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Abstract

There has been much recent interest in Bayesian inference for generalized additive
and related models. The increasing popularity of Bayesian methods for these and other
model classes is mainly caused by the introduction of Markov chain Monte Carlo (MCMC)
simulation techniques which allow realistic modeling of complex problems. This paper de-
scribes the capabilities of the free software package BayesX for estimating regression models
with structured additive predictor based on MCMC inference. The program extends the
capabilities of existing software for semiparametric regression included in S-PLUS, SAS,
R or Stata. Many model classes well known from the literature are special cases of the
models supported by BayesX. Examples are generalized additive (mixed) models, dynamic
models, varying coefficient models, geoadditive models, geographically weighted regression
and models for space-time regression. BayesX supports the most common distributions
for the response variable. For univariate responses these are Gaussian, Binomial, Poisson,
Gamma, negative Binomial, zero inflated Poisson and zero inflated negative binomial.
For multicategorical responses, both multinomial logit and probit models for unordered
categories of the response as well as cumulative threshold models for ordered categories
can be estimated. Moreover, BayesX allows the estimation of complex continuous time
survival and hazard rate models.

Keywords: MCMC, geoadditive models, mixed models, space-time regression, structured ad-
ditive regression.

1. Introduction

BayesX is a public domain software package developed during the last eight years at the
Department of Statistics, University of Munich. The program comprises a number of pow-
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erful features and tools for full and empirical Bayesian inference. Functions for handling
and manipulating data sets and geographical maps, and for visualizing results are added for
convenient use.

In this paper, we describe a powerful tool for estimating regression models with structured
additive predictor (see Section 2) based on recent MCMC simulation techniques. This paper
may primarily serve as a starting point for getting an overview about the capabilities of
this tool and as a guideline through the more detailed description in the BayesX manuals
(see Brezger, Kneib and Lang 2005). Besides the regression tool described in this paper,
the current version of BayesX contains an alternative approach for inference based on mixed
model methodology (Fahrmeir, Kneib and Lang 2004; Ruppert, Wand and Carroll 2003), and
also allows for estimating graphical models, more specifically Bayesian dags (see Fronk and
Giudici 2004; Fronk 2002).

The next two sections provide a brief introduction to the methodological background and a
comparison with existing software for comparable models. In Section 4 we give an overview
about the general usage of BayesX and show how Bayesian structured additive regression
models are estimated. A complex example about childhood undernutrition in Zambia is
discussed in Section 5. Instructions for downloading the program and recommendations for
further reading are given in the concluding Section 6.

2. Methodological background

The model class supported by BayesX is based on the framework of Bayesian generalized linear
models (GLM, see Fahrmeir and Tutz 2001). GLMs assume that, given covariates u and
unknown parameters γ, the distribution of the response variable y belongs to an exponential
family with mean µ = E(y |u, γ) linked to a linear predictor η by

µ = h(η) η = u′γ. (1)

Here h is a known response function, and γ are unknown regression parameters. BayesX is,
however, able to estimate much more flexible models with structured additive predictor (see
Brezger and Lang 2005; Fahrmeir, Kneib and Lang 2004)

ηr = f1(xr1) + . . . + fp(xrp) + u′
rγ, (2)

where r is a generic observation index, xrj denote generic covariates of different type and
dimension, and fj are (not necessarily smooth) functions of the covariates. The functions fj

comprise usual nonlinear effects of continuous covariates, time trends and seasonal effects,
two-dimensional surfaces, varying coefficient terms, i.i.d. random intercepts and slopes, spa-
tially correlated effects, and geographically weighted regression. In order to demonstrate the
generality of the model class supported by BayesX we point out some special cases of (2) well
known from the literature:

• Generalized additive model (GAM) for cross-sectional data
A GAM (Hastie and Tibshirani 1990) is obtained if the xj , j = 1, . . . , p, are univariate
and continuous and fj are smooth functions. In BayesX the functions fj are modeled
either by random walk priors or P-splines, see Fahrmeir and Lang (2001a), Lang and
Brezger (2004) and Brezger and Lang (2005) for the methodological background.
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• Generalized additive mixed model (GAMM)
Consider longitudinal data for individuals i = 1, . . . , n, observed at time points t ∈
{t1, t2, . . .}. For notational simplicity we assume the same time points for every indi-
vidual, but generalizations to individual-specific time points are obvious. A GAMM
extends a GAM by introducing individual-specific random effects, i.e.

