). The package is available from the Comprehensive R Archive Network (CRAN) at
http://CRAN.R-project.org/package=wgaim. This approach allows the simultaneous mod-
elling of genetic and non-genetic variation through extensions of the linear mixed model. The
extended model allows complex extraneous variation to be captured as well as simultaneously
incorporating a whole genome analysis to detection and selection of QTL using a linkage
map. The underlying linear mixed modelling analysis is achieved computationally using the
R package ASReml-R. The simulation results and examples in Verbyla et al. (2007) show that
WGAIM is a powerful tool for QTL detection and outperforms more rudimentary methods
such as composite interval mapping. As it incorporates the whole genome into the analysis it
eliminates the necessity for piecemeal model fitting along the genome which in turn avoids the
use of model selection criteria to control the number of false positive QTL. It must be noted
Huang and George (2009) also use ASReml-R as their core engine for whole genome QTL
analysis in the R package dlmap. In this package, the backward elimination model fitting
procedure and multiple testing corrections used to control false positive QTL suggest this
package differs markedly from wgaim. In wgaim the false positives are controlled naturally
by assuming a background level of QTL variation through a single variance component as-
sociated with a contiguous set of QTL across the whole genome. This parameter can then
be tested to determine the presence of QTL somewhere on the genome. As a result, a less
cumbersome approach to detecting and selecting QTL is ensured.

The WGAIM method uses an extension of interval mapping to perform its analysis. Thus,
for convenience and flexibility, the wgaim package provides the ability to convert genetic data
objects created in the qtl package to objects for further use in wgaim. The converted objects
retain a similar structure to objects created in qtl and therefore can still be used with functions
within the package. Users of wgaim need to be aware that it is a software package intended
for the analysis and summary of QTL and only contains minimal tools for exploratory linkage
map manipulation. Much of the exploratory work can be handled with functions supplied
in the qtl package and users should consult its documentation if required. In addition, the
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interval mapping approach of Verbyla et al. (2007) and its implementation in wgaim is also
restricted to populations with only two distinct genotypes. Some of these populations include,
double haploid (DH), back-crosses and recombinant inbred lines (RIL). To ensure this rule is
adhered to, error trapping has been placed in the appropriate functions of wgaim.

Throughout the WGAIM procedure the underlying linear mixed model analysis is achieved
using the highly flexible R software package ASReml-R, built as a front end wrapper for the
more sophisticated stand alone version, ASReml (Gilmour et al. 2009). This software allows
the user the ability to flexibly model spatial or environmental variation as well as possible
variation that may arise from additional components associated with the experimental design.
It uses an average information algorithm developed in Gilmour et al. (1995) that allows
efficient computing of residual maximum likelihood (REML) (Patterson and Thompson 1971)
estimates for the variance parameters. The use of REML estimation in the linear mixed model
context becomes increasingly necessary in situations where the data is unbalanced. Much of
its sophistication has been influenced from its common use in the analysis of crop variety
trials (Smith et al. 2001, 2005, 2006) where complex additional components such as spatial
correlation structures or multiplicative factor analytic models need to be incorporated into
the mixed model. If available, the software also allows complex pedigree information to be
included (Oakey et al. 2006). Many of these additional flexibilities in ASReml have also
established it as a valuable software tool in the livestock industries. In more recent years
it has been used as a core engine for more complex genetic analyses as in Gilmour (2007),
Verbyla et al. (2007) and Huang and George (2009). The stand alone software and the R
package ASReml-R is only commercially available through http://www.vsni.co.uk/ but
trial licenses are also available.

The paper is arranged as follows. Section 2 briefly describes the theory of the WGAIM al-
gorithm that is implemented in wgaim. Section 3 presents a walk through a typical QTL
analysis using the functions of qtl and wgaim. QTL analyses from two plant breeding exper-
iments are provided in Section 4. The second example shows some of the enhanced features
of wgaim including the ability to plot an aesthetic genetic map. For visualization QTL can
also be placed on the map post analysis. Post analysis diagnostics are also available which
present features of the forward selection procedure used to determine the QTL.

