SSN: An R Package for Spatial Statistical Modeling on Stream Networks

Jay Ver Hoef, Erin Peterson, David Clifford, Rohan Shah

Main Article Content

Abstract

The SSN package for R provides a set of functions for modeling stream network data. The package can import geographic information systems data or simulate new data as a ‘SpatialStreamNetwork’, a new object class that builds on the spatial sp classes. Functions are provided that fit spatial linear models (SLMs) for the ‘SpatialStreamNetwork’ object. The covariance matrix of the SLMs use distance metrics and geostatistical models that are unique to stream networks; these models account for the distances and topological configuration of stream networks, including the volume and direction of flowing water. In addition, traditional models that use Euclidean distance and simple random effects are included, along with Poisson and binomial families, for a generalized linear mixed model framework. Plotting and diagnostic functions are provided. Prediction (kriging) can be performed for missing data or for a separate set of unobserved locations, or block prediction (block kriging) can be used over sets of stream segments. This article summarizes the SSN package for importing, simulating, and modeling of stream network data, including diagnostics and prediction.

Article Details

Article Sidebar