ηit = f1(xit1) + . . . + fk(xitk) + b1iwit1 + · · ·+ bqiwitq + u′
itγ,

where ηit, xit1, . . . , xitk, wit1, . . . , witq, uit are predictor and covariate values for individual
i at time t and bi = (b1i, . . . , bqi) is a vector of q i.i.d. random intercepts (if witj = 1) or
random slopes. The random effects components are modeled by i.i.d. Gaussian priors,
see e.g. Clayton (1996). GAMMs can be subsumed into (2) by defining r = (i, t),
xrj = xitj , j = 1, . . . , k, xr,k+h = with, and fk+h(xr,k+h) = bhiwith, h = 1, . . . , q.
Similarly, GAMMs for cluster data can be written in the general form (2).

• Geoadditive models
In many situations additional geographic information for the observations in the data
set is available. As an example compare our demonstrating example in Section 5 on
the determinants of childhood undernutrition in Zambia. Here, the district where the
mother of a child lives may be used as an indicator for regional differences in the health
status of children. A reasonable predictor for such data is

ηr = f1(xr1) + . . . + fk(xrk) + fspat(sr) + u′
r, γ (3)

where fspat is an additional spatially correlated effect of the location sr an observation
pertains to. Models with a predictor that contains a spatial effect are also called geoad-
ditive models, see Kammann and Wand (2003). In BayesX, the spatial effect may be
modeled by Markov random fields (Besag, York and Mollié 1991) or two-dimensional
P-splines (Brezger and Lang 2005).

• Varying coefficient model (VCM) - geographically weighted regression
A VCM as proposed by Hastie and Tibshirani (1993) is defined by

ηr = g1(wr1)zr1 + · · ·+ gp(wrp)zrp,

where the effect modifiers wrj are continuous covariates or time scales and the interacting
variables zrj are either continuous or categorical. This model can be cast into (2) by
xrj = (wrj , zrj) and defining the special function fj(xrj) = fj(wrj , zrj) = gj(wrj)zrj .
Note that in BayesX the effect modifiers are not necessarily restricted to be continuous
variables as in Hastie and Tibshirani (1993). E.g. the geographical location may be used
as effect modifier as well, see Fahrmeir, Lang, Wolff and Bender (2003) for an example.
VCM’s with spatially varying regression coefficients are well known in the geography
literature as geographically weighted regression, see e.g. Fotheringham, Brunsdon and
Charlton (2002).

• ANOVA type interaction model
Suppose wr and zr are two continuous covariates. Then, the effect of wr and zr may be
modeled by a predictor of the form

ηr = f1(wr) + f2(zr) + f1|2(wr, zr) + . . . ,
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see e.g. Chen (1993). The functions f1 and f2 are the main effects of the two covariates
and f1|2 is a two-dimensional interaction surface which can be modeled e.g. by two-
dimensional P-splines (Lang and Brezger 2004; Brezger and Lang 2005). The interaction
can be cast into the form (2) by defining xr1 = wr, xr2 = zr and xr3 = (wr, zr).

All regression models discussed above and arbitrary combinations can be estimated with
BayesX in a Bayesian framework based on recent MCMC simulation techniques. The software
provides a variety of different smoothness priors whose applicability depends on the type of co-
variate and the prior assumptions on smoothness. For continuous covariates BayesX supports
random walk priors (Fahrmeir and Lang 2001a) and Bayesian P-splines (Lang and Brezger
2004). For spatial effects a variety of Markov random field priors (Besag, York and Mollié
1991) and two-dimensional P-splines (Brezger and Lang 2005) are available. Unobserved unit-
or cluster specific heterogeneity may be considered by introducing random intercepts or slopes.
Interactions may be modeled via varying coefficient terms or two-dimensional P-splines.