2. WGAIM theoretical method

Before discussing the functions of the wgaim package it is necessary to provide a theoretical
overview of the methodology used in its implementation. The WGAIM approach is a forward
selection method that uses a whole genome approach to genetic analysis at each step. Fol-
lowing Verbyla et al. (2007), initially a working model is developed that assumes a QTL in
every interval. Thus for a given set of trait observations y = (y1, ..., yn) consider the model

y:XT+Zeue+Zgg+ea (1)

where 7 is a ¢ length vector of fixed effects with an associated n x ¢ explanatory design matrix
X and wu, is a b x 1 length vector of random effects with an associated n x b design matrix
Z.. Typically, the distribution of u. ~ N(0,02G(¢)) and is assumed mutually independent
to the residual vector e ~ N(0,0?R(¢)) with ¢ and ¢ being vectors of variance ratios.

The vector g in (1) represents a r length vector of genotypic random effects with its associated
design matrix Z,. Let ¢ be the number of chromosomes and m;, be the number of markers
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on chromosome k, (k = 1,...,¢), and g¢; ;;; represent the parental allele type for line ¢ in
interval j on chromosome k. In WGAIM, ¢; 1..; = %1, reflecting two possible genotypes AA,
BB for DH and RIL and AB, BB for back-cross populations. The ith genetic component of
this model is then given by

c mp—1

9i = Z Z i k:j Ok:j + Pis

k=1 j=1

where ay.; is QTL effect size assumed to have distribution ay,; ~ N (0,02%v,) and p; ~
N(0, szp) represents a polygenic or residual genetic effect not captured by the QTL effects.

As in interval mapping the vector of QTL allele types are replaced by the expectation of the
QTL genotype given the flanking markers. Let my.; be the jth marker on the kth chromosome
and applying a parameter reduction technique from Verbyla et al. (2007) produces a vector
of genotypic effects of the form

¢ mk—l
g = Z Z (mkj + mk:j7j+1)wk:jak:j +p
k=1 j—=1
= Mwa + p, (2)

where ka:j = 9k:j,j+1/2dk:j,j+1(1 — 9k:j,j+1) and 0k:j,j+17 dkzj,j+1 are the recombination fraction
and Haldane’s genetic distance between marker j and j + 1 respectively on the kth chromo-
some. Thus M, is a fully specified known matrix of pseudo-markers spanning the whole
genome. A more detailed overview of this decomposition and its derivation can be found in
Verbyla et al. (2007). Let Z, = Z ;M , then the full working statistical model for analysis is
then

y=X1+Zu.+ Zsa+ Zysp+e. (3)

After the fitting of (3) the simple hypothesis Hy : 7, = 0 is tested based on the statistic
—2log A = —2(log L —log L) where L and Ly is the residual likelihood of the working model
(3) with and without the random regression QTL effects, Z,a. Stram and Lee (1994) suggest
that under Hy, —2log A is distributed as the mixture %(X3+X%) due to the necessity of testing
whether the variance ratio is on the boundary on the parameter space.

If v, is found to be significant a putative QTL is determined using an outlier detection method
based on the alternative outlier model (AOM) for linear mixed models from Gogel (1997) and
formalised in Gogel et al. (2001). Verbyla et al. (2007) uses the AOM to develop a score
statistic for each of the chromosomes. For example, for the kth chromosome let ag = ay + 0
where 0, is a vector of random effects such that 8, ~ N (0,02'ya7kI mu—1)- The full outlier
model is

y=X1t+Zu.+Za+Z,,01+ Zsp+e, (4)

where Z, . is the matrix Z, appropriately subsetted to chromosome k. The REML score is
then derived for 7, and evaluated at 7,3 = 0, namely

G(0) =~ (8(Ch) ~ yzatan ) )
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where C = ZoxPZ, with P = H' - H'X(XTH'X)"'X"TH™', H = ¢>(R +
ZGZ" +VaZoZL + 1, ZpZ] and best linear unbiased predictors (BLUPS) ay, = 7.Z. . Py.
This score has mean zero and this will occur exactly when the terms in the parentheses of (5)
are equal. Scores that depart from zero suggest a departure from ~,; = 0. A simple statistic
that reflects this departure can be based on the “outlier” statistic

) afay ST ag

£ = _
Fo22te(Crg) T var(ay)

This statistic can therefore be calculated from the BLUPS of the QTL sizes and their pre-
diction error variances arising from the working model. In most cases mixed model software,
including ASReml-R used in wgaim, provide the ability to extract these components for this
use.

