The VGAM Package for Categorical Data Analysis
Main Article Content
Abstract
Classical categorical regression models such as the multinomial logit and proportional odds models are shown to be readily handled by the vector generalized linear and additive model (VGLM/VGAM) framework. Additionally, there are natural extensions, such as reduced-rank VGLMs for dimension reduction, and allowing covariates that have values specific to each linear/additive predictor, e.g., for consumer choice modeling. This article describes some of the framework behind the VGAM R package, its usage and implementation details.