At first sight it may look strange to use one general notation for nonlinear functions of
continuous covariates, i.i.d. random intercepts and slopes, and spatially correlated effects as
in (2). However, the unified treatment of the different components in our model is justified
because the priors for the different types of effects can be cast into a general form. The vector
of function evaluations fj = (fj(x1j), . . . , fj(xnj))′ of an unknown function fj can be written
as the product of a design matrix Xj and a vector of unknown parameters βj , i.e.

fj = Xjβj . (4)

Then, we obtain the predictor (2) in matrix notation as

η = X1β1 + · · ·+ Xpβp + Uγ, (5)

where U corresponds to the usual design matrix for fixed effects. A prior for a function fj is
now defined by specifying a suitable design matrix Xj and a prior distribution for the vector
βj of unknown parameters. The general form of the prior for βj is

p(βj |τ2
j ) ∝ exp

(
− 1

2τ2
j

β′
jKjβj

)
, (6)

where Kj is a penalty matrix that shrinks parameters towards zero, or penalizes too abrupt
jumps between neighboring parameters. In most cases Kj will be rank deficient and therefore
the prior for βj is partially improper. Specific examples for Xj and Kj are given in Fahrmeir
and Lang (2001a), Lang and Brezger (2004) and Brezger and Lang (2005). The general form
of the priors allows rather general and unified estimation procedures, see particularly Brezger
and Lang (2005). As a side effect the implementation and description of these procedures
is considerably facilitated. The variance parameter τ2

j in (6) is equivalent to the inverse
smoothing parameter in a frequentist approach and controls the trade off between flexibility
and smoothness. Weakly informative inverse Gamma hyperprior τ2

j ∼ IG(aj , bj) are assigned
to τ2

j , with aj = bj = 0.001 as a standard option.

BayesX supports the most common distributions for the response variable. Possible choices
for univariate responses are Gaussian, Binomial, Poisson, Gamma, negative Binomial, zero
inflated poisson and zero inflated negative binomial. For multicategorical responses, both
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multinomial logit and probit models for unordered categories of the response as well as cumu-
lative threshold models for ordered categories are available. Note that models for categorical
responses may also be used for estimating discrete time survival and competing risk models,
see Fahrmeir and Tutz (2001), Ch. 9. The Poisson distribution allows the estimation of piece-
wise exponential survival models, see e.g. Ibrahim, Chen and Sinha (2001). Furthermore,
extensions of continuous time Cox models have been added to BayesX recently.

The goodness of fit is assessed by the deviance, deviance residuals, the deviance information
criterion DIC (Spiegelhalter, Best, Carlin and van der Linde 2002) and leverage statistics.

The methodology for univariate responses is described in full detail in Fahrmeir and Lang
(2001a), Lang and Brezger (2004) and Brezger and Lang (2005). Count data regression is
covered in Fahrmeir and Osuna (2003). Models with multicategorical responses are dealt with
in Fahrmeir and Lang (2001b) and Brezger and Lang (2005). Survival models are treated in
Hennerfeind, Brezger and Fahrmeir (2005) and Fahrmeir and Hennerfeind (2003). A thorough
(and for most practical purposes sufficient) introduction into the regression models supported
by the program is provided in the BayesX methodology manual.

3. Comparison with existing software

This section compares the capabilities of BayesX to estimate (subclasses of) structured addi-
tive regression models with other statistical software packages.

3.1. Software with built-in functions

We first compare the functionality of BayesX with that of other statistical software packages
with built in functions for additive or related models. The comparison includes the step.gam
function in S-PLUS (Insightful Corporation 2003), the packages mgcv, polspline, geoR and
fields in R (R Development Core Team 2004), the SAS-procedures gam, loess, tpspline, krige2d
and mixed (SAS Institute Inc. 2004), and the functions gam and gllamm, which are available
for usage in Stata (StataCorp. 2003). It turns out that BayesX extends the standard software
in several ways and therefore provides a more flexible tool for complex regression analysis.

Table 4 gives a summary of the different model terms supported by BayesX. Most of the
competing implementations support either additive models, possibly including interaction
surfaces, or the possibility to estimate spatial effects, mostly based on geostatistical method-
ology. However, none of them supports all combinations of additive and spatial components
implemented in BayesX. In addition, BayesX allows for random effects, which are only available
in two other programs, and further extensions such as seasonal priors and varying coefficient
terms, which are not implemented in any other software included in the comparison.