In a similar manner to the above once the chromosome with the largest outlier statistic is
identified, the individual intervals within that chromosome are checked. For example if the
largest ¢7 is from the kth chromosome, a similar derivation can be followed for the outlier
statistic of the jth interval, namely

th = a’%if

: var(ag.;)

A putative QTL is then determined by choosing the largest t%: y within that chromosome. It
must be stated at this point that although (4) is formulated to derive the theory for QTL
outlier detection there is no requirement to fit this model as the chromosome and interval
outlier statistics only contain components obtainable from a fit of the working model proposed
in (3). Thus there is only a minimal computational cost to determine an appropriate QTL
interval using this method.

Once a QTL interval is selected it is moved into the fixed effects of the working model (3)
and the process is repeated until 7, is not significant. After the selection process is complete
the selected QTL intervals appear as fixed effects and the final model is

S
y=X71+ Zza,iai +Zeue + Zgp + e,

=1

where z,; is the appropriate column of Z, for the ith QTL. This complete approach is known
as the WGAIM algorithm.

3. A casual walk through

A typical QTL analysis with wgaim can be viewed as series of steps with the appropriate
functions

1. Fit a base asrem1() (see the ASReml-R package) model as in (3) but without the added
marker/interval genetic information term Z,a. The asreml () call allows very complex
structures for the variance matrices G(¢) and R(¢) through its random and rcov ar-
guments. This makes it an ideal modelling tool for capturing non-genetic experimental
variation, such as design components and/or extraneous environmental variation. From
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a plant breeding context Verbyla et al. (2007) also suggests including the polygenic or
residual genetic term Z,p in the base model as a simple random effect. Examples of
base models can be found in Section 4 of this article.

For a comprehensive overview of the ASReml-R package, including thorough examples
of its flexibility, users should, in the first instance, consult the documentation that is
included with the package. On any operating system that has ASReml-R installed, the
documentation can be found using the simple command asreml.man() in R.

. Read in genetic data using read.cross() (see the qtl package). This function allows the
reading in of genetic information in a number of formats including files generated from
commonly used genetic software programs such as Mapmaker and QTL Cartographer.
For the exact requirements of all available file types and their nomenclature users should
consult the qtl documentation.

The read.cross() function can also process more advanced genetic crosses. However,
in wgaim the QTL analysis is restricted to populations with two genotypes. Thus users
should be aware that the class of the returned object from read.cross() needs to have
the structure c("bc", "cross"). The "bc" is an abbreviated form for “back-cross”. It
is this class structure that is checked in the proceeding steps.

. Convert genetic "cross" data to an "interval" object using

cross2int(fullgeno, missgeno = "MartinezCurnow", rem.mark = TRUE,
id = "id", subset = NULL)

The function contains a number of arguments that allow some linkage map manipulation
before calculation of the interval information for each chromosome. If missgeno =
"MartinezCurnow", missing values within a chromosome are calculated using the rules
of Martinez and Curnow (1992). If missgeno = "Broman" the they are calculated using
the default values of argmax.geno () in the qtl package. If rem.mark = TRUE, coincident
markers across the genome are removed from the marker set. The correlated markers
and how they are connected is returned as part of the final object. The id is a required
argument that determines the names of the unique rows of fullgeno and is used for
matching names with phenotypic data in the next step. There is also an option to
subset your map if desired.

The final genetic data object returned retains the c("bc", "cross") class for back-
ward compatibility with other functions in the qtl package as well as inherits the class
"interval" for functionality within the wgaim package.

. Merge the genetic "interval" data with the base model phenotypic data using
wmerge (geno, pheno, by = NULL, ...)