Another issue is the class of response distributions supported by the different programs.
Table 2 lists these distributions separately for univariate responses, categorical responses
and survival models. While most of the implementations support univariate responses, only
a limited number allows for the extended model classes supported by BayesX. The most
competitive implementation is the gllamm function in Stata, which, however, does not include
most of the model terms of structured additive regression models. Similarly, the polspline
package in R allows for nominal categorical responses and continuous time survival analysis,
but does not support the inclusion of spatial or random effects.
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3.2. Comparison with WinBUGS

Currently, the most widely used software for Bayesian inference is WinBUGS (Spiegelhalter,
Thomas, Best and Lunn 2003) which has been developed by the MRC Biostatistics Unit
in Cambridge. The package is available free of charge at http://www.mrc-bsu.cam.ac.
uk/bugs/. WinBUGS may be seen as a kind of (easy to use) programming language that
allows to specify and estimate almost any Bayesian model. Hence, in principle the models
supported in BayesX could be estimated in WinBUGS as well. However, a price is payed for
the extreme flexibility: Our comparison with WinBUGS shows that BayesX is much faster and
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Figure 1: Estimation (top), selected sampling paths and corresponding autocorrelations
(Gaussian response, 6000 iterations, 1000 burn-in, step 5).
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Response N BayesX WinBUGS (tps) WinBUGS (MM)
Gaussian 200 < 5 sec. ca. 5 min. ca. 5 min.
Bernoulli 500 < 20 sec. ca. 76 min. ca. 92 min.

Table 3: Simulation run time on a PC (0.99GB RAM, 2.79GHz CPU).
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Figure 2: Estimation, selected sampling paths and corresponding autocorrelations (Bernoulli
response, 12000 iterations, 2 burnin, step 10).
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shows superior mixing properties for the resulting Markov chains.

We demonstrate the differences with two simple examples. The two models

yi ∼ N(sin(xi), 0.5), i = 1, . . . , 200

and
yi ∼ B(1, πi), πi =

exp(sin(xi)
1 + exp(sin(xi))

i = 1, . . . , 500

have been estimated both with BayesX and WinBUGS using Bayesian P-splines with second
order random walk penalty. In WinBUGS both the truncated power series basis (tps) of splines
as well as a mixed model representation (MM) have been tested. Table 3 shows that BayesX
estimates the models roughly 60-280 times faster than WinBUGS. Moreover, the MCMC
sampler of BayesX shows considerably improved mixing properties compared to WinBUGS,
see Figures 1 and 2. The resulting estimators are, however, quite close.

4. Usage of BayesX

After having started BayesX, a main window divided into four sub-windows appears on the
screen. These are a command window for entering and executing code, an output window for
displaying results, a review window for easy access to past commands, and an object browser
that displays all objects currently available.

BayesX is object oriented although the concept is limited, i.e. inheritance and other concepts
of object oriented languages like C++ or S-PLUS are not supported. For every object type
a number of object-specific methods may be applied to a particular object. To estimate
Bayesian regression models we need a dataset object to incorporate, handle and manipulate
data, a bayesreg object to estimate semiparametric regression models, and a graph object to
visualize estimation results. If spatial effects are to be estimated, we additionally need a map
object. map objects mainly serve as auxiliary objects for bayesreg objects and are used to read
the boundary information of geographical maps and to compute the neighborhood matrix and
weights associated with the neighbors. The syntax for generating a new object in BayesX is

> objecttype objectname

where objecttype is the type of the object, e.g. dataset, and objectname is the arbitrarily
chosen name of the new object. In the following subsections we give an overview about the
most important methods of the object types required to estimate Bayesian structured additive
regression models.

4.1. dataset objects

Data (in form of external ASCII files) are read into BayesX with the infile command. The
general syntax is:

> objectname.infile [varlist] [, options] using filename

Here, varlist denotes a list of variable names separated by blanks (or tabs), and filename is the
name (including full path) of the external ASCII file storing the data. The variable list may
be omitted if the first line of the file already contains the variable names. BayesX assumes
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that the variables are stored column wise, that is one column per variable. Two options may
be passed, the missing option to indicate missing values and the maxobs option for reading
in large data sets. Specifying for example ’missing = M’ defines the letter ’M’ as an indicator
for a missing value. The default values are a period ’.’ or ’NA’ (which remain valid indicators
for missing values even if an additional indicator is defined). The maxobs option may be used
to speed up the reading of large data sets. Its usage is strongly recommended if the number
of observations exceeds 10000. For instance, ’maxobs=100000’ indicates that the data set has
100000 or less observations. Having read in the data, the data set may be inspected by double
clicking on the respective object in the object browser.

Besides the infile command many more methods for handling and manipulating data are
available, e.g. the generate command to create new variables, the drop command to drop
observations and variables or the descriptive command to obtain summary statistics for
the variables.

4.2. map objects

The boundary information of a geographical map is read into BayesX using the infile com-
mand of map objects. The current version supports two file formats, boundary files and graph
files. A boundary file stores the boundaries of every region in form of closed polygons. Having
read in a boundary file, BayesX automatically computes the neighbors and associated weights
of each region. By double clicking on the respective object in the object browser the map
may be inspected visually. A graph file simply stores the nodes N and edges E of a graph
G = (N,E), which is a convenient way of representing the neighborhood structure of a geo-
graphical map. The nodes of the graph correspond to the region codes. The neighborhood
structure is represented by the edges of the graph. Weights associated with the edges may be
given in a graph file as well. For the detailed structure of boundary and graph files we refer
to the BayesX reference manual, Ch. 5. Examples of boundary and graph files for different
countries and regions are available at the BayesX homepage, see Section 6 for the internet
address. The syntax for reading boundary or graph files is

> objectname.infile [, weightdef=wd] [graph] using filename

where option weigthdef specifies how the weights associated with each pair of neighbors are
computed. Currently, there are three weight specifications available, ’weightdef=adjacency’,
’weightdef=centroid’ and ’weightdef=combnd’. If ’weightdef=adjacency’ is specified, the
weights for each pair of neighbors are set equal to one. Specifying ’weightdef=centroid’
results in weights inverse proportional to the distance of the centroids of neighboring regions
and ’weightdef=combnd’ results in weights proportional to the length of the common bound-
ary. If ’graph’ is specified as an additional option BayesX expects a graph file rather than a
boundary file.

4.3. bayesreg objects

Bayesian regression models are estimated using the regress command of bayesreg objects.
The general syntax is

> objectname.regress model [weight weightvar] [if expression] [, options] using dataset

Executing this command estimates the regression model specified in model using the data
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specified in dataset, where dataset is the name of a dataset object created previously. An if
statement may be included to analyze only a part of the data and a weight variable weightvar
to estimate weighted regression models. Options may be passed to specify the response
distribution, details of the MCMC algorithm (for example the number of iterations or the
thinning parameter), etc. The syntax of models is:

depvar = term1 + term2 + · · · + termr

Here, depvar specifies the dependent variable in the model and term1, . . . , termr define the
way the covariates influence the response variable. The different terms must be separated
by ’+’ signs. In the following we give some examples. An overview about the capabilities of
BayesX is given in Table 4. Table 5 shows how interactions between covariates are specified.
More details can be found in the BayesX manual Ch. 7.

Suppose we want to model the effect of three covariates X1, X2 and X3 on the response variable
Y. Traditionally a strictly linear predictor is assumed which can be specified in BayesX by:

Y = X1 + X2 + X3

Note that a constant intercept is automatically included into the models and must not be
specified. If we assume possibly nonlinear effects of the continuous variables X1 and X2, for
instance quadratic P-splines with second order random walk smoothness priors, we obtain:

Y = X1(psplinerw2,degree=2) + X2(psplinerw2,degree=2) + X3

The second argument in the model formula above is optional. If omitted, a cubic spline will
be estimated by default. Moreover, some more optional arguments may be passed, e.g. to
define the number of knots. For details we refer to the BayesX manual.

Prior/Effect Syntax example Description

Linear effect X1 Linear effect of X1.

First or second or-
der random walk

X1(rw1)

X1(rw2)

Nonlinear effect of X1.

P-spline X1(psplinerw1)

X1(psplinerw2)

Nonlinear effect of X1.

Seasonal prior X1(season,period=12) Time varying seasonal effect of X1 with period 12.

Markov random
field

X1(spatial,map=m) Spatial effect of X1 where X1 indicates the region
an observation pertains to. The boundary infor-
mation and the neighborhood structure is stored
in the map object ’m’.

Two-dimensional
P-spline

X1(geospline,map=m) Spatial effect of X1. Estimates a two-dimensional
P-spline based on the centroids of the regions. The
centroids are stored in the map object ’m’.

Random intercept X1(random) I.i.d. Gaussian (random) effect of the group indi-
cator X1, e.g. X1 may be an individuum indicator
when analyzing longitudinal data.

Baseline in Cox
models

X1(baseline) Nonlinear shape of the baseline effect λ0(X1) of a
Cox model. log(λ0(X1)) is modeled by a P-spline
with second order penalty.