All named arguments of this function are required for a successful merging of genotypic
and phenotypic data. The geno argument must be a genetic data object inheriting the
class "interval" from a call to cross2int (). The pheno can be the usual data frame or
afile. If it is a file then it is read in by the wrapper function asreml .read.table () which
conveniently converts column names with capital letters to factors. The ... argument
can be used as additional arguments to asreml.read.table(). The by argument is
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used for merging geno and pheno and should be a column name that is present in
geno$pheno as well as present in one of the columns of pheno. There is error trapping
in the function if these rules are not adhered to.

By default this function initially merges interval information from different chromo-
somes or linkage groups to form the fully specified interval matrix M, in (2) with
column names “Chr.<chr>.<int>”. The full genetic matrix, M, is then merged with
the phenotypic data which is equivalent to expanding the genetic information using
Z, = Z4M ,, ensuring replicates of the same line will have the same genetic structure.
It should be noted that unmatched elements of by are handled differently depending on
whether they are from the geno or pheno data. If elements of by exist in pheno and
are unmatched with elements in geno then they are kept to ensure completeness of the
phenotypic data. If elements of by exist in geno and not in pheno they are dropped as
there will be no phenotypic information available for that genetic line.

The merged object retains all the same components as the "interval" data object with
the addition of named components pheno.dat representing the phenotypic data only
and full.data representing the fully merged phenotypic and genotypic data.

. Perform QTL analysis with wgaim()

wgaim(baseModel, parentData, Typel = 0.05, attempts = 5,
trace = TRUE, ...)

The baseModel argument must be an asreml.object and therefore have "asreml" as its
class attribute. Thus a call to wgaim() is actually a call to wgaim.asreml(). This stip-
ulation ensures that an asreml () call has been used to form the base model in step 2 be-
fore attempting QTL analysis. An error trapping function, wgaim.default () is called if
the class of the base model is not "asreml". The second argument parentData is a data
object formed from a call to wmerge (). parentData must be of class "interval" and
contain the named component full.data. There are initial checks in wgaim.asreml ()
to ensure that parentData contains the baseModel data. The TypeI argument allows
users to change the significance level for the testing of QTL effects variance component
Y- As asreml () calls output components of the fit to the screen there is an option to
trace this to a file if desired.

The fitting of the working model (3) is achieved through added functionality to the
asreml () call. The merged interval matrix Z, is added to the base asreml model
as a contiguous block of random effects with a single variance component, ~,. If this
variance component is significant then the algorithm searches for a QTL. Once a QTL
is found it places the appropriate interval column of Z, into the fixed component of the
base model and reiterates this process. Thus the process of finding and selecting QTL
using wgaim() is automated and may require several model fits. For this reason users
must be patient if they are analysing a dataset with a large number of observations or a
large number of markers. Upon completion of the algorithm, summary() and print()
methods are available to summarize the QTL.
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4. Worked examples

4.1. The zinc data

The zinc data is available in wgaim as a usable date set to display the functionality of the
package. The data consists of 200 observations of zinc concentration and shoot length for a
DH population of wheat. There are two replicates of 90 double haploid lines from a crossing
of the wheat varieties Cascades and Rac875-2 and ten each of the parents in an id variable.
The data also includes a Type variable to distinguish the parents from the DH lines. The
experiment also contained two blocks in a variable called Block.

A suitable base model for shoot length is explored by considering (3) without the random
regression effects, Z,a, attributed to genetic markers/intervals. As we are interested in the
genetic variance associated with the DH lines, Type is modelled as a fixed effect (7) to ensure
the removal of the genetic effect associated with the parents. The Block as a random effect
of non-interest (u.) and id as a set of polygenic random effects p.