Table 4: Overview over different model terms in BayesX.
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Type of interaction Syntax example Description

Varying coefficient term X2*X1(rw1)

X2*X1(rw2)

X2*X1(psplinerw1)

X2*X1(psplinerw2)

Effect of X2 varies smoothly over the
range of the continuous covariate X1.

Random slope X2*X1(random) The regression coefficient of X2 varies with
respect to the unit- or cluster index vari-
able X1.

Geographically weighted
regression

X2*X1(spatial,map=m) Effect of X2 varies geographically. Covari-
ate X1 indicates the region an observation
pertains to.

Two-dimensional
surface

X2*X1(pspline2dimrw1) Two-dimensional surface for the continu-
ous covariates X1 and X2.

Time-varying effect
in Cox models

X2*X1(baseline) Effect of X2 varies over time, where the
time-axis is given by X1

Table 5: Possible interaction terms in BayesX.

Family Link Description

gaussian identity Gaussian responses. Details about MCMC inference in Lang and
Brezger (2004).

binomial logit Binomial responses. Inference is based on conditional prior or IWLS
proposals, see Fahrmeir and Lang (2001a) and Brezger and Lang
(2005).

bernoullilogit logit Models with binary responses and logit link. Estimation is based on
latent utility representations, see Holmes and Held (2004).

binomialprobit probit Models with binary responses and probit link. Estimation is based on
latent utility representations, see Albert and Chib (1993).

multinomial logit Multinomial logit model, see Brezger and Lang (2005).

multinomialprobit probit Multinomial probit model. Estimation is based on latent utility rep-
resentations, see Fahrmeir and Lang (2001b).

cumprobit probit Cumulative threshold model for ordered responses with three cat-
egories. Estimation is based on latent utility representations, see
Fahrmeir and Lang (2001b).

poisson log Poisson distribution. Inference is based on conditional prior or IWLS
proposals, see Fahrmeir and Lang (2001a) and Brezger and Lang
(2005).

negbin log Negative Binomial responses. Details in Fahrmeir and Osuna (2003).

gamma log Gamma distribution. Inference is based on conditional prior or IWLS
proposals, see Fahrmeir and Lang (2001a) and Brezger and Lang
(2005).

zip log Zero inflated count data regression.

cox – Cox model. Details in Hennerfeind, Brezger and Fahrmeir (2005) and
Fahrmeir and Hennerfeind (2003).

Table 6: Response distributions in BayesX.
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Suppose now that we observe an additional variable L which provides information about the
geographical location an observation pertains to. A spatial effect based on a Markov random
field prior is added by:

Y = X1(psplinerw2,degree=2) + X2(psplinerw2,degree=2) + X3 + L(spatial,map=m)

The option map specifies the map object that contains the boundaries of the regions and the
neighborhood information required to estimate a spatial effect.
The distribution of the response is specified by adding the option family to the options
list. For instance, ’family=gaussian’ defines the responses to be Gaussian. Other valid
specifications are found in Table 6.

4.4. graph objects

graph objects are used to visualize data and estimation results obtained by other objects in
BayesX. Currently graph objects may be used to draw scatter plots between variables (method
plot), or to draw and color geographical maps stored in map objects (method drawmap). We
illustrate the usage of graph objects with method drawmap which is used to color the regions
of a map according to some numerical characteristics. The syntax is:

> objectname.drawmap plotvar regionvar [if expression] , map=mapname [options] using
dataset

Method drawmap draws the map stored in the map object mapname and prints the graph
either on the screen or stores it as a postscript file (if option outfile is specified). The
regions with region code regionvar are colored according to the values of the variable plotvar.
The variables plotvar and regionvar are supposed to be stored in the dataset object dataset.
Several options are available for customizing the graph, e.g. for changing from grey scale to
color scale or storing the map as a postscript file, see the BayesX reference manual Ch. 6. A
typical graph obtained with method drawmap is given in Figure 4.

5. A complex example: Childhood undernutrition in Zambia

In this example we demonstrate the usage of BayesX by analyzing data on undernutrition of
children in Zambia. This data set has already been analyzed in Kandala, Lang, Klasen and
Fahrmeir (2001). Here, we apply the same model as developed in their paper. Since our focus
is on demonstrating how a regression model can be specified and estimated using BayesX we
do not discuss or interpret the estimation results.
Undernutrition among children is usually determined by assessing the anthropometric status
of a child relative to a reference standard. In our example undernutrition is measured through
stunting or insufficient height for age, indicating chronic undernutrition. Stunting for a child
i is determined using a Z-score defined as

Zi =
AI i −MAI

σ
,

where AI refers to the child‘s anthropometric indicator (height at a certain age in our ex-
ample), MAI refers to the median of the reference population and σ refers to the standard
deviation of the reference population.
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Variable Description
hazstd Standardized Z-score of stunting.
bmi Body mass index of the mother.
agc Age of the child.
district District where the child lives.
rcw Mother‘s employment status with categories ”working”(= 1) and ”not work-

ing” (= −1).
edu1
edu2

Mother‘s educational status with categories ”complete primary but incom-
plete secondary” (edu1=1), ”complete secondary or higher” (edu2=1) and
”no education or incomplete primary” (edu1=edu2=-1).

tpr Locality of the domicile with categories ”urban” (= 1) and ”rural” (= −1).
sex Gender of the child with categories ”male” (= 1) and ”female” (= −1).

Table 7: Variables in the data set on childhood undernutrition.

The main interest is on modeling the dependence of undernutrition on covariates including
the age of the child, the body mass index of the child‘s mother, the district the child lives in
and some further categorical covariates. Table 7 gives a description of the variables used in
our model.

The data is analyzed in largely five steps: We first read in the data into BayesX using a dataset
object. Since we want to estimate a spatial effect of the district in which the child lives, we
need the boundaries of the districts to compute the neighborhood information of the map of
Zambia. Therefore, we create a map object which contains the required information in the
second step. A regression model is estimated in the third step followed by visualizing results.
Since our analysis is based on MCMC techniques it is important to investigate the sampling
paths and the autocorrelation functions of the estimated parameters in a last step.

In the following, we assume that the data set and the map of Zambia are stored in the files
c:\data\zambia.raw and c:\data\mapzambia.raw, respectively.

1. Reading data set information

To read the data into BayesX, we create a dataset object and use the infile command of
dataset objects:

> dataset d
> d.infile using c:\data\zambia.raw

2. Compute neighborhood information

The neighborhood information of the map of Zambia is computed and stored in BayesX by
creating a map object and using the infile command:

> map m
> m.infile using c:\data\mapzambia.raw

Having read in the boundary information, BayesX automatically computes the neighborhood
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matrix of the map. In our example, two regions are assumed to be neighbors if they share a
common boundary.

3. Regression analysis

Kandala, Lang, Klasen and Fahrmeir (2001) estimated a Gaussian regression model with
predictor

η = γ0 + γ1rcw + γ2edu1 + γ3edu2 + γ4tpr + γ5sex + f1(bmi) + f2(agc)+

fstr(district) + funstr(district)
(7)

The two continuous covariates bmi and agc are assumed to have a possibly nonlinear effect
on the Z-score and are therefore modeled nonparametrically (as cubic P-splines with second
order random walk prior in our example). The spatial effect of the district is split up into a
spatially correlated part fstr(district) and an uncorrelated part funstr(district). The former is
modeled by a Markov random field prior, where the neighborhood matrix and possible weights
associated with the neighbors are obtained from the map object m. The latter is modeled by
an i.i.d. Gaussian effect.
We now estimate model (7) using bayesreg objects. We create a bayesreg object and estimate
the model using the regress command:

> bayesreg b
> b.regress hazstd = rcw + edu1 + edu2 + tpr + sex + bmi(psplinerw2)
+ agc(psplinerw2) + district(spatial,map=m) + district(random),
family=gaussian iterations=12000 burnin=2000 step=10 predict using d