R> data("zinc", package = "wgaim")
R> sh.fm <- asreml(shoot ~ Type, random = “Block + id, data = zinc)

A simple summary of the variance parameters in the model can be achieved with

R> summary (sh.fm)$varcomp

gamma component std.error z.ratio constraint
Block!Block.var 0.1902258 0.03721561 0.05539823 0.6717835 Positive
id'id.var 9.1030840 1.78091965 0.28195227 6.3163871  Positive
Rl!variance 1.0000000 0.19563915 0.02674723 7.3143694  Positive

The summary reveals there is only a small difference between Blocks. However, the genetic
variance is more than nine times the residual variance of the model making the response an
ideal candidate for QTL analysis.

wgaim is prepackaged with a genetic map associated with the zinc data. The data has already
been read in using read.cross() and can be loaded using

R> data("raccas", package = "wgaim")

Alternatively to illustrate the use of read.cross() in conjunction with this package the same
data is available from the extdata directory of the package library as a CSV file. A subset
of the data from the CSV file is given in Table 1. This reveals that the CSV file is in the
rotated CSV format (see read.cross() from the qtl package). The genotypes are set as AA
or AB and missing values are "-". Thus a call to read.cross() is

R> wgpath <- system.file("extdata", package = "wgaim")

R> raccas <- read.cross("csvr", file = "raccas.csv",

+ genotypes = c("AA", "AB"), dir = wgpath, na.strings = c("-", "NA"))
R> class(raccas)
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V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
1 id DHO1 DHO2 DHO3 DH04 DHO05 DHO06 DHO7
2  wmc469 1A1 0.00 AB AA AB - AB AB AB
3 wPt.5914 1A1 7.26 AB AA AB AB AA AB AB
4 wPt.0751 1A1 888 - AA AB AB AA AB AB
5 P42.M49.235 1A1 20.11 AA AA AB AB AA AB AB
6 bed304C 1A2 0.00 AA AB AB AA AA AA AA
7 P31.M55.148 1A2 31.52 AA - AB AA AA AA AA
8 barc213 1A2 42.60 AA AB AB AA AA AA AA
9 P34.M48.83 1A2 43.84 AA AB AB AA AA AA AA
10 gwm99 1A2 54.30 AA AA AA AA AA AA AA

Table 1: A subset of the genetic data from the comma delimited file raccas.csv.

[1] "bC" "CI'OSS"

The returned object has the required class structure and is converted to an "interval" object
using

R> raccas <- cross2int(raccas, missgeno = "Mart", id = "id", rem.mark = TRUE)
R> summary(raccas)
R> class(raccas)

[1] "bc" "cross" '"interval"

As coincident markers are omitted from the map it is written to a file, "dummy.csv", and
read back in using using read.cross() to allow a re-estimation of genetic information for
the reduced map. The summary shows there is total of 468 markers across 40 linkage groups.
It also reveals that just over 5% of markers were missing and imputed using the rules of
Martinez and Curnow (1992). The classes of raccas and their ordering is retained and it now
also inherits the class "interval" for use with functions in wgaim.

The genetic "interval" data can now be merged with the phenotypic zinc data using

R> raccasM <- wmerge(raccas, zinc, by = "id")
R> names(raccasM)

[1] "geno" "pheno" "rf" "pheno.dat" "full.data"

This newly merged data retains the same classes as raccas and adds a named component
"pheno.dat" containing the phenotypic data only and "full.data" containing the essential
merging of the phenotypic zinc data with all the chromosomal "intval" components of the
genotypic raccas data.

With this newly merged data a QTL analysis is simply

R> zn.qtl <- wgaim(sh.fm, parentData = raccasM, na.method.X = "include")
R> summary(zn.qtl, raccasM)
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Chromosome Left Marker dist(cM) Right Marker dist(cM) Size z.ratio Pr(z)

1 3D2 gdm8 31.51 gdm136 32.64 0.436 4.13 0
2 4B Rhtimut 54.8 gwm6 70.12 0.54 4.86 0
3 4D1 barc098 0 P42.M49.70 1.13 0.422 3.63 3e-04
4 4D2 wPt.2573 0 Rht2W.type 23.48 -0.383 -2.82 0.0048

The analysis reveals four significant QTL in four linkage groups. Verbyla et al. (2007) recom-
mends the use of p-values, rather than the commonly used LOD scores, as the overall test of
significance for each of the QTL. The argument LOD = TRUE can be given to summary.wgaim()
if LOD scores are necessary.

4.2. Sunco-Tasman data

This example stresses the importance of modelling extraneous variation to a ensure a more
appropriate QTL analysis. The Sunco-Tasman data is available in the data directory of
wgaim and contains the results of a field trial conducted in the year 2000 with 175 double
haploid lines from a crossing of wheat varieties Sunco and Tasman. The original field trial was
arranged in a 31 rows by 12 columns with two replicates of each line. A milling experiment
was then performed which replicated 23% of the field samples producing 456 samples milled
over 38 mill days with 12 samples per day. The focus is on the trait milling yield.

R> stpheno <- asreml.read.table(paste(wgpath, "\\stpheno.csv", sep = ""),
+ header = TRUE, sep = ",")
R> names (stpheno)

[1] "XH "EXpt n "Typell "idll "Rangell "ROWII
[7] "Rep" "Millday" "Milldate" "Millord" ‘'"myield" "lord"
[13] "lrow"

Smith et al. (2006) provides a phenotypic analysis of the data. They give a base model of the
form

R> st.fmF <- asreml(myield ~ Type + lord + lrow, random = ~ id + Rep +
+ Range:Row + Millday, rcov = ~ Millday:arl(Millord),
+ data = stpheno, na.method.X = "include")

R> summary (st.fmF)$varcomp

gamma component std.error z.ratio constraint
id 7.0925458 1.92573995 0.23965934 8.0353220 Positive
Rep 0.2843737 0.07721201 0.15604795 0.4947967 Positive
Range:Row 1.4973306 0.40654927 0.06206771 6.5500926 Positive
Millday 1.7795039 0.48316385 0.15646257 3.0880476 Positive
Rl!variance 1.0000000 0.27151604 0.08035809 3.3788264 Positive
R!Millord.cor 0.7109431 0.71094307 0.12682697 5.6056142 Unconstrained

The model realistically accounts for extraneous plot variation occurring in the field as well
as variation due to the design components of the milling experiment. The lord and lrow
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Figure 1: A subset of the genetic map for the Sunco-Tasman data. Names of chromosomes
are given at the bottom and genetic distances between markers are placed alongside each of
the chromosomes.

components of the fixed model are mean centred covariates of Millord and Row that capture
the natural linear trends that occur in the samples across milling order on any given day
and across rows in the field. The summary reveals a large genetic variance component. For
comparison a NULL model (no extraneous effects) is also fitted.

R> st.fmN <- asreml(myield ~ 1, random = ~ id, data = stpheno,
+ na.method.X = "include")

The genetic map consists of 287 unique markers across 21 chromosomes and can be read in
and converted using

R> stmap <- read.cross('"csv", file="stgenomap.csv", genotypes=c("A", "B"),
+ dir = wgpath, na.strings = c("-", "NA"))

R> stmap <- cross2int(stmap, missgeno="Bro", id = "id")

R> names (stmap$geno)

[1] n 1All n 1Bl| n 1D|| II2A|| II2BII II2DII l|3AII ||3Bll ||3DII II4AII II4BII II4DII |I5All II5B||
[15] "5DII Il6AII ll6Bl| II6D|I II7AII II7BII II7D"

It is possible to view the genetic map using link.map(). The function allows sub-setting
according to distance (cM) and/or chromosome. Figure 1 shows the genetic map resulting
from

11
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R> link.map(stmap, marker.names = "dist", cex = 0.5,
+ Chl" = C(IIlBH 112AH II2BH HSD" H4A" H4BI! H4DII HEAII !!6BH H'7DH))

For larger maps a more aesthetic plot is reached by adjusting the character expansion (cex)
parameter and increasing the plotting window width manually.

Merging stpheno and stmap and performing QTL analysis for the full model st.fmF and the
null model st.fmN

R> stmerge <- wmerge(stmap, stpheno, by = "id")

R> st.qtlN <- wgaim(st.fmN, stmerge, na.method.X = "include",
+ trace = "nullmodel.txt")
R> st.qtlF <- wgaim(st.fmF, stmerge, na.method.X = "include",

+ trace = "fullmodel.txt")

The process of selecting QTL is determined from the outlier statistics calculations in Section 2.
These are saved for each QTL selection and can be viewed using the out.stat () command.
For the first two iterations of the process the chromosome and interval outliers statistics given
in Figure 2 are produced with

R> out.stat(st.qtlF, stmerge, int FALSE, iter = 1:2, cex = 0.6,
+ ylim = c(0, 6.5))

R> out.stat(st.qtlF, stmerge, int = TRUE, iter = 1:2, cex = 0.6)

There is also an additional argument that allows the user to subset the genetic map to specific
chromosomes which is only available when int = TRUE.