The options iterations, burnin and step define the number of iterations, the burn in period
and the thinning parameter of the MCMC simulation run. Specifying step=10 as above forces
BayesX to store only every 10th sampled parameter which leads to a random sample of length
1000 for every parameter in our example.
If option predict is specified, samples of the deviance, the effective number of parameters
pD and the deviance information criterion DIC of the model are computed and stored, see
Spiegelhalter, Best, Carlin and van der Linde (2002). In addition, estimates for the additive
predictor and the posterior expectations are computed for every observation.
On a 2.4 GHz personal computer estimation of the model is carried out in about 1 minute
and 5 seconds.
After estimation, results for each effect are written to an external ASCII file. These files
contain the posterior mean and median, the posterior 2.5%, 10%, 90% and 97.5% quantiles
and the corresponding 95% and 80% posterior probabilities of the estimated effects. For
example, the beginning of the file for the effect of bmi looks like this:

intnr bmi pmean pqu2p5 pqu10 pmed pqu90 pqu97p5 pcat95 pcat80

1 12.8 -0.284065 -0.660801 -0.51678 -0.283909 -0.0585753 0.085998 0 -1

2 13.15 -0.276772 -0.609989 -0.483848 -0.275156 -0.070517 0.0572406 0 -1

3 14.01 -0.258674 -0.515628 -0.416837 -0.257793 -0.10009 -0.00289024 -1 -1

The numbers 1 and -1 for the variables pcat95 and pcat80 indicate that the corresponding
credible intervals are either strictly positive or negative. Zero indicates credible intervals
containing zero.



Journal of Statistical Software 17

4. Visualizing estimation results

Estimation results for nonlinear effects of bmi and agc and the spatial effect of the district
are best summarized by visualization. BayesX automatically creates appropriate plots of the
effects and stores the graphs as postscript files. The file names are given in the output window
for each effect. Figure 3 and Figure 4 show the content of these files. Moreover, a batch-file is
created that contains all commands necessary to reproduce the plots. The advantage is that
additional options may be added by the user to customize the graphs (e.g. to change the title
or axis labels).

It is also possible to visualize effects on the screen immediately after estimation. For the
nonlinear effects of the two continuous covariates such plots are obtained by executing the
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Figure 3: Example on childhood undernutrition: Effect of the body mass index of the child‘s
mother and of the age of the child together with pointwise 80% and 95% credible intervals.

-0.304985 0 0.22614

Figure 4: Example on childhood undernutrition: Structured spatial effect.
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commands

> b.plotnonp 1

and

> b.plotnonp 3

The numbers following the plotnonp command depend on the order in which the model terms
have been specified. They are supplied in the output window after estimation.
Results for spatial effects are best visualized by drawing the respective map and coloring the
regions of the map according to some characteristic of the posterior, e.g. the posterior mean.
For instance, the structured spatial effect is visualized by typing

> b.drawmap 5, color

The additional option color forces BayesX to use colors instead of grey shades for visualiza-
tion.

5. Post estimation commands

In addition to the regress command, bayesreg objects provide some post estimation com-
mands to get sampled parameters or to compute autocorrelation functions of sampled param-
eters. For example

> b.getsample

stores sampled parameters in ASCII files and plots the sampling paths. The resulting graphs
are stored in postscript format leading e.g. to the plots shown in Figure 5 for the scale
parameter and the intercept. To avoid too large files, the samples are typically partitioned
into several files.
Autocorrelation functions may be drawn e.g. by typing

1 250 500 750 1000
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 0.829

 0.854

iteration

par 1

1 250 500 750 1000

-0.064

 0.018

 0.101

 0.184

 0.267

iteration

par 1

Figure 5: Example on childhood undernutrition: Sampling paths for the scale parameter and
the intercept.
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Figure 6: Example on childhood undernutrition: Autocorrelation functions for the scale
parameter and the intercept.

> b.plotautocor , maxlag=150

where maxlag specifies the maximum lag number. The default is ’maxlag=250’. Executing the
plotautocor command also stores the autocorrelation functions in an ASCII file. Figure 6
shows the autocorrelation function for the scale parameter and the intercept.

6. Download and recommendations for further reading

The latest version of BayesX including detailed manuals is available at http://www.stat.
uni-muenchen.de/~bayesx/.

The BayesX homepage also contains all files required to reproduce the results presented in the
example on childhood undernutrition in Zambia. In addition, a more detailed tutorial based
on the Zambia data set is available, click on Tutorials at the homepage. Finally, to download
the boundary and graph files for a number of countries and regions, click on Maps.

For users not familiar with MCMC simulation techniques, it is strongly recommended to read
at least one of the introductions into MCMC. A very nice and thorough introduction is given
in Green (2001). To get an overview about the methodology BayesX is based on, we consider
it sufficient to read the methodology manual. More details may be found in the references
cited therein and in this paper. First steps with BayesX can be done with the example of this
paper and the tutorial on childhood undernutrition in Zambia.
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