Each of these QTL models can be summarised visually using link.map(). In this case it
calls the method link.map.wgaim() to plot the QTL on the genetic map. Multiple models
or traits can be handled through link.map.default(). For example, Figure 3 is produced
with

R> link.map.default(list(st.qtlF, st.qtlN), stmerge, marker.names = "dist",
+ cex = 0.6, clist = list(qcol = c("red", "light blue"), mcol = "red",
+ tcol = c("red", "light blue")), trait.labels = c("Full", "Null"))

This QTL plotting procedure is highly flexible to user colour changes. Through an argument
clist it allows the user to specify the QTL colour between markers, the colour of the flanking
QTL marker names, the colour of the trait names and the rest of the marker names. If no
colours are chosen qcol and tcol defaults to rainbow(n) where n is the number of traits.
The QTL map reveals that an extra six QTL were detected in the full model compared to
the null model, highlighting the importance of modelling extraneous variation appropriately
in QTL analyses.

From a statistical standpoint the QTL selected across the genome cannot be expected to
be orthogonal. Thus the introduction of the next QTL in the forward selection process will
inevitably affect the significance of the previously selected QTL. A post diagnostic evaluation
of the QTL p-values in the forward selection process can be displayed using

R> tr(st.qtlF, iter = 1:10, digits = 3)



13

Journal of Statistical Software

‘[PpowW [N o1} I0] 17 wWIeSMm o1} JO SUOIIRIINT OM) JSIT Y[} I0] SOIPSIPR)S IDI[INO0 [RAIIUT PUR SWOSOWOI)) g dINSI]

ESE]
& & A O & S& & & & & & @& E & & &
0 T 11 11} 1
) Y % 5% ;re(\cﬁ\;\wlj A N Q/ -0
. - s
— - 0T
o
=
N saz - ST 3
T :uoneiay| «
- ; — -8
0 Y [ VN §\< AT NV \8 @
-
m — L
zaL
0T =
ST o
Z :uoneisal|
LU LLILAL LU T
awosowoIyD
as da. v, as 49 Y9 as ds Vs ar ar Y ae de ve ac da¢ \/4 at at V1T
o = — s Iy —  —
. _|_ -1
. -z
- -
. - v
_ L g m
— gz -9 W
T uoneiay o
— — 5
T - 2
2
N — -
m — -
v -
g - -
zasL
@ — -
Z -uoneiay|




Genetic Map with QTLs

o —0 —0 —f——0 =f==0 —f——0 —0 Full spasfi==—0 —f——o0 —0 —A——o0
& Full— —0.01 339 214 Full 7 Nies A s Ful 356
A — Full — s =— 10.32 —11.98 1 - N.. \
] =3\ 10.69 5.12 ./.m.wm = . N\ 1158 5.07
T 11.02 Tks72 11.06 11.89 - 15.81 1887 ’ 721
2 1371 /SN 131y #.E.% ———20.98 T gsee
IS R ——3335 1317 19.96 : —--30.02 |
() 19.26 9.45
16.59 3151
T 29.67 s 21.34 Tom1
= B /S.om 51.16 JrThae 22.32 52.05 === 50.08 1207
: ———51. _ —C-51.04 =g=="52. ) )
M o 4284 Ful/BIZ\5476 Ful |JRl—_ >4 —\26.08 23.71 \ 2339 50.62 L2158
= A s \ 5829 =\ 2050 6122 : 24.29 : 6307 L 25.68
3 307 6762 60.75 ——\-63-56 33.09 =t=3-60.53 L4212
" N 7237 7200 61.28 /mm.»w 35.52 —\-7069 L4918
.Ml == o 70.08 Mwww 77.77 —86.55
5 s A g1 : ——~ 9058 E__H_Ilom 99
—~ : ———96.78 ——95.92 —-—o99.07 Full {7 05,11 s
~ s o 83.21 —{-—101.21 - i —~ o \-98.23
% 3 — 85.79 10555 102.08 ==+ 106.56
N ~ 90.88 ——\-107.74
= c 3 HHEo 108.33
~ S) 122.52 112.12
Yo} M 1837 ———135.39
m % w —f——150.21
i —H=3-154.66 | —
= - ———161.48 =H=a\ 158.71
" Full T3 1s5755 A 16710
82 A Y160.21 ’
cVuu ———175.27 160,97 | I
3 161.92 1835
= o 165.05
3 m 172.53 ———201.28
~)
.. —239.51
m w 1 —247.32
.m N — 256.69
2
Chromosome

Figure 3: Genetic map with QTL for the Full and Null models obtained from an analysis of the Sunco-Tasman data. Markers and
= intervals for the QTL are highlighted and trait names are placed on the left hand side of the chromosomes.
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Incremental QTL P-value Matrix.

2B.5 7Db.2 4D.1 4B.1 1B.13 6B.5 b5A.13 1B.1 4A.2 3D.5

Iter.1 <0.001

Iter.2 <0.001 <0.001

Iter.3 <0.001 0.001 <0.001

Iter.4 <0.001 <0.001 <0.001 <0.001

Iter.5 <0.001 <0.001 <0.001 <0.001 <0.001

Iter.6 0.002 <0.001 <0.001 <0.001 <0.001 <0.001

Iter.7 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Iter.8 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.002 <0.001

Iter.9 0.001 <0.001 <0.001 0.016 <0.001 <0.001 0.002 <0.001 <0.001
Iter.10 <0.001 <0.001 <0.001 <0.001 0.004 <0.001 0.012 <0.001 <0.001 0.008

Outlier Detection Diagnostic.

LO L1 Statistic Pvalue
Iter.1 -309.563 -250.669 117.787 <0.001
Iter.2 -279.483 -243.213 72.541 <0.001
Iter.3 -272.049 -240.762 62.574 <0.001
Iter.4 -269.746 -238.879 61.734 <0.001
Iter.5 -256.599 -235.993 41.211 <0.001
Iter.6 -251.322 -232.332 37.98 <0.001
Iter.7 -236.172 -225.886 20.572 <0.001
Iter.8 -225.186 -221.5 7.372 0.003
Iter.9 -225.029 -221.577 6.904 0.004
Iter.10 -223.37 -221.047 4.647 0.016
Iter.11 -223.008 -220.78 4.456 0.017
Iter.12 -221.138 -220.029 2.219 0.068

The first of these displays shows the p-values of the selected QTL for the first ten iterations
occurring in the WGAIM process. An example of the dynamic changes in significance can be
seen for the selected QTL interval 4B.1. The introduction of 4A.2 decreases the significance of
4B.1, whereas the introduction of 3D.5 increases it significance. The second display presents
the likelihood ratio tests, —2log A, for the significance of the QTL variance parameter, v,, in
(3), with the inclusion of the last hypothesis test where the null model is retained.

5. Summary

This paper shows the implementation of whole genome average interval mapping algorithm
of Verbyla et al. (2007) in the R package wgaim. The interval mapping approach adopted
in wgaim requires the conversion of genetic data objects created from the qtl package. The
package also uses the sophisticated linear mixed modelling software ASReml-R for QTL anal-
ysis thus allowing users with added flexibility to simultaneously model sources of genetic and
non-genetic variation through the addition of highly structured random effects and/or possi-
ble correlation between observations. Selected QTL can be easily summarized and checked
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for their significance as well as plotted on a linkage map for visual inspection of their location
on the genome.

Currently only QTL analysis of univariate traits is possible with wgaim. However, a multivari-
ate version of the WGAIM algorithm is being researched and preliminary papers have been
submitted (Verbyla and Cullis 2011; Verbyla et al. 2011). The software implementation of
this multivariate approach is currently being tested. Research is currently being conducted to
determine the inclusion of higher order effects such as epistatic interactions into the WGAIM
approach. We are hopeful that these new approaches will be implemented in future releases
of wgaim.
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